
Watermarking Cryptographic Capabilities ∗

Aloni Cohen† Justin Holmgren‡ Ryo Nishimaki§ Vinod Vaikuntanathan¶

Daniel Wichs∥

Abstract

A watermarking scheme for programs embeds some information called a mark into a program while
preserving its functionality. No adversary can remove the mark without damaging the functionality of
the program. In this work, we study the problem of watermarking various cryptographic programs such
as pseudorandom function (PRF) evaluation, decryption, and signing. For example, given a PRF F , we
create a marked program C̃ that evaluates F (·). An adversary that gets C̃ cannot come up with any
program C∗ in which the mark is removed but which still evaluates the PRF correctly on even a small
fraction of the inputs.

The work of Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang (CRYPTO’01 and
Journal of ACM 59(2)) shows that, assuming indistinguishability obfuscation (iO), such watermarking
is impossible if the marked program C̃ evaluates the original program with perfect correctness. In this
work we show that, assuming iO, such watermarking is possible if the marked program C̃ is allowed to
err with even a negligible probability, which would be undetectable to the user.

Our watermarking schemes are public key, meaning that we use a secret marking key to embed
marks in programs, and a public detection key that allows anyone to detect marks in programs. Our
schemes are secure against chosen program attacks where the adversary is given oracle access to the
marking functionality. We emphasize that our security notion of watermark non-removability considers
arbitrary adversarial strategies to modify the marked program, in contrast to the prior works (Nishimaki,
EUROCRYPT ’13).

∗This work is a merged version of [NW15] and [CHV15] with additional results.
†MIT, aloni@mit.edu. Research supported by the NSF Graduate Student Fellowship. This work was done in part while the

author was visiting the Weizmann Institute of Science, and while the authors were visiting the Simons Institute for the Theory of
Computing, supported by the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography through NSF grant
CNS-1523467.

‡MIT, holmgren@mit.edu. Research supported by NSF Frontier CNS-1413920. This work was done in part while the author
was visiting the Weizmann Institute of Science.

§NTT Secure Platform Laboratories, nishimaki.ryo@lab.ntt.co.jp. This work was done while the author was visiting
Northeastern University and in part while the author was visiting Simons Institute for the Theory of Computing.

¶MIT CSAIL, vinodv@csail.mit.edu. Research supported in part by DARPA Safeware grant, NSF grants CNS-1350619
and CNS-1414119, Alfred P. Sloan Research Fellowship, Microsoft Faculty Fellowship, the NEC Corporation, and a Steven and
Renee Finn Career Development Chair from MIT.

∥Northeastern University, wichs@ccs.neu.edu. Research supported by NSF grants CNS-1347350, CNS-1314722, CNS-
1413964.



Contents

1 Introduction 1
1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Overview of Our Techniques 4
2.1 Simplification: Token-Based Watermarking . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 A High Level Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 A Simple Scheme with Weak Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Challenges in Allowing Mark/Extract Oracles . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Toward a Fully Secure Token-Based Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Using Indistinguishability Obfuscation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Preliminaries 9

4 Definition of Watermarking 11

5 Puncturable Encryption 12

6 Watermarking PRFs 14
6.1 Scheme Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
6.2 A Message-Embedding Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.3 Security Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

7 Extensions and Variants of Watermarking 22
7.1 Stronger Unremovability in a Different Model . . . . . . . . . . . . . . . . . . . . . . . . . 22
7.2 Optimality of (12 + 1

poly(λ))-Unremovability . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.3 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 Watermarking Other Cryptographic Primitives 24

9 The Limits of Watermarking 26
9.1 Impossibilities for statistical correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.2 Impossibilities for weak statistical correctness . . . . . . . . . . . . . . . . . . . . . . . . . 29

10 Conclusions 30

A Construction and Security Proofs of Puncturable Encryption 33
A.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.2 Ciphertext Pseudorandomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

B Proof of Theorem 9.13: Waterproof PRFs 41
B.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
B.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
B.3 Learnability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
B.4 Pseudorandomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

C Key-Injective pPRF from LWE or DDH 46

i



1 Introduction
Digital watermarking enables us to embed some special information called a mark into digital objects such
as images, movies, music files, or programs. We often call such objects marked. There are two basic
requirements for watermarking. The first is that a marked object should not be significantly different from
the original object. The second is that malicious entities should not be able to remove embedded marks
without somehow “destroying” the object (e.g., modify an image beyond recognition).

There are many works on watermarking perceptual objects such as images, movies, music files, etc.
Most of them do not give a rigorous theoretical treatment and their constructions are heuristic and ad-hoc.
(We briefly survey some of these works in Section 2.7). Barak, Goldreich, Impagliazzo, Rudich, Sahai,
Vadhan and Yang [BGI+01, BGI+12], in their seminal work that laid the mathematical foundations of pro-
gram obfuscation, also proposed definitions for program watermarking. Unfortunately, their results were all
negative, showing that certain definitions of watermarking are impossible to achieve. The work of Hopper,
Molnar and Wagner [HMW07] proposes general and rigorous definitions for watermarking schemes, and
explores in depth connections between the definitions, but does not provide any actual constructions.

Watermarking Programs. Our first contribution is to define the notion of public-key watermarking, build-
ing on the work of Hopper, Molnar and Wagner [HMW07] who introduced a secret-key definition. We speak
of a watermarking scheme for a circuit class C = {Cλ}λ∈N where each Cλ is a set of circuits. A watermark-
ing scheme for C consists of procedures Mark(mk , ·) and Extract(ek , ·) with a secret marking key mk and
a public extraction key ek . Given a circuit C, the marking procedure C̃ ← Mark(mk , C) creates a marked
circuit C̃ that evaluates C. Although we will see that we cannot achieve perfect correctness, in which
C̃(x) = C(x) for all inputs x, we will be able to achieve statistical correctness where we allow a negligi-
ble error probability. The extraction procedure Extract(ek , C∗) outputs either that the circuit is marked or
unmarked.

For security, we consider a game where a challenger chooses a random circuit C ← Cλ and gives
the adversary the marked circuit C̃ ← Mark(mk , C). Intuitively, we require that the adversary cannot
come up with any circuit that correctly evaluates C but does not have the mark embedded in it. This
property is called unremovability. Following [HMW07] and adapting it to the public-key setting, we require
that unremovability holds against chosen circuit attackers, namely adversaries that have oracle access to
Mark(mk , ·).

More precisely, the adversary produces a circuit C∗ and we insist that either:

(a) Extract correctly detects that the circuit is marked by outputting marked← Extract(ek , C∗); or

(b) The circuit C∗ does not even approximately compute C, meaning that C∗(x) = C(x) on at most an ε
fraction of the inputs x.

The parameter ε is called the “approximation factor” and we can set it to some small constant or even to any
1/poly fraction. (The smaller the ε, the better the security guarantee). During the attack, the adversary is
also given the public extraction key ek and access to the marking oracle Mark(mk , ·) that he can query on
arbitrary circuits of his choice (even ones that are not in Cλ). At this point, it is prudent to note that the very
first idea that comes to mind, namely signing the circuit C using mk , is not a particularly good watermarking
strategy as the adversary can simply strip off the signature leaving a perfectly functional circuit.

We call the above type of watermarking “messageless” to denote that it only distinguishes between
marked and unmarked circuits. We also consider a stronger version called “message-embedding” water-
marking where the marking procedure can be used to embed an arbitrary message into the circuit and the
extraction procedure should recover the message. Similar to the above, the adversary’s goal is to force the
extraction procedure to recover a different message. (We refer the reader to Section 4 for formal definitions).

1



Why Cryptographic Programs? In this work, we focus on watermarking circuits that are cryptographic
in nature, such as circuits evaluating a pseudorandom function (PRF) or implementing a signing or decryp-
tion procedure. One could reasonably ask: why cryptographic programs?

First, we observe that in the security definition for watermarking, the challenge circuit C has to be
unknown to the adversary. For, if not, the adversary has a trivial watermark removing strategy: given the
marked circuit C̃, simply output C as the mark-removed circuit. Since C is an arbitrary program, it is very
likely to be unmarked; on the other hand, C is (approximately) equivalent C̃ in functionality.1 Thus, it is
natural for the challenger to pick C from a distribution with high min-entropy (In this work, for simplicity,
we consider picking circuits uniformly at random from Cλ).

Secondly, we observe that circuit families that are exactly learnable are not watermarkable. This is
because the adversary can simply invoke C̃ as a black box and recover a description of the original circuit
C (or an equivalent version thereof) which is again very likely to be unmarked.

This naturally leads us to consider families of circuits where random circuits from the family are not
exactly learnable, canonical examples of which are cryptographic programs: pseudo-random functions,
signing algorithms and decryption algorithms. Jumping ahead, we remark that unlearnability is a necessary
but not sufficient condition for being able to watermark a family of circuit. Indeed, we show families
of pseudo-random functions that, despite being strongly unlearnable, cannot be watermarked even with
approximate correctness.

That said, we regard the question of coming up with meaningful definitions and constructions of water-
marking for general circuits (and even families of evasive circuits) as a challenging open question arising
from this work.

Watermarking Cryptographic Programs: An Application. To further highlight the usefulness of wa-
termarking cryptographic functions, we describe an application of watermarking pseudorandom functions.
However, we emphasize that the concept should have broader applicability beyond this example.

Consider an automobile manufacturer that wants to put electronic locks on its cars; the car contains a
PRF F and can only be opened by running an identification protocol where it chooses a random input x and
the user must respond with F (x). When a car is sold to a new owner, the owner is given a software key
(e.g., a smart-phone application) consisting of marked program C̃ that evaluates the PRF F (·) and is used
to open the car. The mark can embed some identifying information such as the owner’s name and address.
Even if the software key is stolen, the thief cannot create a new piece of software that would still open the
car while removing information about the original owner.

Impossibility of Watermarking? The work of Barak et al. [BGI+01, BGI+12] initiated the first theo-
retical study of program watermarking. They propose a game-based definition which appears significantly
weaker than the definitions we consider in this work (it is in the symmetric-key setting with no mark-
ing/detection oracles given to the adversary), but requires perfect correctness. Unfortunately, they show that
this definition is unachievable assuming the existence of indistinguishability obfuscation.

The main intuition behind the negative result is to consider an attacker that takes a marked program and
applies indistinguishability obfuscation (iO) to it. If the marked program implements the original program
with perfect correctness then the result of applying iO to it should be indistinguishable from that of applying
iO to the original program. Since the latter is unlikely to be marked, the same should apply to the former.
Therefore, this presents a valid attack against watermarking in general.

Barak et al. note that the above attack crucially relies on the perfect (rather than merely statistical)
correctness of the marked program, meaning that it correctly evaluates the original program on every in-
put. They mention that otherwise “it seems that obfuscators would be useful in constructing watermark-

1One can attempt to get around this issue by requiring that the program output by the watermark remover should be distinct from
C and C̃. However, it is also easy to defeat these definitions by asking the watermarked remover to output an indistinguishability
obfuscation of C.

2



ing schemes, because a watermark could be embedded by changing the value of the function at a ran-
dom input, after which an obfuscator is used to hide this change.” This idea was not explored further
in [BGI+01, BGI+12] and it is far from clear if a restricted notion of obfuscation such as iO (or even ex-
tractability obfuscation or VGB) would be sufficient and what type of watermarking security can be achieved
with this approach. Nevertheless, this idea serves as the starting point of our work.

1.1 Our Results
We start by giving new formal definitions of program watermarking, along the lines of what we described
earlier. To avoid the [BGI+01, BGI+12] impossibility result described above, our definition allows for
statistical rather than perfect correctness. That is, for every circuit C ∈ Cλ and every input x,

Pr[C̃(x) ̸= C(x) | C̃ ← Mark(mk , C)] ≤ negl(λ)

where the probability is over the choice of the keys and the coin tosses of the Mark algorithm. We call this
strong approximate correctness.

This seemingly small relaxation allows us to circumvent the impossibility results and show algorithms
to watermark large classes of pseudo-random functions, signature algorithms and decryption algorithms.
Our main technical contribution is a method of watermarking any family of puncturable PRFs.2 Our scheme
has a public-key extraction procedure and achieves security in the presence of a marking oracle. We get
a messageless scheme that allows for any ε = 1/poly(λ) approximation factor and a message-embedding
scheme that allows for approximation factors ε = 1/2+1/poly(λ). In the case of message-embedding con-
structions, we show that there is an inherent lower bound of ε = 1/2. Both schemes rely on (polynomially
secure) indistinguishability obfuscation (iO).

Theorem 1.1 (Informal) Assuming indistinguishability obfuscation and injective one-way functions, there
is a watermarking scheme that is secure against chosen circuit attacks for any family of puncturable PRFs.

We then extend this to watermarking other cryptographic primitives such as the decryption procedure of
a public-key encryption scheme, and the signing procedure of a signature scheme. To do so, we rely on re-
cent (obfuscation-based) constructions of public-key encryption and signatures where the decryption/signing
procedures are simply PRF evaluations [SW14]. (In contrast to our PRF result where we watermark any
punctured PRF, here we design special watermarkable signature schemes and decryption algorithms).

Theorem 1.2 (Informal) Assuming indistinguishability obfuscation and injective one-way functions, there
are signature and decryption algorithms that can be watermarked with chosen circuit security.

Theorem 1.1 and 1.2 show that relaxing the correctness requirement to strong approximate correctness
allows us to watermark any family of puncturable PRFs, and certain families of signature and decryption al-
gorithms. A natural question is whether one can watermark arbitrary PRF, signature and decryption circuits.
We show impossibility results matching our constructions by demonstrating families of PRFs, signature and
decryption algorithms that cannot be watermarked. We call such schemes waterproof.

We start by observing that learnable functions are waterproof, simply because an adversary can learn a
canonical representation of the function given any program (even any oracle) that computes the function.
Indeed, it is sufficient for the function family to be non black-box learnable. That is, the adversary should
be able to use any program that computes the function to extract a canonical representation. Such function
families were defined in the work of Barak et al. [BGI+01] and are called unobfuscatable functions. Indeed,

2Puncturable pseudo-random functions (pPRFs) [BW13a, BGI14a, KPTZ13a] are PRFs where the owner of the key K can
produce a punctured key Kx that allows computation of the PRF on all inputs y ̸= x. Moreover, given the punctured key,
PRFK(x) is pseudorandom. Puncturable PRFs can be constructed from one-way functions [BW13a, BGI14a, KPTZ13a] or more
efficiently, from several number-theoretic assumptions. [BLMR13, BV15, BFP+15].

3



[BGI+01,BGI+12] show PRFs, signature and decryption algorithms that are strongly unobfuscatable – that
is, an adversary can extract the canonical representation even given a program that only computes a function
with strong approximate correctness. This immediately gives us waterproof PRFs, signature and decryption
algorithms. (See Section 9 for more details.)

Theorem 1.3 (Informal) Assuming the existence of one-way functions, there are waterproof PRFs and
signature and decryption algorithms, even if: (a) we only require symmetric-key watermarking; and (b) we
only require unremovability against stand-alone adversaries that do not have access to Mark or Extract
oracles.

We continue this line of thought and ask if we can further weaken the correctness requirement and over-
come this impossibility result. Namely, we consider a weak approximate correctness requirement which
states that the marked program C̃ agrees with the original program C on most inputs. (In contrast to strong
approximate correctness, here C̃ can always make a mistake on some fixed set of inputs). We show that
even this relaxation does not help. Our proof of this result involves constructing new types of robust unob-
fuscatable PRFs. (See Section B for more details).

Theorem 1.4 (Informal) Assuming the existence of one-way functions, there are waterproof PRFs even
under weak approximate correctness (and even with relaxations (a) and (b) as in Theorem 1.3).

2 Overview of Our Techniques
2.1 Simplification: Token-Based Watermarking
Although our full watermarking scheme relies on indistinguishability obfuscation (iO), our main technical
insights are largely unrelated to obfuscation. In order to elucidate our techniques clearly without getting
entangled in details of iO, for the purposes of this introduction we consider a simplified model of water-
marking that we call token-based watermarking. We treat watermarked programs C̃ ← Mark(mk , · · · ) as
tamper-proof hardware tokens which the adversary can only access as a black box.3 The adversary can ar-
bitrarily compose hardware tokens C̃1, . . . , C̃q and create a new token C∗ = C∗[C̃1, . . . , C̃q] that has oracle
access to the tokens C̃i embedded inside of it. More formally, we can think of C∗ as an oracle circuit with
oracle-gates to C̃1, . . . , C̃q. The extraction procedure Extract(ek , C∗) will also treat any such token C∗ as
a black box. The goal of the adversary is to create a token C∗ which functionally approximates the chal-
lenge watermarked program C̃ but on which the extraction procedure fails to recover the correct embedded
message. Most of the interesting aspects of constructing watermarking schemes already come up in the
token-based setting.4 However, the constructions in the token-based setting become simpler and do not rely
on obfuscation. Therefore, we view it as a useful stepping stone to building intuition for our full results
where the adversary gets the complete code of the watermarked programs.

2.2 A High Level Approach

At a high level, to watermark a PRF F : {0, 1}n → {0, 1}m, we create a token C̃ that evaluates F correctly
on almost all inputs x, except for some special set of “marked-points” X ⊆ {0, 1}n which have negligible
density in {0, 1}n. On the marked points, the watermarked program outputs specially constructed incorrect
values that allow the extraction procedure to recover the embedded message. We will ensure that marked
points are indistignuishable to the adversary from random inputs. Therefore, the adversary cannot create a

3Alternately, one can think of this setting as assuming that C̃ is obfuscated with an “ideal obfuscation” scheme. However, since
software-only ideal obfuscation schemes don’t exist, it’s more accurate to think of C̃ as a physical hardware token.

4For example, it’s immediately clear that exact watermarking, where the marked program C̃ is functionally equivalent to the
original program C, is impossible in this setting since in that case the extraction procedure cannot distinguish between black-box
access to the original unmarked program C and the marked program C̃.

4



new token C∗ that agrees with C̃ on a large fraction of random inputs (i.e., approximates F ) but disagrees
with C̃ on sufficiently many marked points so as to cause the extraction procedure to fail.

