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Abstract

Motivated by the goal of removing trusted setup assumptions from cryptography, we introduce the
notion of witness signatures. This primitive allows any party with a valid witness to an NP statement to
sign a message on behalf of that statement. We also require these signatures to be unforgeable: that is,
producing a signature on a new message (even given several message, signature pairs) should be as hard
as computing a witness to the NP statement itself. Witness signatures are closely related to previously
well-studied notions such as non-malleable non-interactive zero knowledge arguments, and signatures of
knowledge.

In this work, we formalize this notion and show that most natural definitions are impossible in the
plain model without any setup assumptions. While still wanting to avoid a central trusted setup, we turn
to the tamper proof hardware token model of Katz (Eurocrypt 2007). Interestingly, we show witness
signatures in the hardware token model are closely related to what we call non-malleable multi-prover
zero-knowledge proofs in the plain model (i.e. without hardware tokens). We initiate the study of non-
malleable multi-prover zero-knowledge proofs, and, provide an unconditional construction of single round
non-malleable two-prover zero-knowledge proofs. We then use this primitive to obtain an unconditional
construction of witness signatures in the hardware token model.

Our construction makes a novel use of non-malleable codes. In particular, we crucially rely on the
notion of many-many non-malleable codes introduced recently by Chattopadhyay, Goyal and Li (ECCC
2015). Our construction is unconditional, is extremely efficient (in terms of computation, number of
tokens, and rounds of interaction with the token), and, only relies on elementary computations such as
inner products.

Finally, this construction yields signatures which can only be verified a bounded number of times.
Towards that end, we show how to extend it to get the unbounded (polynomial) verification property
relying on the minimal additional assumption of one-way functions. We also show that obtaining un-
conditional unbounded-verifiable witness signatures under black-box extraction, is impossible even with
access to an unbounded number of stateful tamper-proof hardware tokens- thereby giving a matching
lower bound. This is done by relying on the techniques from the work of Goyal et al (Crypto 2012)
(which in turn builds on techniques from the black-box separation literature). In particular, we rely on
the notion of “inaccessible entropy" introduced in prior works.
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1 Introduction
Suppose a government promises to send a huge cash prize directly to the address (or bank account) of
anybody who can solve a hard puzzle. How should a scientist convince the government that he knows a
solution to the puzzle, while ensuring that the money gets delivered to his address?

In this paper, we study the notion of what we call witness signatures, that offer a simple solution to this
problem. Roughly, witness signatures allow any party with a witness to some NP statement x to sign a
message, such that anyone can verify that the message was indeed signed by someone with the knowledge
of a valid witness for x. These signatures should also be unforgeable: that is, signing a fresh message (even
given several other signed messages) should be as hard as computing a witness to the NP statement itself.

Given such a primitive, the scientist can directly sign his address using his solution to the puzzle and
send this in clear to the government. The unforgeability of the signature will ensure that nobody without a
witness can tamper with the address (or bank account) in the signature; or create a new signature.

Witness-Based Cryptography. Witness signatures can be seen as the signature analogues of witness
encryption [GGSW13] and witness PRFs [Zha16]. Witness encryption allows any party to encrypt a message
to some NP statement – such that decrypting the message requires access to a witness. A witness PRF
is a special kind of pseudo random function, such that anyone with a valid witness to some NP statement
x ∈ L can evaluate the PRF on x without the secret PRF key, while for x 6∈ L, the PRF evaluation on
x is computationally hidden without knowledge of the secret key. The central idea of such witness-based
cryptography is to base hardness on NP puzzles, with trapdoors comprised by the solutions to these puzzles.
This removes the need for trusted setup or prior communication; such that not even publicly-available keys
are required.

However, unlike witness encryption, the notion of witness signatures is not entirely new. Various primi-
tives similar in spirit to witness signatures have been studied in the past decade. For example, this primitive is
closely related to non-malleable non-interactive zero-knowledge arguments of knowledge (NIZKAoK). To con-
struct witness signatures from (tag based) non-malleable NIZKAoKs, the signer can give a zero-knowledge
argument of knowledge of the witness to the NP statement, non-malleably tagged by the message being
signed. Another very similar primitive called ‘signatures of knowledge’ was explored by Chase and Lysyan-
skaya [CL06]. This allows a signer to sign on behalf of an NP statement, while additionally ensuring that
the signature is zero knowledge. However, common to both these primitives is the necessity for a common
reference string (CRS) generated by a trusted setup. On the other hand, we regard avoiding any trust in a
central setup or key generation/exchange, as one of the primary goals of “witness-based cryptography".

The objective of this work is to explore the problem of constructing witness signatures in alternate models
where no central trusted setup or prior communication is required (in keeping with developing cryptography
based on hard problems alone and no keys or setups). But we demonstrate that shooting for a construction in
the plain model is perhaps too ambitious. In fact, for a very natural definition of witness signatures, obtaining
a construction in the plain model with a black-box security reduction is impossible unless BPP = NP.

Witness Signatures Using Stateful Tamper-Proof Hardware Tokens. To get around the plain
model impossibility, we resort to the tamper-proof hardware model of Katz [Kat07] which allows us to bypass
any central setup or trust assumptions (and in fact allows us to get an unconditionally secure construction
assuming stateful hardware). The key feature of this model is that one does not need to place any trust in
the hardware tokens: in particular a dishonest party may construct such tokens maliciously and may query
the received hardware tokens in any way it wishes.

Our goal is to provide unconditional constructions of witness signatures in the hardware token model,
while using a minimal number of hardware tokens. A key observation is that witness signatures in the
hardware token model are closely related to the notion of non-malleable multi-prover zero-knowledge (ZK)
proofs. Multi-prover zero knowledge proofs for NP allow two non-communicating provers to prove an NP
statement x to a verifier, such that if x ∈ L, the proof verifies with overwhelming probability, and if x 6∈ L,
then no cheating provers can generate a proof that verifies with non-negligible probability. The soundness
of such a proof is guaranteed provided the two-provers do not communicate after the start of the protocol.

A non-malleable two-prover ZK proof can be seen as a natural extension of a two-prover ZK proof.
Consider the following situation: In a left interaction there are two honest provers proving some statement
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x, who instead of interacting with a stand-alone verifier, interact with two verifiers. Both verifiers are part of
a man-in-the-middle adversary, and act as two-provers proving some related statement x′. Indeed, the two
man-in-the-middle provers cannot talk to each other after the right protocol starts (otherwise, soundness
itself can be violated!). We formalize and construct (tag-based) non-malleable ZK proofs. This ensures that
two man-in-the-middle verifiers cannot malleate an honestly generated proof for a statement x ∈ L and tag
tag, to a proof for the same statement on a different tag tag′ unless they know a witness for x. To the best
of our knowledge, this notion has not been explored prior to our work. Our construction of non-malleable
two-prover zero knowledge, and the notion itself, can be seen as a primitive of independent interest.

Our construction of witness signatures comprises only two (stateful) tokens generated by the signer, that
act as two provers of a non-malleable two-prover zero-knowledge proof. This construction is unconditionally
secure and allows for a polynomially bounded number of verifications. We also give an alternate construction
based on one-way functions, that allows for an unbounded number of verifications. Finally, we prove a
matching impossibility – showing that it is impossible to use even an unbounded number of stateful hardware
tokens to obtain unconditionally secure witness signatures that verify an unbounded number of times.

Other Applications. We believe that similar to witness encryption, witness signatures is a fundamental
and theoretically intriguing primitive. Therefore, we believe that a systematic study of this primitive is
justified regardless of applications to other cryptographic primitives. However we also remark that several
applications of non-malleable NIZKs and signatures of knowledge, in fact, do apply to witness signatures
as well (and hence unconditional witness signatures in the hardware token model would lead to those ap-
plications in such a model as well). Two such examples [CL06] are those of ring signatures and delegatable
anonymous credentials, and Chase and Lysyanskaya [CL06] realized these primitives in the CRS model1.
Our construction of witness signatures would allow us to realize these primitives without a central setup
(albeit assuming tamper-proof hardware).

1.1 Our Contributions
Formalizing the Notion. We begin by formalizing the most natural definition of witness signatures,
without setup, in the standard model. To capture the notion of unforgeability, we require that for any forger
that creates a forgery on some NP-hard instance x, which successfully verifies with probability p, there exists
a reduction which interacts with such a forger in a fully black-box manner, and outputs a witness for x with
probability at least poly(p), for some fixed polynomial poly(·). An additional natural property we also require
is that the signatures should be witness indistinguishable. This property gives anonymity to the signers, and
is crucial in some applications.

However, we observe that (unlike their encryption/PRF counterparts) witness signatures for this most
natural definition are impossible to securely realize without setup in the standard model, unless BPP = NP.
Intuitively, this is because the black-box reduction – which neither has a witness, nor any trapdoor in the
standard model without setup – must issue valid signatures to obtain any output from a forger. However,
since the signatures are non-interactive, the reduction cannot even rewind the forger in order to simulate
‘fake’ signatures. This means that the black-box reduction must necessarily have some extra power over a
real signer; rendering most natural definitions impossible unless BPP = NP.

Witness Signatures in the Hardware Token Model. As our main contribution, we construct efficient
witness signatures in the hardware token model. This model has been used previously in the literature, in
the context of UC-secure computation, to remove setup or trust assumptions. In the stateful hardware token
model, we make the following natural assumption – two (possibly malicious) tokens issued by a signer, when
queried in isolation, cannot communicate with each other. Then, we obtain the following main results.

◦ A very efficient unconditionally secure protocol that uses only two tokens and realizes a-priori bounded
verifiable witness signatures. This means that the given signature may only be verified a bounded
number of times (and the tokens stop responding after that). Our signature scheme is truly efficient

1However, the definitions of [CL06] were much stronger and also gave rise to group signatures. Group signatures, by
definition, require a trapdoor and therefore cannot exist in our setup-free world.

2



and utilizes only basic operations like taking inner products and multiplications. To achieve this goal,
we make a novel use of non-malleable codes introduced by [DPW10, CGL15].

◦ A matching lower bound, which proves that an unconditionally secure protocol for witness signatures,
cannot exist even in the stateful token model, if unbounded verifiability is required. To do this, we
use techniques from the work of Goyal et al [GIMS10a] which in turn borrow from the literature on
black-box separations. In particular, we rely on the notion of inaccessible entropy that was introduced
in [HHRS07, HRVW09].

◦ A very efficient protocol that uses two tokens and realizes unbounded verifiable witness signatures,
assuming the existence of one-way functions.

On the Optimality of our Construction. Goyal et al. [GIS+10] obtain general non-interactive uncon-
ditional UC secure computation in the hardware token model. This general positive result also applies to the
witness signature functionality, thereby yielding a feasibility result in the hardware token model. However
this gives an extremely inefficient solution literally involving the transfer of millions of tokens. To under-
stand the number of tokens involved, [GIS+10] would require several tokens for each gate of the circuit which
implements the next message function of the Ishai et al [IPS08] UC secure two-party computation protocol.
On the other hand, our techniques yield truly efficient witness signature schemes requiring only elementary
computation and sending only two tokens.

We remark here, that our construction is optimal in terms of number of tokens: any unconditional
construction requires at least two tamper proof hardware tokens.

We cannot hope to obtain an unconditional construction where a signer issues only a single hardware
token, because then the single token would solely be responsible for giving an (unconditional) witness hiding
proof for NP, which is impossible.

Non-malleable Two-Prover Zero-Knowledge Proofs. We introduce the notion of non-malleable two-
prover ZK proofs, and give an efficient, information theoretic secure construction. Our construction makes
novel use of split-state non-malleable codes in such a way that the two states in the split-state functionality
are defined by the main thread and the rewinding execution of the adversary.

As a separate technical contribution, we also show that any sigma protocol (with some natural addi-
tional properties) can be converted to a two-prover proof in a similar vein as the Lapidot-Shamir [LS91]
construction.

1.2 Our Techniques
We start by observing that in the stateful hardware token model, a signer who wishes to output a witness
signature on some message m, can send a token which executes a non-malleable zero knowledge proof of
knowledge with a receiver. This is what we leverage to obtain a witness signature scheme.

Unconditional ZK from a Two-Prover Proof. As mentioned before, the signer can program two
stateful tokens to participate in a two-prover proof system. Two-prover ZK proofs were first studied by
Lapidot-Shamir [LS91] and are known to be unconditionally sound and perfectly zero-knowledge. The
verifier would execute the protocol independently with each of the two tokens. Assuming that the tokens
issued by a possibly malicious prover cannot communicate with each other when queried in isolation, this
gives the soundness property required by witness signatures. This perspective, of using tokens as independent
provers, is not completely new and has been explored before in [GIMS10b]. However, this would only give
us (unconditional) soundness and (perfect) zero knowledge, whereas to obtain unforgeability – we require
non-malleability of the underlying proof.

Non-malleable Two-prover Proofs via Split-State Non-malleable Codes. Here, we demonstrate
how we obtain a non-malleable two-prover proof. At the heart of our techniques lies a method of using
split-state non-malleable codes, in the multi-prover model to achieve non-malleability in protocols. A split-
state non-malleable code encodes some message M into two parts L,R, such that if the adversary separately
tampers with L or with R, he cannot construct a codeword that is related to M .
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To give a better intuition of our use of these codes, we start by discussing an unconditional commitment
scheme in the two-prover model. The sender, in order to commit to a value X, secret shares X using an
XOR encoding into shares A,B. He inputs the values A,B into both the provers, and sends these provers as
his commitment. On receiving the commitment, the verifier queries the second prover only, and depending
upon the challenge string, the prover outputs either A or B.

