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Abstract. Many information theoretically secure protocols are known
for general secure multi-party computation, both in the honest major-
ity setting, and in the dishonest majority setting with preprocessing. All
known protocols that are efficient in the circuit size of the evaluated func-
tion follow the same typical “gate-by-gate” design pattern: we work our
way through a boolean or arithmetic circuit, maintaining as an invari-
ant that after we process a gate, the output of the gate is represented
as a random secret sharing among the players. Finally, all shares for
the outputs are revealed. This approach usually allows non-interactive
processing of addition gates but requires communication for every mul-
tiplication gate. This means that while information theoretically secure
protocols are very efficient in terms of computational work, they (seem
to) require more communication and more rounds than computationally
secure protocols. Whether this is inherent is an open and probably very
hard problem. However, in this work we show that it is indeed inherent
for protocols that follow the “gate by gate” design pattern. In particular,
we present the following results:
– In the honest majority setting, any gate-by-gate protocol must com-

municate for every multiplication gate, even if only semi-honest se-
curity is required.

– For dishonest majority with preprocessing, a different proof tech-
nique is needed. We again show that any gate-by-gate protocol must
communicate for every multiplication gate when the underlying se-
cret sharing scheme is the additive one. We obtain similar results for
arbitrary secret sharing schemes.

– In the honest majority setting, we also show that amortising over
several multiplication gates can at best save an O(n) factor on the
computational work.

All our lower bounds are met up to a constant factor by known protocols
that follow the typical gate-by-gate paradigm. Our results imply that a
fundamentally new approach must be found in order to improve the
communication complexity of known protocols that are efficient in the
circuit size of the function, such as GMW, SPDZ etc.

1 Introduction

Secure Multi-Party Computation (MPC) allows n players to compute an agreed
function on privately held inputs, such that the desired result is correctly com-



2 Ivan Damg̊ard, Jesper Buus Nielsen, and Antigoni Polychroniadou

puted and is the only new information released. This should hold, even if t players
have been actively or passively corrupted by an adversary.

If point-to-point secure channels between players are assumed, any function
can be computed with unconditional (perfect) security, against a passive adver-
sary if n ≥ 2t+ 1 and against an active adversary if n ≥ 3t+ 1[BGW88,CCD88].
If we assume a broadcast channel and accept a small error probability, n ≥ 2t+1
is sufficient to get active security[RBO89].

The protocols behind these results require a number of communication rounds
that is proportional to the depth of an (arithmetic) circuit computing the func-
tion. Moreover, the communication complexity is proportional to the size of
the circuit. Whether we can have constant round protocols and/or communica-
tion complexity much smaller than the size of the circuit and still be efficient
(polynomial-time) in the circuit size of the function is a long-standing open prob-
lem. Note that this is indeed possible if one makes computational assumptions.
Note also that if we give up on being efficient in the circuit size, then there
are unconditionally secure and constant round protocols for any function [IK00]
(which will, however, be very inefficient in general with respect to the compu-
tation). Moreover, there are works that apply to special classes of circuits (e.g.,
constant-depth circuits [BI05]) or protocols that require exponential amount
of computation [BFKR90,NN01] and exponential storage complexity [IKM+13].
Furthermore, the authors in [CK93] prove tight lower bounds for secure addition
and the work of [DPP14] study the communication complexity of information
theoretic protocols in a specific three-party model where two parties have input
and a third gets the output.

The above issues are not only of theoretical interest: the methods we typically
use in information theoretically secure protocols tend to be computationally
much more efficient than the cryptographic machinery we need for computational
security. So unconditionally secure protocols are very attractive from a practical
point of view, except for the fact that they seem to require a lot of interaction.

The fact that existing information theoretically secure protocols (which are
efficient in the circuit size of the function) have large round and communication
complexity is a natural consequence of the fact that all such protocols follow the
same typical “gate-by-gate” design pattern: Initially all inputs are secret-shared
among the players. Now, for each gate in the circuit, where both its inputs have
been secret-shared, we execute a subprotocol that produces the output from the
gate in a secret-shared form. The protocol maintains as an invariant that for all
gates that have been processed so far, the secret-sharing of the output value is of
the same form used for the inputs (so we can continue processing gates) and is
appropriately randomised such that one could open this sharing while revealing
only that output value. As a result, it is secure to open the final outputs from
the circuit.

For all known constructions which are efficient in the circuit size of the func-
tion, it is the case that multiplication gates require communication to be pro-
cessed (while linear gates usually do not). It therefore follows that the number
of rounds is at least the (multiplicative) depth of the circuit, and the communi-
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cation complexity is Ω(ns) for a circuit of size s (the size being measured as the
number of multiplication gates) in the worst case for t < n/3 and t < n/2 see the
results of [DN07] and [BSFO12,GIP+14,GIP15], respectively. Note that proto-
cols that tolerate a sub-optimal number of corrupted parties (e.g., t < 0.49n) and
are based on packed secret-sharing techniques can reduce the amortised cost of
multiplications if they can be parallelised [DIK+08,IPS09,DIK10,GIP15]. These
techniques do not apply to all circuits, in particular not to “tall and skinny”
circuits whose multiplicative depth is comparable to their size. In addition, they
can at best save an O(n) factor in communication and computational work.

The situation is essentially the same for recent protocols that are designed
for dishonest majority in the preprocessing model [DPSZ12,NNOB12] (except
that amortization based on packed secret-sharing does not apply here due to the
dishonest majority setting).

1.1 Contributions

In this paper, we ask a very natural question for unconditionally secure protocols
which, to the best of our knowledge, has not been studied in detail before:

Is it really inherent that the typical gate-by-gate approach to secure
computation requires communication for each multiplication operation?