2.3 A Simple Scheme with Weak Security
We start by considering a weak notion of token-based watermarking security, where both the marking key
mk and the extraction key ek are secret and the adversary does not have access to either the marking
oracle Mark(mk , ·) or the extraction oracle Extract(ek , ·). We also consider a messageless scheme where
programs can only be marked or unmarked. In particular, in the security game the adversary gets a single
marked token C̃ ← Mark(mk , F ) as a challenge, where F : {0, 1}n → {0, 1}m is chosen at random from
a PRF family F ← F (and n,m are super-logarithmic). The adversary’s goal is to come up with some new
token C∗ = C∗[C̃] that approximately evaluates F but on which the extraction procedure fails to detect that
the program is marked: Extract(ek , C∗) = unmarked.

This can be easily achieved as follows. Choose a polynomial set of ℓ “marked-points”X = {x1, . . . , xℓ} ⊆
{0, 1}n uniformly at random with corresponding random outputs y1, . . . , yℓ ← {0, 1}m. Set mk = ek =
(x1, . . . , xℓ, y1, . . . yℓ). To mark a PRF F , the marking procedure C̃ ← Mark(mk , F ) outputs a token C̃
that contains x1, . . . , xℓ, y1, . . . , yℓ hard-coded and, on input x, if x = xi for some i ∈ [ℓ] it outputs yi else
it outputs F (x). The extraction procedure Extract(ek , C∗) tests if on at least one of the ℓ marked points
xi ∈ X the program evaluates to C∗(xi) = yi. If so, it outputs that the program is marked, and otherwise
outputs unmarked.

To prove that the above scheme is secure, we notice that an adversary that gets black-box access to a
token C̃ ← Mark(mk , F ) for a random unknown F ← F cannot distinguish between the marked points
X = {x1, . . . , xℓ} and ℓ uniformly random and independent inputs without breaking PRF security. This
implies that the adversary cannot come up with a new token C∗ = C∗[C̃] such that C∗(x) = C̃(x) is
“correct” on a large fraction of inputs x ∈ {0, 1}n, but C∗(xi) ̸= C̃(xi) = yi for all marked points
xi ∈ X , as this would imply distinguishing between random points and marked points. More precisely, by
setting ℓ = Ω(λ/ε) where λ is the security parameter, we ensure that if the adversary creates any token
C∗ = C∗[C̃] that agrees with the marked token C̃ on even an ε-fraction of inputs x ∈ {0, 1}n, then
C∗(xi) = yi for at least one marked point xi ∈ X with overwhelming probability 1− (1− ε)ℓ and therefore
Extract(ek , C∗) = marked as desired.

2.4 Challenges in Allowing Mark/Extract Oracles
Unfortunately, the above scheme becomes completely insecure if the adversary has access to either a mark-
ing oracle Mark(mk , ·) or the extraction oracle Extract(ek , ·), let alone if the extraction key ek is made
public. Let us describe the attacks.

Attack using the extraction oracle. If the adversary gets the challenge marked program C̃ ← Mark(mk , F )
as a token, he can create new tokens C ′ = C ′[C̃] such that C ′(x) = C̃(x) only for x satisfying P (x) = 1
where P is some predicate. By querying the extraction oracle Extract(ek , C ′) to see if such tokens are
deemed marked or unmarked, the adversary will learn whether there exists some marked point xi with
P (xi) = 1. By choosing such predicates carefully, these queries can completely reveal the marked points. 5

5For example, a concrete instantiation of the above attack uses predicates of the form Pw(x) = 1 iff x[1, . . . , |w|] = w for some
w ∈ {0, 1}∗ (i.e., the first |w| bits of x match w). By starting with w being the empty string, the adversary can iteratively add a bit
to learn if there exists some marked point xi with Pw||b(xi) = 1 for b ∈ {0, 1}. Whenever the above occurs for exactly one choice
of b ∈ {0, 1}, the adversary extends w := w||b and continues to the next iteration. If this happens for both choices of b ∈ {0, 1}
then the adversary branches the above process and continues down both paths for w := w||0 and w := w||1. Since there are ℓ
marked points, this process will only branch ℓ times and the adversary will eventually recover all of the points X = {x1, . . . , xℓ}.
Once the adversary learns X , he can create a circuit C∗[C̃] such that C∗(x) = C̃(x) for any x ̸∈ X and otherwise C∗(x) outputs
some incorrect value (e.g., an independent pseudorandom output). The circuit C∗ closely approximates C̃ (on all but a negligible
fraction of inputs) yet the extraction procedure fails to detect C∗ as marked.

5



Attack using the marking oracle. Assume the adversary makes just one call to the marking oracle with
an arbitrary known PRF function F ′ ∈ F and gets back a token C̃ ′ ← Mark(mk , F ′). In addition, the
adversary gets a challenge token C̃ ← Mark(mk , F ) corresponding to a random unknown PRF F ← F .
The adversary can easily remove the mark by creating a new token C∗[C̃ ′, C̃] that gets oracle access to C̃ ′

and C̃ and does the following: on input x, if C̃ ′(x) = F ′(x) then output C̃(x) else output some incorrect
value (e.g., an independent pseudorandom output). The circuit C∗ only differs from C̃ on the marked points
xi ∈ X and therefore closely approximates C̃ on all but a negligible fraction of inputs. However, the
extraction procedure will fail to detect C∗ as marked.

2.5 Toward a Fully Secure Token-Based Scheme
We now outline the main ideas for how to thwart the above attacks and get a token-based watermarking
scheme with a public extraction key ek and with security in the presence of a marking oracle Mark(mk , ·).
Overview. Our first idea is to make the set of marked points X ⊆ {0, 1}n super-polynomial, yet still of
negligible density inside of {0, 1}n. This will allow us to thwart the attack using an extraction oracle and
even make the extraction key ek public. In particular, we ensure that even given the extraction key ek , which
can be used to sample random marked points x← X , the adversary still cannot distinguish such points from
uniformly random inputs. Thwarting the marking oracle attack is more difficult. We need to ensure that the
set of marked points XF is different for each PRF F that we will mark so that, even if the adversary can test
if a point belongs to XFi for various PRFs Fi that were queried to the marking oracle, the marked points XF

for the challenge (unknown) PRF F will remain indistinguishable from uniform. However, this creates a
difficulty since the extraction procedure Extract(ek , C̃) must test the marked program C̃ on the correct set
of marked points XF without knowing the function F from which C̃ was created. We solve this by ensuring
that one can find a marked point for the function F by querying F . In particular, the extraction procedure
first queries C̃(z) on some special (pseudo-random) “find point” z and then, assuming C̃(z) = F (z), uses
the output C̃(z) to sample a marked point x← XF .

A Concrete Scheme. LetF be a PRF family consisting of functions F : {0, 1}n → {0, 1}λ where λ is the
security parameter and n is sufficiently large. Let (Gen,Enc,Dec) be a CCA secure public-key encryption
scheme with pseudorandom ciphertexts having message space {0, 1}3λ and ciphertext space {0, 1}n.6 Let
G : {0, 1}λ → {0, 1}n be a PRG.

Keys: We sample a key pair for the encryption scheme (pk , sk)← Gen(1λ) and define the marking/extraction
key mk , ek to be the secret/public key respectively: mk = sk , ek = pk .

Marking: For a PRF F ∈ F , we define the set of “marked points” as:

XF = {x ∈ {0, 1}n : Decsk (x) = (a||b||c) ∈ {0, 1}3λ, F (G(a)) = b}.

To mark a PRF F the procedure C̃ ← Mark(mk , F ) creates a token C̃ defined as follows:

Hard-Coded Constants: F , sk .
Input: x ∈ {0, 1}n

1. Try to decrypt a||b||c← Decsk (x) with a, b, c ∈ {0, 1}λ.
2. If decryption succeeds and F (G(a)) = b output c. // x ∈ XF is a marked point
3. Otherwise output F (x).

6For simplicity, we assume ciphertexts are pseudorandom in {0, 1}n. For our full construction we will construct such schemes
with additional puncturability properties using PRFs and iO. However, we can generalize this to other domains beside {0, 1}n
and, in the token-based setting, we could then rely on standard constructions of CCA secure encryption such as e.g., Cramer-
Shoup [CS03].

6



Extraction: The extraction procedure Extract(ek , C∗) repeats the following ℓ times:

• Choose random a, c← {0, 1}λ and let z = G(a) and b = C∗(z). // z is a find point
• Choose x← Encpk (a||b||c) and if C∗(x) = c then output marked. // if b = F (z) then x ∈ XF .

If all ℓ iterations fail, output unmarked.

Intuitively, the construction relies on the fact that the marked program C̃ can recognize marked points by
using the decryption key. On the other hand the extraction procedure can find the marked points for a
function F given a circuit C∗ that approximates F by querying C∗(z) where z = G(a) is a “find point”. If
the circuit answers correctly on z so that F (z) = C∗(z) = b then the extraction procedure will be able to
correctly sample a marked point x← Encpk (a||b||c).
Security Analysis Overview. For the security analysis, consider an adversary that gets an extraction key
ek = pk and makes q queries to the marking oracle with arbitrary PRF functions Fi ∈ F and gets back
marked tokens C̃i ← Mark(mk , Fi). The adversary then gets a challenge marked token C̃ ← Mark(mk , F )
for a random unknown PRF F ← F . The adversary can only query the tokens as a black box.

Firstly, we claim that even given the above view, the adversary cannot distinguish between getting ran-
dom find/mark points z, x and completely random values z′, x′:

(view, z, x) ≈ (view, z′, x′) : a, c← {0, 1}n, z = G(a), b = F (z), x← Encpk (a||b||c), z′, x′ ← {0, 1}n.

To show this, we can first rely on CCA security to switch x to a uniformly random x′. This is because black-
box access to the marked tokens C̃i can be simulated by a CCA oracle that never decrypts x (it’s unlikely
that F (z) = Fi(z) for some i, and therefore x is not a marked point for the queried functions Fi with
overwhelming probability) while the challenge program C̃ outputs C̃(x) = c but this is indistinguishable
from C̃(x′) = F (x′) since both outcomes look random. We then rely on PRG security to switch z to
uniform.

Secondly, we claim that the above “indistinguishability” property immediately implies “unremovabil-
ity”. In particular, if the adversary manages to produce a token C∗ that ε-approximates the challenge pro-
gram C̃ then, for a random z′, x′ ← {0, 1}n the probability that C∗(z′) = C̃(z′) and C∗(x′) = C̃(x′) is at
least ε2. Therefore, the same must hold (up to a negligible difference) when x, z are a random find/marked
point. This means that each iteration of the extraction procedure outputs marked with probability at least
ε2 and therefore the probability that none of the iterations outputs marked is at most (1 − ε2)ℓ which is
negligible as long as ℓ = Ω(λ/ε2).

This analysis only provides lunch-time security where the adversary can query the marking oracle only
prior to seeing the challenge program C̃. This is because we relied on the fact that, with overwhelming
probability, none of the queried functions Fi will satisfy Fi(z) = F (z) where F is the challenge PRF. This
may not hold in a stronger security model where the adversary can adaptively query the marking oracle with
function Fi after seeing the watermarked version C̃ of the challenge PRF F . However, we can salvage the
same analysis and make it hold in the stronger model if we assume the PRF family satisfies an additional
injective property, meaning that when F ̸= F ′ then F (z) ̸= F ′(z) for all inputs z. We can construct such
PRFs under natural assumptions such as DDH or LWE.

Embedding a Message. We can extend the above construction to embed a message in the marked pro-
gram. We do so by ensuring that the outputs of the marked circuit on the marked points x encode information
about the message msg, which can then be recovered by the extraction procedure. In particular, instead of
simply having the marked circuit output the value c encrypted in the marked point x, we make it output
c⊕msg where msg is message we wish to embed. The extraction procedure can work as above but in each
iteration i = 1, . . . , ℓ it recovers a candidate message msgi. We simply test if there is a message which is
recovered in a majority of the iterations. If so we output it, and otherwise we output unmarked. A naive

7



implementation of this approach would only work for an approximation factor ε > 1/
√
2 since only in that

case could we expect that C∗ answers correctly on both the find point and the marked point simultaneously
with probability > 1/2 so as to get a correct majority. We show how to tweak the above approach to make
it work for optimal approximation factor ε > 1/2 by testing C∗ on many marked points for each find point
and taking a majority-of-majorities.

2.6 Using Indistinguishability Obfuscation.
Lastly, we briefly mention our techniques for moving beyond token-based watermarking. On a high level,
we can simply obfuscate the watermarked programs C̃, instead of thinking of them as hardware tokens.
However, the fact that we only have iO rather than ideal obfuscation makes this step non-trivial. Indeed,
the token-based model can give false intuition since it allows us to watermark any PRF family but we show
that in the standard model there are PRF families that cannot be watermarked. Nevertheless, it turns out that
we can adapt the techniques from the token-based model to also work in the standard model using iO. The
main differences are that: (1) we need the PRF family F that we are watermarking to be a puncturable PRF
family, (2) instead of a standard CCA secure encryption, we need a special type of puncturable encryption
scheme where we can create a punctured secret key which doesn’t decrypt a particular ciphertext. The
latter primitive may be of independent interest and we show how to construct it using iO. We use a careful
sequence on hybrids to show that the above changes are sufficient to get a provably secure watermarking
scheme in the standard model.

2.7 Related Work
There has been a large body of work on watermarking in the applied research community. Notable con-
tributions of this line of research include the discovery of protocol attacks such as the copy attack by
Kutter, Voloshynovskiy and Herrigel [KVH00] and the ambiguity attack by Adelsback, Katzenbeisser and
Veith [AKV03]. However, these works do not formally define security guarantees, and have resulted in a
cat-and-mouse game of designing watermarking schemes that are broken fairly immediately.

We mention that there are several other works [NSS99, YF11, Nis13] that propose concrete schemes for
watermarking cryptographic functions, under several different definitions and assumptions. For example,
the work of Nishimaki [Nis13] gives formal definitions and provably secure constructions for watermarking
cryptographic functions (such as trapdoor functions). The main aspect that sets our work apart from these
works is that they only consider restricted attacks which attempt to remove a watermark by outputting a new
program which has some specific format (rather than an arbitrary program). In particular, for all of these
schemes, the mark can be removed via the attack described in [BGI+01, BGI+12] where an adversary uses
iO to obfuscate the marked program so as to preserve its functionality but completely change its structure.

Barak et al. [BGI+01,BGI+12] proposed simulation-based and indistinguishability-based definitions of
watermarking security; their main contribution is a negative result, described earlier in the introduction,
which shows that indistinguishability obfuscation rules out any meaningful form of watermarking that ex-
actly preserves functionality. Finally, Hopper, Molnar and Wagner [HMW07] formalized strong notions of
watermarking security with approximate functionality; our definitions are inspired by their work. Their def-
inition considers not just unremovability, as we do, but also the dual notion of unforgeability which requires
that the only marked programs that an adversary can produce are functionally similar to circuits already
marked by a marking oracle. Though we have some partial results in this direction [CHV15], achieving
unforgeability and unremovability simultaneously is a challenging and interesting open problem.

Organization of the Paper. We describe our main result, namely watermarking PRFs, in Section 6. Due
to space limitation, the rest of our technical material can be found in the appendices: the definition of
watermarking in Appendix 4, a new cryptographic object called puncturable encryption and its construction
in Appendix 5, the proof of our PRF watermarking in Appendix 6.3, watermarking other cryptographic
primitives in Appendix 8, negative results on watermarking in Appendix 9 and B and several extensions to

8



our main construction in Appendix 7.

3 Preliminaries
Notation
For any n ∈ N, we write [n] to denote the set {1, . . . , n}. For two strings x1 and x2, x1∥x2 denotes a
concatenation of x1 and x2.

When D is a distribution, we write y ← D to denote that y is randomly sampled from D. If S is a set,
then we will also write S to denote the uniform distribution on that set.

We say that a function f : N → R is negligible if for all constants c > 0, there exists N ∈ N such that
for all n > N , f(n) < n−c.

If X = {Xλ}λ∈N and Y = {Yλ}λ∈N are two ensembles of random variables indexed by λ ∈ N, we say
that X and Y are computationally indistinguishable if for all p.p.t. algorithms D, there exists a negligible
function ν such that for all λ,

Pr

D(xb) = b

∣∣∣∣∣∣
x0 ← Xλ

x1 ← Yλ
b← {0, 1}

 ≤ 1

2
+ ν(λ).

We write X c≈ Y to denote that X and Y are computationally indistinguishable.
For two circuits C and D, we write C ≡ D if C and D compute exactly the same function. If C and D

agree on an ε fraction of their inputs, we write C ∼=ε D.

Definitions
In this section, we review basic notions and definitions used in this paper.

Obfuscation. The notion of indistinguishability obfuscation (iO) was proposed by Barak et. al. [BGI+01,
BGI+12] and the first candidate construction was proposed by Garg, Gentry, Halevi, Raykova, Sahai, and
Waters [GGH+13].

Definition 3.1 (Indistinguishability Obfuscation [BGI+12, GGH+13]) An indistinguishability obfusca-
tor is a p.p.t. algorithm iO satisfying the following two conditions.

Functionality: For every security parameter λ ∈ N and every circuit C, it holds with probability 1 that

iO(1λ, C) ≡ C

Indistinguishability: For all circuit families C0 = {C0
λ} and C1 = {C1

λ} such that C0
λ ≡ C1

λ are function-
ally equivalent and |C0

λ| = |C1
λ|, it holds that{

iO(1λ, C0
λ)
}
λ

c≈
{
iO(1λ, C1

λ)
}
λ

For simplicity, we write iO(C) instead of iO(1λ, C) when the security parameter λ is clear from context.

Pseudorandom Generators and Functions. We review pseudorandom generators and several variants of
pseudorandom functions (PRFs).

Definition 3.2 (Pseudorandom Generator) A pseudorandom generator (PRG) G : {0, 1}λ → {0, 1}λ+ℓ(λ)

with stretch ℓ(λ) (ℓ is some polynomial function) is a polynomial-time computable function that satisfies
G(Uλ)

c
≈ Uλ+ℓ(λ) where Um denotes the uniform distribution over {0, 1}m.