To decommit, the first prover outputs both values A,B to the verifier. It is easy to see that the construc-
tion described above behaves like a 1/2-binding commitment to X. Such commitments are an integral part
of two-prover proofs. It is feasible to port Σ protocols (which follow a commit, challenge, response structure)
to a single round two-prover proof by using the second token to verify the commitment, and the first token
to directly open a response to the challenge.

However, if instead of creating the shares of X using an ordinary XOR secret sharing scheme, we used a
split-state non-malleable encoding scheme (which incidentally, also satisfies secret-sharing properties), then
we could argue that an adversarial man-in-the-middle verifier which only obtains one of these shares from
the second prover, can only tamper one of them at a time, and thus the resulting commitment would be
non-malleable. It appears that porting Σ protocols to a two-prover proof while using this new non-malleable
commitment scheme, should directly yield non-malleable two-prover ZK proofs.

Unfortunately, this idea does not directly work. This is because for most Σ protocols (including the
Blum Hamiltonicity protocol used in Lapidot-Shamir [LS91], the prover may be required to open only a part
of his committed message in the first round, depending upon the challenge query. Opening a part of the
entire committed message is possible if a XOR encoding (ordinary secret sharing) were used, but not if a
non-malleable encoding was used to commit to the entire first-round message at once.

This can easily be overcome if we non-malleably encode each index separately. However, proving security
of this construction requires a reduction to many-many non-malleable codes. Fortunately, such codes were
recently constructed by Chattopadhyay, Goyal and Li [CGL15]. We make a minor modification to their
construction to obtain many-many non-malleable codes with symmetric decryption, and the resulting sym-
metric many-many non-malleable codes suffice for our purposes. Then, in the construction outlined above,
we observe that any man-in-the-middle adversary can only tamper with one of the split-state shares at a
time (since he can only query a prover for one of the shares), while the other one is information theoretically
hidden from him.

We show the existence of a simulator-extractor which builds on the standalone 2-prover ZK simulator.
We perform a meticulous case analysis, and observe that in the most interesting case, the second man-in-
the-middle (MIM) cheating prover behaves like a split-state tampering function on the shares output by
the honest prover, in the real and rewinding executions. Then, we can argue non-malleability by a clever
reduction to the security of the underlying many-many non-malleable codes.

Although this is the most technically challenging case to study, there are other ways in which the MIM
provers could orient themselves. In particular, both MIM provers could be talking to various possible disjoint
subsets of the two left provers. For example, a single man-in-the-middle prover could be acting as a verifier
to both left provers, while the second man-in-the-middle interacts with none of them. Proving security in
all these cases requires different ideas – for a detailed analysis, refer to Section 4.

Impossibility of Unconditional Unbounded-Verifiable Witness Signatures with Hardware To-
kens. Our starting point is the result of Goyal et. al. [GIMS10b], who used the notion of accessible entropy
from [HHRS07, HRVW09] and constructed an algorithm that learns most of the entropy of any stateless
token. Their treatment crucially relied on the fact that a stateless token can be modeled as black-box access
to a function. However, this is not true in case of stateful tokens. In particular, given the same query a
second time, a stateful token may change its output. Then it is unclear if one can have entropy learners in
this setting.

Interestingly, we show that it is possible to extend the result of [GIMS10b] (which works for a single
stateless token) to an unbounded number of deterministic stateful tokens with bounded entropy. We then
use such a learner for our impossibility result as follows. If an unbounded number of queries are allowed,
then a set of bounded-entropy tokens end up revealing all their (combined) secrets to the learner. Very
roughly, this brings us back to the plain model, where witness signatures are impossible. While this was
an oversimplified overview, the actual argument requires much more effort to make it work, and forms the
second main result of our paper.
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Unbounded Verification-Secure Witness Signatures from One-way Functions. Given the previ-
ous two results, we now use PRFs to generate fresh entropy within the tokens, for each execution of the
two-prover proof. The two tokens share a PRF key and generate entropy in sync for the two-prover proof.
This suffices to allow an unbounded polynomial number of verifications.

1.3 Organization
The rest of this paper is organized as follows: In Section 2, we recall some definitions and primitives used in
the rest of the paper. In Section 3, we give the formal definition of witness signatures and the plain-model
impossibility for a black-box reduction. In Section 4, we give the construction and proof of security of our
two-prover non-malleable proof. In Section 5, we show how to use these results to obtain witness signatures.
Then, in Section 6, we show that it is impossible unconditional unbounded-verifiable witness signatures with
a black-box proof of security, using stateful hardware tokens.

1.4 Related Work
Signatures of Knowledge. As already observed above, witness signatures are related to some existing
primitives such as signatures of knowledge and non-malleable NIZKAoKs. Signatures of knowledge were
introduced in 2006 by Chase and Lysyanskaya [CL06]. This primitive allows a signer to sign on behalf of
an NP statement, while additionally ensuring that the signature is zero knowledge. This primitive is also
closely related to non-malleable non-interactive zero-knowledge arguments of knowledge (NIZKAoK) [Sah99,
SCO+01]. To construct witness signatures from (tag based) non-malleable NIZKAoKs, the signer can give
a zero-knowledge argument of knowledge of the witness to the NP statement, non-malleably tagged by the
message being signed. However, all of these primitives work in the presence of a common reference string,
whereas witness signatures aim to remove reliance on a central trusted setup.

Non-Malleable Codes. There has been a vast amount of work on non-malleable codes. We give a
summary of known constructions. Since the introduction of non-malleable codes by Dziembowski, Pietrzak
and Wichs [DPW10], the most well studied model is the split-state model introduced above. By a recent
line of work [DKO13, ADL14, CG14, CZ14, ADKO15], we now have almost optimal constructions of non-
malleable codes in the C split-state model, for any C ≥ 2. In the global-tampering (not split-state) model,
Agrawal et al. [AGM+15] constructed efficient non-malleable codes with rate 1 − o(1) against a class of
tampering functions slightly more general than the family of permutations.

A different but slightly related model is that of continuous non-malleable codes, which were introduced
and constructed by Faust et al. [FMNV14]. Liu and Lysyanskaya [LL12] constructed efficient constant rate
non-malleable codes in the split-state model against computationally bounded adversaries under strong cryp-
tographic assumptions. Faust et al. [FMVW14] constructed almost optimal non-malleable codes against the
class of polynomial sized circuits in the CRS framework. [CCP12, CCFP11, CKM10, FMNV14] considered
non-malleable codes in other models.

2 Preliminaries
In this section, we recall some definitions and introduce some notation for use in the rest of the paper. Let κ
denote the statistical security parameter. First, we recall the stateful tamper-proof hardware token model.

2.1 Stateful Token Model
In the information theoretic stateful (tamper-proof hardware) token model, two (computationally unbounded)
interactive algorithms A and B will interact with the following extra feature to the standard model. Each
party at any time during the protocol can construct a turing machine T , put it inside a “token", and send
the token T to the other party. The party receiving the token T will have oracle access to T and is allowed
to make polynomially many but unbounded number of queries to the token. Additionally, the token has the
ability to maintain “state" between queries/inputs to the circuit T. The token can contain a random tape
programmed at the time of construction, but cannot flip fresh coins on its own.
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2.2 Non-malleable Codes
Here, we recall the definition of non-malleable codes.

Definition 1. (Coding scheme) A coding scheme consists of two functions: a randomized encoding function
Enc :M → C , and a deterministic decoding function Dec : C → M ∪ {⊥} such that, for each m ∈ M,
Pr(Dec(Enc(m)) = m) = 1 (over the randomness of the encoding algorithm).

In this work, we require non-malleable codes resilient to split-state tampering functions [ADL14]. Infor-
mally, the codeword for any message consists of two parts L and R. Any tampering function f = (f1, f2)
in a 2-split state function family F takes as input a code word (L,R) and outputs a tampered codeword
(L̃ = f1(L), R̃ = f2(R)).

Furthermore, any construction of non-malleable codes in the split-state model satisfies an additional secret
sharing property. Any codeword (L,R) is such that L and R can be viewed as two shares of a 2-out-of-2
secret sharing scheme.

Remark 1. We require the non-malleable codes in question to satisfy a many-many non-malleability property.
Informally, an adversary should not be able to tamper shares corresponding to even polynomially many
messages, to achieve a related word in even one of polynomially many output messages. We formally define
this notion next.

Definition 2 (Many-Many Non-Malleable Codes). [CGL15] A coding scheme (Enc;Dec) with block length
n and message length k is a non-malleable code with respect to a family of tampering functions F ⊂ (Fn)

t

and error ε if for every (f1, . . . ft) ∈ F , there exists a random variable Df on
(
{0, 1}κ ∪ {same∗i}i∈[u]

)t which
is independent of the randomness in Enc such that for all vectors of messages (s1, s2, . . . su), si ∈ {0, 1}κ,
it holds that: |(Dec(f1(X)), . . . ,Dec(ft(X))) − replace(Df , s)| ≤ ε, where X = Enc(s). We refer to t as the
tampering degree of the non-malleable code.

The function replace : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is defined as follows. If the second input to replace is a
single value s, replace all occurrences of same∗ in the first input with s and output the result. If the second
input to replace is a set (s1, s2, . . . , sn), replace all occurrences of same∗i in the first input with si for all i
and output the result.

A non-malleable code is also a non-malleable secret sharing scheme. A non-malleable secret sharing
scheme consists of the following three algorithms:

◦ NM− SS(·) : This algorithm is identical to the Enc(·) algorithm; it computes a non-malleable encoding
of the input, which can also be viewed as a 2-out of-2 non-malleable secret sharing.

◦ NM− Reconstruct(·) : This algorithm is identical to the Dec(·) algorithm; it recovers the input by
decoding the two non-malleable shares.

◦ NM− Simulate(1κ) : The simulation algorithm samples from the distributionDf and outputs the result.

Imported Theorem 1. [CGL15] There exists a constant γ > 0 such that for all n > 0 and t ≤ nγ , there
exists an efficient construction of many-many non-malleable codes in the 2-split state model with tampering
degree t, relative rate nΩ(1)/n, and error 2−n

Ω(1)

.

Specifically, we need split-state non-malleable codes that satisfy the following three properties. The first
two properties are already satisfied by the construction of many-many non-malleable codes in Chattopadhyay
et. al. [CGL15]. We modify their construction slightly to also satisfy the third.

◦ One-many non-malleable. We require the code to be one-many non-malleable for tampering degree
θ(κ2), in the 2-split state model.

◦ Secret-Sharing with Efficient Reverse-Sampling. Given a share L (or R respectively) and a
message m, it is possible to efficiently reverse-sample uniformly from the set of possible shares R (or
L respectively) such that (L,R) encode message m.
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◦ Symmetric Decoding. For all L,R ∈ {0, 1}n we require that Dec(L,R) = Dec(R,L). This is
because our split-state tampering function (f, g) is such that, for instance, f may tamper with the
joint distribution (R1, L2) to output Lout and g may tamper with (L1, R2) to output Rout. Here
(L1, R1) is an encoding of some message m1 and (L2, R2) is an encoding of message m2.
Then, it is first possible to replace (L2, R2) with a simulated codeword, while keeping the resulting
output distribution statistically close to the real output distribution, while also introducing a simulation
error of ε. Now, symmetric decoding ensures that Dec(Lout, Rout) = Dec(Rout, Lout), in other words
Dec(f(R1, Lsim), g(L1, Rsim)) = Dec(g(L1, Rsim), f(R1, Lsim)). Now, it is possible to treat (g, f) as the
new tampering function and replace (L1, R1) with a simulated encoding while still keeping the resulting
output distribution statistically close to the real output distribution, such that the total simulation
error is bounded by 2ε, where ε is the decoding error of the non-malleable codes in question.
We suggest a minor modification to the construction in [CGL15], to obtain symmetric decoding. Here,
we artificially append 0 at the end of one of the shares and 1 at the end of the other, and start the
decoding (or non-malleable extraction) process with the one that ends with 0. Decoding is invalid if
both shares end with the same bit. We give further details on this modification in Appendix A.

2.3 Sigma (Σ) Protocols
We recall the definition of Σ protocols for any language L ∈ NP with corresponding relation R. We borrow
the definition partially from [Lin14].

Definition 3. Let (Com,Decom) denote a computationally hiding, statistically binding commitment scheme.
A Σ protocol is a 3-round public-coin protocol π between a prover P (w, x) and a verifier V (x) where R(x,w) =
1, such that without loss of generality, P and V have polynomially many parallel repetitions of the following:

1. P (w, x) does the following.

◦ Sample y = (y1,y2, . . .yN ) ∈ S where Sx is an efficiently samplable distribution, N = poly(κ)
(usually N = θ(κ2)). Compute J, π = f(w, y) for a fixed function f of the witness w and the
random variable y. Note here that for correctly generated y and π, the witness w can be obtained
as πi(yi) for any i ∈ [κ].
◦ For all i ∈ [N ], send Zi = Com(yi, ri) to V.

2. V does the following.

◦ Send challenge string ch $←{0, 1} to P .

3. P does the following.

◦ If ch = 0, Decom(Zi) for all i ∈ [N ].
◦ If ch = 1, Decom(Zi) for all i ∈ J , and send auxiliary string π to V .

4. Based on his view, V either accepts or rejects.

Let the entire transcript of the messages sent in all parallel repetitions in three rounds be denoted by
(a, e, z). Then a Σ-protocol satisfies the following properties:

1. (Completeness). If P and V follow the protocol correctly on input x and private input w to P , where
R(x,w) = 1, then V always accepts.

2. (Special Soundness). There exists a polynomial time algorithm A that given any x and a pair of
accepting transcripts (a, e, d) and (a′, e′, d′) such that a = a′ and e 6= e′, outputs w such that (x,w) ∈ R.