Our Model. To avoid misunderstandings, let us be more precise about the model
we assume: we consider synchronous protocols that are semi-honest and statis-
tically secure against static corruption of at most t of the n players. We assume
that point-to-point secure channels are available, and protocols are allowed to
have dynamic communication patterns (in a certain sense we make precise later),
i.e., it is not fixed a priori whether a protocol sends a message in a given time
slot. Moreover, there is no bound on the computational complexity of proto-
cols, in particular arbitrary secret sharing schemes are allowed. A gate-by-gate
protocol is a protocol that evaluates an arithmetic circuit and for every multi-
plication gate, it calls a certain type of subprotocol we call a Multiplication gate
protocol (MGP). We define MGPs precisely later, but they basically take as
input random shares of two values a, b from a field and output random shares
of c = ab. Neither the MGP nor the involved secret sharing schemes have to
be the same for all gates. We do not even assume that the same secret sharing
scheme is used for the inputs and output of an MGP, we only require that the
threshold for the output sharing be the same as for the input. An ordered gate-
by-gate protocol must call the MGP’s in an order corresponding to the order
in which one would visit the gates when evaluating the circuit, whereas this is
not required in general. Thus the gate-by-gate notion is somewhat more general
than what one might intuitively expect and certainly includes much more than,
say the standard BGW protocol – which, of course, makes our negative results
stronger.

Note that if multiplications did not require communication, it would imme-
diately follow (for semi-honest security) that we would have an unconditionally
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secure two-round protocol for computing any function. But this is not a priori
impossible: it follows, for instance, from [IK00,IKM+13], that if less than a third
of the players are corrupted, there is indeed such a two-round protocol (which,
however, requires super polynomial computational work in general).

Honest Majority Setting. For honest majority protocols it is relatively easy to
show that multiplications do require communication: we argue in the paper that
any MGP secure against t corruptions requires that at least t+ 1 players com-
municate. For protocols with dynamic communication pattern this bound holds
in expectation. It turns out that a protocol beating this bound would imply an
unconditionally secure two-party protocol computing a multiplication, which is
well known to be impossible. This implies that the communication complexity of
any gate-by-gate protocol for honest majority must be proportional to n·s where
s is the circuit size and that the round complexity of an ordered gate-by-gate
protocol must be at least proportional to the multiplicative depth of the circuit.
This matches the best protocols we know for general circuits up to a constant
factor.

A gate-by-gate protocol is not allowed to amortise over several multiplica-
tions that can be done in parallel. This is anyway not possible in general, for
instance if we evaluate a worst-case “tall and skinny” circuit. But for more be-
nign circuits this is indeed an option. However, we show that amortising over
several multiplication gates can save at most anO(n) factor in the computational
work, which matches what we can get from known techniques based on packed
secret-sharing. It is open if a similar bound holds for communication. This bound
is a bit more tricky to prove than the first result. We based it on a lower bound
by Winkler and Wullschleger [WW10] on the amount of preprocessed data one
needs for (statistically) secure two-party computation of certain functions. It
is perhaps somewhat surprising that an information theoretic bound on size of
data translates to a bound on local computation.

Dishonest Majority Setting with Preproccesing. The argument used for the hon-
est majority case breaks down if we consider protocols in the preprocessing
model: here it is indeed possible to compute multiplications with unconditional
security, even if t = n − 1 of the n players are corrupt. Nevertheless, we show
similar results for this setting: here, any MGP secure against t = n − 1 cor-
ruptions must have Ω(n) players communicate. Note that existing constructions
[DPSZ12] meet the resulting bound for gate-by-gate protocols up to a constant
factor.

To obtain the result, we exploit again the lower bound by Winkler and
Wullschleger, but in a different way. In a nutshell, we show that constructions
beating our bound would imply a protocol that is too good to be true according
to [WW10].

The result holds exactly as stated above assuming that the target secret-
sharing scheme that the protocol outputs shares in is of a certain type that in-
cludes the simple additive secret-sharing scheme (which is also used in [DPSZ12],
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[NNOB12]). If we put no restrictions on the target scheme, the results get a bit
more complicated. Essentially what we show is the following: suppose we are
given secret-sharings of inputs x1, x2 and want to compute shares in a function
value g(x1, x2). This is a generalisation of the case of multiplication where x1, x2

are field elements and g(x1, x2) = x1x2. Now, if computing g securely for two
players requires a large enough amount of preprocessed data, then we show that
all n players must communicate to produce a random secret-sharing of g(x1, x2),
no matter what target secret sharing scheme is used. An example of such a func-
tion is the inner product where the input is a pair of m-vectors for large enough
m and g outputs the inner product. It is the target secret-sharing scheme that
determines what “large enough” means, see more details within.

2 Preliminaries

Notation. Let [n] denote the set {1, 2, ..., n}. Calligraphic letters denote sets.
The distribution of a random variable X over X is denoted by PX . Given the
distribution PXY over X ×Y, the marginal distribution is denoted by PX(x) :=∑
y∈Y PXY (x, y). A conditional distribution PX|Y (x, y) over X × Y defines for

every y ∈ Y a distribution PX|Y=y. The conditional Shannon entropy of X given
Y is defined as H(X|Y ) := −

∑
x,y PXY (x, y) logPX|Y (x, y) where all logarithms

are binary. Moreover, we use h(p) = −p log p− (1− p) log(1− p) for the binary
entropy function.

Protocols. We consider protocols involving n parties, denoted by P = {P1, . . . , Pn}.
The parties communicate over synchronous, point-to-point secure channels. We
consider non-reactive secure computation tasks, defined by a deterministic or
randomized functionality f : X1 × . . . × Xn → Z1 × . . . × Zn. The function-
ality specifies a mapping from n inputs to n outputs which the parties want
to compute. The functionality can be fully specified by a conditional probabil-
ity distribution PZ1···Zn|X1···Xn

, where Xi is a random variable over Xi, Zi is
a random variable over Zi, and for all inputs (x1, . . . , xn) we have a probabil-
ity function PZ1···Zn|X1···Xn=(x1,...,xn) and PZ1···Zn|X1···Xn=(x1,...,xn)(z1, . . . , zn) is
the probability that the output is (z1, . . . , zn) when the input is (x1, . . . , xn). Vice
versa, we can consider any conditional probability distribution PZ1···Zn|X1···Xn

as a specification of a probabilistic functionality. In the following we will freely
switch between the terminology of probabilistic functionalities and conditional
probability distributions.