9



Definition 3.3 (Pseudorandom Functions) A pseudorandom function family F = {Fλ}λ∈N is a function
family where each function F ∈ Fλ maps a domain D to a range R and satisfies the following condition.
For all PPT adversary A and F ← Fλ, it holds∣∣∣Pr[AF (·) = 1]− Pr[AR(·) = 1]

∣∣∣ ≤ negl(λ)

where F (·) : D → R is a deterministic function and R is chosen uniformly at random from the set of all
functions with the same domain/range.

In this paper, we basically set D := {0, 1}n(λ) and R := {0, 1}m(λ) for a pair of polynomial-time computable
functions n(·) and m(·).

The notion of puncturable pseudorandom function (pPRF) was proposed by Sahai and Waters [SW14].

Definition 3.4 (Puncturable Pseudorandom Functions) A puncturable pseudorandom function (pPRF)
family F is a function family with a “puncturing” algorithm Puncture where each function F ∈ Fλ maps a
domain {0, 1}n(·) to a range {0, 1}m(·) that satisfies the following two conditions.

Functionality preserving under puncturing: For all polynomial size set S ⊆ {0, 1}n(λ) and for all x ∈
{0, 1}n(λ) \ S, it holds that

Pr[F (x) = F{S}(x) | F ← Fλ, F{S} := Puncture(F, S)] = 1.

Pseudorandom at punctured points: For all polynomial size set S = {x1, . . . , xk(λ)} ⊆ {0, 1}n(λ) it
holds that for all PPT adversary A,

µ(λ) :=
∣∣Pr[A(F{S}, {F (xi)}i∈[k]) = 1]− Pr[A(F{S}, Um(λ)·|S|) = 1]

∣∣ ≤ negl(λ)

where F ← Fλ, F{S} := Puncture(F, S) and Uℓ denotes the uniform distribution over ℓ bits.

Theorem 3.5 ( [GGM86, BW13b, BGI14b, KPTZ13b]) If one-way functions exist, then for all efficiently
computable n(·) and m(·), there exists a pPRF family whose input is an n(·) bit string and output is an m()
bit string.

Definition 3.6 (Injective pPRF) If a pPRF familyF = {Fλ}λ satisfies the following, we call it an injective
prefix pPRF family. For all F ∈ Fλ and x, x′ ∈ D, if x ̸= x′, then F (x) ̸= F (x′).

Sahai and Waters showed that we can convert any pPRF into a statistically injective pPRF [SW14]. Here,
"statistically" means with probability 1− negl(λ) over the random choice of F ← Fλ, F (·) is injective.

Definition 3.7 (Injective Bit-Commitment) An injective bit-commitment function is a p.p.t. algorithm
Com which takes as input a security parameter λ and a bit b ∈ {0, 1}, and outputs a commitment c, satisfying
the following properties.

Computationally Hiding: {
Com(1λ, 0)

}
λ
≈

{
Com(1λ, 1)

}
λ

Perfectly Binding: For every λ, it holds that

Pr

[
c0 = c1

∣∣∣∣ c0 ← Com(1λ, 0)
c1 ← Com(1λ, 1)

]
= 0

10



Injective: For every security parameter λ, there is a bound ℓrand on the number of random bits used by
Com such that Com(1λ, · ; ·) is an injective function on {0, 1} × {0, 1}ℓrand .

Definition 3.8 (Universal One-Way Hash Function) A universal one-way hash function (UOWHF) fam-
ily H = {Hλ}λ∈N is a function family where each function H ∈ Hλ maps a domain D to a range R and
satisfies the following condition. For all PPT adversary A := (A1,A2), it holds

Pr

x ̸= x∗ ∧H(x) = H(x∗)

∣∣∣∣∣∣
(x, s)← A1(1

λ),
H ← Hλ,
x∗ ← A2(1

λ,H, x, s)

 ≤ negl(λ).

Theorem 3.9 ( [Rom90]) If one-way functions exist, then UOWHFs exists.

Hoeffding’s Inequality We will use the following well-known bound. If X1, . . . , XN are independent
Bernoulli variables with parameter p, then

Pr

[∑
i

Xi ≥ (p+ ε) ·N

]
≤ e−2ε

2N

In particular, if N > λ
ε2

, then this probability is exponentially small in λ.

4 Definition of Watermarking
We begin by defining the notion of program watermarking. Our definition is similar to the game-based
definition of Barak et al. [BGI+12, Definition 8.4] (It is called occasional watermarking) with the main
difference that: (1) we allow “statistical” rather than perfect correctness, (2) the challenge circuit to be
marked is chosen uniformly at random from the circuit family (for example, in the case of PRFs, this
corresponds to marking a random PRF key), (3) we strengthen the definition to the public-key extraction
setting and give the attacker access to the marking oracle.

Definition 4.1 (Watermarking Syntax) A message-embedding watermarking scheme for a circuit class
{Cλ}λ∈N and a message space M = {Mλ} consists of three probabilistic polynomial-time algorithms
(Gen,Mark,Extract).

Key Generation: Gen(1λ) takes as input the security parameter and outputs a pair of keys (xk ,mk),
respectively called the extraction key and mark key.

Mark: Mark(mk , C,msg) takes as input a mark key, an arbitrary circuit C (not necessarily in Cλ) and a
message msg ∈Mλ and outputs a marked circuit C̃.

.

Extract: msg′ ← Extract(xk , C ′) takes as input an extraction key and an arbitrary circuit C ′, and
outputs msg′ ← Extract(xk , C ′) where msg′ ∈M∪ {unmarked}.

We are now ready to define the required correctness and security properties of a watermarking scheme.

Definition 4.2 (Watermarking Security) A watermarking scheme (Gen,Mark,Extract) for circuit family
{Cλ}λ∈N and with message spaceM = {Mλ} is required to satisfy the following properties.

Statistical Correctness: There is a negligible function ν(λ) such that for any circuit C ∈ Cλ, any
message msg ∈Mλ and any input x in the domain of C, it holds that

Pr

[
C̃(x) = C(x)

∣∣∣∣ (xk ,mk)← Gen(1λ)

C̃ ← Mark(mk , C,msg)

]
≥ 1− ν(λ).

11



Extraction Correctness: For every C ∈ Cλ, msg ∈Mλ and (xk ,mk)← Gen(1λ):

Pr[msg′ ̸= msg
∣∣ msg′ ← Extract(xk ,Mark(mk , C,msg)) ] ≤ negl(λ).

Meaningfulness: For every circuit C (not necessarily in Cλ), it holds that

Pr
(xk ,mk)←Gen(1λ)

[Extract(xk , C) ̸= unmarked] ≤ negl(λ).

ε-Unremovability: For every PPT A we have

Pr[Expnrmv
A (λ, ε) = 1] ≤ negl(λ)

where ε is a parameter of the scheme called the approximation factor and Expnrmv
A (λ, ε) is the game

defined next.

We say a watermarking scheme is ε-secure if it satsifies these properties.

Definition 4.3 (ε-Unremovability Security Game) The game Expnrmv
A (λ, ε) is defined as follows.

1. The challenger generates (xk ,mk)← Gen(1λ) and gives xk to the adversary A.

2. The adversary has oracle access to the mark oracleMO. IfMO is queried a circuit Ci (not neces-
sarily in Cλ) and message msgi, then it answers with Mark(mk , Ci,msgi).

3. At some point, the adversary makes a query to the challenge oracle CO. If CO is queried with
a message msg ∈ Mλ, it samples a circuit C ← Cλ uniformly at random and answers C̃ ←
Mark(mk , C ,msg).

4. Again, A queries many pairs of a circuit and a message toMO.

5. Finally, the adversary outputs a circuit C∗. If it holds that C∗ ∼=ε C and Extract(xk , C∗) ̸= msg then
the experiment outputs 1, otherwise 0. 7

Our main construction achieves what we call “lunch-time security”, in which step 4 of the above game
is omitted. This and other variations are discussed in Section 7.

5 Puncturable Encryption
One of our main abstractions is a puncturable encryption system. This is a public-key encryption system in
which the decryption key can be punctured on a set of ciphertexts. We will rely on a strong ciphertext pseu-
dorandomness property which holds even given access to a punctured decryption key. We will additionally
require that valid ciphertexts are sparse, and that a decryption key punctured at two ciphertexts {c0, c1} is
functionally equivalent to the non-punctured decryption key, except possibly on {c0, c1}.

In this section we define the puncturable encryption abstraction that we use in Section 6. We instantiate
this definition in Section A.1 and prove its security Section A.2.

Definition 5.1 (Puncturable Encryption Syntax) Syntactically, a puncturable encryption scheme PE for a
message spaceM = {0, 1}ℓ is a triple of probabilistic algorithms (Gen,Puncture,Enc) and a deterministic
algorithm Dec. The space of ciphertexts will be {0, 1}n where n = poly(ℓ, λ). For clarity and simplicity,
we will restrict our exposition to the case when λ = ℓ.

Key Generation: (pk , sk)← Gen(1λ) takes the security parameter in unary, and outputs an encryption
key pk and a decryption key sk .

Puncturing: sk{c0, c1} ← Puncture(sk , c0, c1) takes a decryption key sk , and a set {c0, c1} ⊂ {0, 1}n.8

7The definition would be equivalent if we had required C∗ ∼=ε C̃ instead of C∗ ∼=ε C, up to a negligible difference in ε, since
by statistical correctness we have C ∼=δ C̃ for some δ = 1− negl(λ).

8We can assume that the set {c0, c1} is represented as a list in sorted order.

12



Puncture outputs a “punctured” decryption key sk{c0, c1}.

Encryption: c ← Enc(pk ,m) takes an encryption key pk and a message m ∈ {0, 1}ℓ, and outputs a
ciphertext c in {0, 1}n.

Decryption: m or ⊥ ← Dec(sk , c) takes a possibly punctured decryption key sk and a string c ∈
{0, 1}n. It outputs a message m or the special symbol ⊥.

Definition 5.2 (Puncturable Encryption Security) A puncturable encryption scheme PE = (Gen,Puncture,
Enc,Dec) with message spaceM is required to satisfy the following properties.

Correctness: We require that for all messages m,

Pr

[
Dec(sk , c) = m

∣∣∣∣ (pk , sk)← Gen(1λ),
c← Enc(pk ,m)

]
= 1.

Punctured Correctness: We also require the same to hold for keys which are punctured. For all possible
keys (pk , sk)← Gen(1λ), all strings c0, c1 ∈ {0, 1}n, all punctured keys sk ′ ← Puncture(sk , c0, c1),
and all potential ciphertexts c ∈ {0, 1}n \ {c0, c1}:

Dec(sk , c) = Dec(sk ′, c).

Ciphertext Pseudorandomness: We require that in the following game, all PPT adversaries A have
negligible advantage.

Game 5.3 (Ciphertext Pseudorandomness) .

1. A sends a message m∗ to the challenger.

2. The challenger does the following:

• Samples (pk , sk)← Gen(1λ)

• Computes encryption c∗ ← Enc(pk ,m∗).
• Samples r∗ ← {0, 1}n.
• Generates the punctured key sk ′ ← Puncture(sk , {c∗, r∗})
• Samples b← {0, 1} and sends the following to A:

(c∗, r∗, pk , sk ′) if b = 0
(r∗, c∗, pk , sk ′) if b = 1

3. The adversary outputs b′ and wins if b = b′.

Sparseness: We also require that most strings are not valid ciphertexts:

Pr
[
Dec(sk , c) ̸= ⊥

∣∣∣ (pk , sk)← Gen(1λ), c← {0, 1}n
]
≤ negl(λ).

One of our contributions is the following theorem.

Theorem 5.4 A puncturable encryption system can be constructed using indistinguishability obfuscation
and injective one-way functions.

A full construction and proof is provided in appendices A.1 and A.2.

13



6 Watermarking PRFs
In this section, we construct schemes for watermarking any puncturable PRF family. One is secure against
lunch-time attacks and the other is fully secure. Both of them are in the public-key extraction setting. As
we explain in Section 2.3, the simple scheme is not secure in these settings (the attacker has access to the
marking or extraction oracles).

For all of the schemes, let C be some puncturable PRF (pPRF) family where, for C ← Cλ we have
C(·) : Dλ → Rλ with Dλ = {0, 1}n(λ), and Rλ = {0, 1}m(λ) for some n(λ),m(λ) = Ω(λ). We often drop
λ from Dλ and Rλ. We construct a watermarking scheme for PRF evaluation of C. We identify the PRF
evaluation circuits computing the function C(·) and assume (without loss of generality) that the marking
procedure just takes C as an input.

Theorem 6.1 Assuming the existence of injective one-way functions, and an indistinguishability obfuscator
for all circuits, for all ε(λ) = 1

2 + 1/poly(λ), all message spacesM = {0, 1}w (for w = poly(λ)), all
integer functions n(λ) = Ω(λ) and m(λ) = Ω(λ) there exists a watermarking scheme with message space
M which is ε-secure against lunch-time attacks for every pPRF ensemble {Cλ}λ∈N such that functions C in
Cλ map {0, 1}n(λ) → {0, 1}m(λ).

If we assume pPRF family C = {Cλ}λ∈N satisfies a "nice" property, that is, the injective property in Defi-
nition 7.1, then we can show the full security in Definition 4.3 where the adversary has access to the mark
oracle even after the challenge program is given. See Section 7.1 for the details.

Construction: Public-Key Extraction and Security against Lunch-Time Attacks. We now construct a
watermarking scheme with public-key extraction and with security against lunch-time attacks in the presence
of a marking oracle (see Definition 4.3). We have already explained the challenges in constructing such a
scheme in Section 2.4. We start with the scheme outline.

6.1 Scheme Outline
Assume we want to mark a PRF family C with domain D = {0, 1}n and range R = {0, 1}m, where both
n and m are sufficiently large. In this overview, suppose for simplicity that the space of marks is {0, 1}m.
Our construction relies on a puncturable encryption scheme PE with ciphertext space C = {0, 1}n and
message spaceM = {0, 1}ℓ for sufficiently large ℓ. We follow the watermarking framework described in
the introduction, in which a marked program is changed on a small set of “marked points”, determined by a
set of “find points” which are not changed.

Roughly speaking, a marked point in our scheme is a valid ciphertext of PE. A valid ciphertext when
marking a program C is defined as any encryption of any plaintext a∥b∥c such that b = H(C(G(a))).
On such inputs, the marked program’s output is changed to G′(c) ⊕ msg where G′ is a publicly known
pseudorandom generator and msg is the desired mark. Note that there are super-polynomially many marked-
points, but yet they are only a negligible fraction of the total domain.

Given the above marking scheme, there is a natural procedure to extract the mark msg. We first pick
random values a, c ← {0, 1}ℓ/3 and compute the corresponding find-point α := G(a). Then we compute
b := H(C ′(α)) and use this to find the corresponding marked-point x ← PE.Enc(pk , a∥b∥c). Finally,
we compute y = C ′(x) and record msg′ := y ⊕ G′(c) as a candidate for the embedded message. If
C ′ = Mark(C), correctness is obvious. The bulk of our work is making extraction work for arbitrary
efficiently computable C ′ ≈ε Mark(C).

In order to guarantee that the correct message is extracted with high probability , we amplify our pro-
cedure in two steps. First, we fix a∥b and sample multiple independent c’s, extract as above, and take the
majority result. We then repeat this process with independently sampled a’s, and again taking the majority
result. Compared to earlier versions of this work [CHV15, NW15], this “majority of majorities” approach
allows us to attain optimal thresholds for unremovability (any 1

2 + 1
poly(λ) ).

14



6.2 A Message-Embedding Construction
In this section, we formally construct our main message-embedding watermarking scheme. We show it
satisfies unremovability in the public-key extraction setting and in the presence of a marking oracle. We
obtain a scheme in which unremovability holds for any approximation factor ε(λ) = 1

2 + 1/poly(λ).

Setup. Our goal is to construct a watermarking scheme for a pPRF family C with domain {0, 1}n and
range {0, 1}m. For any positive integer w, letM = {0, 1}w·m denote the message space. We will think of
messages msg ∈ M as consisting of w/m chunks in {0, 1}m, so we will write msg = msg1∥ · · · ∥msgw.
Let PE be a puncturable encryption scheme with ciphertext length n and plaintext length ℓ + logw. Let
G : {0, 1}ℓ/3 → {0, 1}n and G′ : {0, 1}ℓ/3 → {0, 1}m be PRGs, and let H : {0, 1}m → {0, 1}ℓ/3 be a
UOWHF.

Construction. For any approximation factor ε(λ) = 1
2 +ρ(λ) where ρ(λ) is some inverse polynomial, we

set Q = Q(λ) = λ/ρ(λ)2 and R = R(λ) = λ/ρ(λ)2 and define our construction as follows.

Gen(1λ): Sample a key pair (pk , sk)← PE.Gen(1λ). Output (xk ,mk) where xk = pk and mk = sk .

Mark(mk , C,msg): Outputs the iO-obfuscation of circuit M constructed from C in Fig. 1, i.e., iO(M).

Constants: PE decryption key sk , pPRF F , circuit C, and message msg = msg1∥ . . . ∥msgw
Inputs: x ∈ {0, 1}n

1. Try to parse a∥b∥c∥i← PE.Dec(sk , x), where |a| = |b| = |c| = ℓ/3 and i ∈ [w].
2. If a∥b∥c∥i ̸= ⊥ and H(C(G(a))) = b, output G′(c)⊕msgi.
3. Otherwise, output C(x).

Figure 1: The program M , which is a modification of C (pre-obfuscated program)

Extract(xk , C ′): For each i ∈ [w], let msgi = Extracti(xk , C
′), where Extracti is defined in Fig. 2.

Extracti makes use of a subroutine WeakExtracti, which is defined in Fig. 3. Output msg1∥ . . . ∥msgw.

Extracti(xk , C
′):

1. For j = 1, . . . , Q,

(a) Sample uniformly random aj ← {0, 1}ℓ/3.

(b) Compute bj = H(C ′(G(aj)))

(c) Run msg
(j)
i ←WeakExtracti(xk , C

′, aj , bj)

2. If there exists a "majority-of-majorities message" msgi ̸= ⊥ such that |{j : msg
(j)
i = msgi}| > Q/2,

then output msgi; else output unmarked.