3. (Honest-verifier zero knowledge). There exists a PPT simulator SΣ such that

{SΣ(x, e)}x∈L;e∈{0,1}n ≡ {〈P (x,w), V (x, e)〉}

where SΣ(x, e) denotes the output of the simulator SΣ on input x and e, and 〈P (x,w), V (x, e)〉 denotes
the output transcript of an execution between P and V , where P has input (x,w), V has input x and
V ’s random tape (determining the query) equals e.
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4. Additionally, we require that the third message output by the simulator of the proof is identically dis-
tributed as in the real proof.

Remark 2. Following Lapidot-Shamir [LS91], we can transform any Σ protocol in this format to a two-prover
perfect zero knowledge proof. Although Lapidot-Shamir demonstrated this only for the special case of Graph
Hamiltonicity, their argument directly generalizes to any Σ-protocol for a language L (as we demonstrate in
the next section). Moreover, there exists a fixed constant c such that n parallel repetitions of this proof have
soundness 2−c·n [LS91].

3 Definitions

3.1 Witness Signatures
Witness signatures allow any entity who knows a witness to an NP statement, to issue signatures on behalf
of the statement. We now give a formal definition of witness signatures without setup.

Definition 4 (Witness Signatures). A witness signature scheme for some NP language L (with a corre-
sponding witness relation R) consists of the two PPT algorithms:

◦ Sign(x,w,m; r): Sign (is a non-interactive algorithm that) takes as input a string x, a witness w, a
message m ∈ {0, 1}∗, randomness r and outputs a signature σm,x.

◦ Verify(x,m, σ): Verify takes as input a string x, a message m ∈ {0, 1}∗ and a signature σ, and outputs
0 or 1.

These algorithms satisfy the following properties:

◦ Correctness. For any message m ∈ {0, 1}∗, for all (possibly adversarially chosen) x ∈ L and w such
that R(x,w) holds, Pr[Verify(x,m,Sign(x,w,m)) = 1] = 1

◦ Witness Indistinguishability. For any instance x, given two witnesses (w1, w2) for x ∈ L and auxiliary
information z, the distributions {z, σ1 : σ1 ← Sign(x,w1,m)} ≈c {z, σ2 : σ2 ← Sign(x,w2,m)}.

◦ Unforgeability. (EUF-CMA) Consider any non-uniform PPT forger F which adaptively (dynami-
cally) obtains signatures (σ1, σ2, . . . σn) for some instance x (where |x| = κ) on his choice messages
(m1,m2, . . .mn), where n = poly(κ). Next, F adaptively chooses message m∗ 6∈ {m1,m2, . . .mn} and
outputs (m∗, σm∗,x).

Then if for any x ∈ L, (m∗, σm∗,x) successfully verifies with probability q over the space of randomness
of the verifier, there exists a PPT reduction E and a constant c, such that E takes input x and interacts
with any such forger F in a black-box manner (we denote this interaction by EF (x)) to output a string
out. The string out is such that if Pr[Verify(x,m∗, σm∗,x) = 1] = q (over the randomness of the forger
and the verifier), then Pr[R(x, out) = 1] ≥ qc for a constant c (over the randomness of the reduction.)

Remark 3. The unforgeability condition implies that witness signatures for any language L must be perfectly
sound. That is, for x /∈ L there is no signature (m∗, σ∗x,m) such that Verify(x,m∗, σ∗x,m) = 1/poly(κ) for some
polynomial poly(·) (otherwise a witness would be extracted with non-negligible probability, which is impossible).

Theorem 1. Witness signatures for all of NP according to Definition 4, are impossible unless BPP = NP.

Proof. Intuitively, a reduction E , which takes as input an instance x and interacts with a forger F in a
black-box way, must as a first step, issue signatures to F on behalf of instance x. Since the signatures are
single-message (one-shot), rewinding the forger does not help the reduction E in violating soundness. This
means E will either have to decide whether or not x ∈ L (solving decidability of NP-hard problems), or
violate the perfect soundness property.

Formally, given witness signatures for a language L, we construct a polynomial time algorithm A that on
input x decides whether x ∈ L. A acts as a forger which requests a signature on 0 on behalf of instance x.
If the signature verifies, A runs an exhaustive search to compute a witness w for x (if it exists), and output
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Sign(m,x,w). If the signature does not verify, it aborts. Of course, an efficient A cannot do this – but we
will now describe how to emulate such an A efficiently.

Consider an efficient forger strategy F which takes as input a signature on 0 on behalf of instance x, and
then aborts. Note that the view of the (efficient) black-box reduction E while interacting with strategy A
is indistinguishable from its view when interacting with F , unless E itself can compute a valid signature for
x ∈ L, which is impossible if it cannot even decide whether or not x ∈ L (i.e., BPP 6= NP). This is because
there is the output of both A and F is identical until the reduction E outputs a (single message) signature
that verifies with some probability. Now, if any E interacting with A outputs a witness w for x, then the
same E must output a witness w for x when interacting with F . This implies that E can compute a witness
for x by itself, which is impossible unless BPP = NP.

Remark 4. Due to the impossibility in Theorem 1, it would make sense to consider weaker variants of
Definition 4. For instance, we could allow the reduction E non black-box access to the code of F , or allow
it to run in quasi-polynomial time. However, in order to bypass the impossibility we turn our attention to
hardware token model and give efficient, unconditionally secure constructions with black-box extraction.

3.2 Witness Signatures in the Stateful Hardware Token Model
Definition 5 (Witness Signatures in the Stateful Hardware Token Model). A witness signature scheme in
the stateful token model, for some NP language L (with a corresponding witness relation R) consists of the
two PPT algorithms:

◦ Sign(x,w,m; r): Sign takes as input a string x, a witness w, a message m ∈ {0, 1}∗, randomness r and
outputs a set of stateful hardware tokens [T1, T2, . . . Tpoly(κ)]m,x as a signature σm,x.

◦ Verify(x,m, σ): Verify takes as input a string x, a message m ∈ {0, 1}∗ and a signature set of tokens
[T1, T2, . . . Tpoly(κ)], and outputs 0 or 1.

These algorithms satisfy the following properties:

◦ Correctness. For any message m ∈ {0, 1}∗, for all (possibly adversarially chosen) x ∈ L and w such
that R(x,w) holds, Pr[Verify(x,m,Sign(x,w,m)) = 1] = 1.

◦ Witness Indistinguishability. Given any two witnesses w1, w2 for some instance x ∈ L and auxiliary
information z, {z, σ1 : σ1 ← Sign(x,w1,m; r)} ≈c {z, σ2 : σ2 ← Sign(x,w2,m; r)}.

◦ Unforgeability. (EUF-CMA) Consider any non-uniform PPT forger F which (adaptively) obtains
signatures (σ1, σ2, . . . σn) for some instance x (where |x| = κ) on his choice messages (m1,m2, . . .mn),
where n = poly(κ). Next, F outputs a message-signature pair for a message that was never queried,
(m∗, σm∗,x), that successfully verifies with probability p over the space of randomness of the verifier.

In the hardware token model, each token issued by such a forger F could be secretly encapsulating upto
one token generated by some honest signer, such that the forger’s token queries the signer’s token after
it has received an external query from the verifier. For example, the forger might construct tokens that
encapsulate honest signer tokens and relay messages between the verifier and the encapsulated tokens.

Then, there exists a PPT reduction E and a constant c, such that E takes input x and interacts with
any such forger F in a black-box manner (we denote this interaction by EF (x)) to output a string out.
The string out is such that if Pr[Verify(x,m∗, σm∗,x) = 1] = p > 1/poly(| x |) for some polynomial
poly(·), then Pr[R(x, out) = 1] ≥ pc for a constant c, over the randomness of the reduction.

The model that we consider in this paper restricts the adversary to only use a single hardware token
within each token it tries to construct. That is, in the physical world, we restrict the adversary from putting
multiple honest party tokens inside a single token it constructs. We believe this restriction is quite reasonable
and can be enforced, for example, by checking and limiting the physical size of the token that the adversary
sends. A generalization of our model leads to proofs becoming significantly more messy and lengthier, and,
is left to the future work.
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4 Non-malleable Two-Prover ZK Proofs

4.1 Two-Prover ZK from any Σ protocol
We first recall the model and definition of a two-prover ZK proof, then demonstrate the conversion of any
Σ-protocol into a perfect zero knowledge proof system in the two-prover model following the Lapidot-Shamir
technique [LS91].

4.1.1 Model

In the two-prover ZK setting there are three parties, namely two provers (P1, P2) and a verifier V . We do not
require any party to be computationally bounded, i.e., all parties can be modeled as information theoretic
adversaries.

The provers (P1, P2) obtain as input an NP instance x of a language L, along with a witness w for x.
The verifier V obtains as input the NP instance x. The provers P1, P2 share a random tape of length poly(κ)
for a fixed polynomial poly(·). Moreover, P1, P2 are not allowed to interact with each other after the start
of the protocol. At the end of the interaction, the verifier V outputs 0 or 1 (denoting an accepting versus
rejecting transcript).

Definition 6. A protocol τ is a two-prover proof if it satisfies the following properties in the model above:

◦ Soundness. For honest verifier V , if x 6∈ L, Pr[V (τ) = 1] = 0.

◦ Completeness. For honest verifier V , if x ∈ L, Pr[V (τ) = 1] = 1.

◦ Zero-Knowledge. Let ViewV denote the view of the verifier V . Then, for any possibly malicious
unbounded verifier V , there exists a simulator SimV such that the output distributions SimV (1κ) and
ViewV are identical.

◦ Proof of Knowledge2. For any two malicious unbounded provers P1, P2 that do not interact during
the protocol, there exists a (possibly rewinding) extractor ExtP1,P2

which outputs a witness w such that:
If Pr[V (τ) = 1] = q over the randomness of the verifier, then Pr[w is a valid witness for x] = poly(q)
for some polynomial poly(·).

4.1.2 Construction

The Lapidot-Shamir two-prover ZK protocol [LS91] consists of the following algorithms3:
Prove(x,w) : On input an NP instance x along with a witness w for x:

◦ For all i ∈ [κ] (where each i corresponds to a parallel repetition of the two-prover proof), sample yi
$←Sx

(the efficiently samplable distribution for the Σ protocol according to Definition 3). Recall that each
yi is a vector of dimension N . Denote its kth component by yi,j .

◦ For all i ∈ [κ] and j ∈ [N ], secret-share vector yi,j by setting (ai,j , bi,j) = SS.Split(yi,j). Denote by Ai
the vector (ai,1, .., ai,N ) and Bi the vector (bi,1, .., bi,N ). For all i ∈ [κ] sample auxiliary information Ji
and the string πi, using the witness w and yi as in the sigma protocol. For all i ∈ [n], send (Ai, Bi)
and (πi, Ji) to provers P1 and P2.

◦ The first and second prover algorithms are described in Figure 4 and Figure 5.

Verify : The verify algorithm samples two random strings σ, τ $←{0, 1}κ and then performs the following
checks for all i ∈ [κ].

2This property is not required in the definition, nevertheless most known constructions of two-prover proofs (including the
ones we demonstrate in this paper) satisfy it.

3Lapidot-Shamir [LS91] provide a concrete instantiation of the protocol that follows the template we described. They
construct a two-prover ZK proof for the Graph Hamiltonicity problem, and via Karp reduction, this automatically gives a
two-prover ZK proof for any NP statement. However, we recall their construction while generalizing it to Σ protocols, which
allows us to avoid going via the Karp reduction in order to prove any NP statement.
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Constants: Ai, Bi, Ji, πi for all i ∈ [κ].
Input: Challenge string σ.
For all i ∈ [κ], interpret the ith bit of σ as σi. Then

1. If σi = 0, output Ai, Bi.

2. If σi = 1, output πi, ai,j(j∈Ji), bi,j(j∈Ji).

Figure 1: Prover P1

Constants: Ai, Bi for all i ∈ [κ].
Input: Challenge string τ .
For all i ∈ [κ], interpret the ith bit of τ as τi. Then

1. If τi = 0, output Ai.

2. If τi = 1, output Bi.

Figure 2: Prover P2

◦ If σi = 0, accept if and only if all the following checks pass.

– The vector yi is a valid transcript of the Σ protocol.
– For all j ∈ [N ], the values (ai,j , bi,j , yi,j) output by P1 are such that yi,j = SS.Reconstruct(ai,j , bi,j).
– For all j ∈ [N ] the values ai,j or bi,j output by P2 match the corresponding values output by P1.

◦ If σi = 1, accept if and only if all the following checks pass.

– The values (πi, Ji, yi,j(j∈Ji)) are a valid transcript of the Σ protocol (that is, the underlying Σ

protocol verifies).
– For all j ∈ Ji, the values (ai,j , bi,j , yi,j) output by P1 are such that yi,j = SS.Reconstruct(ai,j , bi,j).
– For all j ∈ Ji, the values ai,j or bi,j output by P2 match the corresponding values output by P1.

It is easy to verify completeness. These algorithms satisfy the following other properties:

◦ Perfect Zero Knowledge: We describe the simulation strategy in Figure 3. It is straightforward to see
that the simulated view is identical to the real view.

◦ Statistical Soundness: This protocol is statistically sound and has a soundness error less than 2−n/9.
The proof follows analogously to Theorem 6 in Lapidot-Shamir [LS91] and we omit details here.

◦ Proof of Knowledge: Again, following Lapidot-Shamir [LS91] there is a simple PPT extractor which
extracts a witness with probability polynomial in the verification probability. This extractor obtains the
answers of the provers on four strings σ1, σ2, τ1, τ2 such that there exists an index i where σ1[i] 6= σ2[i]
and τ1[i] 6= τ2[i], and uses these answers to reconstruct yi, πi; from which, by definition of Σ protocols,
w can be obtained as w = πi(yi).