In the sequel we consider the following two-party functionalities.

Definition 1 (Multiplication MULT functionality). Let F be a finite field.
Consider two parties A and B. We define the two-party functionality MULT(a, b)
which on input a ∈ F from party A and b ∈ F from party B outputs MULT(a, b) =
a · b to both parties.

Definition 2 (Inner Product IPκ functionality). Let F be a finite field and
let κ ≥ 1. Consider two parties A and B. We define the two-party functionality
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IPκ(a, b) which on input a ∈ Fκ from party A and b ∈ Fκ from party B outputs
IPκ(a, b) =

∑
i≤κ aibi to both parties.

We consider stand-alone security. We consider static and passive corruptions
of t out of n parties for some t. This means that a set of t parties are announced
to be corrupted before the protocol is executed, and the corrupted parties still
follow the protocol but might pool their views of the protocol to learn more
than they should. We consider statistical correctness and statistical security. We
allow simulators to be inefficient. Except that we do not consider computational
security, the above model choices are the possible weakest ones, which just makes
our impossibility proofs stronger.

The Security Parameter. The security is measured in a security parameter
σ and we require that the ”insecurity” goes to 0 as σ grows. We do not allow n
to grow with σ, i.e., we require that the protocol can be made arbitrarily secure
when run among a fixed set of parties by just increasing σ. The literature some-
times consider protocol which only become secure when run among a sufficiently
large number of parties. We do not cover such protocols.

Communication Model. We assume that each pair of parties are connected
by a secure communication channel, which only leaks to the adversary the length
of each message sent1. We consider protocols proceeding in synchronous rounds.
We consider a notion of communication complexity which we call the Anticipated
Communication Model : In each round each party will first specify for each other
party how long the message it wants to receive from that party is in this round.
Length 0 means that it does not expect a message from that party in the given
round. Then it will specify which other parties it wants to send messages to and
will specify what these messages are. Then the messages are exchanged. If the
length of a sent message does not match the length specified by the receiver the
receiver will terminate with an error symbol ⊥ as output, which will make it
count as a violation of correctness.

Definition 3 (Anticipated message complexity). We will say that the ex-
pected anticipated message complexity is the expected number of times a player
sends or anticipates a non-empty message. The expectation is taken over the
randomness of the players and maximised over all inputs.

Note that if the anticipated message complexity is T this implies that in
expectation at least T/2 messages are sent and hence at least T/2 bits are com-
municated. The reason for this slightly technical notion is to avoid a problem we
would have if we allowed the communication pattern to vary arbitrarily: Con-
sider a setting where Pj wants to send a bit b to Pi. If b = 0 it sends no message
to Pi or say the empty string. If b = 1 it sends 0 to Pi. If b is uniformly random,
then in half the cases Pj sends a message of length 0 and in half the cases it sends

1 This is a standard way to model secure communication by an ideal functionality
since any implementation using crypto would leak the message length.
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a message of length 1. This means that a more liberal way of counting the com-
munication complexity would say that the expected communication complexity
is 1

2 . This would allow to exchange 1 bit of information with an expected 1
2 bits

of communication. This does not seem quite reasonable. The anticipated model
avoids this while still allowing the protocol to have a dynamic communication
pattern. Note that since we want to prove impossibility it is stronger to allow
protocols with dynamic rather than fixed communication patterns.

Protocols with Preprocessing. We will also consider protocol for the prepro-
cessing model. In the preprocessing model, the specification of a protocol also
includes a joint distribution PR1···Rn

over R1× . . .×Rn, where the Ri’s are finite
randomness domains. This distribution is used for sampling correlated random
inputs (r1, . . . , rn)← PR1···Rn

received by the parties before the execution of the
protocol. Therefore, the preprocessing is independent of the inputs. The actions
of a party Pi in a given round may in this case depend on the private random
input ri received by Pi from the distribution PR1···Rn

and on its input xi and
the messages received in previous rounds. In addition, the action might depend
on the statistical security paramenter σ which is given as input to all parties
along with xi and ri. Using the standard terminology of secure computation,
the preprocessing model can be thought of as a hybrid model where the parties
have one-time access to an ideal randomized functionality P (with no inputs)
providing them with correlated, private random inputs ri.

Security Definition. A protocol securely implements an ideal functionality
with an error of ε, if the entire view of each player can be simulated with an
error of at most ε in an ideal setting, where the players only have black-box
access to the ideal functionality.

Definition 4. Let Π be a protocol for the PR1···Rn
-preprocessing model. Let

PZ1···Zn|X1···Xn
be an n-party functionality. Let A ⊆ {1, . . . , n}. Let x = (x1, . . . ,

xn) ∈ X1× . . .×Xn be an input. Let ViewΠA(σ,x) be the view of the parties Pi for
i ∈ A in a random run of the protocol Π on input x and with security parameter
σ. Let PatternΠ(σ,x) denote the communication pattern in the same random run
of the protocol Π, i.e., the list of the length of the messages exchanged between all
pairs of parties in all rounds. Let OutputΠĀ(σ,x) be just the inputs and outputs
of the parties Pi for i 6∈ A in the same random run of the protocol Π. Let

ExecΠA(σ,x) = (ViewΠA(σ,x),PatternΠ(σ,x),OutputΠĀ(σ,x)) .