Figure 2: The sub-routine algorithm Extracti(xk , C
′)

It is easy to check that this construction satisfies statistical and extraction correctness, and meaningfulness.

Proposition 6.2 The above construction satisfies Theorem 6.1.

6.3 Security Proofs
To prove the proposition, we must prove ε-unremovability against lunch-time attacks.

15



WeakExtracti(xk , C
′, a, b):

1. For k = 1, . . . , R,

(a) Sample ck ← {0, 1}ℓ/3 and xk ← PE.Enc(pk , a∥b∥ck∥i).

(b) Compute msg
(k)
i = G′(ck)⊕ C ′(xk).

2. Define the “majority message” msgi such that |{k : msg
(k)
i = msgi}| > R/2 if such a msgi exists;

otherwise, define msgi = ⊥.

Figure 3: The sub-routine algorithm WeakExtracti(xk , C
′, a, b)

Overview. Recall that in our scheme, there are two sparse sets of points: “find points”, which are un-
changed between a marked and unmarked program, and “mark points”, which are changed. To extract from
a circuit C ′, one repeatedly performs the following 4 steps, which we will refer to as weak extraction:

1. Sample a find point x, and queries C(x)

2. Use the resulting value to sample many mark points x1, . . . , xk, where k = λ/ρ2

3. For each xi, query C(xi) to compute a guess msgi

4. If some msgi occurs more than k/2 times, return it. Otherwise, return ⊥.

If this procedure returns some message msg many times (more than half), then msg is the extracted value.
Weak extraction can fail if C(x) has been changed by the remover, or if most of C(x1), . . . , C(xk) have

been changed. The first happens with probability at most 1 − ε, by the pseudorandomness of find points.
The second happens with negligible probability by a Chernoff bound. By repeating this process with many
find points, the error probability is reduced to negligible.

Proof of ε-unremovability. First, we define two security experiments to state a useful lemma that is used
to prove Proposition 6.2. These two experiments are similar to the unremovability security game, but the
goal of the adversary is now to distinguish a mark-point of a marked program from a uniformly random
string of the same length, while first given access to a marking oracle and also given the corresponding find
point.

For any PPT adversary D, we define the following two experiments, ExpDREAL(λ, i) and ExpDRAND(λ).

ExpDREAL(λ, i):

1. (xk ,mk)← Gen(1λ)

2. (s,msg)← DMark(mk ,·,·)(xk)

3. C ← C and C̃ ← Mark(mk , C,msg)

4. a← {0, 1}ℓ/3, b = H(C̃(G(a)))

5. c← {0, 1}ℓ/3

6. xREAL ← PE.Enc(pk , a∥b∥c∥i)
7. Finally, output D(s, C̃, a, xREAL)

ExpDRAND(λ):

1. (xk ,mk)← Gen(1λ)

2. (s,msg)← DMark(mk ,·,·)(xk)

16



3. C ← C and C̃ ← Mark(mk , C,msg)

4. a← {0, 1}ℓ/3

5. xRAND ← {0, 1}n

6. Finally, output D(s, C̃, a, xRAND)

Lemma 6.3 Under the same conditions as in Theorem 6.1, for all PPT distinguishersD and for all i ∈ [w],
it holds that ∣∣Pr[ExpDREAL(λ, i) = 1]− Pr[ExpDRAND(λ) = 1]

∣∣ < negl(λ)

We also define a “many-message” version of these two experiments:

ExpD
REALR

(λ, i):

1. (xk ,mk)← Gen(1λ)

2. (s,msg)← DMark(mk ,·,·)(xk)

3. C ← C and C̃ ← Mark(mk , C,msg)

4. a← {0, 1}ℓ/3, b = H(C̃(G(a))).
5. c← {0, 1}ℓ/3

6. For j = 1, . . . , R:
sample xREAL,j ← PE.Enc(pk , a∥b∥c∥i)

7. Finally, output D(s, C̃, a,xREAL), where xREAL = (xREAL,1, . . . , xREAL,R).

ExpD
RANDR(λ):

1. (xk ,mk)← Gen(1λ)

2. (s,msg)← DMark(mk ,·,·)(xk)

3. C ← C and C̃ ← Mark(mk , C,msg)

4. a← {0, 1}ℓ/3

5. For j = 1, . . . , R:
sample xRAND,j ← {0, 1}n

6. Finally, output D(s, C̃, a,xRAND), where xRAND = (xRAND,1, . . . , xRAND,R).

Corollary 6.4 For all p.p.t. D and for all i ∈ [w], it holds that∣∣Pr[ExpD
REALR

(λ, i) = 1]− Pr[ExpD
RANDR(λ) = 1]

∣∣ < negl(λ)

Proof. This follows from a simple hybrid argument. 2

Before proving Lemma 6.3, we first show that it would imply Proposition 6.2.

Proof of Proposition 6.2. We show that for every i and every p.p.t. adversary (A1,A2),

Pr

Extracti(xk , C∗) ̸= msg(i) ∧ C∗ ∼=ε C̃

∣∣∣∣∣∣∣∣∣∣∣

(xk ,mk)← Gen(1λ)

(msg, s)← AMark(mk ,·,·)
1 (1λ, xk ,mk)

C ← C
C̃ ← Mark(mk , C,msg)

C∗ ← A2(s, C̃)

 ≤ negl(λ)

17



Suppose for the sake of contradiction that a p.p.t. adversary (A1,A2) wins this game with non-negligible
probability. That is, with non-negligible probability,A2 outputs a program C∗ ∼=ε C̃ such that Extracti(C∗) ̸=
msg(i) with non-negligible probability. For convenience of notation, let ∆ denote the point-wise xor of C̃
and C∗. That is, let ∆(x) = C∗(x) ⊕ C̃(x). Recall that ε(λ) = 1

2 + ρ(λ). Because Extracti takes the
majority answer after running WeakExtracti many (λ/ρ(λ)2) times, it must be (by a Chernoff bound) that
for any such C∗,

pC∗ := Pr
[
WeakExtracti(C

∗) ̸= msg(i)
]
≥ 1

2
− ρ(λ) +

1

poly(λ)

for some polynomial poly. Since WeakExtracti only accesses C∗ in a black-box way, and since we know
that WeakExtracti(C̃) = msg(i) with high probability, it must be the case that C∗ differs from C̃ at some of
the points queried by WeakExtracti. Furthermore WeakExtracti is robust against differences at mark points
(since it suffices for C∗ to agree with C̃ at a majority of the queried mark points). Thus we have (by a union
bound) that

pC∗ ≤ Pr
a
[∆(G(a)) ̸= 0] + Pr

a←{0,1}ℓ/2
xk←PE.Enc(a∥b∥i)

[
|{k : ∆(xk) ̸= 0 ∧ k ∈ [R]}| > R

2

]
+ negl(λ)

The first term corresponds to the probability ofA changing the find point queried by WeakExtracti, and the
second corresponds to the probability of A changing many mark points. The third term is the probability
that WeakExtracti(C̃) ̸= msgi.

For the first term, we note that by the pseudorandomness of G(a), it must hold that for all polynomials
poly, there is a negligible negl such that

Pr

[
C∗ ∼=ε C̃ ∧ Pr

a
[∆(G(a)) ̸= 0] ≥ 1− ε(λ) +

1

poly(λ)

]
≤ negl(λ).

Indeed, otherwise we can break the security of G by runningA, and empirically testing whether the ∆ output
byA2 exhibits a 1

poly(λ) advantage in distinguishing G(a) points from random points. If it does, we evaluate
∆ on our challenge to try to distinguish; otherwise we guess randomly.

For the other term, Corollary 6.4 states that the xi’s are jointly indistinguishable from i.i.d. random
xi’s sampled from {0, 1}m, even though A1 has oracle access to Mark(mk , ·, ·). Combined with a Chernoff
bound, which states that

Pr

[
C∗ ∼=ε C̃ ∧ Pr

x1,...,xR←{0,1}n

[
|{xk : ∆(xk) ̸= 0}| > R

2

]
≥ 1

poly(λ)

]
= 0,

this implies that for every polynomial poly,

Pr

C∗ ∼=ε C̃ ∧ Pr
a←{0,1}ℓ/2

x1,...,xR←PE.Enc(a∥b∥i)

[
|{xk : ∆(xk) ̸= 0}| > R

2

]
≥ 1

poly(λ)

 ≤ negl(λ).

Combining these four inequalities yields a contradiction.
2

Now we turn to proving Lemma 6.3.

Proof of Lemma 6.3. We define a sequence of hybrid experiments to prove this lemma. We call all variables
that D sees in the experiment Exp a view of D and denote it by view(Exp).

18



Hyb0: This experiment is exactly the same as ExpDREAL(λ, i).

Hyb1: In this hybrid experiment, we change the marking oracle. For the adversary’s queries (C(1),msg(1)), . . . ,
(C(q),msg(q)), instead of generating marked program C̃(ι) ← iO(M (ι)), we set C̃(ι) ← iO(M (ι){x0, x1})
where M (ι){x0, x1} is defined in Figure 4, having hard-coded C(ι), sk ′ ← PE.Puncture(sk , x0, x1),
x0 := xREAL, x1 ← {0, 1}n, and msg(ι).

Constants: punctured PE decryption key sk ′ := sk{x0, x1}, pPRF key C(ι), values x0, x1, message

msg(ι) = msg
(ι)
1 ∥ · · · ∥msg

(ι)
w

Inputs: x ∈ {0, 1}n

1. If x ∈ {x0, x1}, then output C(ι)(x).

2. Compute a∥b∥c∥i← PE.Dec(sk ′, x), where |a| = |b| = |c| = ℓ/3, and i ∈ [w].

3. If a∥b∥c∥i ̸= ⊥ and H(C(ι)(G(a))) = b, output G′(c)⊕msgιi.
4. Otherwise, output C(ι)(x).

Figure 4: Program M (ι){x0, x1} in Hyb1

Hyb2: In this hybrid experiment, we change the marked challenge program C̃. We use the punctured
decryption key sk ′ and hard-code the output values corresponding to x0 and x1 as y0 = G′(c) and
y1 ← {0, 1}m respectively. That is, we set C̃ ← iO(M{x0, x1}) where M{x0, x1} is defined in
Figure 5.

Constants: punctured PE decryption key sk ′ := sk{x0, x1}, pPRF key F , pPRF key C,
values x0, x1, y0, y1, message msg = msg1∥ · · · ∥msgw

Inputs: x ∈ {0, 1}n

1. If x = xσ for σ ∈ {0, 1}, then output yσ.

2. Compute a∥b∥c∥i← PE.Dec(sk ′, x), where |a| = |b| = |c| = ℓ/3 and i ∈ [w].
3. If a∥b∥c∥i ̸= ⊥ and H(C(G(a))) = b, output G′(c)⊕msgi.
4. Otherwise, output C(x).

Figure 5: Program M{x0, x1} in Hyb2

Hyb3 In this experiment, x0 is changed to be uniformly sampled from {0, 1}n.

Hyb4 In this experiment, y0 is changed to be uniformly sampled from {0, 1}m

ExpDRAND: The only changes from Hyb3 are that the challenge program C̃ and marked keys C̃(ι) for all
ι ∈ [q] are changed back to the original programs but the values x0 remain random.

We describe an overview of the main hybrid experiments in Table 1.

Lemma 6.5 If F is a pPRF family, H is a UOWHF, PE satisfies the punctured correctness and sparseness,
and iO is a secure indistinguishability obfuscator, then view(Hyb0)

c≈ view(Hyb1).

19



Table 1: An overview of hybrid experiment
Hybrid experiment Challenge: iO(·) Answers ofMO: iO(·) x0 x1

ExpDREAL M M (ι) xREAL none
Hyb1 M M (ι){x0, x1} xREAL random
Hyb2 M{x0, x1} M (ι){x0, x1} xREAL random
Hyb3 M{x0, x1} M (ι){x0, x1} xRAND random

ExpDRAND M M (ι) xRAND none

Proof of Lemma 6.5. To prove the lemma, we define auxiliary hybrid experiments Hybι0 for ι ∈ [q] where
the mark oracle gives iO(M (ι){x0, x1}) for the first ι queries C(1), . . . , C(ι) of D.

Claim: In Hybι0, the probability that H(C(ι+1)(G(a))) = b is negligible, where b := H(C̃(G(a))).

Proof. If for some p.p.t. D, this event happens with non-negligible probability, we show how to
invert H at a random input with nearly the same non-negligible probability, thus contradicting the
one-wayness of H .

We use the fact that C(G(a)), and therefore C̃(G(a)), is pseudorandom, because up until this point
in the game, the only information D has about C comes from the marking oracle hard-coding x0 =
Enc(a∥b∥c) in its answers. So if b is replaced by a random challenge H(r), C(ι+1)(G(a)) must still
be a pre-image of b with non-negligible probability.

2

Claim: view(Hybι0)
c≈ view(Hybι+1

0 ) for all ι ∈ [q].

Proof. The only difference between Hybι0 and Hybι+1
0 is the (ι+1)-th answer by the mark oracle. We

show that the mark oracle’s answers are functionally equivalent in the two games, so indistinguisha-
bility follows from the security of iO.

There are only two possible inputs on which M (ι+1) may differ in Hybι0 and Hybι+1
0 : namely, x0

and x1 due to the punctured correctness at non-punctured points of PE. We show that (with high
probability) they respectively mapped to C(ι+1)(x0) and C(ι+1)(x1) without our changes, just as they
do with our changes.

It holds that PE.Dec(sk , x1) = ⊥ with high probability since x1 is uniformly random and PE sat-
isfies sparseness. Thus, M (ι+1)(x1) = C(ι+1)(x1) in Hybι0. This is also true in Hybι+1

0 since
M (ι+1){x0, x1}(x1) goes to the punctured-points branch.

On the other hand, x0 decrypts as a∥b∥c∥i, but by our previous claim, it cannot be the case that
H(C(ι+1)(G(a))) = b. Thus, M (ι+1)(x0) = C(ι+1)(x0) in Hybι0.

2

We completed the proof of the lemma by the two claims. 2

Lemma 6.6 If C is a pPRF, PE satisfies the punctured correctness, and iO is a secure indistinguishability
obfuscator, then view(Hyb1)

c≈ view(Hyb2).

Proof of Lemma 6.6. We define auxiliary hybrid experiments as follows.

20



Hyb11: Instead of choosing challenge program C̃ ← iO(M) where the program M is described in Figure
1, we now use punctured keys sk ′ and C{x1} and set C̃ ← iO(M1{x0, x1}) where M1{x0, x1} is
defined in Figure 6, y0 := G′(c)⊕msgi and y1 := C(x1).

Constants: punctured PE decryption key sk ′ := sk{x0, x1}, punctured pPRF key C ′ = C{x1},
values x0, x1, y0, y1, message msg = msg1∥ · · · ∥msgw

Inputs: x ∈ {0, 1}n

1. If x = xσ for σ ∈ {0, 1}, then output yσ.

2. Compute a∥b∥c∥i← PE.Dec(sk ′, x), where |a| = |b| = |c| = ℓ/3, and i ∈ [w].
3. If a∥b∥c∥i ̸= ⊥ and H(C ′(G(a))) = b, output G′(c)⊕msgi.
4. Otherwise, output C ′(x).

Figure 6: Program M1{x0, x1} in Hyb11

Hyb21 : We choose uniformly random y1 ← {0, 1}m and hard-code it in the program M{x0, x1}.

Claim: view(Hyb1)
c
≈ view(Hyb11)

Proof. Program M1{x0, x1} is functionally equivalent to Program M in Hyb1, because we just
hard-coded the values for y0 and y1 which would be output anyways. Also, replacing C by C{x1}
does not change functionality because, by line 1, C is never evaluated at x1.Thus, the claim holds due
to the security of iO. 2

Claim: view(Hyb11)
c
≈ view(Hyb21)

Proof. This follows from the pseudorandomness of C{x1} at x1. 2

Claim: view(Hyb21)
c≈ view(Hyb2)

Proof. In Hyb2, C is un-punctured in the challenge program iO(M{x0, x1}), but M{x0, x1} is still
functionally equivalent to the program in Hyb21 due to line 1. Therefore, the claim holds due to the
security of iO. 2

The proof of the lemma follows from these three claims. 2

Lemma 6.7 If PE satisfies ciphertext randomness, then view(Hyb2)
c
≈ view(Hyb3).

Proof of Lemma 6.7. This reduces to the ciphertext randomness property of PE. If some p.p.t. distinguisher
D distinguishes Hyb2 from Hyb3, we construct a p.p.t. A with non-negligible advantage in the ciphertext
pseudorandomness game.

First,A chooses a← {0, 1}ℓ/3, c← {0, 1}ℓ/3, C ← Cλ, and a UOWHF H , computes b := H(C(G(a))),
and sends m0 := a∥b∥c∥i and uniformly random m1 ← {0, 1}ℓ+|w| as a challenge. Then, the chal-
lenger of PE returns (cσ, c1−σ, pk , sk

′) where σ ∈ {0, 1}, c0 ← PE.Enc(pk ,m0), c1 ← {0, 1}n, and
sk ′ = PE.Puncture(sk ,m0,m1).

Now,A can perfectly simulate Hyb2 and Hyb3 toD, using cσ as x0. If σ = 0, thenA perfectly simulates
Hyb2. If σ = 1, then A perfectly simulates Hyb3. Thus, A can break the ciphertext pseudo-randomness by
outputting whatever D outputs. 2

21



Lemma 6.8 If PE satisfies ciphertext randomness, then view(Hyb3)
c≈ view(Hyb4).

Proof. In Hyb4, we change y0 from G(a) to a truly random point. The indistinguishability of this change
follows from the PRG security of G, since the adversary receives no other information about a. 2

Lemma 6.9 Under the same assumptions of Theorem 6.1, view(Hyb4)
c≈ view(ExpDRAND).