4.2 Non-malleable Two-Prover ZK from any Σ Protocol
In this section, we construct tag-based non-malleable two-prover ZK4. We first describe the model and define
a non-malleable two-prover ZK proof, then we demonstrate how to convert any Σ-protocol into a perfect
non-malleable zero-knowledge proof system in the two-prover model.

4Our construction can be modified by directly substituting (tag||·) for (·) to yield non-malleable two-prover ZK against an
MIM that is allowed to tamper any other way than forwarding messages from left to right and vice-versa.
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Consider a pair of provers S, T proving a statement x on a tag tag. A query (σ, τ) to this pair is
simulated in the following manner, for all i ∈ [κ].

1. Pick a N -dimensional matrix R uniformly at random from the space of all shares of the secret
sharing scheme.

2. If T is queried first

– If τi = 0, set Ai = R and Bi = ⊥. Output Ai.

– If τi = 1, set Ai = ⊥ and Bi = R. Output Bi.

3. With one out of Ai, Bi thus fixed, pick the other component in the following way depending
upon the query Σ to Sp.
When S is queried with challenge query σi,

– If σi = 0, sample random yi
$←Sx.

If Ai = ⊥, compute Ai such that each component (ai,j , bi,j) = SS.Split(yi,j).
Otherwise, compute Bi such that each component (ai,j , bi,j) = SS.Split(yi,j).

– If σi = 1, use the simulator of the underlying Σ protocol to sample πi, Ji, yi,j .
If Ai = ⊥, compute Ai such that each component (ai,j , bi,j) = SS.Split(yi,j).
Otherwise, compute Bi such that each component (ai,j , bi,j) = SS.Split(yi,j).

4. If T is queried after S,

– If τi = 0, output Ai computed in Step 3.

– If τi = 1, output Bi computed in Step 3.

Figure 3: Simulation strategy for a pair of provers

4.2.1 Model

A non-malleable two-prover ZK protocol considers two-prover ZK in a setting where there is a left pair of
provers (P1, P2) interacting with man-in-the-middle verifiers VMIM,1, VMIM,2. Furthermore, these man-in-the-
middle verifiers are together controlled by two provers (PMIM,1, PMIM,2) that are themselves interacting with
honest verifier V on the right.

Note that no two provers corresponding to any session are allowed to communicate between themselves
once protocol execution starts. This holds true for the honest as well as MIM provers. Also note that in the
single-use setting, no prover runs a protocol more than once. This means that the MIM verifiers are allowed
to only query any honest prover only once. Moreover, once the man-in-the-middle provers start their session
on the right, they are only allowed to interact with a disjoint subset of provers on the left. That is, PMIM,1

can be interacting with P1 while PMIM,2 interacts with P2, or, PMIM,1 can be interacting with P2 while PMIM,1

interacts with P2, or, PMIM,1 can be interacting with both P1 and P2 while PMIM,2 interacts with neither.
However, they cannot both be interacting with the same prover once their session on the right has started.

Provers (PMIM,1, PMIM,2) try to use provers (P1, P2) to prove a related statement (or possibly the same
statement), but on a different tag.

Definition 7. A protocol Π is a two-prover non-malleable ZK proof if it satisfies the following properties:

◦ Completeness. For any honest verifier V , if x ∈ L, Pr[V (Π) = 1] = 1.

◦ Simulation-Extraction5. There exists a black-box (possibly rewinding) simulator-extractor Sim-Ext
which outputs a witness w with black-box access to any malicious man-in-the-middle adversary MIM
defined above – such that if Pr[V (Π) = 1] = q over the randomness of the verifier and the MIM, then
Pr[w is a valid witness for x] = poly(q) for some polynomial poly(·).

5Note that this already implies stand-alone soundness, stand-alone ZK and stand-alone proof of knowledge properties.
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4.2.2 Construction

The protocol consists of the following algorithms, where NM− SS(·) and NM− Reconstruct(·) denote the
encoding and decoding algorithms of a many-many non-malleable scheme with tampering degree θ(κ2):

◦ Prove(x,w, tag) : On input an NP instance x along with a witness w for x:

– For all i ∈ [κ] (where each i corresponds to a parallel repetition of the two-prover proof), sample
yi

$←Sx (the efficiently samplable distribution for the Σ protocol according to Definition 3). Recall
that each yi is a vector of dimension N . Denote its kth component by yi,j .

– For all i ∈ [κ] and j ∈ [N ], secret-share the vector yi,j by setting (ai,j , bi,j) = NM− SS(tag||yi,j).
Denote by Ai the vector (ai,1, .., ai,N ) and Bi the vector (bi,1, .., bi,N ). For all i ∈ [κ] sample
auxiliary information Ji and the string πi, using the witness w and yi as in the sigma protocol.
For all i ∈ [n], send (Ai, Bi) and (πi, Ji) to provers P1 and P2.

– The first and second prover algorithms are described respectively in Figure 4 and Figure 5.

Constants: Ai, Bi, Ji, πi for all i ∈ [κ].
Input: Challenge string σ.
For all i ∈ [κ], interpret the ith bit of σ as σi. Then

1. If σi = 0, output Ai, Bi.

2. If σi = 1, output πi, ai,j(j∈Ji), bi,j(j∈Ji).

Figure 4: Prover P1

Constants: Ai, Bi for all i ∈ [κ].
Input: Challenge string τ .
For all i ∈ [κ], interpret the ith bit of τ as τi. Then

1. If τi = 0, output Ai.

2. If τi = 1, output Bi.

Figure 5: Prover P2

◦ Verify(x, tag, P1, P2) : The verify algorithm samples two random strings σ, τ $← {0, 1}κ. It queries the
prover P1 on σ and prover P2 on τ . It performs the following checks on the reponse for all i ∈ [κ].

– If σi = 0, accept if and only if all the following checks pass.
∗ The vector yi is a valid transcript of the Σ protocol.
∗ For all j ∈ [N ], the values (ai,j , bi,j , yi,j) output by P1 are such that (tag||yi,j) = NM− Reconstruct(ai,j , bi,j).
∗ For all j ∈ [N ], the values ai,j or bi,j output by P2 match the values output by P1.

– If σi = 1, accept if and only if all the following checks pass.
∗ The values (πi, Ji, yi,j(j∈Ji)) comprise valid transcript of Σ protocol.
∗ For all j ∈ Ji, the values (ai,j , bi,j , yi,j) output by P1 are such that (tag||yi,j) = NM− Reconstruct(ai,j , bi,j).
∗ For all j ∈ Ji, the values ai,j or bi,j output by P2 match the values output by P1.

4.3 Proof of Security of Non-malleable Two-Prover ZK
Here, we prove the following theorem about our construction.

Theorem 2. The construction above is a non-malleable two-prover zero-knowledge proof (of knowledge)
according to Definition 7.
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4.3.1 Simulator-Extractor

We first describe a simulation strategy in Figure 6. This is similar to the stand-alone strategy except that
for i ∈ [κ] and σi = 0, the shares ai,j , bi,j for j ∈ [N ] are generated as non-malleable secret shares of yi,j .
For i ∈ [κ] and σi = 1, the shares ai,j , bi,j for j ∈ Ji are generated as non-malleable secret shares of yi,j , the
rest are generated as component-wise simulated shares.

Consider a pair of provers P1, P2 proving a statement x on tag tag. A query (σ, τ) to this pair is
simulated in the following manner, for all i ∈ [κ].

1. Pick a N -dimensional matrix R uniformly at random from the space of all shares of the secret
sharing scheme.

2. If P2 is queried first

◦ If τi = 0, set Ai = R and Bi = ⊥. Output Ai.

◦ If τi = 1, set Ai = ⊥ and Bi = R. Output Bi.

3. When P1 is queried with challenge query σi.

◦ If P1 is queried first, set Ai = ⊥ and Bi = R.

◦ If σi = 0, sample random yi
$←Sx.

If Ai = ⊥, compute Ai such that each component (ai,j , bi,j) = NM− SS(tag||yi,j).
Otherwise, compute Bi such that each component (ai,j , bi,j) = NM− SS(tag||yi,j).
◦ If σi = 1, use the simulator of the underlying Σ protocol to sample πi, Ji, yi,jj∈Ji .

– If Ai = ⊥, for j ∈ Ji, compute each component ai,j such that (ai,j , bi,j) =
NM− SS(tag||yi,j). For j 6∈ Ji, compute each component ai,j such that (ai,j , bi,j) =
NM− Simulate(1κ).

– Otherwise, for j ∈ Ji, compute each component bi,j such that (ai,j , bi,j) =
NM− SS(tag||yi,j). For j 6∈ Ji, compute each component bi,j such that (ai,j , bi,j) =
NM− Simulate(1κ).

4. If P2 is queried (again, possibly in a rewinding thread) after P1,

◦ If τi = 0, output Ai computed in Step 3.

◦ If τi = 1, output Bi computed in Step 3.

Figure 6: Simulation strategy for a pair of provers

Next, we describe the simulator-extractor R in Figure 7. Given black-box access to a pair of man-in-the-
middle provers which generate a ZK proof for an instance x, after possibly interacting with several provers
on the left with different tags; R extracts a witness to x with probability poly(p) for some polynomial poly(·).

4.3.2 Proof Overview

At a high level, the simulator-extractor functions as follows. The simulator-extractor and the MIM obtain
the instance x as input.

The MIM may begin by querying for proofs on some tag t. Then the simulator-extractor just sends across
two provers P1 and P2. The MIM may now query both, one or none of the provers. If this is the case, the
simulator-extractor simulates the response of the provers by using the simulation strategy of the two prover
proof system. Then, MIM provers P ′1 and P ′2 may begin a proof session on some tag t′ 6= t. At this point, if
they have not already seen a proof, P ′1 and P ′2 may (in a disjoint fashion) initiate a session with either P1

or P2 or both. This lands our simulator extractor into one of several possible cases. These cases may, for
example, have P ′1 interacting with P1 while P ′2 interacts with P2. Or, P ′1 could be interacting with P2 while
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1. The man-in-the-middle (henceforth MIM) may open a left session on some tag t of his choice.
Then R starts simulating two provers P1, P2 for MIM.

2. If the MIM queries any prover(s) P1, P2 before starting the session on the right, R simulates the
answers to these queries as described in Figure 6.

3. The MIM provers P ′1, P ′2 start a session on tag t′ with R. If they have not done so already, MIM
provers may open sessions with two left provers P1, P2.a.

4. R now proceeds to extract a witness from (P ′1, P
′
2) in the following way.

(a) Sample four strings {σ1, σ2, τ1, τ2} $←{0, 1}4n.
(b) Find ind ∈ [n] : σ1

ind = 1, σ2
ind = 0, τ1

ind 6= τ2
ind

b. If no such ind exists, abort.

(c) Input challenge σ1 to prover P ′1. On input σ1, P ′1 may query some prover to the left.
Simulate answers to these queries according to Figure 6.

(d) Input challenge τ1 to P ′2. Then, P ′2 may query some prover on the left.

◦ If P ′2 queries P1 such that its corresponding left prover P2 is in session with P ′1, use
the following strategy to answer queries to P1. If P ′2 interacts with a left prover P1

such that its corresponding left prover P2 is in a session with P ′1. Then, extract only
from P1 by rewinding and querying it on σ2. In both cases, simulate Ai and Bi as
non-malleable shares of a random sample yi, for all indices i.

◦ For all other cases of left provers in sessions with P ′2, simulate answers according to
Figure 6.

(e) Rewind prover P ′2 and repeat previous step with input τ2 to P ′2.
When P ′2 queries left provers, simulate answers consistent with the answers fixed in response
to the queries of P ′1 in the straight-line execution, according to Figure 6.
The only exceptions is if P ′2 queries a left prover P2 such that its corresponding left prover
P1 is in a session with P ′1. Then use the simulation strategy of Figure 6 with the same
randomness as was used in Step (d). In all other cases, sample fresh randomness to simulate
a new response of P1, P2 to the queries of P ′2 according to Figure 6.

5. At index ind, R has obtained outputs Aind, Bind (for τ1
ind = 0, τ1

ind = 1 respectively) from P ′2, and
πind from P1 (for σ1

ind = 1). It then:

◦ Computes yind entry-wise as t′||yind,j,k = Reconstruct(aind,j,k, bind,j,k).

◦ Next, it computes w = πind(yind) and checks if w is a valid witness to x.

◦ If the check passes, it outputs w. Otherwise it aborts.
aNote that once a prover has been queried, he cannot be queried again. Thus we will assume that the MIM provers

do not re-query a prover if they have already queried that prover before starting his session.
bWhen σ1, σ2, τ1, τ2 are sampled uniformly at random, it is easy to see that such an index exists with overwhelming

probability.

Figure 7: Algorithm for Simulator-Extractor R.
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P ′2 interacts with P1. Or, in another case, P ′1 could be interacting with both P1 and P2 while P ′2 operates
stand-alone. In any case, P ′1 and P ′2 always interact with a disjoint subset of the left provers.

In most of the cases, our simulator-extractor queries the provers P ′1 and P ′2 on multiple strings and
extract the witness from responses to these queries at some index ind. P ′1 and P ′2 may, in turn, translate
these queries to other queries to the left provers P1 and P2. Since our simulator-extractor does not have
a witness it cannot honestly answer these inner queries. The response to these queries are usually given
using simulation strategy of the proof, and we show, surprisingly, that this suffices. Indeed, the probability
with which the simulator-extractor succeeds in these cases is at least some fixed polynomial function of the
probability of verification of the proof in these cases. These arguments are mainly of combinatorial nature
and crucially rely on zero knowledge property of the proof.