Let S be a randomized function called the simulator. Sample z according to
PZ1···Zn|X1···Xn

(x). Give input {(xi, zi)}i∈A to S let S({(xi, zi)}i∈A) denote the
random variable describing the output of S. Let

SimS(σ,x) = (S({(xi, zi)}i∈A, {(xi, zi)}i6∈A) .

Let ε : N → [0, 1]. Let SD denote statistical distance. The protocol is ε-semi-
honest secure with threshold t if there exist S such that for all x and all A with
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|A| ≤ t it holds that

SD(ExecΠA(σ,x),SimS(σ,x)) ≤ ε(σ) .

We say that ε is negligible if for all c ∈ N there exists σc ∈ N such that ε(σ) ≤ σ−c
for all σ ≥ σc. The protocol is statistically semi-honest secure with threshold t if
it is ε-semi-honest secure for a negligible ε.

Secret-Sharing. A (t+1)-out-of-n secret-sharing scheme takes as input a secret
s from some input domain and outputs n shares, with the property that it is
possible to efficiently reconstruct s from every subset of t+ 1 shares, but every
subset of at most t shares reveals nothing about the secret s. The value t is called
the privacy threshold of the scheme.

A secret-sharing scheme consists of two algorithms: the first algorithm, called
the sharing algorithm Share, takes as input the secret s and the parameters t
and n, and outputs n shares. The second algorithm, called the recovery algorithm
Recover, takes as input t + 1 shares and outputs a value s. It is required that
the reconstruction of shares generated from a value s produces the same value
s. Formally, consider Definition 5 below.

Definition 5 (Secret-sharing). Let F be a finite field and let n, t ∈ N. A pair
of algorithms Snt = (Share,Recover) where Share is randomized and Recover is
deterministic are said to be a secret-sharing scheme if for every n, t ∈ N, the
following conditions hold.

Reconstruction: For any set T ⊆ P such that |T | > t and for any s ∈ F it
holds that

Pr[Recover(ShareT (s, n, t)) = s] = 1

where ShareT is the restriction of the outputs of Share to the elements in T .
Privacy: For any set T ⊆ P such that |T | ≤ t and for any s, s′ ∈ F it holds

that
ShareT (s, n, t) ≡ ShareT (s′, n, t)

where we use ≡ to denote that two random variables have the same distri-
bution.

Additive Secret-Sharing In an additive secret-sharing scheme, n parties hold
shares the sum of which yields the desired secret. By setting all but a single
share to be a random field element, we ensure that any subset of n − 1 parties
cannot recover the initial secret.

Definition 6 (Additive secret-sharing). Let F be a finite field and let n ∈ N.
Consider the secret-sharing scheme An = (Share,Recover) defined below.

– The algorithm Share on input (s, n) performs the following:
1. Generate (s1, . . . , sn−1) uniformly at random from F and define sn =

s−
∑n−1
i=1 si.



On the Communication required for Unconditionally Secure Multiplication 9

2. Output (s1, . . . , sn) where si is the share of the i-th party.
– The recovery algorithm Recover on input (s1, · · · , sn), outputs

∑n
i=1 si.

It is easy to show that the distribution of any n − 1 of the shares is the
uniform one on Fn−1 and hence independent of s.

More Notation. In the sequel for a value s ∈ F we denote by [s]S
n
t a random

sharing of s for the secret-sharing scheme Snt . That is, [s]S
n
t ← Share(s, n, t) where

[s]S
n
t = (s1, . . . , sn). Similarly, we denote by [s]A

n

a random additive sharing of
s secret shared among n parties. Moreover, we denote by Πf an n-party protocol

for a function f and by ΠA,B
f a two-party protocol between parties A and B.

3 Secure Computation in the Plain Model

We first investigate the honest majority scenario. As explained in the introduc-
tion, we will consider protocols that compute arithmetic circuits over some field
securely using secret-sharing. All known protocols of this type handle multipli-
cation gates by running a subprotocol that takes as input shares in the two
inputs a and b to the gate and output shares of the product ab, such that the
output shares contain only information about ab (and no side information on
a nor b). Accordingly, we define below a multiplication gate protocol (MGP) to
be an interactive protocol for n players that does exactly this, and then show a
lower bound on the communication required for such a protocol.

Definition 7 (Multiplication Gate Protocol ΠMULT). Let F be a finite

field and let n ∈ N. Let Snt and Ŝnt be two secret-sharing schemes as per Def-
inition 5. A protocol ΠMULT is a Multiplication Gate Protocol (MGP) with

threshold t, input sharing-scheme Snt and output sharing-scheme Ŝnt if it satisfies
the following properties:

Correctness: In the interactive protocol ΠMULT, players start from sets of
shares [a]S

n
t ← Share(a, n, t) and [b]S

n
t ← Share(b, n, t). Each player outputs

a share such that these together form a set of shares [ab]Ŝ
n
t .

Simulation: If the protocol is run on randomly sampled shares [a]S
n
t ← Share(a,

n, t) and [b]S
n
t ← Share(b, n, t), then the only new information the output

shares can reveal to the adversary is ab. More formally, for each player subset

A of size at most t, there exists a simulator SA which when given [ab]Ŝ
n
t and

the shares of the parties A in [a]S
n
t and [b]S

n
t will output a view which is

statistically indistinguishable from views of players in A in an execution of
ΠMULT([a]S

n
t , [b]S

n
t ).

Note that we do not require that the input and output sharing schemes to be the
same, only that the threshold t is preserved. Also note that we do not require
the simulators to be efficient.