Proof of Lemma 6.9. This proof mirrors the proof of Lemma 6.5 and 6.6 (in reverse manner). 2

Finally, Lemma 6.3 follows from Lemma 6.5, 6.6, 6.7, 6.8, and 6.9. 2

7 Extensions and Variants of Watermarking
7.1 Stronger Unremovability in a Different Model
In this section, we show that if pPRF family C satisifies a special injective property, then the watermarking
scheme for C in the previous section satisfies the strongest security (Definition 4.3).

Difficulty with Full Security. There is only one part of the above security proof which does not transfer
to a “CCA2” version of the unremovability game. This is the claim in the proof of Lemma 6.5, which states
that the adversary cannot query the marking oracle on a program C(ι) such that H ◦ C(ι) agrees with the
H ◦ C̃ on a given point G(a), where C̃ is the marked challenge program, H is a UOWHF, and a is a random
string.

This clearly does not hold for queries made after seeing C̃. Indeed, D could then query C̃ itself. We
show that if:

• The inputs to the mark oracle are pPRF keys instead of arbitrary circuits and

• The pPRF family satisfies a strong “key injectivity” property

then unremovability still holds.
In order to achieve the strongest notion of watermarking unremovability, we need to restrict ourselves to

marking a pPRF family that satisfies the following key-injectivity condition. We further change the syntax
of Mark, so that its input is no longer an arbitrary circuit, but is actually restricted to functions in the family
C.

Definition 7.1 (Key-Injective pPRFs)

Pr
F←Fλ

[∃α, F ′ s. t. F ′ ̸= F ∧ F (α) = F ′(α)] ≤ negl(λ)

In other words this says that with high probability over the choice of F , no other F ′ ∈ F agrees with F
anywhere. See Appendix C for concrete instantiations. If we assume C satisfies the injective property in
Definition 7.1, then there are only negligible fraction of inputs causes the collision C̃(α) = C(ι+1)(α), that
is, Lemma 6.5 still holds.

Corollary 7.2 Assuming the existence of injective one-way functions, and an indistinguishability obfuscator
for all circuits, for all ε(λ) = 1

2+1/poly(λ), all message spacesM = {0, 1}w, all integer functions n(λ) =
Ω(λ) and m(λ) = Ω(λ) there exists a watermarking scheme with message spaceM which is ε-secure for
every key-injective pPRF ensemble {Cλ}λ∈N such that functions C in Cλ map {0, 1}n(λ) → {0, 1}m(λ).

Proposition 7.3 (Informal) Assuming the DDH assumption or LWE assumption, there exist key-injective
families of pPRFs.

22



7.2 Optimality of (1
2
+ 1

poly(λ)
)-Unremovability

We now show that ε-unremovable message-embedding watermarking is impossible when ε ≤ 1
2 . This

is because an adversary can obtain two independent uniformly sampled circuits C̃0 and C̃1, each marked
with different messages (respectively msg0 and msg1). The adversary then outputs a program C∗ such that
C∗ ∼=1/2 C̃0 and C∗ ∼=1/2 C̃1. Since C∗ can be generated in a way which treats C̃0 and C̃1 symmetrically,
we must have

Pr [Extract(C∗) = msg0] = Pr [Extract(C∗) = msg1] ≤
1

2
.

This impossibility clearly holds even in a setting where the adversary is extremely limited in e.g. the number
and type of oracle queries he may make.

7.3 Variants
Variant: List Decoding. We note that our construction could also be modified to satisfy ε-unremovability
for any ε = 1/poly(λ) by relaxing the correctness requirement on Extract, allowing it to output a (small)
list of possible messages rather than a single message. For unremovability, we only require that the correct
message appear in the list. For example, in our construction, instead of outputting the “majority value” msg
such that |{i : msg = msgi}| is sufficiently large, we could just output all O(1/ε2) values of msgi. By
signing the messages with a standard signature scheme, we can in a black-box way ensure that the list of
messages output by the detection procedure only contain (in addition to the correct message) the messages
that were embedded in some watermarked circuit by some previous call to the marking oracle.

Variant: Messageless Watermarking. In the case of messageless watermarking, there is no challenge
message. Instead, the message space is the singleton setM := {marked}. As a corollary of list-decodable
watermarking scheme, we can achieve messageless watermarking with security against any ε > 1/poly(λ).

Variant: Marking PRFs With Single-Bit Outputs In our construction, we assumed we were mark-
ing a pPRF whose outputs was {0, 1}m for m = Ω(λ). This assumption on m was not necessary. In-
deed, any pPRF family mapping {0, 1}n → {0, 1} can equally be construed as a pPRF family mapping
{0, 1}n−logm → {0, 1}m, and can be marked as such. In doing so, we incur a loss in parameters. If the wa-
termarking scheme for m-bit outputs satisfied (1 − ε)-unremovability, the watermarking scheme for single
bit outputs will only satisfy (1− ε

m)-unremovability.

Variant: Unforgeability The classic Irish folk tale of “Clever Tom and the Leprechaun” [Kei70] tells of a
farmer’s son who one day captures a Leprechaun. Compelled to abide by his every request, the Leprechaun
leads Tom to the field of bolyawns and indicates the one under which is buried treasure. Before Tom goes to
fetch a spade, he ties his red garter round the bolyawn and forbids the Leprechaun from untying it. The story
finishes: “lo an’ behould, not a bolyawn in the field, but had a red garther, the very idintical model o’ his
own, tied about it.” Though the Leprechaun was unable to remove the garter, there was nothing to prevent
him from tying identical garters around the neighboring trees, making it impossible for Tom to discover the
gold.

In their treatment of watermarking definitions, Hopper et al. [HMW07] define a notion of unforgeability
that is dual to unremovability. Intended to prevent attacks like the Leprechaun’s, unforgeability requires
that the only marked programs circuits that an adversary can produce are functionally similar to circuits
marked by a marking oracle. Whereas unremovability requires that a circuit is marked if it is ε-similar to
some honestly-marked circuit, unforgeability requires that a circuit is marked only if it is δ-similar to an
honestly-marked circuit, for some parameter δ < ε.

Though we have some partial results in this direction, achieving unforgeability and unremovability si-
multaneously is a challenging and interesting open problem.

23



Note on Statistical Correctness. We mention that, by an averaging argument, the statistical correctness
requirement implies that for any distributionD over inputs x, with overwhelming probability over the choice
of the marked circuit C̃, we have Prx←D[C̃(x) = C(x)] ≥ 1−negl(λ). Therefore, this requirement is more
meaningful than simply insisting that C̃ ∼=ε C for some ε = 1 − negl(λ). Additionally, the statistical
correctness requirement better captures the intuition that any algorithm from which mk and xk are unknown
should never see a differing input. Similar reasoning motivated [BGI+12] to adopt the analogous correctness
requirement in the context of approximate obfuscation.

8 Watermarking Other Cryptographic Primitives
In this section, we show how to use our pPRF watermarking scheme to watermark an encryption scheme
and a signature scheme. That is, no p.p.t. adversary can produce a program which decrypts most ciphertexts
or signs most messages, without revealing a given watermarked message.

Intuitively, this follows from the fact that cryptosystems and signature schemes exist for which decryp-
tion (respectively signature generation) are nothing more than a pPRF evaluation [SW14]. However, in order
for this to be valid, we must prove that a marked pPRF in our watermarking scheme remains puncturable.
Unfortunately, it doesn’t seem to be. The problem is that for a pPRF C, Mark(C) in our construction inter-
nally contains two copies of C: one for generating outputs, and another for checking whether an input is a
mark point. Replacing C by C{x} will change the functionality of Mark(C) at many points iff x is in the
image of the PRG G.

There are work-arounds, however. In the [SW14] construction of PKE, the proof of security only re-
quires a weaker form of puncturability, which our construction does achieve. Namely, the PRF only needs
to be puncturable at a random point x. Since a random point is with high probability not in the image of G,
replacing C by C{x} will only change the functionality of Mark(C) at x. The signature scheme described
in [SW14] requires a pPRF which is puncturable at an arbitrary point, but can be easily modified for a pPRF
puncturable at a random point. The idea is to introduce a random offset, so that any message corresponds to
PRF evaluation at a random point. This offset can even be public.

Below, we formalize what it means to have a watermarkable public-key encryption scheme and a water-
markable signature scheme.

Definition 8.1 (Watermarkable Public-Key Encryption) A watermarkable public-key encryption scheme
is a tuple of algorithms (WM.Gen,PKE.Gen,Enc,Dec,Extract) satisfying the following properties.

Correctness:
For every mark mark, we have

Pr

[
Extract(xk ,Decsk ) ̸= mark

∣∣∣∣ (xk ,mk)←WM.Gen(1λ)
(pk , sk)← PKE.Gen(1λ,mk ,mark)

]
≤ negl(λ)

where Decsk is any circuit computing Dec(sk , ·). For every mark mark and every bit b ∈ {0, 1}, we
have

Pr

Dec(sk , c) ̸= b

∣∣∣∣∣∣
(xk ,mk)←WM.Gen(1λ)
(pk , sk)← PKE.Gen(1λ,mk ,mark)
c← Enc(pk , b)

 ≤ negl(λ)

IND-CPA Security: For every mark mark and every p.p.t. algorithm A, we have

Pr

A(1λ, pk , xk ,mk , cb) = b

∣∣∣∣∣∣∣∣
(xk ,mk)←WM.Gen(1λ)
(pk , sk)← PE.Gen(1λ,mk ,mark)
b← {0, 1}
cb ← Enc(pk , b)

 ≤ 1

2
+ negl(λ)

24



ε-Unremovability: For every p.p.t. adversary A and every mark mark,

Pr

 C∗ ∼=ε Decsk∧
Extract(xk , C∗) ̸= mark

∣∣∣∣∣∣
(xk ,mk)←WM.Gen(1λ)
(pk , sk)← PE.Gen(1λ,mk ,mark)
C∗ ← A(1λ, sk , xk)

 ≤ negl(λ)

Theorem 8.2 (Informal) Assuming the existence of indistinguishability obfuscation and injective one-way
functions, there is a watermarkable public-key encryption scheme.

We can define a watermarkable signature scheme similarly.

Definition 8.3 (Watermarkable Signature Scheme) A watermarkable signature scheme is a tuple of p.p.t.
algorithms (WM.Gen,SIG.Gen,Sign,Vrfy,Extract) satisfying the following properties.

Correctness: For every message msg and every mark mark,

Pr

 Vrfy(pk ,msg, σ) ̸= 1∨
Extract(xk , Signsk ) ̸= mark

∣∣∣∣∣∣
(xk ,mk)←WM.Gen(1λ)
(pk , sk)← SIG.Gen(1λ,mk ,mark)
σ ← Sign(sk ,msg)

 ≤ negl(λ)

(Selective) Existential Unforgeability Under Chosen Message Attack: For every message msg∗, every
mark mark, and every p.p.t. algorithm A = (A0,A1), the following experiment outputs 1 with
negligible probability.

Expwm-sel
A (λ):

1. msg∗ ← A0(1
λ)

2. (xk ,mk)←WM.Gen(1λ)

3. (pk , sk)← SIG.Gen(1λ,mk ,mark)

4. σ∗ ← ASignmsg∗ (sk ,·)
1 (pk , xk), where Signmsg∗(sk , ·) is an oracle that signs any message except

for msg∗. That is,

Signmsg∗(sk ,m) =

{
⊥ if m = msg∗

Sign(sk ,m) otherwise

5. If Vrfy(pk ,msg∗, σ∗) = 1, output 1. Else 0.

ε-Unremovability: For every p.p.t. adversary A and every mark mark,

Pr

 C∗ ∼=ε Signsk∧
Extract(xk , C∗) ̸= mark

∣∣∣∣∣∣
(xk ,mk)←WM.Gen(1λ)
(pk , sk)← SIG.Gen(1λ,mk ,mark)
C∗ ← A(1λ, sk , xk)

 ≤ negl(λ)

Theorem 8.4 (Informal) Assuming the existence of indistinguishability obfuscation and injective one-way
functions, there is a watermarkable signature scheme.

Remark 8.5 We remark that stronger notions of watermarkable public-key encryption and watermarkable
signature schemes are certainly definable, but we omit these as they are more complex and not central to our
work.

25



9 The Limits of Watermarking
A natural question is whether there are families of functions that for which there does not exist any water-
marking scheme. Barak et al. [BGI+01] observed that general-purpose indistinguishability obfuscation rules
out a notion of watermarking that exactly preserves functionality, but not watermarking schemes that change
functionality on even a negligible fraction of the domain (as in section 6). In this section, we demonstrate
that some notion of non-black-box learnability implies that a family of functions is unwatermarkable. We
demonstrate that there exist PRF families that cannot be watermarked (assuming only the existence of one-
way functions), and that any family that is learnable with membership queries [KL93] is not watermarkable.

9.1 Impossibilities for statistical correctness
In this section, we discuss a number of conditions sufficient to prove that a family of circuits cannot even
be watermarked – even for a significantly weakened form of unremovability. We modify the unremovabil-
ity game (Definition 4.3): the adversary has no marking oracle, has neither a public extraction key nor an
extraction oracle, and is not allowed to choose the message to be embedded in the challenge.We leave the
syntax, statistical correctness, extraction correctness, and meaningfulness requirements of the watermark-
ing definition (Definitions 4.1 and 4.2) are unchanged. In Section 9.2, we relax the statistical correctness
condition.

Definition 9.1 (Weak ε-Unremovability Game) The game Expnrmv
A (λ, ε) is defined as follows.

1. The challenger generates (xk ,mk)← Gen(1λ)

2. The challenger chooses a message msg ∈ Mλ arbitrarily, samples a circuit C ← Cλ uniformly at
random and gives to the adversary C̃ ← Mark(mk , C ,msg).

3. Finally, the adversary outputs a circuit C∗. If it holds C∗ ∼=ε C̃ ∧ Extract(xk , C∗) ̸= msg then the
experiment outputs 1, otherwise 0.

Definition 9.2 (ε-Waterproof) Let F = {Fλ}λ∈N be a circuit ensemble. We say that F is ε-waterproof if
there does not exist an weak ε-unremovable watermarking scheme for F .

Informally, if a function family is non-black-box learnable given an approximate circuit implementation
(corresponding the the challenge watermarked circuit), then the family is waterproof. More formally, con-
sider a family of circuits Fλ and some parameter ρ = ρ(λ) ∈ [0, 1]. The learning algorithm will be given an
(arbitrary) circuit g that ρ-approximates F , for a uniformly sampled circuit F ← Fλ from the family. The
(randomized) learner will then output some “hypothesis” circuit h. If h is sufficiently close to F , then the
learner can be used to reconstruct an unmarked circuit given a watermarking challenge. We conclude that
the family F is waterproof.

We emphasize that we are interested in non-black-box learning in which the learning algorithm gets an
(approximate) implementation of the function being learned. This is in contrast to the typical computational
learning setting.

For the sake of clarity, we now define all the variants of learning we will consider. It may be best to read
the definitions individually when required by the discussion that follows.

Definition 9.3 (Non-black-box Learnable Families) Let F = {Fλ}λ∈N be a circuit ensemble where each
family Fλ = {F}. Let ρ = ρ(λ) ∈ [0, 1]. We say a distribution over circuits CF ρ-strongly approximates
F ∈ Fλ if for all x,

Pr
C←CF

[C(x) ̸= F (x)] ≤ ρ.

26



Let {CF }F∈Fλ
be any collection of ρ-strongly approximating distributions for the circuits F ∈ Fλ.

Robustly Learnable:9 We say that F is ρ-robustly learnable if there exists an efficient algorithm L out-
putting a circuit h, such that for all large enough λ ∈ N, random F ← Fλ, and random circuit
C ← CF (where CF ρ-strongly approximates F ):

Pr[h ≡ F | h← L(C, 1λ)] is non-negligible.

We say that F is robustly learnable if it is ρ-robustly learnable for any negligible function ρ(λ).

Properly Learnable:10 Additionally, we say that F is properly learnable if for every function F ∈ Fλ, and
random C ← CF :

Pr[L(C, 1λ) = F ] is non-negligble.

Implementation Independently Learnable: Let C1F and C2F be two distributions that ρ-strongly approx-
imate F . We say that L is implementation independent if for all F ∈ Fλ and for any two distri-
butions C1F and C2F that ρ-strongly approximate F , the distributions (L(C1, 1

λ) : C1 ← C1F ) and
(L(C2, 1

λ) : C2 ← C2F ) are computationally indistinguishable.

ε-Approximately Learnable: A weaker condition than the above, we say that F is ε-approximately learn-
able if instead, for all F and for random C ← CF :

Pr[h ∼=ε F | h← L(C, 1λ)] is non-negligible.

As a warm up, we begin with a very strong notion of learnability, in which the learning algorithm can
not only output a hypothesis h which agrees with F on all inputs, but output the circuit F itself.

Proposition 9.4 If F is robustly, properly learnable, then F is ε-waterproof for every ε ∈ [0, 1].

Proof. Given a watermarking scheme for the family F , let CF = {Mark(mk , F ) : (xk ,mk)← Gen(1λ)}.
There exists some negligible function ρ(λ) such that CF ρ-strongly approximates F for all circuits F ∈ F ,
by the statistical correctness property. Suppose F is ρ-robustly, properly learnable with learning algorithm
L. Given a challenge marked program F̃ ← Mark(mk , F ), evaluate h ← L(F̃ , 1λ). With noticeable prob-
ability, h = F . If Extract(xk , F ) = unmarked with any noticeable probability, unremovability is violated.
On the other hand, if Extract(xk , F ) ̸= unmarked with any noticeable probability, then meaningfulness is
violated. 2

Surprisingly, this proposition is also enough to construct a PRF family that is waterproof.

Proposition 9.5 ( [BGI+12]) Assuming one-way functions exist, there exists a pseudorandom function fam-
ily F that is robustly, properly (non-black-box) learnable.

8The strong-approximation assumption on the distribution of the approximate implementation C arises from the statistical
correctness requirement of Definition 4.2. Note that statistical correctness guarantees that for F ∈ Fλ, the distribution (F̃ ←
Mark(mk , F ) : mk ← Setup(1λ)) strongly-approximates F for some negligible function ρ(λ).