The most interesting case occurs when P ′1 is in a session with P1 while the corresponding P ′2 is in a
session with P2. In this case, we rely on the security of many-many non malleable codes. This is done by
querying P ′1 on some string σ1. When P ′1 in turn queries P1, we simulate the response of P1 according to
the simulation strategy. This fixes some entries of the matrices Ai, Bi for all indices i ∈ [n], that we will use
to simulate P2. Since we do not have a witness, we cannot sample the remaining entries correctly.

We note that this can be taken care of by the simulator of the non malleable codes. Indeed, the output
of prover P ′2 at index ind on query τ1 and τ2, can be seen as a split state tampering function over the many-
many non-malleable code-words. Therefore, substituting the real codewords with simulated codewords, we
still extract with a probability which is ε-close to the probability of extraction in the real world. This finishes
the overview. We now detail the hybrid experiments and the proofs of extraction.

4.3.3 Hybrid Experiments

In this section, we give a sequence of hybrids where we move from using the witness, to simulating without
using a witness. We prove that extraction probability remains close between hybrids.

Hybrid0 : This hybrid corresponds to the real game between honest prover(s) and MIM. The reduction
has a witness w for x and follows honest strategy on behalf of the provers. It uses the PoK extractor of the
two-prover proof system to extract a witness from the MIM. We detail this hybrid in Figure 8.

Hybrid1 : If the MIM queries any prover(s) (in Step 2) before starting the session on the right, answers to
these prover(s) are simulated using the strategy described in Figure 6. If one of the provers is queried in
Step 2 and the other prover is queried at a later point, the latter query is answered consistently and honestly
using the witness. This hybrid ensures that if both provers P1, P2 were queried in Step 2, the answers are
simulated6.

Then intuitively, the probability of extraction in this hybrid is close to that in Hybrid0 by the perfect
zero-knowledge property of the two-prover proof.

Hybrid2 : In this hybrid, the reduction follows various extraction strategies depending upon the orientation
of the provers left P1, P2 with respect to the MIM provers P ′1, P ′2.

The rest of this proof assumes that the orientation of the MIM provers deterministically falls in one of
the following set of exhaustive cases, and verifies with probability q. This proof directly extends to the
setting where the MIM probabilistically chooses which of the cases to orient his provers in. In this setting the
probability of extraction from such an MIM is the minimum of the probability of extraction over all possible
cases the provers could orient themselves in, which is a fixed polynomial in the probability of verification of
the proof. We now enumerate the cases.

1. If P ′1 is interacting with prover P1 on the left (or P2 on the left respectively) such that the counterpart
P2 (or P1 respectively) has already been queried in step 2, R simulates the answers to all queries to
such a P1 (or P2 respectively) using the strategy described in Figure 6.

Intuitively, the probability of extraction in this hybrid is close to that in Hybrid1 by the perfect zero-
knowledge property of the two-prover proof.

6Note that it is impossible to tell when a prover is queried in Step 2, whether or not its counterpart will be queried in Step
2 itself. Thus, instead of restricting to indices for which both provers were queried in Step 2, we answer queries of all provers
queried in Step 2 using the simulation strategy of Figure 6. This achieves the same effect.
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1. The MIM may open a session on a tags t of his choice. Then R starts simulating two-provers
P1,p, P2,p for MIM.

2. The MIM may query the provers before starting a session on the right. Then, R generates the
answers to these queries honestly.

3. The MIM provers P ′1, P ′2 start a session on tag t′ with R. If they have not done so already, MIM
provers may open sessions with two left provers P1, P2.

4. R now proceeds to extract a witness from (P ′1, P
′
2) in the following way.

(a) Sample four strings {σ1, σ2, τ1, τ2} $←{0, 1}4n.
(b) Find ind : σ1

ind = 1, σ2
ind = 0, τ1

ind 6= τ2
ind. If no such ind exists, abort.

(c) Input challenge string σ1 to prover P ′1. On input σ1, P ′1 may query some prover(s) on the
left. Generate answers to these queries honestly.

(d) Input challenge τ1 to prover P ′2. On input τ1, P ′2 may query some prover(s) on the left.
Generate the answers to these queries honestly.

(e) Rewind the prover P ′2 and repeat previous step with input challenge string τ2 to prover
P ′2. Again P ′2 may query some provers on the left. Generate the answers to these queries
honestly.

(f) If P ′1 interacts with P2 and P ′2 interacts with P1, then rewind P1 and input challenge σ2 to
prover P ′1. On input σ2, P ′1 may query some prover(s) on the left. Generate the answers
to these queries honestly.

5. Finally, at index ind, R obtains outputs Aind, Bind (corresponding to τ1
ind = 0 and τ1

ind = 1
respectively) from P ′2, and πind from P ′1 (corresponding to σ1

ind = 1). It then:

◦ Computes yind entry-wise as t′||yind,j,k = Reconstruct(aind,j,k, bind,j,k).

◦ Next, it computes w = πind(Hind) and checks if w is a valid witness to x.

◦ If the check passes, it outputs w. Otherwise it aborts.

Figure 8: Real World.

2. If P ′2 is interacting with prover P1 (or P2 respectively) such that its counterpart P2 (or P1 respectively)
has already been queried in Step 2, then R simulates the answers to all queries made by the prover
P ′2 to such a prover P1 (or P2), using the strategy described in Figure 6. Since the prover P ′2 may be
rewound and may generate fresh queries upon rewinding, the simulator answers these queries consistent
with the answer given to P ′1, but possibly inconsistent with the answer given to P ′2 in the main thread.
This inconsistency is necessary, as giving answers that are consistent with each other in the main and
rewinding threads, as well as with the answers given to P ′1, will require the knowledge of a witness.

Intuitively, the probability of extraction in this hybrid is close to that in Hybrid1 by the perfect zero-
knowledge property of the two-prover proof.

3. If both provers P1, P2 are interacting with the same man-in-the-middle verifier V which is further
emulating either P ′1 or P ′2, R simulates the answers to all queries made by MIM in steps 3 and 4 to
these provers, using the strategy described in Figure 6. Intuitively, the probability of extraction in this
hybrid is close to that in Hybrid1 by the perfect zero-knowledge property of the two-prover proof.

4. If a left prover P1 is in a session with P ′2 such that its corresponding left prover P2 is in a session with
P ′1, then all queries in Step 4 to P2 are simulated according to Figure 6.

Intuitively, the probability of extraction in this hybrid is polynomially close to that in Hybrid1 by the
zero knowledge property of the two-prover proof.
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5. If prover P1 is in session with P ′1 such that the corresponding prover P2 is in session with P ′2, the
response to these provers is simulated according to Figure 6. This is the final case which represents the
reduction algorithm interacting with the MIM, without access to a valid witness. Since the prover P2’
may be rewound and may generate fresh queries upon rewinding, the simulator answers these queries
consistent with the answer given to P1’ (according to Figure 6), but inconsistent with the answer given
to P2’ in the main thread. This inconsistency is necessary, as the simulator cannot give answers that
are consistent with each other in the main and rewinding threads, as well as consistent with the answers
given to P1’ without the knowledge of a witness.

Intuitively, the probability of extraction in this hybrid is close to that in Hybrid1 because of many-many
non-malleability of a subset of the shares ai,j , bi,j of the sample yi.

4.3.4 Proofs of Extraction from the Hybrids

Roughly, we first prove that (in the real world) if the man-in-the-middle provers verify on a randomly chosen
challenge input with probability q, then the rewinding execution (with another randomly chosen challenge)
also verifies with probability at least poly(q). This observation will serve as a basic ingredient in our proofs,
and we begin by proving this statement formally.

Lemma 1 (Extraction Lemma). Let X and Y denote two (possibly correlated) random variables from
distribution X and Y, with support |X | and |Y|, and U(X,Y ) denote an event that depends on X,Y . We say
that U(X,Y ) = 1 if the event occurs, and U(X,Y ) = 0 otherwise. Suppose Pr(X,Y )∼(X ,Y)[U(X,Y ) = 1] = p.
We say that a transcript X falls in the set good if PrY∼Y [U(X,Y |X = X) = 1] ≥ p/2. Then, PrX∼X [X ∈
good] ≥ p/2.

Proof. We prove the lemma by contradiction. Suppose PrX∼X [X ∈ good] = c < p
2 . Then,

Pr(X,Y )∼(XY)[U(X,Y ) = 1] = Pr(X,Y )∼(X ,Y)[U(X,Y ) = 1|X ∈ good] · PrX∼X [X ∈ good]

+ Pr(X,Y )∼(X ,Y)[U(X,Y ) = 1|X 6∈ good] · PrX∼X [X 6∈ good]

By definition of the set good, Pr(X,Y )∼(X ,Y)[U(X,Y ) = 1|X 6∈ good] < p
2 . Then, p = Pr[U(X,Y ) = 1] <

1 · c + (1 − c) · p/2. Then, if c < p
2 , we will have that p < p

2 + p
2 , which is a contradiction. This proves our

lemma.

Jumping ahead, for most of our lemmas, U will be the event that the two-prover proof given by the MIM
verifies on four challenge strings σ1, σ2, τ1, τ2 (and therefore witness extraction occurs). Looking ahead, X
will correspond to a transcript that verifies in the main thread, and Y will denote the random coins of the
provers.

In the following, we will use the phrase ‘extraction occurs’ to denote the event where the reduction R
obtains a witness (possibly via rewinding) such that R(x,w) = 1.

Lemma 2. In Hybrid0, if the man-in-the-middle’s proof verifies with probability q (which is at least 1/poly(κ)
for some polynomial poly(κ) and size of instance being κ) over the randomness of the challenge query, then
extraction occurs with probability at least qc where c is a constant.

Proof. Let q be the probability that the proof verifies at a randomly chosen challenge (σ, τ). Then the
probability that the extraction succeeds in Hybrid0 is the same as probability that the proof verifies at
randomly chosen tuples of the form (σ1, τ1), (σ2, τ1), (σ1, τ2), (σ2, τ2) such that there exists an index ind
where σ1

ind 6= σ2
ind and τ1

ind 6= τ2
ind. Lapidot-Shamir [LS91] showed that this probability is at least qc for some

constant c.

In the following lemmas, we will demonstrate that the probability that the proof verifies at randomly
chosen tuples of the form (σ1, τ1), (σ2, τ1), (σ1, τ2), (σ2, τ2) remains close (upto a small gap) between hybrids.
We will denote the event that the proof verifies at randomly chosen tuples of the form (σ1, τ1), (σ2, τ1),
(σ1, τ2), (σ2, τ2), by “extraction occurs” (since this implies the event that R successfully extracts a witness).
Sometimes, we will also denote the weaker event that R successfully extracts a witness, by the same phrase
“extraction occurs”.
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Lemma 3. Pr[extraction occurs in Hybrid0] = Pr[extraction occurs in Hybrid1].

Proof. Note that Step 2 occurs before the sessions on the right were started. Therefore, when the adversary
is rewound on the right sessions, the left execution is rewound to the beginning of Step 3. Therefore, the view
of the man-in-the-middle is identical in both hybrids, because of the (stand-alone) zero-knowledge property
of the two-prover proof system.

Otherwise, consider a MIM such that the probability of extraction from the MIM in Hybrid0 and Hybrid1

is unequal. Then, there is a non-uniform distinguisher D which violates the ZK property of the underlying
two-prover proof. The distinguisher D interacts on the left with either a pair of honest provers, or with
simulated provers. It obtains as non-uniform advice the witness w for instance x and runs the simulator-
extractor R, and executes Step 2 with the MIM by forwarding the proof from the left to the right. It
executes the rest of the simulator-extractor R using witness w according to Hybrid0. The distinguisher D
outputs 1 when extraction occurs and 0 when it does not occur. Then, if Pr[extraction occurs in Hybrid0] 6=
Pr[extraction occurs in Hybrid1], then Pr[D = 1|honest proof] 6= Pr[D = 1|simulated proof], therefore violat-
ing the ZK property of the underlying proof.

Lemma 4. If the provers are oriented according to Case 1,
Pr[extraction occurs in Hybrid2] = Pr[extraction occurs in Hybrid1].

Proof. First, since there is no change in the simulation of any provers with which P ′2 is in session on the left,
the view of P ′2 and therefore its output – remains the same in the main and rewinding executions, between
Hybrid1 and Hybrid2.

If prover P ′1 is in a session with prover P1 such that the corresponding prover P2 was already queried
before Step 2, then the answers to queries to P1 are simulated as follows: Denote the queries made by P ′1 to
P1, on being queried σ1, by σ̃1. Then the simulation strategy of Figure 6 answers such that the answer of P1

is consistent with the answer of P2. In this case, in the main execution as well as the rewinding execution,
since P1 and P2 are never rewound, the answer given by P2 is consistent with the answer given by P1 in
both Hybrid0 and Hybrid1. Thus, the output of P ′1 matches both outputs of P ′2 (in both main and rewinding
executions) with identical probabilities in Hybrid0 and Hybrid1, in the real execution. Thus, extraction occurs
with probability exactly qc.

The same argument yields that extraction occurs with probability exactly qc even when the prover P1

was queried before Step 2, and P2 interacts with P1.

Lemma 5. If the provers are oriented according to Case 2,
Pr[extraction occurs in Hybrid2] ≥ poly(Pr[extraction occurs in Hybrid1]) for a fixed polynomial poly(·).

Proof. In this case, the simulation strategy of Figure 6 is such that both answers of P2 (or P1 respectively)
are separately consistent with the answer of P1 (or P2 respectively). Without loss of generality, let the prover
queried before Step 2 be P1 and let the MIM prover P ′2 be in session with P2.