Theorem 1. There exists no MGP ΠMULT as per Definition 7 with threshold
t and with expected anticipated message complexity ≤ t.
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Proof. Suppose for contradiction that there exists a MGP ΠMULT with expected
anticipated communication complexity at most t. We first do the proof in the
simple case where the communication pattern is fixed. This means that at most
t parties are communicating, i.e., they send or receive messages and the set of
parties that communicate is known and fixed. We will assume for notational
convenience that it is the parties P1, . . . , Pt. We are going to use ΠMULT to
construct a two-party unconditionally secure protocol ΠA,B

MULT which securely
computes the MULT function as per Definition 1. Given two parties A and B
involved in the ΠA,B

MULT protocol, we are going to let A on input a ∈ F emulate
the t parties that communicate and B on input b ∈ F emulates the rest of the
parties but we are interest just for one additional party, say Pt+1. In particular,
protocol ΠA,B

MULT proceeds as follows:

Protocol ΠA,B
MULT(a, b)

Input Phase
Parties A,B secret share their inputs a, b using the secret-sharing scheme

Snt . More specifically, A computes [a]S
n
t ← Share(a, n, t) and B computes

[b]S
n
t ← Share(b, n, t).

Party A sends the input shares (at+1, . . . , an) to party B and Party B sends
the input shares (b1, . . . , bt) to party A.

Evaluation Phase
PartiesA,B invoke the protocolΠ

Sn
t

MULT(a1, . . . , at+1 . . . an, b1, . . . , bt+1, . . . bn).

The emulation of Π
Sn
t

MULT yields a sharing of [c]Ŝ
n
t and outputs (c1, . . . , ct)

to party A and (ct+1, . . . , cn) to party B.
Output Phase
Party A sends the output shares (c1, . . . , ct) to party B and Party B sends

the output share (ct+1) to party A.
Each party given t+ 1 shares of c recovers the output c = a · b

We now show that the above protocol is correct and secure. Correctness
follows immediately. The protocol is secure(private) because of the simulation
property of ΠMULT. More precisely, since A emulates the parties that communi-
cate in ΠMULT, the 2-party protocol requires communication only in the input
and the output phases. The shares received by a player in the input phase can be
simulated by the privacy property of the input sharing scheme, and the shares
received in the output phase can be simulated by invoking the simulator guar-
anteed by Definition 7. However, the above leads to a contradiction since it is
well known [BGW88,CCD88] that it is impossible to realize passively secure
two-party multiplication in the information theoretic setting (even if inefficient
simulators are allowed). The theorem follows.

We now address the case where the communication pattern might be dy-
namic. We say that a party communicated if it sent a non-empty message or if
it anticipated a non-empty message. So by definition, the expected number of
communicating parties is ≤ t/2, and the observed value is at most its expecta-
tion with at least some constant probability p (since it is non-negative). Hence
with probability at least p, at most t parties communicate. We can therefore pick
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a subset C of the parties of size t such that it happens with probability at least
p/
(
n
t

)
that only the parties in C communicate. Since we can increase the security

paramenter σ independently of n, the number p/
(
n
t

)
is a positive constant (in

σ). We can then modify ΠA,B
MULT(a, b) such that B runs the parties in C and A

runs some other party. The protocol runs as ΠA,B
MULT(a, b) except that if it hap-

pens, while B runs the parties in C, that a party in C anticipates a non-empty
message from a party outside C, then B terminates the execution and sends A a
message to that effect. The protocol is likewise terminated if the parties that A
simulates anticipate any message in any round. In case the protocol terminates,
the two parties just try again. Since p/

(
n
t

)
is a positive constant this succeeds in

an expected constant number of tries. Notice that when the protocol succeeds,
all parties in C received all the messages they would have received in a run of
ΠA,B

MULT(a, b) where all the parties were active, as parties only receive the mes-
sages they anticipate. Hence the parties in C have correct outputs (except with
negligible probability). For the same reason the output of the party simulated
by B will be correct. Hence A and B can reconstruct the output from these
t + 1 shares. We can also argue that the protocol is private: since we assumed
that the communication pattern is leaked to the adversary it cannot depend on
the inputs and can therefore be simulated with statistically close distribution.
This allows us to simulate all the runs of the MGP, while the last part can be
simulated as we did before. ut

In the following, we will use the term gate-by-gate protocol to refer to any
protocol that computes an arithmetic circuit securely by invoking an MGP for
each multiplication gate in the circuit such that the sets of shares that are input
are randomly chosen. We leave unspecified what happens with addition gates
as this is irrelevant for the bounds we show. An ordered gate-by-gate protocol
invokes MGP’s for multiplication gates in an order corresponding to the order
in which one would visit the gates when evaluating the circuit.

The implication of the above theorem is that any gate-by-gate protocol that
is secure against t = Θ(n) corruptions must communicate Ω(n · |C|) bits where
|C| is the size of the circuit, and moreover, an ordered gate-by-gate protocol
must have a number of rounds that is proportional to the (multiplicative) depth
of the circuit.

Jumping ahead, we note that the arguments for this conclusion break down
completely when we consider secure computation in the preprocessing model
with dishonest majority since here it is no longer true that two-party uncondi-
tionally secure multiplication is impossible: just a single preprocessed multipli-
cation triple will be enough to compute a multiplication. We return to this issue
in the next section.

Amortised Multiplication Gate Protocols. There is one clear possibility
for circumventing the bounds we just argued for gate-by-gate protocols, namely:
what if the circuit structure allows us to do, say k multiplications in parallel?
Perhaps this can be done more efficiently than k separate multiplications? Of
course, this will not help for a worst case circuit whose depth is comparable to
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its size. But in fact, for “nicer” circuits, we know that such optimizations are
possible, based on so-called packed secret-sharing. The catch, however, is that
apart from loosing in resilience this only works if there is a gap of size Θ(k)
between the privacy and reconstruction thresholds of the secret-sharing scheme
used, so therefore the number of players must grow with k.

One may ask if this is inherent, i.e., can we save on the communication
needed for many multiplication gates in parallel, only by increasing the number
of players? While we believe this is true, we were not able to show this. But
we were able to show a similar result for computational complexity, as detailed
below.