9This is somewhat analogous to the notion of error-tolerance in computational learning [KL93], but in the non-black-box setting.
10This is stronger than simply requiring that h ∈ Fλ. In particular, it implies that for every F ∈ Fλ, there are only polynomially-

many F ′ ∈ Fλ such that F ′ ∼=ρ/2 F .

27



Proof. In [BGI+12], the authors extend the impossibility of virtual-black box obfuscation to a notion
of approximate obfuscation, where for every input x, the obfuscated circuit O(C) is required to agree
with C on x with high probability over O. They construct a “strongly unobfuscatable circuit ensemble”
[BGI+12, Theorem 4.3], which has precisely we need: there exists an algorithm L which given any strongly
approximate implementation of F ∈ Fλ, efficiently outputs F with high probability. Additionally, their
techniques can be extended to yield a family of strongly unobfuscatable PRFs [BGI+12, Section 4.2]. 2

Corollary 9.6 Assuming one-way functions, there exists a pseudorandom function family F which for every
ε ∈ [0, 1] is ε-waterproof.

Improper versus proper learning. What if the family is not properly learnable: instead of outputting F
itself, the learning algorithm L(C) can only output a circuit h that was functionally equivalent to F ? One
might think that this is indeed sufficient to prove Proposition 9.4, but the proof encounters a difficulty.

In the proper-learning setting, it was possible to sample a circuit which for which Extract(xk , C) ̸=
unmarked independently of mk , simply by picking F ← F . In the improper-learning setting, we only
know how to sample from this distribution by evaluating L(F̃ ) on the marked program F̃ . To violate
meaningfulness, we need to construct C such that Extract(xk , C) ̸= unmarked with noticeable probability
over both Gen and Extract, suggesting that we should find such a C independently of mk .

To get around this issue, we consider families that are learnable with implementation independence; that
is, for any strong approximate implementations C1F and C2F of F , the distributions (L(C1, 1

λ) : C1 ← C1F )
and (L(C2, 1

λ) : C2 ← C2F ) are computationally indistinguishable.11

Approximate versus exact learning. In the preceding, we required that an algorithm learning a family
F is able to exactly recover the functionality F . What can we prove if h = L(C, 1λ) is only required to
ε-approximate the original function F ? For this case, the proof generalizes quite naturally to show that a
family is ε-waterproof.

Proposition 9.7 If F is robustly, ε-approximately learnable with implementation independence, then F is
ε-waterproof.

Proof. As before, we run the learner on the challenge program to get h = L(F̃ , 1λ). The circuit h is
an ε-approximation of F with non-negligible probability. If Extract(xk , h) = unmarked with noticeable
probability, then unremovability is violated. Therefore, it must be the case that Extract(xk , h) ̸= unmarked
with high probability (even conditioning on the case when h is an ε-approximation).

Observe that for any F ∈ F , the singleton distribution {F} is a strongly approximate implementation
of F . To complete the above proof, consider h′ ← L(F, 1λ) for random (unmarked) F (rather than on the
marked F̃ ). Implementation independence of L guarantees that the distributions of h and h′ are indistin-
guishable and thus for general xk , Extract(xk , h′) ̸= unmarked with high probability. 2

Corollary 9.8 Any family that is (improperly, approximately) learnable with membership queries [KL93]
is ε-waterproof for any non-negligible ε.

Proof. An MQ learning algorithm L can be simulated with any approximate implementation C of F .
Because C ← CF for CF a strongly approximating implementation of F , both C and F will agree on all
the queries made by the MQ learner L with high probability. The views of L are statistically close for every
approximating distribution C, implying implementation independence. 2

11Weaker notions likely suffice because meaningfulness only requires noticeable probability of falsely extracting, whereas this
argument gives us a high probability. We consider this input independence notion because it is a simple, natural and, as we will see,
powerful case.

28



Additionally, this proposition captures the impossibility of exact watermarking originally presented in
[BGI+12].

Corollary 9.9 Assuming the existence of indistinguishability obfuscation, exact watermarking schemes are
impossible.

Proof. Indistinguishability obfuscation implies a 0-robust, exact, implementation independent learning
algorithm for all polynomial-sized circuits, where L simply obfuscates its input.12 2

9.2 Impossibilities for weak statistical correctness
It is possible to prove similar impossibility results even if we weaken the statistical correctness property of
the watermarking scheme to only require that Mark(mk , C,msg) changes functionality at few points, but
make no restrictions as to the distributions of these errors. We prove that for this weak setting (1) there
exist waterproof PRFs and (2) PAC-learnable families are waterproof. The main difficulty in this setting is
that Mark may now change the functionality on adversarially-chosen points, preventing a straightforward
adaptation of Proposition 9.5 and Corollary 9.8.

We now consider watermarking schemes that satisfy only weak statistical correctness:

Definition 9.10 (Weak Statistical Correctness:) There is a negligible function ν(λ) such that for any cir-
cuit C ∈ Cλ, and any message msg ∈Mλ:

Mark(mk , C,msg) ∼=ν C

We can adapt the learning definitions of the prequel to this weaker notion of statistical correctness. The
main change in the definitions is that we no longer require strongly-approximating distributions of circuits
CF for a function F ; an arbitrary circuit C ∼=ρ F that is close to F suffices. This is a strictly more general
setting.

Definition 9.11 (Learning from arbitrary approximate implementation) For each of the learning defi-
nitions in Definition 9.3, we say that the learning algorithm works with arbitrary approximate implementa-
tion if instead of requiring a ρ-strongly approximate distribution CF for F , the learning algorithm will work
for arbitrary C ∼=ρ F .

Modifying the definition of waterproof to require that the watermarking scheme only satisfies weak
statistical correctness, both Proposition 9.7 and 9.4 still hold in this setting.

Though membership query-learnability no longer suffices for waterproof-ness, PAC learnability does.

Corollary 9.12 Any family that is (improperly) PAC learnable [Val84] is ε-waterproof (with weak statistical
correctness) for any non-negligible ε.

Proof. An PAC learning algorithm L can be simulated with random queries to arbitrary approximate
implementation C of F . Because C ∼=ρ F , both C and F will agree on all the random queries seen
by L with high probability. The views of L are statistically close for every C, implying implementation
independence. 2

The main technical contribution of this section is the following PRF construction (the proof is in Appendix
B:

12Observed by Nir Bitansky.

29



Theorem 9.13 Assuming one-way functions, there exists a pseudorandom function familyF that is robustly,
ε-approximately learnable with implementation independence from arbitrary approximate implementations.

Corollary 9.14 Assuming one-way functions, there exists a pseudorandom function family F which is ε-
waterproof (with weak statistical correctness) for any non-negliglbe ε.

10 Conclusions
We showed how to watermark various cryptographic capabilities: PRF evaluation, ciphertext decryption,
and message signing. For all of these, there is a natural and secret “true functionality” fk that we would
like to mark. Given a message msg, we can distribute a “marked” circuit C which closely approximates
fk. Given C, any efficiently findable circuit C∗ which even loosely approximates fk must also contain msg.
Furthermore, in our scheme, the procedure for extracting msg is entirely public-key. We show that unmarked
circuits cannot approximate the marked capability to within an approximation factor of ε = 1

2 + 1/poly for
any poly. If we allow list decoding, namely allow the extraction procedure to output a polynomial-sized list
of messages containing msg, then ε can be lowered to 1/poly.

There are several directions for further research. First, one could explore the connection between obfus-
cation and watermarking to see whether some form of obfuscation is necessary to achieve watermarking or
if one can come up with constructions that avoid obfuscation. Secondly, it would be interesting to achieve
a fully public-key watermarking construction where both the marking and the detection procedure only use
public keys. In the setting where the marking oracle takes keys as input, this kind of watermarking appears
plausible. As usual with obfuscation, there is a heuristic construction which obfuscates the secret-key mark-
ing procedure to generate a public marking key. Proving such a scheme secure by only relying on iO (as
opposed to VBB) appears to require significantly new techniques. Finally, watermarking schemes for richer
classes of programs seem to be beyond the reach of our techniques, but would be of obvious interest.

30



References
[AKV03] André Adelsbach, Stefan Katzenbeisser, and Helmut Veith. Watermarking schemes provably

secure against copy and ambiguity attacks. In Moti Yung, editor, Proceedings of the 2003 ACM
workshop on Digital rights management 2003, Washington, DC, USA, October 27, 2003, pages
111–119. ACM, 2003.

[BFP+15] Abhishek Banerjee, Georg Fuchsbauer, Chris Peikert, Krzysztof Pietrzak, and Sophie Stevens.
Key-homomorphic constrained pseudorandom functions. In Dodis and Nielsen [DN15], pages
31–60.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In Advances in Cryptology -
CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara, California,
USA, August 19-23, 2001, Proceedings, pages 1–18, 2001.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6, 2012.

[BGI14a] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom func-
tions. In Public-Key Cryptography - PKC 2014 - 17th International Conference on Practice
and Theory in Public-Key Cryptography, Buenos Aires, Argentina, March 26-28, 2014. Pro-
ceedings, pages 501–519, 2014.

[BGI14b] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom func-
tions. In Public-Key Cryptography - PKC 2014 - 17th International Conference on Practice
and Theory in Public-Key Cryptography, Buenos Aires, Argentina, March 26-28, 2014. Pro-
ceedings, pages 501–519, 2014. Full version available from http://eprint.iacr.org/2013/401.

[BLMR13] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key homo-
morphic prfs and their applications. In Ran Canetti and Juan A. Garay, editors, Advances in
Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part I, volume 8042 of Lecture Notes in Computer Science,
pages 410–428. Springer, 2013.

[BP13] Nir Bitansky and Omer Paneth. On the impossibility of approximate obfuscation and applica-
tions to resettable cryptography. In Symposium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013, pages 241–250, 2013.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In
Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012.
Proceedings, pages 719–737, 2012.

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic prfs from standard
lattice assumptions - or: How to secretly embed a circuit in your PRF. In Dodis and Nielsen
[DN15], pages 1–30.

[BW13a] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
Advances in Cryptology - ASIACRYPT 2013 - 19th International Conference on the Theory and
Application of Cryptology and Information Security, Bengaluru, India, December 1-5, 2013,
Proceedings, Part II, pages 280–300, 2013.

31



[BW13b] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applica-
tions. In Advances in Cryptology - ASIACRYPT 2013 - 19th International Conference on
the Theory and Application of Cryptology and Information Security, Bengaluru, India, De-
cember 1-5, 2013, Proceedings, Part II, pages 280–300, 2013. Full version available from
http://eprint.iacr.org/2013/352.

[CHV15] Aloni Cohen, Justin Holmgren, and Vinod Vaikuntanathan. Publicly verifiable software water-
marking. IACR Cryptology ePrint Archive, 2015:373, 2015.

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing,
33(1):167–226, 2003.

[DN15] Yevgeniy Dodis and Jesper Buus Nielsen, editors. Theory of Cryptography - 12th Theory of
Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part
II, volume 9015 of Lecture Notes in Computer Science. Springer, 2015.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Wa-
ters. Candidate indistinguishability obfuscation and functional encryption for all circuits.
In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-
29 October, 2013, Berkeley, CA, USA, pages 40–49, 2013. Full version available from
http://eprint.iacr.org/2013/451.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1986.

[HMW07] Nicholas Hopper, David Molnar, and David Wagner. From weak to strong watermarking. In
Theory of Cryptography, 4th Theory of Cryptography Conference, TCC 2007, Amsterdam, The
Netherlands, February 21-24, 2007, Proceedings, pages 362–382, 2007.

[Kei70] Thomas Keightley. The Fairy Mythology: Illustrative of the Romance and Superstition of Vari-
ous Countries. 1870. Retrieved from: http://www.sacred-texts.com/neu/celt/tfm/: 2 November
2015.

[KL93] Michael Kearns and Ming Li. Learning in the presence of malicious errors. SIAM Journal on
Computing, 22(4):807–837, 1993.

[KPTZ13a] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Dele-
gatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, 2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages 669–684. ACM, 2013.

[KPTZ13b] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Dele-
gatable pseudorandom functions and applications. In 2013 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013, pages
669–684, 2013. Full version available from http://eprint.iacr.org/2013/379.

[KVH00] M. Kutter, S. Voloshynovskiy, and A. Herrigel. The watermark copy attack. In Proceedings of
the SPIE, Security and Watermarking of Multimedia Contents II, volume 3971, pages 371–379,
2000.

32



[Nis13] Ryo Nishimaki. How to watermark cryptographic functions. In Advances in Cryptology -
EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, pages 111–125,
2013. Full version available from http://eprint.iacr.org/2014/472.

[NSS99] David Naccache, Adi Shamir, and Julien P. Stern. How to copyright a function? In Pub-
lic Key Cryptography, Second International Workshop on Practice and Theory in Public Key
Cryptography, PKC ’99, Kamakura, Japan, March 1-3, 1999, Proceedings, pages 188–196,
1999.

[NW15] Ryo Nishimaki and Daniel Wichs. Watermarking cryptographic programs against arbitrary
removal strategies. IACR Cryptology ePrint Archive, 2015:344, 2015.

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In STOC,
pages 387–394. ACM, 1990.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable en-
cryption, and more. In Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, May 31 - June 03, 2014, pages 475–484, 2014. Full version available from
http://eprint.iacr.org/2013/454.

[Val84] Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

[YF11] Maki Yoshida and Toru Fujiwara. Toward digital watermarking for cryptographic data. IEICE
Transactions, 94-A(1):270–272, 2011.

A Construction and Security Proofs of Puncturable Encryption
We provide a construction of the puncturable encryption defined in section 5.

A.1 Construction
We construct a puncturable encryption scheme in which the length n of ciphertexts is 12 times the length ℓ
of plaintexts. Our construction utilizes the following ingredients:

• A length-doubling PRG : {0, 1}ℓ → {0, 1}2ℓ

• A family of injective pPRFs (See Definition 3.6) {Fλ : {0, 1}3ℓ → {0, 1}9ℓ}. 13
• A family of pPRFs {Gλ : {0, 1}9ℓ → {0, 1}ℓ}.
• An injective bit-commitment Com using randomness in {0, 1}9ℓ, which can in fact be constructed by

an injective one-way function. We only use this in our security proof.

Construction A.1 (Puncturable Encryption Scheme PE) .

Gen(1λ): Sample functions F ← Fλ and G ← Gλ, generates pk as the iO-obfuscation of the program
E in Figure 7, and returns (pk , sk) := (iO(E), D), where sk is the (un-obfuscated) program D in
Figure 8.

Puncture(sk , c0, c1): Output sk ′, where sk ′ is the iO-obfuscation of the program D′ described in Figure 9,
that is, sk ′ := iO(D′).

Enc(pk ,m): Take m ∈ {0, 1}ℓ, sample r ← {0, 1}ℓ, and outputs c← pk(m, r).

13As in [SW14], any puncturable PRF family from {0, 1}k → {0, 1}2k+ω(log λ) can be made statistically injective (with no
additional assumptions) by utilizing a family of pairwise-independent hash functions.

33



Dec(sk , c): Take c ∈ {0, 1}12ℓ and returns m := sk(c).

The size of the programs is appropriately padded to be the maximum size of all modified programs, which
will appear in the security proof.

Remark A.2 We note that in all of our obfuscated programs (including the hybrids), whenever αi or βi
or γi for i ∈ {0, 1} are treated symmetrically, then we can and do store them in lexicographical order. A
random ordering would also suffice for security.

Constants: Injective pPRF F : {0, 1}3ℓ → {0, 1}9ℓ, pPRF G : {0, 1}9ℓ → {0, 1}ℓ
Inputs: m ∈ {0, 1}ℓ, r ∈ {0, 1}ℓ

1. Compute α = PRG(r).
2. Compute β = F (α∥m).
3. Compute γ = G(β)⊕m.
4. Output (α, β, γ).

Figure 7: Encryption Program E (pre-obfuscation)

Constants: Injective pPRF F : {0, 1}3ℓ → {0, 1}9ℓ, pPRF G : {0, 1}9ℓ → {0, 1}ℓ
Inputs: c = (α∥β∥γ), where α ∈ {0, 1}2ℓ, β ∈ {0, 1}9ℓ, and γ ∈ {0, 1}ℓ.

1. Compute m = G(β)⊕ γ.
2. If β = F (α∥m), output m.
3. Else output ⊥.

Figure 8: Decryption Program D

Constants: Set {c0, c1} ⊂ {0, 1}n, injective pPRF F : {0, 1}3ℓ → {0, 1}9ℓ, and pPRF G : {0, 1}9ℓ →
{0, 1}ℓ
Inputs: c = (α∥β∥γ), where α ∈ {0, 1}2ℓ, β ∈ {0, 1}9ℓ, and γ ∈ {0, 1}ℓ.

1. If c ∈ {c0, c1}, output ⊥.
2. Compute m = G(β)⊕ γ.
3. If β = F (α∥m), output m.
4. Else output ⊥.

Figure 9: Punctured Decryption Program D′ at {c0, c1} (pre-obfuscation)

Correctness and Punctured Correctness. Correctness follows from the fact that indistinguishability ob-
fuscation exactly preserves functionality, and observing in the punctured case that sk ′ is defined to be func-
tionally equivalent to sk except on inputs in {c0, c1}.
Sparseness. Sparseness follows from, for example, the length-doubling PRG; most values of α are not in
the image of PRG.

34



Table 2: An overview of hybrid distributions
Hybrid α0 β0 γ0 pk := iO of below sk ′ := iO of below
REAL0 PRG(t) F (α0∥m∗) G(β0)⊕m∗ E D′

Hyb1 random F (α0∥m∗) G(β0)⊕m∗ E D′

Hyb2 random F (α0∥m∗) G(β0)⊕m∗ E{α0∥m∗, α1∥m∗} D′2{α0∥m∗, α1∥m∗}
Hyb3 random random G(β0)⊕m∗ E{α0∥m∗, α1∥m∗} D′3{α0∥m∗, α1∥m∗}
Hyb4 random random G(β0)⊕m∗ E{α0∥m∗, α1∥m∗, β0, β1} D′4{α0∥m∗, α1∥m∗, β0, β1}
Hyb5 random random random E{α0∥m∗, α1∥m∗, β0, β1} D′4{α0∥m∗, α1∥m∗, β0, β1}
RAND random random random E D′

A.2 Ciphertext Pseudorandomness
Theorem A.3 If F is an injective pPRF family, G is a pPRF family, PRG is a pseudorandom generator,
Com is a injective bit-commitment function, and iO is a secure iO, then the PE scheme above satisfies the
ciphertext pseudorandomness.