We fix a (randomly chosen) output µ of P1 – this comes from an identical distribution in both Hybrid1 and
Hybrid2. We recall that the MIM provers are queried on the verifier challenges only after P1 has been queried
by the MIM. The output of P ′1 on challenge string σ ∈ {σ1, σ2} is a deterministic function of the output µ of
prover P1 and the randomness of prover P ′1. We fix this randomness rP ′1 , thus fixing both possible outputs
of P ′1 on challenge strings (σ1, σ2). We denote the combined transcript of µ and the randomness rP ′1 , by T.

We define a good transcript T as one where, when the output of P2 is sampled in Hybrid1 (using the
correct witness), then the probability that the proof of the MIM verifies on a fixed randomly chosen set of
tuples (σ1, τ1), (σ2, τ1), (σ1, τ2), (σ2, τ2) is at least qc/2 over the randomness of prover P2 and the MIM. This
is the experiment of Hybrid1, where the randomness and response of P2 is chosen honestly using a witness,
and consistent with the output µ. Then, via Lemma 1, the probability that a randomly chosen T is good is
at least qc/2.

Now, for a fixed T, we query the prover P ′2 on challenge τ1 while sampling the output of the prover P2

honestly consistent with the output µ of P1. Then, for a good T, the probability that the fixed response of
P ′1 on challenges (σ1, σ2) each verify with the response of P ′2 on τ1 is at least qc/2.

However, in Hybrid2, when P ′2 is rewound to obtain its response to challenge τ2, it is not possible for
the simulator to sample the output of P2 consistent with the output given corresponding to challenge τ1 to
P ′2 and consistent with µ – as this would require a witness. Here, the simulator only samples the output
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of the prover P2 honestly consistent with the output µ of the transcript (and possibly inconsistent with the
response given when P2 was queried by the MIM in response to τ1). Even in this case, we know by the
property of a good T, the probability that the (fixed) response of P ′1 on challenges (σ1, σ2) each verify with
the response of P ′2 on τ2 is at least qc/2.

Finally, it is straightforward to see that the probability of verification on challenges (σ1, τ1), (σ2, τ1), (σ1, τ2),
(σ2, τ2) for a fixed (σ1, σ2, τ1, τ2) and a fixed response of P ′1 on challenges (σ1, σ2), is at least the probability
of separate verification on challenges (σ1, τ1), (σ2, τ1) and (σ1, τ2), (σ1, τ2), which is at least q2c/4. Thus,
the total probability of extraction in Hybrid2 is at least the probability of sampling a good T output times
the probability of verification on the set of tuples (σ1, τ1), (σ2, τ1) and (σ1, τ2), (σ2, τ2), which is q3c/8.

Lemma 6. If provers are oriented according to Case 3,
Pr[extraction occurs in Hybrid2] ≥ poly(Pr[extraction occurs in Hybrid1]) for a fixed polynomial poly(·).

Proof. Again, a similar argument as that in Lemma 5 yields the probability that the proof of the MIM verifies
at randomly chosen tuples of the form (σ1, τ1), (σ2, τ1), (σ1, τ2), (σ2, τ2) remains close between Hybrid1 and
Hybrid2. This proves that the probability of extracting a witness in Hybrid1 is at least q3c/8.

Lemma 7. If provers are oriented according to Case 4,
Pr[extraction occurs in Hybrid2] = Pr[extraction occurs in Hybrid1].

Proof. In this case, the reduction always extracts from the first prover P ′1 only. Note that the view of prover
P ′1 are the answers of a prover P2 which are random non-malleable shares of an efficiently sample-able y.
This view can be kept perfectly identical between Hybrid0 and Hybrid1, by simply generating y and its shares
at random and using honest prover P2 strategy with these shares. Then, the probability of extraction from
the outputs (y′ind, J

′
ind) of P1 remains identical between Hybrid0 and Hybrid1.

Lemma 8. If provers are oriented according to Case 5, Pr[extraction occurs in Hybrid2] ≥
poly(Pr[extraction occurs in Hybrid1])− ε, for a fixed polynomial poly(·) and ε = κ · 2−poly(κ).

Proof. In this case on being queried σ1, suppose the prover P ′1 queries the left prover P1 on σ̃1. For all
indices i ∈ [κ] where σ̃1

i = 0, the joint view of the MIM can be sampled perfectly, without a witness. For
indices i ∈ [κ] where σ̃1

i = 1, we rely on non-malleable codes to prove security.
We demonstrate that the prover P ′2 reduces to a split-state tampering adversary, with the two states

being the response of the prover P ′2 on challenge index ind during the main and rewinding executions, and
messages corresponding to all indices i ∈ [κ] where σ̃1

i = 1.
In Hybrid2, the reduction queries P ′1 at σ1 and P ′2 at τ1 and τ2. The left provers P1 and P2 respond to

these queries using a witness. Suppose P ′1 on query σ1, queries the left prover P1 with σ̃1. Fix the response
µ of P1. The output of P ′1 on query σ1 is a deterministic function of the output µ of prover P1 and the
randomness of prover P ′1. We fix this randomness rP ′1 , thus fixing the output of P ′1 on challenge string σ1.
We done the combined transcript of µ and the randomness rP ′1 by T .

We define a good transcript T as one where, when both outputs of P2 (corresponding to challenges τ1

and τ2) are sampled in Hybrid1 using the correct witness, then the probability that the response of MIM on
(σ1, τ1, τ2) yields a witness is at least qc/2 over the choice of randomness of the outputs of P2 and the MIM.
Then, via Lemma 1, such a transcript is sampled with probability at least qc/2.

In Hybrid2, the reduction R samples and fixes a random response µ of P1 (in the main thread, on query
σ̃1) and then samples the response of P2 using simulated code-words at all places not already revealed by
this response µ. Then, the response of the MIM to the queries τ1 and τ2 induces a split-state functionality
over these code-words.

Specifically, the reduction samples random Ji, and then uses witness w to obtain yi for all i ∈ [κ]. This
is the fixed response of P1. Then for all j ∈ Ji, it sets each component (ai,j , bi,j) = NM− SS(tag||yi,j).
For j 6∈ Ji, it obtains from the challenger of the many-many non-malleable codes, either the output of
NM− Simulate(·), or NM− SS(tag||yi,j). Note that same∗ never occurs for a valid MIM, since the tags in
both executions are different. When the shares are simulated, we are in Hybrid2, otherwise we are in Hybrid1.
The tampering function is the response of the prover P ′2 = (P ′2|τ1, P ′2|τ2); which obtains as input codewords
for all indices (i, j) such that σi = 1 and j 6∈ Ji; and outputs values for index i′ and all j ∈ [N ].
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Then given non-uniform advice J ′(which is possibly a function of Ji for all i ∈ [κ]), if the reconstruction
of the output of P ′2 yields a witness in Hybrid1 with probability qc/2, it also yields a witness in Hybrid2, with
probability at least qc/2− ε, where the underlying non-malleable codes have simulation error at most ε.

Thus, the probability of extraction in Hybrid2 is the probability of sampling a good transcript T times
the probability of extraction from a good T , which is at least q2c/4− ε · (qc/2), which is negligibly far from
q2c/4 for small enough ε.

Finally, we point out that the split-state functionality induced by the adversary can tamper some left
shares and some other (different, not corresponding) right shares together. Since we use symmetric non-
malleable codes, left and right shares can be used interchangeably. In particular, we use a many-many
non-malleable code with symmetric decoding, resilient against tampering degree κ2 and simulation error at
most 2κ. Since there are κ fresh instances that the adversary can tamper with (corresponding to indices
i ∈ κ of the challenge queries σ and τ) to output the shares at index ind, the total simulation error is
κ · 2−poly(κ).

5 Witness Signatures from Stateful Hardware Tokens

5.1 Single-Use Witness Signatures from Non-Malleable MIPs
In this section, we give a construction (according to Definition 5) of witness signatures in the stateful tamper-
proof hardware token model, making black-box use of unconditional non-malleable two-prover proofs. We
prove security in a setting where any adversarial token can encapsulate an honest token.

To prove security, we show a reduction that interacts with any forger (that forges on some instance x
of an NP language L) in a black-box manner; and makes black-box use of the simulator-extractor of the
non-malleable two-prover proofs; to extract a witness w for x.

Theorem 3. In the stateful hardware token model, it is possible to realize unconditionally secure witness
signatures according to Definition 5, which can be verified an a-priori bounded number of times, with a total
of two tokens sent from the signer to the verifier.

Proof. We show that there exists a polynomial time (in the size of the instance and the running time of the
forger) reduction E , such that if the forger F (that may encapsulate tokens) forges and outputs a signature
(m′, S′, T ′), on a message that was never queried, and that verifies with probability q > 1/poly(·) then E
extracts out a witness by interacting with this forger with probability at least qc for some constant c.

The witness signature is a non-malleable two-prover proof on instance x, where two tokens to play the role
of both provers of the non-malleable two-prover proof. Let Non-Malleable.Prove(·) and Non-Malleable.Verify(·)
denote the proving and verification algorithms of a non-malleable two-prover proof. We describe the algo-
rithms below:

1. Sign(x,w,m) : The signer on input the NP instance x and witness w generates a signature on message
m by invoking Non-Malleable.Prove(x,w,m), where m acts as the tag of the non-malleable two-prover
proof. It constructs two stateful single-use tokens S, T which have programmed in them, the algorithms
corresponding to provers P1 and P2 respectively.

2. Verify(x,m, σ) : To verify a signature σ comprised of two tokens S, T , the verifier runs the underlying
algorithm Non-Malleable.Verify(x,m, S, T ) on the two tokens acting as two non-communicating provers.

3. Reduction(F) : This reduction (denoted by Rsign) extracts a witness w using the underlying simulator-
extractor R of Figure 7.

However, this setting needs a more careful analysis. In particular, a forger is allowed to see an un-
bounded number of signatures before issuing his own signature. He can also create tokens where each
token encapsulates another honestly-generated token inside.

For all signatures that the forger inputs verification queries to, before creating his tokens, Rsign uses the
simulator of the non-malleable two-prover proof. Extraction occurs with the same probability because
of the zero knowledge property of the two-prover proof.
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An exception is the case when the forger constructs two tokens S′, T ′, such that S′ encapsulates Si
and T ′ encapsulates Tj for i, j ∈ {1, 2} × {1, 2} and i 6= j; where (S1, T1) and (S2, T2) are tokens for
two signatures on different tags t1, t2. In this case, since the simulation strategy is identical for both
Case 2 and Case 3, Rsign extracts the witness w by running the simulator for both (S1, T1) and (S2, T2)
independently, and then the extractor R. Since the extraction strategy is uniform across both hybrids,
there exists a polynomial poly(·) such that extraction occurs with probability poly(q) if q is the forger’s
verification probability.

Finally, the witness can be extracted for all other cases of token encapsulation via the simulator-
extractor strategy for the corresponding cases in the non-malleable two-prover proof system, according
to Figure 7.

It is straightforward to see that this construction satisfies the correctness and unforgeability properties of
Definition 5, based on the correctness and security properties of the underlying non-malleable two-prover
proof. Furthermore, the standalone zero knowledge property of the underlying Lapidot-Shamir two-prover
proof, implies perfect witness indistinguishability.

Bounded-Use Witness Signatures from Non-Malleable Two-Prover ZK Proofs
Single-use witness signatures can be extended to the n-verification setting by hardwiring sufficient ran-

domness for n sequential executions of the non-malleable two-prover proof. Then, each verification is invoked
with fresh randomness. However, the number of verifications nmust be fixed before the start of the protocol.

5.2 Unbounded-Use Witness Signatures from Non-Malleable MIPs and One-
way functions

Construction of Unbounded-Use Signatures In this section, we describe how to modify the construc-
tion of single-use witness signatures to obtain unbounded-use witness signatures. We use a psuedorandom
function (PRF) with the same random key K hidden in both tokens. This PRF is invoked on a stateful
counter to generate shared pseudorandomness in sync for the tokens. Our construction is as follows:

Sign(x,w,m): The signer samples a PRF key K, then outputs stateful tokens S and T which are con-
structed as described in Figure 9 and Figure 10. Both tokens are initialized with count = 0.

Constants: PRF key K, counter count, instance x, witness w and message m.
Input: Challenge string σ.

1. Compute R = PRF.Eval(K, count).

2. Use randomness R and invoke the algorithm P1 of Non-Malleable.Prove(x,w,m).

3. Set count = count + 1.

Figure 9: Token S

Constants: PRF key K, counter count and message m.
Input: Challenge string τ .

1. Compute R = PRF.Eval(K, count).

2. Use randomness R and invoke the algorithm P2 of Non-Malleable.Prove(x,w,m).

3. Set count = count + 1.

Figure 10: Token T
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Verify(x,m, σ) : In order to verify a signature σ comprised of two tokens S, T , the verifier runs the
underlying algorithm Non-Malleable.Verify(x,m, S, T ) on the two-tokens acting as two non-communicating
provers. This can be done an unbounded number of times.

Correctness and soundness follow directly from the properties of the single use construction. We prove
security formally by giving a reduction that extracts a witness from any forger.

Theorem 4. In the stateful hardware token model, assuming one-way functions exist, it is possible to realize
witness signatures according to Definition 5, which can be verified an unbounded number of times, with a
total of two tokens sent from the signer to the verifier.

Proof. We show that there exists a polynomial time (in the size of the instance and the running time of the
forger) reduction E , such that if the forger F (that may encapsulate tokens) forges and outputs a signature
(m′, S′, T ′), on a message that was never queried, and that verifies with probability q > 1/poly(·) then E
extracts out a witness by interacting with this forger with probability at least qc for some constant c.