First, we can trivially extend Definition 5 to cover schemes in which the
secret is a vector (a1, ..., ak) of field elements instead of a single value. A further
extension covers ramp schemes in which there are two thresholds: the privacy
threshold t which is defined as in Definition 5 and a reconstruction threshold
r > t, where any set of size at least r can reconstruct the secret. Such a scheme
is denoted by Snt,r. Note that the shares in this case may be shorter than the
secret, perhaps even a single field element per player.

We can now define a simple extension of the multiplication gate protocol
concept:

Definition 8 (k-Multiplication Gate Protocol ΠMULTk). Let F be a finite field

and let n ∈ N. Let Snt,r and Ŝnt,r be two ramp sharing schemes defined over F. A

protocol Πk
MULT is said to be a k-Multiplication Gate Protocol (k-MGP) with

thresholds t, r, input sharing scheme Snt,r and output sharing scheme Ŝnt,r if it
satisfies the following properties:

Correctness: In the interactive protocol ΠMULTk , players start from sets of
shares [(a1, ..., ak)]S

n
t,r and [(b1, ..., bk)]S

n
t,r . Each player outputs a share such

that these together form a set of shares [(a1b1, ..., akbk)]Ŝ
n
t,r .

Simulation: When the protocol is run on random secret sharings, then the only
new information the output shares can reveal to the adversary is a1b1, ..., akbk.
More formally, for each player subset A of size at most t, there exists a simu-

lator SA which when given [(a1b1, . . . , akbk)]Ŝ
n
t,r and the shares of the parties

A in random sharings [(a1, ..., ak)]S
n
t,r and [(b1, ..., bk)]S

n
t,r will output a value

with distribution statistically close to the view of players in A of an execution
of ΠMULTk([(a1, ..., ak)]S

n
t,r , [(b1, ..., bk)]S

n
t,r ).

Before giving our result on k-MGPs we note that for any interactive protocol,
it is always possible to represent the total computation done by the players as an
arithmetic circuit over a finite field F (arithmetic circuits can emulate Boolean
circuit which can in turn emulate Turing machines). We can encode messages
as field elements and represent sending of messages by wires between the parts
of the circuit representing sender and receiver. For protocol Π, we refer to an
algorithm outputting such a circuit as an arithmetic representation of Π over
F. Note that such a representation is not in general unique, but once we have
chosen one, it makes sense to talk about, e.g., the number of multiplications
done by a player in Π.
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Theorem 2. Let t < r ≤ n ∈ N. Also let P = {P1, . . . , Pn} be a set of parties.
Assume that the k-MGP ΠMULTk defined over F has thresholds t, r. Then for
any arithmetic representation of ΠMULTk over F and for each subset S ⊂ P of
size n− 2t, the total number of multiplications done by players in S is Ω(k).

Proof. Suppose for contradiction that there exists a k-MGP ΠMULTk in which
the total number of multiplications done by players in S is o(k). Assume for
notational convenience that S = {P2t+1, . . . , Pn}. We are going to use it to con-

struct a two-party unconditionally secure protocol ΠA,B
MULT in the preprocessing

model which securely computes k multiplications as follows. We let u ← U de-
note the correlated randomness we will use in ΠA,B

MULT. Given two parties A and

B involved in the ΠA,B
MULT protocol, the idea is to use the assumed k-MGP where

A emulates t players and B emulates another t players. In addition, parties A,B
together emulate the rest of the parties in S. This can be done using the prepro-
cessed data u: we consider the parties in S as a reactive functionality fS which
can be implemented using an existing protocol in the preprocessing model. One
example of such a protocol is the SPDZ protocol [DPSZ12] denoted by ΠSPDZ

fS
2 which uses additive secret sharing. Therefore, protocol ΠA,B

MULT proceeds as
follows:

Protocol ΠA,B
MULT({ai}i∈[k], {bi}i∈[k], u):

Input Phase

∀i ∈ [k], parties A,B secret share their inputs ai, bi using the ramp sharing
scheme Snt,r. So A computes [a1, . . . , ak]S

n
t,r ← Share((a1, . . . , ak), n, t)

and B computes [b1, . . . , bk]S
n
t,r ← Share((b1, . . . , bk), n, t). For simplic-

ity of exposition, we denote by (ā1, . . . , ān), (b̄1, . . . , b̄n) the shares of
[a1, . . . , ak]S

n
t,r and [b1, . . . , bk]S

n
t,r , respectively.

Party A sends the input shares (ā1, . . . , āt) to party B and Party B sends
the input shares (b̄t, . . . , b̄2t) to party A.

Additively secret share the inputs (ā2t+1, . . . , ān, b̄2t+1, . . . , b̄n) of the par-
ties in S between A and B using the additive secret-sharing A2 and
obtain the shares ([ā2t+1]A

2

, . . . , [ān]A
2

, [b̄2t+1]A
2

, . . . , [b̄n]A
2

). For the
following phase, as we mentioned above, we will think of the compu-
tation done by the parties in S as a reactive functionality fS which is
implemented using the protocol ΠSPDZ

fS
in the preprocessing model.

Evaluation Phase

Parties A,B invoke the protocol ΠMULTk([a1, . . . , ak]S
n
t,r , [b1, . . . , bk]S

n
t,r ) in

which A,B emulates t parties each, and they emulate the rest, n −
2t players, using the preprocessed data u and ΠSPDZ

fS
. To this end,

note that ΠSPDZ
fS

represents data by additive secret-sharing. Values

(ā2t+1, . . . , ān, b̄2t+1, . . . , b̄n) of the parties in S were already additively
shared, so they can be used directly as input to ΠSPDZ

fS
.