Proof. We give a sequence of main hybrid distributions Hyb1 through Hyb5. The goal of the hybrids to
reach a game in which the challenge encryption c0 and the random ciphertext c1 are treated symmetrically in
pk and sk ′, and in which both are sampled uniformly at random by the challenger. We proceed by iteratively
replacing pieces of c0 by uniformly random values, puncturing F and G as necessary. We give an overview
of the hybrids in Table 2.

REALb: The real distribution is defined by the real security game:

1. A sends a message m∗ ∈M to the challenger.
2. The challenger does the following:

(a) Samples an injective pPRF F : {0, 1}3ℓ → {0, 1}9ℓ and pPRF G : {0, 1}9ℓ → {0, 1}ℓ.
Samples t← {0, 1}ℓ,
α0 = PRG(t) ∈ {0, 1}2ℓ,
β0 = F (α0∥m∗),
γ0 = G(β0)⊕m∗.
Let c0 = α0∥β0∥γ0.

(b) Samples c1 ← {0, 1}12ℓ.
Parse c1 = α1∥β1∥γ1.

(c) Generates pk as the iO-obfuscation of Figure 7 and sk ′ as the iO-obfuscation of Figure 9.
(d) Samples b← {0, 1} and sends the following to A:

(c0, c1, pk , sk
′) if b = 0

(c1, c0, pk , sk
′) if b = 1

3. The adversary outputs b′ and wins if b = b′.

That is, REAL0 is (c0, c1, pk , sk ′) and REAL1 is (c1, c0, pk , sk ′).
RAND: Before we define several hybrid distributions, we define an intermediate hybrid between REAL0 and

REAL1. We define RAND as (r′, c1, pk , sk ′) where r′ is a uniformly random element in {0, 1}12ℓ.
Hyb1: We sample uniformly random α0 ← {0, 1}2ℓ for c0.
Hyb2: We puncture programs E and D′ at {α0∥m∗, α1∥m∗} by puncturing F at {α0∥m∗, α1∥m∗}. These

modified programs E{α0∥m∗, α1∥m∗} and D′{α0∥m∗, α1∥m∗} are described in Figure 10 and 11,
respectively where β̂ = F ′(α1∥m∗) and γ̂ = G(β̂)⊕m∗.

35



Encryption Program E{α0∥m∗, α1∥m∗}
Constants: Punctured F ′ = F{α0∥m∗, α1∥m∗} and (not-punctured) G.
Inputs: m ∈ {0, 1}ℓ, r ∈ {0, 1}ℓ

1. Compute α = PRG(r).
2. Compute β = F ′(α∥m).
3. Compute γ = G(β)⊕m.
4. Output (α, β, γ).

Figure 10: Program E{α0∥m∗, α1∥m∗} (pre-obfuscation)

Constants: Set {c0, c1} ⊂ {0, 1}n, punctured F ′ = F{α0∥m∗, α1∥m∗}, G, and the values α0, α1, β̂,
γ̂, m∗.
Inputs: c = (α∥β∥γ), where α ∈ {0, 1}2ℓ, β ∈ {0, 1}9ℓ, and γ ∈ {0, 1}ℓ.

1. If α = α1 and β = β̂ and γ = γ̂, output m∗.
2. If c ∈ {c0, c1}, output ⊥.
3. Compute m = G(β)⊕ γ.
4. If (α,m) ∈ {(α0,m

∗), (α1,m
∗)}, output ⊥.

5. If β = F ′(α∥m), output m.
6. Else output ⊥.

Figure 11: Punctured Program D′2{α0∥m∗, α1∥m∗} in Hyb2 (pre-obfuscation)

Hyb3: We sample uniformly random β0, β̂ ← {0, 1}9ℓ for c0 and slightly modify program D′2{α0∥m∗, α1∥m∗}.
The modified program D′3{α0∥m∗, α1∥m∗} is in Figure 12.

Constants: Set {c0, c1} ⊂ {0, 1}n, punctured F ′ = F{α0∥m∗, α1∥m∗}, G, and the values α0, α1.
Inputs: c = (α∥β∥γ), where α ∈ {0, 1}2ℓ, β ∈ {0, 1}9ℓ, and γ ∈ {0, 1}ℓ.

1. Removed branch.
2. If c ∈ {c0, c1}, output ⊥.
3. Compute m = G(β)⊕ γ.
4. If (α,m) ∈ {(α0,m

∗), (α1,m
∗)}, output ⊥.

5. If β = F ′(α∥m), output m.
6. Else output ⊥.

Figure 12: Punctured Program D′3{α0∥m∗, α1∥m∗} in Hyb3 (pre-obfuscation)

Hyb4: We puncture programs E and D′ at {α0∥m∗, α1∥m∗, β0, β1} by puncturing G at {β0, β1}. These
modified programs are described in Figure 13 and 14.

Hyb5: We sample uniformly random γ0 ← {0, 1}ℓ for c0.

36



Constants: Punctured F ′ = F{α0∥m∗, α1∥m∗} and punctured G′ = G{β0, β1}.
Inputs: m ∈ {0, 1}ℓ, r ∈ {0, 1}ℓ

1. Compute α = PRG(r).
2. Compute β = F ′(α∥m).
3. Compute γ = G′(β)⊕m.
4. Output (α, β, γ).

Figure 13: Encryption Program E{α0∥m∗, α1∥m∗, β0, β1} (pre-obfuscation)

Constants: Set {c0, c1} ⊂ {0, 1}n, punctured F ′ = F{α0∥m∗, α1∥m∗}, and
punctured G′ = G{β0, β1}, and the values α0, α1, β0, β1, m∗.
Inputs: c = (α∥β∥γ), where α ∈ {0, 1}2ℓ and β ∈ {0, 1}9ℓ.

1. Removed branch.
2. If β ∈ {β0, β1}, output ⊥.
3. Compute m = G′(β)⊕ γ.
4. If (α,m) ∈ {(α0,m

∗), (α1,m
∗)}, output ⊥.

5. If β = F ′(α∥m), output m.
6. Else output ⊥.

Figure 14: Punctured Program D′4{α0∥m∗, α1∥m∗} in Hyb4 (pre-obfuscation)

Our goal is to prove REAL0
c≈ Hyb1

c≈ Hyb2
c≈ Hyb3

c≈ Hyb4
c≈ Hyb5

c≈ RAND since we can prove
RAND

c≈ REAL1 in the reverse manner and it means REAL0
c≈ REAL1.

Lemma A.4 If PRG is a pseudorandom generator, then Hyb0
c≈ Hyb1.

Proof of Lemma A.4. These distributions are indistinguishable due to the pseudorandomness of PRG. 2

Lemma A.5 If F is an injective pPRF family and iO is a secure iO, then Hyb1
c≈ Hyb2.

Proof of Lemma A.5. To prove this lemma, we define auxiliary hybrids.

Hyb11: We alter the generation of pk . We puncture F at α0∥m∗ and α1∥m∗ and use it for pk . That is, we
use F ′ = F{α0∥m∗, α1∥m∗} to generate the encryption program E.

Hyb21: We modify the generation of sk ′. The constants β̂ = F (α1∥m∗) and γ̂ = G(β̂)⊕m∗ are hard-coded.
We add the following line in the beginning of sk ′: “If c ∈ α1∥β̂∥γ̂, output m∗.” . For reference, we
describe the modified decryption program from Hybrid Hyb21 in Figure 15.

Hyb31: We again modify the generation of sk ′. We add the following check: “If (α,m) ∈ {(α0,m
∗), (α1,m

∗)},
output⊥.” For reference, we describe the modified decryption for sk ′ from Hybrid Hyb31 in Figure 16.

Claim: If F is an injective pPRF family and iO is a secure iO, then Hyb1
c
≈ Hyb11.

37



Constants: Set {c0, c1} ⊂ {0, 1}n, punctured F ′, and G, and the values α0, α1, β̂, γ̂, m∗.
Inputs: c = (α∥β∥γ), where α ∈ {0, 1}2ℓ, β ∈ {0, 1}9ℓ, and γ ∈ {0, 1}ℓ.

1. If α = α1 and β = β̂ and γ = γ̂, output m∗.
2. If c ∈ {c0, c1}, output ⊥.
3. Compute m = G(β)⊕ γ.
4. If β = F ′(α∥m), output m.
5. Else output ⊥.

Figure 15: Modified Program of D′ in Hyb21 (pre-obfuscation)

Constants: Set {c0, c1} ⊂ {0, 1}n, punctured F ′, and G, and the values α0, α1, β̂, γ̂, m∗.
Inputs: c = (α∥β∥γ), where α ∈ {0, 1}2ℓ, β ∈ {0, 1}9ℓ, and γ ∈ {0, 1}ℓ.

1. If α = α1 and β = β̂ and γ = γ̂, output m∗.
2. If c ∈ {c0, c1}, output ⊥.
3. Compute m = G(β)⊕ γ.
4. If (α,m) ∈ {(α0,m

∗), (α1,m
∗)}, output ⊥.

5. If β = F ′(α∥m), output m.
6. Else output ⊥.

Figure 16: Modified Program of D′ in Hyb31 (pre-obfuscation)

Proof. A modified program that uses F ′ is functionally equivalent to E because F ′ is never evaluated
on strings of these forms due to the uniform randomness of α0, α1. Values α0 and α1 are with high
probability not in the image of PRG. Thus, the claim holds due to the functional equivalence explained
above and the security of iO. 2

Claim: If iO is a secure iO, then Hyb11
c≈ Hyb21.

Proof. The decryption programs in these hybrids are functionally equivalent, as α1∥β̂∥γ̂ is already
a valid encryption of m∗. Notice, that these β̂ do not correspond to either the β0 or β1 (and similarly
for γ̂). The claim holds due to the functional equivalence explained above and the security of iO. 2

Claim: If iO is a secure iO, then Hyb21
c≈ Hyb31.

Proof. The decryption programs in these hybrids are functionally equivalent by two cases:

1. When (α,m) = (α0,m
∗), then either c = c0, in which case sk ′ already would output ⊥, or

c ̸= c0, in which case sk ′ rejects c as an invalid ciphertext (because every pair (α,m) together
define a unique valid ciphertext due to the injective property of F ).

2. When (α,m) = (α1,m
∗), we only reach this line if c ̸= α1∥β̂∥γ̂ (by the check introduced in

Hybrid Hyb21). In this case, sk ′ already rejects c as an invalid ciphertext.

Thus, the claim holds due to the functional equivalence explained above and the security of iO. 2

38



Claim: If iO is a secure iO, then Hyb31
c≈ Hyb2.

Proof. In Hyb2, instead of using the un-punctured key for F in sk ′, we puncture F at the points
α0∥m∗ and α1∥m∗. For sk ′, the modified program is functionally equivalent to that in the previous
hybrid because – by the checks added in the previous hybrid – F will never be evaluated on such
inputs. 2

Thus, the lemma holds. 2

Lemma A.6 If F is an injective pPRF family, Com is secure injective commitment, and iO is a secure iO,
then Hyb2

c≈ Hyb3

Proof of Lemma A.6. To prove the lemma, we define auxiliary hybrids.

Hyb12: We alter the generation of the the key sk ′ in the security game. Instead of using β̂ = F (α1∥m∗), we
sample β̂ uniformly at random from {0, 1}9ℓ.

Hyb22: We change Line 1 of Figure 11. Value ẑ := Com(0; β̂) is hard-coded, and we replace the check
“β = β̂” with the check “Com(0; β) = ẑ”.

Hyb32: We change the hard-coded value ẑ into “Com(1; β̂)”.

Hyb42: We replace the expression “Com(0; β) = ẑ” with False.

For reference, we describe sk ′ from Hybrid Hyb42 in Figure 17.

Constants: Set {c0, c1} ⊂ {0, 1}n, punctured F ′, G, and the values α0, α1, m∗, γ̂.
Inputs: c = (α∥β∥γ), where α ∈ {0, 1}2ℓ, β ∈ {0, 1}9ℓ, and γ ∈ {0, 1}ℓ.

1. For some i, if α = α1 and False and γ = γ̂, output m∗. (i.e., this never happens)

2. If c ∈ C, output ⊥.

3. Compute m = G(β)⊕ γ.

4. If (α,m) ∈ {(α0,m
∗), (α1,m

∗)}, output ⊥.

5. If β = F ′(α∥m), output m.

6. Else output ⊥.

Figure 17: Modified Program of D′2 in Hyb42 (pre-obfuscation)

Claim: If F is an injective pPRF family, then Hyb2
c
≈ Hyb12

Proof. This holds due to the pseudorandomness of F at punctured points. 2

Claim: If Com is a secure injective commitment and iO is a secure iO, then Hyb12
c≈ Hyb22.

Proof. The modified decryption programs are functionally equivalent by the injective property of
Com. Thus, the holds due to the injective property of Com and the security of iO. 2

Claim: If Com is a secure injective commitment, then Hyb22
c
≈ Hyb32.

39



Proof. This holds due to the computational hiding property of Com. 2

Claim: If Com is a secure injective commitment and iO is a secure iO, then Hyb32
c
≈ Hyb42.

Proof. The modified decryption programs are functionally equivalent with high probability because
of the perfect binding property of Com (which follows from injectivity). In fact, we remove the entire
line 1 as in Hyb3, which also preserves functionality. Thus, the claim holds due to the functional
equivalence explained above and the security of iO, 2

Claim: If F is an injective pPRF family, then Hyb42
c≈ Hyb3.

Proof. This holds due the pseudorandomness of F at the punctured points. 2

Thus, the lemma holds. 2

Lemma A.7 If G is a pPRF family and iO is a secure iO, then Hyb3
c≈ Hyb4.

Proof of Lemma A.7. To prove this lemma, we define auxiliary hybrids.

Hyb13: We alter the generation of pk (see Line 2(d) 10). We puncture G in pk at β0 and β1.

Hyb23: We alter the generation of sk ′, changing Line 2 of Figure 12. Instead of “If c ∈ {c0, c1}: output ⊥”,
we replace it with “If β ∈ {β0, β1}: output ⊥”.

Claim: If G is a pPRF family and iO is a secure iO, then Hyb3
c
≈ Hyb13.

Proof. The encryption programs in these hybrids are functionally equivalent by the sparsity of F
since β0 and β1 are now chosen at random, with high probability they are not in the image of F . Thus,
the claim holds due the functional equivalence explained above and the security of iO. 2

Claim: If iO is a secure iO, then Hyb13
c≈ Hyb23.

Proof. To see that the modified decryption programs in these hybrids are functionally equivalent, we
observe that with high probability, neither of these lines has any effect.

Since with high probability, none of the β0 and β1 are in the image of F , if β ∈ {β0, β1} – which is
the case when c ∈ {c0, c1} – then sk ′(c) = ⊥ with high probability, even without the extra check.

We do not remove the check because checking if β ∈ {β0, β1} will allow us to puncture G on this set
in the following hybrid. This holds due the functional equivalence explained above and the security
of iO. 2

Claim: If G is a pPRF family and iO is a secure iO, then Hyb23
c
≈ Hyb4.

Proof. In Hyb4, we alter the generation of sk ′. We puncture G at {β0, β1} in sk ′. This change
is functionally equivalent because of the ostensibly useless checks in the previous hybrid. Thus, the
claim holds due the functional equivalence explained above and the security of iO. 2

Thus, the lemma holds. 2

Lemma A.8 If G is a pPRF family, then Hyb4
c≈ Hyb5

40



Proof of Lemma A.8. In Hyb5, we sample γ0 uniformly at random from {0, 1}ℓ. This change is indistin-
guishable by the pseudorandomness of G at the punctured set. 2

Lemma A.9 Under the same assumptions as in Theorem A.3, Hyb5
c≈ RAND

Proof of Lemma A.9. This is proved in the same way as Lemma A.4, A.5, A.6, A.7, and A.8. 2

Therefore, the construction satisfies the ciphertext pseudorandomness. 2

B Proof of Theorem 9.13: Waterproof PRFs
The difficulty in this construction is dealing with arbitrary approximate implementations. If we try to use
the PRF from [BGI+12], changing the functionality on 1 specific point can destroy the learnability. This
problem only arises in the case of weak statistical correctness.

We construct a PRF family that has an even stronger form of learnability: from arbitrary approximate im-
plementation C of fk ∈ F that may disagree on ρ(λ) = negl(λ) fraction of the domain, we efficiently con-
struct an approximation C ′ that disagrees with fk on ε(λ) = poly(λ) fraction of the domain. It seems that
we could have done better by simply outputting C! But C ′ (in particular, the erring inputs) are completely
independent of C – guaranteeing implementation independence as required to prove that F is waterproof.

Our starting point is the constructions of unobfuscatable function families in [BGI+12] and [BP13], and
an understanding of those constructions will prove helpful towards understanding ours.

The former work was discussed in Proposition 9.5. The latter work handles a very strong form of
approximation: the approximate implementation must only agree on some constant fraction of the domain.
They achieve this, but sacrifice the total learnability of the earlier construction, instead learning only a
single predicate of the PRF key. We require a notion of approximation stronger than [BGI+12] but weaker
than [BP13], and a notion of learnability weaker than [BGI+12] but stronger than [BP13], and achieve this
by adapting techniques from both works.

B.1 Preliminaries
The construction requires an invoker randomizable pseudorandom function [BGI+12] and a decomposable
encryption schemes [BP13]. The following definitions and discussion are taken almost verbatim from those
works.

Definition B.1 (Invoker-Randomizable Pseudorandom Functions, [BGI+12]) A function ensemble {fk}k∈{0,1}∗
such that fk : {0, 1}n+m → {0, 1}m, where n and m are polynomially related to |k|, is called an invoker-
randomizable pseudorandom function ensemble if the following holds:

1. {fk}k∈{0,1}∗ is a PRF family.