We now describe how the reduction E works. E invokes F on x. F may query for signatures on messages
mp. For each fresh signature query p, the reduction maintains a counter countp. Starting at ` = 1, for each
fresh verification query q`,p on a signature on mp, the simulator samples fresh randomness r`,p. Given the
tokens of the verifier, it uses the extraction strategy of Figure 7 to extract a witness w for x (using fresh
randomness r`,p to simulate the answers to each token query during the extraction phase).

We argue that this extractor succeeds in extracting a witness. This can be shown in a sequence of hybrids
as follows. The first hybrid corresponds to the game where signer is given honestly generated unbounded-
use signatures and it outputs a forgery. In the second hybrid, the only change is that the simulator does
not compute the randomness r`,p as a PRF applied to the counter variable countp, instead it generates
fresh randomness for every verification query to the signature tokens. Indistinguishability between these
two hybrids follows directly from the pseudo-randomness property of the PRF. In fact, since the forger’s
signature must verify with nearly the same probability (as otherwise one can use such a forger to break the
pseudo-randomness property of the PRF), therefore extraction also occurs in this hybrid with the nearly
same probability as the previous hybrid.

At this point, we follow the same sequence of hybrids as the bounded-use setting and argue indistin-
guishability between them to show that the reduction succeeds in extracting a witness from any forger with
significant probability.

6 Impossibility of Unconditional Unbounded-Use Witness Signa-
tures

In this section, we prove that witness signatures for all of NP with unbounded verification, are impossible to
construct unconditionally in the hardware token model. This is done via extending the notion of inaccessible
entropy, first introduced in [HRVW09] and later used in [GIMS10b] in the stateless token model. The stateful
token model with unbounded queries is a strict generalization of the stateless token model, and hence this
impossibility also extends to stateless tokens.

Stateful Token Model. In the information theoretic stateful (tamper-proof hardware) token model, two
(computationally unbounded) interactive algorithms A and B interact with the following extra feature to the
standard model. At any time during the protocol parties can construct a circuit T , put it inside a “token”,
and send the token to the other party. The party receiving the token gets oracle access to T and can make
polynomially many but unbounded queries to the token. Additionally, the token has the ability to maintain
“state” between queries/inputs to the circuit T .

Moreover, witness signatures by definition, must be non-interactive. In the stateful token model, this
translates to the signer creating polynomially many tokens and sending them to the verifier. Next, the
verifier can make unbounded verification queries to these tokens. In this section, our main result is the
following theorem in the stateful token model.

Theorem 5. Unconditional unbounded-verification secure witness signatures, where the signer issues poly-
nomially many independent tokens and each verification entails polynomially many rounds of interaction
between the verifier and the tokens, are impossible in the stateful token model.
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Overview of the proof. We start by showing that witness signatures imply witness hiding arguments
of knowledge with black-box extraction (or, equivalently, proofs of knowledge in the information theoretic
setting).

Next, we prove that if unbounded verifications are allowed in the (stateful) token model, then there exists
a curious extension to any verification protocol between the verifier and the tokens, that can estimate each
of the signing token’s response to every query with high probability, by running only a polynomial number
of verification protocols with the token. (However since we are in the information-theoretic setting, this
extension has unbounded computational power.) This is done via an extension of the canonical entropy
learner of [GIMS10b], to the setting of stateful tokens with unbounded verification. The essence of the proof
is that the tokens can have only bounded entropy. Therefore, if queries are chosen wisely, it is possible to
access all the entropy (and therefore predict the token’s response to all challenges) with high probability
with queries that are polynomial in the total entropy of the token.

Finally given such a curious verifier, we show that it is impossible to simultaneously maintain the witness
hiding and proof of knowledge properties of a witness signature scheme. This technique for this part is
inspired from similar techniques used to prove the impossibility of constant-round public coin zero-knowledge
proofs in [GK90, HRVW09]. [GK90] observe that a public-coin verifier can be converted to one which resets
for each query by re-sampling from its own randomness. Informally, rewinding such a verifier is useless.
Then, a simulator for such a verifier can be used by a malicious prover to violate soundness.

We use a similar argument, but from the malicious verifier’s side. The verifier first runs the canonical
entropy learner in unbounded verifications, such that it can predict the prover’s answers to any challenges for
some execution. Next, the verifier constructs a cheating prover that answers any query by using the answers
predicted by the learner. Informally, rewinding such a prover is useless. This is because the knowledge
extractor could potentially use the values predicted by the entropy learner, to generate prover messages
for the rewinding queries. Then, a knowledge extractor that extracts a witness from such a prover can be
used by a malicious verifier to obtain a witness from the interaction. However, proving that the knowledge
extractor extracts a witness from this cheating prover, requires a careful technical argument about the view
of a verifier interacting with this prover. This proves that unconditionally secure witness signatures cannot
exist in the stateful token model.

Now, we give the formal proof of Theorem 5. We begin by observing that a witness signature on an NP
statement with any message is in fact, a (non-malleable) witness hiding argument of knowledge for the same
statement.

Claim 1. Witness signatures in the token model according to Definition 5 for all of NP imply witness hiding
arguments of knowledge with black-box extraction, for all of NP in the token model.

Proof. In order to give a witness hiding argument of knowledge for some statement x ∈ L, on input a witness
w for x, the prover picks some message m and sends m,σ = WitnessSignature.Sign(x,w,m) to the verifier.
The verifier outputs b = WitnessSignature.Verify(x, σ,m). Soundness and completeness follow directly from
the soundness and completeness of the witness signature.

Next, we show that this is an argument of knowledge, with a black-box extractor E that interacts with
the prover to output a witness w for x ∈ L. The extractor algorithm is as follows. On input the prover,
it runs the black-box witness signature reduction WitnessSignature.Reduce on input the code of the prover
as the forger, and outputs the witness extracted by R. It is straightforward to see that the probability of
extraction is the same as the success probability of the reduction.

Finally, we show that the proof (m,σ) = WitnessSignature.Sign(x,w,m) is witness hiding. This is true
if for any verifier V that can output some witness w′(x) for x ∈ L with significant probability after seeing
a proof, there exists an extractor that interacts with V in a black-box way and outputs a witness w′′(x) for
x ∈ L such that the distributions w′(x) and w′′(x) are identical. In other words, the extractor outputs the
same witness that was output by the verifier after seeing a proof. If an instance x has two or more witnesses,
then witness signatures are also witness hiding by virtue of being witness indistinguishable.

Suppose instance x has only a single witness w, then we construct an extractor for any V as follows.
The extractor first constructs a forger FV that uses V in a black-box way. FV requests a signature on an
arbitrary message m1, and forwards this internally as a proof to the verifier V. Suppose V outputs a witness
w′(x) for x with probability c ≥ 1/poly(κ) for some polynomial poly(·), on input the signature on message
m1. The forger FV picks another message m2 6= m1 and uses WitnessSignature.Sign(x,w′,m2) to generate a
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new signature on message m2. It is straightforward to see that this forgery verifies with probability at least
c. The extractor then executes the witness signature reduction algorithm WitnessSignature.Reduce on this
forger FV . By definition, the reduction outputs a witness w′′ for x with probability poly(c). Since x has only
one witness, the distributions w′′ and w′ are identical and we are done.

Now, we prove that unconditional unbounded-verifiable witness hiding arguments of knowledge are im-
possible in the stateful token model. In the next lemma, we construct a learner which learns the output of
some token to any first query of the protocol. Next, we will generalize this to a learner which learns the
response of the token to entire partial protocol transcripts.

Claim 2. Consider n stateful tokens T1, T2, . . . Tn each with entropy H(Ti) for i ∈ [n], which are used for un-
bounded verifications. Then, there exists a canonical entropy learner L that runs an expected (Σi∈[n]H(Ti))/ε
protocol executions with the token T , such that there exists a fresh execution where L can predict the response
of each token to any first-query (for a protocol) with probability at least (1− ε) for arbitrarily small constant
ε.

Proof. At each execution p (starting at p = 1), L computes the lexicographically smallest first-query-set
xi,p for i ∈ [n], such that the response of the tokens to this set xi,p is ε-unpredictable conditioned all the
query-answers obtained from protocol executions so far. It then records the queries xi,p and the answers
obtained. The remaining queries of the protocol are randomly sent and answers are not noted.

Denote the total set of protocol executions made by Q, and the size of this set is |Q|. Denote the set of
entire query-answers learned in the pth protocol by Qp. Denote a partial set of query-answers learned till
execution (p− 1) by Q(p−1), where Q(0) = ⊥.

Then, conditioned on Q(p−1), query-set ∪i∈[n]xi,p (which is a first-query-set) is ε-unpredictable, when
there does not exist any set of answers a1, a2, . . . an such that Pr[T1(x1,p) = a1 ∧ T2(x2,p) = a2 ∧ . . . Tn(xn,p) =
an] > (1− ε).

That is, the Shannon entropy H(∪i∈[n]Ti(xi,p)|Q(p−1)) ≥ ε · log(1/ε) + (1 − ε) · log(1/1 − ε) > ε,
for ε < 1

2 . This can be proved following [GIMS10b]. Moreover, if |Q| > p, then there is a sequence
of at least p (ε-unpredictable) first-query-sets to the tokens conditioned on previous queries. That is,
H(∪i∈[n]Ti(xi,p)|Q(p−1) ∧ |Q| ≥ p) > ε.

For a position p, we note that the information about ∪i∈[n]Ti(xi,p) is encoded in Q(p−1). Then, the
following holds. ∑

i∈[n]

H(Ti) = H(∪i∈[n]Ti(xi,1),∪i∈[n]Ti(xi,2) . . .)

≥
∑
p

H(∪i∈[n]Ti(xi,p)|Q(p−1))

≥
∑
p

H(∪i∈[n]Ti(xi,p)|Q(p−1) ∧ Pr[|Q| ≥ p) · (Pr[|Q| ≥ p)

≥ ε ·
∑
p

Pr[|Q| ≥ p

≥ ε · E[|Q|]

Then, E[|Q|] ≤ (
∑

i∈[n] H(Ti))/ε

Now, we prove a stronger version of this claim where we try to learn the entire transcript generated by
the prover (and not just a single message).

Lemma 9. Consider n stateful tokens T1, T2, . . . Tn each with entropy H(Ti) for i ∈ [n], which are used
for unbounded verification protocols of polynomial (r) rounds each. Then, there exists a canonical entropy
learner L that runs (Σi∈[n]H(Ti)/ε) executions with the tokens, such that there exists a fresh execution where
L can predict the response of the prover to any partial transcript of the verifier (consisting of r query-sets
corresponding to the r rounds of interaction) with probability (1− ε) for arbitrarily small ε.
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Proof. At each execution p (starting at p = 1), L computes the lexicographically smallest partial transcript
for the verifier τi,p for i ∈ [n], such that the response of the tokens to this set τi,p is ε-unpredictable
conditioned all the query-answers obtained from protocol executions so far. It then records the queries xi,p
and the answers obtained. The remaining queries of the protocol are randomly sent and answers are not
noted.

Denote the total set of protocol executions made by Q, and the size of this set as |Q|. Denote the set of
entire query-answers learned in the pth protocol by Qp. Denote a partial set of query-answers learned till
execution (p− 1) by Q(p−1), where Q(0) = ⊥.

Then, conditioned on Q(p−1), a partial verifier transcript ∪i∈[n]τi,p is ε-unpredictable, when there does
not exist any set of answers ai,j for i ∈ [n] and j ∈ [r] such that Pr[T1(τ1,1,p) = a1,1 ∧ T2(τ2,1,p) =
a2,1 ∧ . . . Tn(τn,1,p) = an,1 ∧ T1(τ1,2,p) = a1,2 ∧ T2(τ2,2,p) = a2,2 ∧ . . . Tn(τn,2,p) = an,2 . . . T1(τ1,r,p) =
a1,r ∧ T2(τ2,r,p) = a2,r ∧ . . . Tn(τn,r,p) = an,r] > (1− ε).

That is, the Shannon entropy H(∪i∈[n]Ti(τi,p)|Q(p−1)) ≥ ε · log(1/ε) + (1 − ε) · log(1/1 − ε) > ε,
for ε < 1

2 . This can be proved following [GIMS10b]. Moreover, if |Q| > p, then there is a sequence
of at least p (ε-unpredictable) first-query-sets to the tokens conditioned on previous queries. That is,
H(∪i∈[n]Ti(xi,p)|Q(p−1) ∧ |Q| ≥ p) > ε. For a position p, we note that the information about ∪i∈[n]Ti(xi,p)

is encoded in Q(p−1). Then, the following holds.∑
i∈[n]

H(Ti) = H(∪i∈[n]Ti(τi,1),∪i∈[n]Ti(τi,2) . . .)

≥
∑
p

H(∪i∈[n]Ti(τi,p)|Q(p−1))

≥
∑
p

H(∪i∈[n]Ti(τi,p)|Q(p−1) ∧ Pr[|Q| ≥ p) · (Pr[|Q| ≥ p)

≥ ε ·
∑
p

Pr[|Q| ≥ p

≥ ε · E[|Q|]

Then, E[|Q|] ≤ (
∑

i∈[n] H(Ti))/ε

Lemma 10. Consider witness hiding arguments of knowledge with black-box extraction in the stateful token
model, where the prover sends polynomially many tokens as his proof and the verifier has polynomially many
(say r) rounds of interaction with each token.

Suppose the ith token has entropy H(Ti), for i ∈ [n]. Then there exists a curious extension of the verifier
such that for any ε, with a total of poly

(∑
i∈[n](H(Ti)/ε)

)
verification queries to the tokens, the verifier can

extract a witness w from the tokens with non-negligible probability.