2 We do passive security here, so a simpler variant of SPDZ will suffice, without
authentication codes on the shared values.
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Now, the emulation of ΠMULTk is augmented with the protocol ΠSPDZ
fS

as follows: when a party in S would do a local operation, we do the
same operation in ΠSPDZ

fS
. When a party outside S sends a message

to a party in S an additive secret-sharing of that message is formed
between A and B. When a party in S sends a message to a party outside
S the corresponding additive secret-sharing is reconstructed towards A
or B, depending on who emulates the receiver. In the end, we will obtain
additive sharings between A and B of the outputs of parties in S, namely
([c̄2t+1]A

2

, . . . , [c̄n]A
2

).

Output Phase

A sends the output shares (c̄1, . . . , c̄t) to B, B sends the output shares

(c̄t+1, . . . , c̄2t) toA, andA andB exchange their additive shares ([c̄2t+1]A
2

,

. . . , [c̄n]A
2

) in order to recover (c̄2t+1, . . . , c̄n).

Now both A and B have n ≥ r shares of the output and can recover the
results ci = ai · bi for all i ∈ [k].

We now show that the above protocol is correct and secure. Correctness
follows immediately from correctness of ΠMULTk and ΠSPDZ

fS
. The protocol is

secure because ΠSPDZ
fS

is secure, and by the simulation property of the MGP

ΠMULTk . That is, the shares (c1, . . . , cr) under the secret-sharing scheme Ŝnt,r,

as computed in the final phase of ΠA,B
MULT, only reveal information about the

outputs {ai · bi}i∈[k]. Note that ΠSPDZ
fS

reveals the structure of the circuit for
fS . This is secure as we assume that the parties in S are represented as known
arithmetic circuits.

Now note that the preprocessed data required by the protocolΠSPDZ
fP

amount
to a constant number of field elements for each multiplication done. Since n
grows with k in our case this means we need o(k) preprocessed field elements by
assumption on ΠMULTk .

However, the above leads to a contradiction since by results in [WW10], it is
impossible for two parties to compute k multiplications with statistical security
using preprocessed data of size o(k) field elements. ut

What this theorem shows is, for instance, that if we want each player to do
only a constant number of local multiplications in a k-MGP, then n needs to be
Ω(k). Since this is precisely what protocols based on packed sharing can achieve
(see, e.g., [DIK+08]), the bound in the theorem is in this sense tight.

4 Secure Computation in the Preprocessing Model

It is well known that all functions can be computed with unconditional security in
the setting where n−1 of the n players may be corrupted, and where the players
are given correlated randomness, also known as preprocessed data, that does not
have to depend on the function to be computed, nor on the inputs. Winkler and
Wullschleger [WW10] proved lower bounds on the the amount of preprocessed
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data needed to compute certain functions with statistical security where the
bound depends on certain combinatorial properties of the target function.

All existing protocols for this setting that are efficient in the circuit size of
the function work according to the gate-by-gate approach we encountered in
the previous section. We can define (ordered) gate-by-gate protocols and multi-
plication gate protocols exactly as for the honest majority setting except that
multiplication gate protocols are allowed to consume preprocessed data.

As before, we want to show that multiplication gate protocols require a cer-
tain amount of communication, but as mentioned before, we can no longer base
ourselves on impossibility of unconditionally secure multiplication for two par-
ties, since this is in fact possible in the preprocessing model. Instead, the contra-
diction will come from the known lower bounds on the size of the preprocessed
data needed to compute certain functions.

4.1 Protocols based on Additive Secret-Sharing

Theorem 3. Consider the preprocessing model where n−1 of the n players may
be passively corrupted. In this setting, there exists no MGP ΠMULT with expected
anticipated communication complexity ≤ n − 1 and with additive secret-sharing
An as output sharing scheme.

Proof. Suppose for contradiction that there exists ΠMULT which contradicts the
claim of the theorem. Similar to Theorem 1 we will first assume a fixed com-
munication pattern. Assume for notational convenience that only the parties
P1, . . . , Pn−1 communicate. Given two parties A and B, we are going to con-
struct a two-party protocol ΠA,B

MULT which on input a, b ∈ F from A,B, respec-
tively, securely computes ab. The idea is for A to emulate the n− 1 players who
communicate in ΠMULT while B emulates the last player. In particular, protocol
ΠA,B

MULT proceeds as follows:

Protocol ΠA,B
MULT

Input Phase
Parties A,B secret share their inputs a, b using the input secret-sharing

scheme An ofΠMULT. More specifically,A computes [a]A
n ← Share(a, n, n−

1) and B computes [b]A
n ← Share(b, n, n− 1).

Party A sends the input share an to party B and Party B sends the input
shares (b1, .., bn−1) to party A.

Evaluation Phase
Parties A,B invoke the protocol ΠMULT where A emulates the n−1 players

who communicate, and we assume these are the first n− 1 players. This
means that this phase involves no communication between A and B, but
it may consume some preprocessed data. The execution of ΠMULT yields
a sharing of [c]A

n

and outputs (c1, ..., cn−1) to party A and cn to party
B.

Output Phase
A sends

∑n−1
i=1 ci to B and B sends cn to A. The parties add the received

values to recover the output c = a · b.
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Correctness of this protocol follows immediately. The protocol can be argued
to be secure(private) as follows: in the input phase, the parties receive only an
unqualified set of shares whose distribution can be simulated perfectly. There is
no communication to be simulated in the evaluation phase. In the output phase,
it is the case for both parties that the value received from the other party is
trivial to simulate because it is determined from the party’s own value and the
result ab.

However, we can say even more: Let u be the preprocessed data that is
consumed during the protocol (ΠMULT uses preprocessed data). Note that the

communication in ΠA,B
MULT is actually independent of u. This means that we could

execute k instances of ΠA,B
MULT to compute k products on independent inputs,

while reusing the preprocessed data u. The correctness is clearly not affected by
this and the simulation is done by simply doing k independent simulations as
specified above. This works since the simulation is also independent of u.