2. For every k and x ∈ {0, 1}n, the mapping r 7→ fk(x, r) is a permutation over {0, 1}m.

Property 2 implies that, for every fixed k and x ∈ {0, 1}n, if r is chosen uniformly in {0, 1}m, then the
value fk(x, r) is distributed uniformly (and independently of x) in {0, 1}m.

Lemma B.2 ( [BGI+12]) If pseudorandom functions exist, then there exist invoker-randomizable pseudo-
random functions.

Definition B.3 (Decomposable Encryption [BP13]) An encryption scheme (Gen,Enc,Dec) is decompos-
able if there exists an efficient algorithm pub that operates on ciphertexts and satisfies the following condi-
tions:

41



1. For a ciphertext c, pub(c) is independent of the plaintext and samplable; that is, there exists an efficient
sampler PubSamp such that, for any secret key sk ∈ {0, 1}n:

PubSamp(1n) ≡ pub(Encsk(0))) ≡ pub(Encsk(1))

2. A ciphertext c is deterministeically defined by pub(c) and the plaintext; that is, for every secret key
sk and two distinct ciphertexts c and c′, if pub(c) = pub(c′), then Decsk(c) ̸= Decsk(c

′).

We use as our decomposable encryption scheme a specific symmetric-key encryption scheme which enjoys
a number of other necessary properties. Given a PRF {fk}k∈{0,1}∗ with one-bit output and for security
parameter λ, the secret key is a random sk ∈ {0, 1}λ, and the encryption of a bit b is computed by sampling a
random r ← {0, 1}λ and outputting (r, Fsk(r)⊕b). This function satisfies a number of necessary properties
[BP13]:

• It is CCA-1 secure.

• It is decomposable.

• The support of (Encsk(0)) and (Encsk(1)) are each a non-negligible fraction (in reality, at least 1
2 −

negl) of the cipher-text space.

• For a fixed secret key sk, random samples from (b,Encsk(b))b←{0,1} are indistinguishable from uni-
formly random strings.

B.2 Construction
The key k for the PRF is given by a tuple k = (α, β, sk, s1, s2, se, sh, sb, s

∗). For security parameter λ,
α and β are uniformly random λ-bit strings, sk is a secret key for the decomposable encryption scheme
described above, sh is a key for an invoker-randomizable pseudorandom function, and s1, s2, se, sb, and s∗

are independent keys for a family of PRFs. We denote by Fs a PRF with key s.
The domain of the PRF will be of the form (i, q) for i ∈ {1, . . . , 9}, and q ∈ {0, 1}ℓ(n), for some

polynomial ℓ. The range is similarly bit strings of length polynomial in ℓ. The function will be defined
in terms of 9 auxiliary functions, and the index i will select among them. We use a combination of ideas
from [BGI+12] and [BP13] to construct a PRF family for which s∗ can be recovered from any (negligibly-
close) approximation to fk, which will enable us to compute fk restricted to i = 9. This allows us to recover
a 1/9-close approximation of fk that is implementation independent (simply by returning 0 whenever i ̸= 9).
To achieve a ε-close approximation for any ε = 1− 1

poly(λ) , we simply augment the index i with an additional
log(1/(1 − ε)) bits: if all these bits are 0, then we index as before; otherwise, use index i = 9. Instead of
recovering 1/9th of the function, we now recover ε of the function. This establishes the theorem.14

We now define the auxiliary functionalities we will use in the construction.

• Rs: The function Rs is parameterized by a PRF key s. It takes as input q and returns Rs(q) = Fs(q),
the PRF evaluated at q. That is, Rs simply evaluates a PRF.

• Ca,b,s: The function Ca,b,s is parameterized by two bit strings a and b, and a PRF key s. It takes as
input q and returns Ca,b,s(q) = b ⊕ Fs(q ⊕ a), where Fs is the PRF given by key s. That is, C
evaluates a PRF on a point related to the queried point, then uses the value to mask the bitstring
b.

14Note that the result is a PRF family that depends on the choice of ε. The argument would fail if ε was a negligible function,
because an approximation for could “erase” all the structure of the PRF family, thwarting learnability. Removing this dependence
(ie: constructing a family that works for all inverse polynomial ε simultaneously) would be interesting.

42



• Esk,α,se : The function Esk,α,se is parameterized by a secret key sk for the encryption scheme, a
bitstring α, and a PRF key sE . It takes as input q and returns Esk,α,se(q) = Encsk(α; r) with
randomness r = Fse(q). That is, E returns an encryption of α using randomness derived by
evaluating the PRF on the query.

• Hsk,sh : The function Hsk,sh is parameterized by a secret key sk for the encryption scheme, and a
invoker-randomizable PRF key sh. It takes as input two cipher-texts of bits c and d, the de-
scription of a two-bit gate ⊙, and some additional input q̄, and returns Hsk,sh(c, d,⊙, q̄) =
Encsk(Decsk(c) ⊙ Decsk(d); r) with randomness r = Fsh(c, d,⊙, q̄). That is, H implements
a homomorphic evaluation of ⊙ on the ciphertexts c and d by decrypting and re-encrypting, with
randomness derived by applying a PRF to the whole input.

• Bsk,α,β,sb : The function Bsk,α,β,sb is parameterized by a secret key sk for the symmetric-key encryp-
tion scheme, bitstrings α and β, and a PRF key sb. It takes as input n ciphertexts c1, . . . , cλ and
additional input q̄, and returns

Bsk,α,β,sb(c1, . . . , cλ, q̄) = α⊕ Fsb(m1 ⊕ β1, . . . ,mλ ⊕ βλ, pub(c1), . . . , pub(cλ), q̄)

where mi = Decsk(ci).

Having defined the auxiliary functions, our pseudorandom function fk for k = (α, β, sk, s1, s2, se, sh, sb, s
∗)

is a combination of these functions. The argument (i, q) selects which function is evaluated, and q is parsed
appropriately by each of the functionalities. For example, B parses q as λ ciphertexts c1, . . . , cλ, and all
remaining bits as q̄.

fk(i, q) =



C1(q) := Cα,β,s1(q) if i = 1

C2(q) := Cα,s∗,s2(q) if i = 2

E(q) := Esk,α,se(q) if i = 3

H(q) := Hsk,sh(q) if i = 4

B(q) := Bsk,α,β,sb(q) if i = 5

R1 := Rs1(q) if i = 6

R2 := Rs2(q) if i = 7

Rb := Rsb(q) if i = 8

R∗ := Rs∗(q) if i = 9

While this construction may appear daunting, each subfunction serves a very concrete purpose in the ar-
gument; understanding the proof ideas will help clarify the construction. We must now argue two properties
of this family: learnability as in Theorem 9.13, and pseudorandomness.

B.3 Learnability
We must show that Fλ = {fk} is robustly, 1

9 -approximately learnable by an implementation-independent al-
gorithm, L from arbitrary approximate implementation.15 It suffices to show that, given any ρ-implementation
g of fk for random key k, s∗ can be recovered, because R∗ = Rs∗ comprises 1/9th of the functionality.

To begin, consider the case the when the implementation is perfect: g ≡ fk. In this case, recovery of s∗

is straightforward. Given α, C1, and R1 it is easy to find β: for any q, β = C1(q)⊕R1(q⊕α). That is, it is
easy to construct a circuit that, on input α, outputs β (by fixing some uniformly random q in the above). 16

But we don’t know α, only encryptions of α (coming from E), so how might we recover β?

15As discussed earlier, it suffices to prove learnability for ε = 1/9. We may then change the how the subfunctions are indexed to
achieve any inverse polynomial.

16This ability is what enables the learnability; the black-box learner cannot construct such a circuit and thus cannot continue with
the homomorphic evaluation in the next step.

43



Using H, it is easy to homomorphically evaluate the circuit on such an encryption, yielding an encryption
c = (c1, . . . , cn) of β = (β1, . . . , βn). For any q̄, evaluating B(c, q̄) will yield α ⊕ Fsb(0, c, q̄). Evaluating
Rb(0, pub(c1), . . . , pub(cn), q̄) immediately yields α in the clear. Now we can directly recover s∗ = C(q)⊕
R2(q ⊕ α), for any q.

How does this argument change when g and fk may disagree on an (arbitrary) ρ-fraction of the domain
for some negligible function ρ(n)? The first observation is that in the above algorithm, each of C1, C2, E,
R1, and R2, can each evaluated (homomorphically in the case of C1) at a single point that is distributed
uniformly at random. With high probability, g will agree with fk on these inputs.

It remains to consider robustness to error in H, B, and Rb. The same idea does not immediately work,
because the queries to these circuits are not uniform.

For H, we leverage the invoker-randomizability of the PRF Fsh , using the argument presented in [BGI+12,
Proof of Theorem 4.3]. In every query to H(c, d,⊙, q̄), the input q̄ only effects the randomness used in the
final encrypted output. For each such query, pick q̄ uniformly and independently at random. Now H re-
turns a uniformly random encryption of Decsk(c) ⊙ Decsk(d). This is because the randomness used for
the encryption is now uniformly sampled by Fsh . The distribution over the output induced by the random
choice of q̄ depends only on (Decsk(c),Decsk(d),⊙) ∈ {0, 1}2 × {0, 1}2 × {0, 1}4. As in [BGI+12], the
probability of returning an incorrect answer on such a query is at most 64ρ, which is still negligible.

For B and Rb, we leverage the properties of the decomposable symmetric-key encryption scheme, using
the argument presented in [BP13, Proof of Claim 3.8]. We modify the procedure of using B and Rb to
recover α given an encryption c of β. Instead of querying B on (c, q̄), sample a fresh random m, and
using H, compute an encryption c′ of β ⊕m. Note that c′ is a uniformly random encryption (by invoker-
pseudorandomness) of the uniformly random string β ⊕m, and is thus a uniformly-distributed string of the
appropriate length. Independently sample a random q̄ and query α′ := B(c′, q̄). This query to B is now
distributed uniformly, and will therefore be answered correctly with high probability.

To recover α, we evaluate α = α′⊕Rb(m, pub(c1), . . . , pub(cλ), q̄). This query to Rb is also distributed
uniformly at random (for random q̄), and will therefore be answered correctly with high probability.

B.4 Pseudorandomness
Our proof that the family {fk} is pseudorandom follows that of [BP13]; the main technical change comes
from the fact that B depends on α. We consider a polynomial-time adversary A with oracle access to fk.
For simplicity, we ignore the indexing of the subfunctions of fk and assume that A has direct oracle access
to each of the constituent functions, showing that they are simultaneously pseudorandom.

Let E1 be the the event that A produces distinct queries q = (c, q̄), q′ = (c′, q̄′) such that:

(m⊕ β, pub(c1), . . . , pub(cλ), q̄) = (m′ ⊕ β, pub(c′1), . . . , pub(c
′
λ), q̄

′)

where m,m′ ∈ {0, 1}λ are the decryptions under sk of c and c′ respectively.

Claim B.4 Prk,A[E1] = 0

Proof. Recall that for any ciphertext c, pub(c) and the plaintext m uniquely determine the ciphertext. If
m⊕ β = m′ ⊕ β, and pub(ci) = pub(ci)

′ for all i, then c = c′. Therefore q = q′. 2

We consider two “bad” events, and argue that ifA is to distinguish fk from a random function, (at least) one
of the events must occur.

• Let Eα be the event that A produces queries q and q′ such that q ⊕ α = q′.

• Let Eβ be the event thatA produces queries q = (c, q̄) and q′ such that q′ = (m⊕β, pub(c1), . . . , pub(cλ), q̄),
where m ∈ {0, 1}λ is the decryption under sk of c.

44



Claim B.5 If Prk,A[Eα] ≤ negl(λ) and Prk,A[Eβ] ≤ negl(n), then A cannot distinguish between fk and a
random function.

Proof. Because fk depends on the PRF keys s1, s2, se, sh, and sb (but not s∗) only by black-box application
of the respective PRFs, we can indistinguishably replace all applications of these PRFs by (independent)
truly random functions. If Eα never occurs, than the responses from C1 and R1 (respectively C2 and R2)
are uncorrelated; thus we can indistinguishably replace C1 (respectively, C2) by a independent random
function. At this point, A’s oracle only depends on s∗ through calls to the PRF F ∗s ; we can now replace R∗
with a independent random function. By similar reasoning, if Eβ never occurs, then the responses from B
and Rb are uncorrelated; thus we can indistinguishably replace B with another independent random function.
The above holds with high probability, conditioning on ¬Eα and ¬Eβ .

Now A is left with oracles of E and H in which the PRFs Fse and Fsh have been replaced by random
(along with 7 additional independent random functions). The ciphertexts of the encyption scheme we use are
pseudorandom. Thus, access to these two oracles may be replaced with random without noticeably affecting
the output distribution of A. 2

All that remains is to bound the probabilities of Eα and Eβ . We consider two cases separately: when
Eα occurs before Eβ and vice-versa, arguing that the probability of either event occurring first is negligible.
Let Eα,i (respectively, Eβ,i) be the event that Eα (respectively Eβ) occurs in the first i queries.

Claim B.6 For all i, Prk,A[Eβ,i|¬Eα,i−1] ≤ negl(λ)

Proof. It suffices to show that for all i:

Pr
k,A

[Eβ,i|¬Eα,i−1,¬Eβ,i−1] ≤ negl(λ).

Furthermore, because the events are efficiently testable given only α, β, and sk, it is enough to prove the
claim when all the underlying PRFs (corresponding to s1, s2, se, sh, sb, and s∗ are replaced by (independent)
truly random functions.

As in Claim B.5, if Eα doesn’t occur in the first i − 1 queries, than the responses from C1 and R1

(respectively C2 and R2) are uncorrelated on these queries; thus we can indistinguishably replace C1 (re-
spectively, C2) by a independent random function. By similar reasoning, if Eβ doesn’t occur in the first i−1
queries, then the responses from B and Rb are uncorrelated on these queries; thus we can indistinguishably
replace B with another independent random function. The above holds with high probability, conditioning
on ¬Eα,i−1 and ¬Eβ,i−1.

The view of A after the first i − 1 queries is now independent of β. Now Eβ amounts to outputting a
ciphertext c and string q such that Decsk(c) ⊕ q = β, for β ← {0, 1}λ drawn independently of the view of
the adversary. This occurs with vanishingly small probability. 2

Claim B.7 Prk,A[Eα,i|¬Eβ,i−1] ≤ negl(λ)

Proof. It suffices to show that for all i:

Pr
k,A

[Eα,i|¬Eβ,i−1,¬Eα,i−1] ≤ negl(λ).

Again, because the events are efficiently testable given only α, β, and sk, it is enough to prove the claim
when all the underlying PRFs (corresponding to s1, s2, se, sh, sb, and s∗ are replaced by (independent)
truly random functions. As in the previous claim, we may indistinguishably replace the first i− responses
of C1, C2, B, Rb, R1, and R2 by independent random functions. The above holds with high probability,
conditioning on ¬Eα,i−1 and ¬Eβ,i−1.

45



The view of the adversary is depends on α only by way of E, the circuit that outputs random encryptions
of α. Furthermore, besides the oracles E and H, all of the oracle responsesA receives are uniformly random
(and independent of α). But just as in [BGI+12, Claim 3.6.1] and [BP13, Claim 3.3], with only these
two oracles, any CCA-1 encryption scheme is semantically secure. Thus we can indistinguishably replace
Esk,α,se with Esk,α,se – returning only encryptions of 0. Finally, the view of A is information theoretically
independent of α; as before, we conclude that Eα,i occurs with vanishingly small probability. 2

C Key-Injective pPRF from LWE or DDH
A key-injective puncturable PRF can be constructed with a modification of the GGM pPRF by using an
ensemble of left- and right-injective PRGs PRG(1), . . . ,PRG(n). When we say that PRG(i) is left- and right-
injective, we mean that if PRG(i) is writen as PRG(i)

0 ∥PRG
(i)
1 , then both PRG

(i)
0 and PRG

(i)
1 are injective.

We also require the PRG(i)’s to have additive stretch. That is, there exists a polynomial p such that for
each i, PRG(i) maps {0, 1}λ+(i−1)·p(λ) → {0, 1}λ+i·p(λ). This ensures that, in the GGM construction, the
size of the PRF output is bounded by n ·poly(λ). Such PRGs can be constructed from standard assumptions
such as DDH or LWE.

Key-Injective pPRFs from LWE. For example, using the learning with errors (LWE) assumption, we
define PRGA : Zn

q → Zm
p as PRGA(x) :=

⌊
AT · x

⌉
p

where operator ⌊·⌉p returns the nearest integer (for
each coordinate) modulo p. We can set q := p2 = 22k for some k = O(λ) and m := 4n + O(λ). Let
A = A0∥A1 where A0,A1 ∈ Zn×m/2

q , then PRGb(x) =
⌊
AT

b x
⌉
. In this case, each PRGb(x) is injective

w.o.p. over the choice of A and it maps 2nk bits to 2nk + O(kλ) bits. See [BPR12] for details about the
LWE assumption and proof of security of the above construction.

Key-Injective pPRFs from DDH. Alternatively, it may seem that using DDH, we can set PRGg1,g2(x) =
gx1 , g

x
2 where g1, g2 are generators of some group G of prime order p. Unfortunately, the outputs cannot be

directly used as PRG inputs in the next level of the tree since they are group elements rather than exponents
and we do not know how to extract out two uniform values in Zp from them. Nevertheless, this approach
can be made to work by defining PRGg1,g2,g3,h0,h1(x) = h0(g

x
1 , g

x
2 , g

x
3 ), h1(g

x
1 , g

x
2 , g

x
3 ) where h0, h1 are

universal hash functions that map G3 → Zp′ for some p′ such that log(p′) = log(p) + O(λ) and log(p′) ≤
(3/2) log(p) − Ω(λ). This ensures injectivity (we are hashing p balls into p′ bins and therefore for any
fixed ball there is unlikely to be another ball colliding with it). It also ensures pseudorandomness security
by thinking of h0, h1 as extractors via the leftover-hash lemma. In the context of the GGM construction we
need a hierarchy of DDH groups of order p1, p2, . . . (one for each level) where log(pi+1) = log(pi)+O(λ).
Therefore the output does not get “too large”.

46