Proof. Consider the following cheating verifier strategy V(x) that uses the PoK extractor E(x).

◦ Internally simulate E(x) step by step.

◦ Suppose E(x) makes at most T queries to the tokens (which may include rewinding the prover to-
kens several polynomially many times), and a single verification involves r rounds of interaction with
the tokens. Without loss of generality, we may assume that the extractor queries all n tokens on a
query set x(n)

j = x1,j , x2,j , . . . xn,j (if not, replace the tokens that are not queried by random queries)
corresponding to the jth round, conditioned on a previous partial transcript x[j−1].

◦ Run L with input the current partial transcript, to predict the output set for this round a
(n)
j =

a1,j , a2,j , . . . an,j of the tokens to the new query x(n)
j (note that a(n)

j is correct with probability at least
(1 − ε)). If the current partial transcript is not one of the predicted transcripts, L will abort. This
happens with probability at most (1− rε).

Our goal will be to prove that this verifier strategy successfully extracts a witness for x. V makes
unbounded polynomial queries to the tokens and uses the canonical entropy learner L defined in Lemma 9.
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Then, there exists a protocol execution for which L can predict the answers to any query with probability
(1− ε). At each step, V runs L with input the current partial transcript, uses L to predict the output a(n)

j

to any token query x(n)
j , and returns the value a(n)

j to E as the output of the prover token.
Via a simple union bound, we observe that with probability (1 − T rε), the view of the extractor while

interacting with V, is identical to that of the extractor interacting with an honest prover. Moreover, in an
interaction with the honest prover, suppose extraction occurs with probability c (since verification occurs
with probability 1). Thus, extraction occurs with probability at least c(1−T rε). Then, a valid witness w is
extracted by E , with probability at least c(1− T rε) even when E interacts with V. By setting ε = 1/T r, we
have that the witness is extracted with probability at least c. This violates the witness hiding property and
proves our lemma.
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A Many-Many Non-Malleable Codes with Symmetric Decoding
For our construction of a non-malleable two prover interactive proof, we require the following properties out
of a split-state non-malleable code.

1. The code should support a tampering degree N (specified by the sigma protocol for the language L
and the instance x) for a message space {0, 1}|tag|+|yi|. Here, yi represents a coordinate element in a
vector sampled from Sx and N is the dimension of the vector (typically θ(κ2)).

2. Given a left share L (or right share R), it should be possible to efficiently sample uniformly the right
share R (or left share L) such that (L,R) encode any target message m.

3. For all strings L,R ∈ {0, 1}n, Dec(L,R) = Dec(R,L) should be true. This is because of the following
reason. In our construction for non-malleable proofs, when the prover P ′2 is in a session with P2 such
that P ′1 opens a session with P1, our reduction queries P ′2 on two strings τ1 and τ2. These queries induce
a split state tampering function on the non-malleable encodings of tag||yi,j for i ∈ [κ] and j ∈ [N ].
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However, the tampering function tampers with a mixture of left and right shares. For example, let
(f1, g1), .., (fN , gN ) be the tampering functions tampering codes (Li, Ri) for i ∈ [u]. Then, for all
j ∈ [N ], fj for every i may tamper any one of the two shares (Li, Ri) while gj tampers the other. This
is because the prover P ′2 on query τ1 and τ2 queries P2 on τ ′1 and τ ′2 which on each query releases a
collection of left and right shares of encodings.
In such a situation if the decoding is symmetric (or commutative) it is possible to simulate the tampering
experiment. Consider N = 1 and u = 2 in the example above, that is, f1 tampers with the joint
distribution (R1, L2) and g1 tampers with the joint distribution (L1, R2), then we can replace L2, R2

with an encoding of 0 and the resulting distribution should be statistically close to the distribution
of the tampering experiment. Since Dec(f1(R1, L2), g1(L1, R2)) = Dec(g1(L1, R2), f1(R1, L2)), we can
again replace (L1, R1) with an encoding of 0 and the output is still close to the output of the tampering
experiment.

We note that the construction in [CGL15] already satisfies the first two properties. We now show how to
modify the construction in [CGL15] so that it satisfies all the three properties. Let the scheme in [CGL15]
be denoted by (Enc,Dec), the resulting scheme (Enc′,Dec′) is constructed as described below. Let us say
that each code share output by the scheme (Enc,Dec) be in {0, 1}n and message space be {0, 1}m.

◦ Enc′ : {0, 1}m → {0, 1}2n+2. On input s, it samples Enc(s)→ (L,R) and outputs (L||0, R||1).

◦ Dec′{0, 1}n+1 × {0, 1}n+1 → {0, 1}m. On input (L′, R′), it parses L′ = L||b1 and R′ = R||b2 where
b1, b2 ∈ {0, 1}. If b1 = b2 it outputs ⊥. Else, if b1 = 0 it outputs Dec(L,R) otherwise it outputs
Dec(R,L).

Note that decoding is a commutative operation now. It is possible to show that if the underlying code
supports a tampering degree t, then the modified code also supports a tampering degree t. The code is
secure against all split state functions (f1, g1), .., (ft, gt) that tampers any polynomial U codewords (Li, Ri)
for i ∈ [U ] in the following manner.

1. There exists a set S ⊆ [U ] such that for all j ∈ [t], fj takes as input {Li}i∈S ,{Ri}i∈[U ]\S and gj takes
as input {Li}i∈S ,{Ri}i∈[U ]\S .

2. For all j ∈ [t], fj outputs a string of the form L′j ||0 and gj outputs a string of the form R′j ||1.

In the following section, we sketch about why this modification is secure.

A.1 Proof Overview
Notation: For any two distributions, D1,D2 by |D1−D2| we denote the statistical distance between the two
distributions. We say that the source X is an (n, k) source if it has a support on {0, 1}n and has min-entropy
H∞(X) = k.

We first define a (2, t) non-malleable extractor. Our definitions are borrowed from [CGL15].

Definition 8. A function nmExt : {0, 1}n × {0, 1}n → {0, 1}m is a seedless (2, t)-non-malleable extractor
at min-entropy k and error ε if it satisfies the following property: If X and Y are independent (n, k) sources
and A1 = (f1, g1), ..,At = (ft, gt) are t arbitrary 2-split state tampering functions, then there exists a random
variable Df ,g on ({0, 1}m ∪ {same∗}) which is independent of X and Y such that

|(nmExt(X,Y ), nmExt(A1(X,Y )), ..., nmExt(At(X,Y )))− (Um, copy
(t)(Df ,g, Um))| < ε

where both Um’s refer to the same uniform m-bit string.

Here we define following functions.

copy(x, y) =

{
x if x 6= same∗

same∗ otherwise

}
Similarly we define copy(t)((x1, .., xt), (y1, .., yt)) = (copy(x1, y1), .., copy(xt, yt)). Then once we have a non-
malleable extractor it can be compiled to a non-malleable code as described in [CGL15].
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Imported Theorem 2. [CGL15] Let nmExt : ({0, 1}n × {0, 1}n) → {0, 1}m be a polynomial time com-
putable seedless (2, t) non-malleable extractor for min-entropy n with error ε. Then there exists a one-many
non-malleable code with an efficient decoder in the 2-split-state model with tampering degree t, block length
= 2n, relative rate m/2n, and error = ε2mt+1.

The one-many non-malleable codes in the 2-split-state model is define in the following way: For any
message s ∈ {0, 1}m, the encoder Enc(s) outputs a uniformly random string from the set nmExt−1(s) ∈
{0, 1}2n. For any codeword c ∈ {0, 1}2n, the decoder Dec outputs nmExt(c). Thus for the encoder to
be efficient, one need to sample almost uniform from nmExt−1(s). [CGL15] constructs a non malleable
extractor for independent (n, n − nγ) sources which has an explicit sampling algorithm that allows for
sampling uniformly from nmExt−1(s) for any s.

Let γ be a small enough constant and C a large enough one. Let t = nγ/C . [CGL15] construct an explicit
function nmExt : {0, 1}n × {0, 1}n → {0, 1}m, m = nΩ(1) which satisfies the following property: If X and
Y be independent (n, n− nγ) sources on {0, 1}n, and A1 = (f1, g1), ..,At = (ft, gt) are arbitrary 2-split sate
tampering functions such that for any i ∈ [t], at least one of fi or gi has no fixed points, the following holds:

|(nmExt(X,Y ), nmExt(A1(X,Y )), ..., nmExt(At(X,Y )))−(Um, nmExt(A1(X,Y )), ..., nmExt(At(X,Y )))| ≤ ε

where ε = 2−n
Ω(1)

.
By a convex combination argument, they show that if nmExt satisfies the property above, then it is

indeed a seedless (2, t)-non-malleable extractor.
We now define a new function nmExt′ : {0, 1}n+1×{0, 1}n+1 → {0, 1}m (which is essentially our decoder

for the non -malleable code) for (n + 1, n − nγ) sources as follows: nmExt′(x′, y′) : Takes as input strings
x′ = x||1 and y′ = y||0 (in any order; x is sampled from X and y is sampled from Y ) where x and y are
in {0, 1}n, and computes nmExt(x, y). If the strings do not satisfy the format it outputs ⊥. We call the
distribution X ′ = X||1 and Y ′ = Y ||0. Hence, nmExt′ is a commutative function on x′, y′. We can prove
that this function is a non-malleable extractor for sources X ′ = X||0 and Y ′ = Y ||1 such that X and Y are
independent (n, n− nγ) sources (for the constant γ). The tampering adversaries A′i = (f ′i , g

′
i) are such that

there exists a bit bi so that fi outputs in {0, 1}n||bi and gi outputs in {0, 1}n||b̄i.
In order to prove that the resulting function is a non-malleable extractor, we need to check the following

weaker property. By a convex combination argument, it is possible to show that this property suffices to
prove that this function is a non-malleable extractor for the class of tampering adversaries and distributions
described above. The property is that for t′ = nγ/C ,

|(nmExt′(X ′, Y ′), nmExt′(A′1(X ′, Y ′)), . . . , nmExt(A′t′(X ′, Y ′)))−

(Um, nmExt
′(A′1(X ′, Y ′)), . . . , nmExt′(A′t′(X ′, Y ′)))| ≤ ε

where ε = 2−n
Ω(1)

.
Here, we define the class of valid adversary as any split-state tampering function A′i = (f ′i , g

′
i) which addi-

tionally satisfies the property that at least one of f ′i or g′i has no fixed points, and that for some bi ∈ {0, 1},
f ′i outputs in {0, 1}n||bi and g′i outputs in {0, 1}n||b̄i.

Then, using this non-malleable extractor we can construct a non- malleable code secure against split state
adversaries of the following kind. The adversaries consists of a family of split state functions (f1, g1), .., (ft′ , gt′)
that tamper any polynomial u codewords (Li, Ri) for i ∈ [u].

1. There exists a set S ⊆ [u] such that for all j ∈ [t′], fj takes as input {Li}i∈S ,{Ri}i∈[u]\S and gj takes
as input {Li}i∈S ,{Ri}i∈[u]\S .

2. For all j ∈ [t′], fj outputs a string of the form L′j ||bj and gj outputs a string of the form R′j ||b̄j where
bj ∈ B.

Note that because encoding operation is efficient in the underlying coding scheme, it is also efficient for the
modified coding scheme.

This (weaker) property described about nmExt′ translates to the following property on the underlying
extractor nmExt for sources X and Y i.e.

|(nmExt(X,Y ), nmExt(A1(X,Y )), .., nmExt(At′(X,Y )))−(Um, nmExt(A1(X,Y )), .., nmExt(At′(X,Y )))| ≤ ε

31



where ε = 2−n
Ω(1)

. Here each Ai for i ∈ [t′] comprises of two arbitrary functions (fi, gi) and can be either of
the two types. Ai on input (X,Y ):

1. Outputs (fi(X), gi(Y )) (in which case at least one of fi or gi has no fixed points)

2. Outputs (gi(Y ), fi(X))

We note that the underlying construction in [CGL15] already satisfies this property. Hence, nmExt′ gives
us our desired non-malleable code with symmetric decoding operation. We now give an overview of why this
property is satisfied by [CGL15].

The (2, t′) non-malleable extractor in [CGL15] works by computing ‘flip-flop’ alternating extraction (in-
troduced in [Coh15]) between X and Y , ` number of times (` is a function of t′, n and m) and outputs this
extracted value. The key idea of why the extraction nmExt(X,Y ) still looks independent and uniform in
the presence of output of nmExt(f(Y ), g(X)) is that at ith step when extraction is done from X using a seed
Si, the corresponding seed S′i in evaluation of nmExt(f(Y ), g(X)) is a deterministic function of X (fixing
all prior seeds) and independent of Si (which is a deterministic function of Y ). Since the size of the seed S′i
is small in comparison with n, X still has enough entropy left even when S′i is released. Moreover, X and
Y are still independent even when Si and S′i are released. Hence, extraction at ith step in nmExt(X,Y )
looks uniform and independent from corresponding extraction in nmExt(f(Y ), g(X)) because of almost full
entropy in Si and the property of ‘flip-flop’ extraction used in the construction.

Although the resulting code (Enc′,Dec′) is not secure against arbitrary family of split state functions,
it is secure against split state functions (f, g) such that there exists a bit b ∈ {0, 1} so that f tampers one
share and outputs a string of the form x||b while g tampers the other share and outputs a string of the form
y||b̄. A code secure against such adversaries suffices for our construction of the non-malleable proof. This is
because for any index ind, the reduction expects either a left or right share of the encoded values depending
upon the bits τ1

ind and τ2
ind. Here τ

1 and τ2 is the query made by the reduction to the MIM in the case when
P1 and P2 are in a session with P ′1 and P ′2 respectively.
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