However, this leads to a contradiction with the result of [WW10]: they showed
that the amount of preprocessed data needed for a secure multiplication is at
least some non-zero number of bits w. It also follows from [WW10] that if we
want k multiplications on independently chosen inputs this requires kw bits. So
if we consider a k large enough that kw > u, we have a contradiction and the
theorem follows.

We now generalise to dynamic communication patterns. As in the proof of
Theorem 1 we can find a party Pi such that with some constant positive proba-
bility p the party Pi does not send a message and no party anticipates a message
from Pi. Assume without loss of generality that this is party Pn. Assume first
that p is negligibly close to 1. In that case the parties can apply the above pro-
tocol unmodified. Consider then the case where p is not negligibly close to 1.
We also have that p is not negligibly close to 0. Hence there is a non-negligible
probability that Pn sends a message and a non-negligible probability that Pn
does not send a message. The decision of Pn to communicate or not can depend
only on four values:

– Its share an of a.
– Its share bn of b.
– Its share un of the correlated randomness.
– Its private randomness, call it rn.

This means that there exist a function %(an, bn, un, rn) ∈ {0, 1} such that Pn
communicates iff %(an, bn, un, rn) = 1. Observe that the decision can in fact
not depend more than negligibly on an and bn. If it did, this would leak in-
formation on these shares to the parties P1, . . . , Pn−1 which already know all
the other shares. This would in turn leak information on a or b to the parties
P1, . . . , Pn−1, which would contradict the simulatability property of the protocol.
We can therefore without loss of generality assume that there exist a function
%(un, rn) ∈ {0, 1} such that Pn communicates iff %(un, rn) = 1.

Assume that with non-negligible probability over the choice of the un received
by Pn it happens that the function %(un, rn) depends non-negligibly on rn, i.e.,
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for a uniform rn it happens with non-negligible probability that %(un, rn) = 0
and it also happens with non-negligible probability that %(un, rn) = 1. Since rn is
independent of the view of the parties P1, . . . , Pn−1, as it is the private random-
ness of Pn, it follows that the probability that one of the other parties anticipate
a message from Pn is independent of whether %(un, rn) = 0 or %(un, rn) = 1.
Hence it either happens with non-negligible probability that %(un, rn) = 0 and
yet one of the other parties anticipate a message from Pn or it happens with
non-negligible probability that %(un, rn) = 1 and yet none of the other parties
anticipate a message from Pn. Both events contradicts the correctness of the
protocol. We can therefore without loss of generality assume that there exist a
function %(un) ∈ {0, 1} such that Pn communicates iff %(un) = 1. By assump-
tion we have that p is non-zero, so there exist some un such that %(un) = 0.
We can therefore condition the execution on the event %(un) = 0. Let U be the
distribution from which u is sampled. Consider then the random variable U ′

which is distributed as U under the condition that %(un) = 0. We claim that if
we run ΠMULT with U ′ instead of U then the protocol is still secure. Assuming
that this claim is true, A and B can apply the above protocol, but simply use
(ΠMULT, U

′) instead of (ΠMULT, U).

What remains is therefore only to argue that (ΠMULT, U
′) is secure. To simu-

late the protocol, run the simulator for (ΠMULT, U) until it outputs a simulated
execution where Pn did not communicate. Call this simulator S′. Let E be the
event that Pn does not communicate. Since it can be checked from just inspect-
ing the view of the real execution of (ΠMULT, U) (or the simulation) whether E
occurred, it follows that E occurs with the same probability in the real execu-
tion and the simulation (or at least probabilities which are negligible close) or
we could use the occurrence of E to distinguish. Since E happens with a positive
constant probability it then also follows that the real execution conditioned on
E and the simulation condition on E are indistinguishable, or we could apply
a distinguisher for the conditioned distributions when E occurs and otherwise
make a random guess to distinguish the real execution of (ΠMULT, U) from its
simulation. This shows that S′ simulates (ΠMULT, U

′). ut

A generalisation. We note that Theorem 3 easily extends to any output secret
sharing scheme with the following property: Given shares c1, ..., cn of c, there is
a function φ such that one can reconstruct c from c1, ..., cn−1, φ(cn) and given c
and c1, ..., cn−1 one can simulate φ(cn) with statistically close distribution. The
proof is the same as above except that in the output phase, B sends φ(cn) to A,
who computes c and sends it to B.

Theorem 3 shows, for instance, that the SPDZ protocol [DPSZ12] has opti-
mal communication for the class of gate-by-gate protocols using additive secret-
sharing: it sends O(n) messages for each multiplication gate, and of course one
needs to send Ω(n) messages if all n players are to communicate, as mandated
in the theorem. Note also that in the dishonest majority setting, the privacy
threshold of the secret-sharing scheme used has to be n− 1, so we cannot have
a gap between the reconstruction and privacy thresholds, and so amortisation
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tricks based on packed secret-sharing cannot be applied. We therefore do not
consider any lower bounds for amortised MGP’s.

4.2 Protocols based on any Secret-Sharing Scheme

Note that if we consider an MGP whose output sharing scheme is not the ad-
ditive scheme, the proof of Theorem 3 does not work. This is because it is no
longer clear that given your own share of the product and the result, the other
party’s share is determined. In particular, the distribution of the other share
may depend on the preprocessed data we consume and so it is no longer clear
that we can reuse the preprocessing.

The solution is to use an existing reconstruction protocol secure in the pre-
processing model to securely reconstruct the output from the shares held locally
by the two parties after the execution of the MGP protocol. This will mean that
we can indeed reuse preprocessed data consumed by the MGP protocol itself
however, we now consume new preprocessed data for every instance of the recon-
struction protocol since this protocol requires communication. It turns out that
if we use a variant of the MGP that computes, not just a product, but an inner
product of long enough vectors, we can still obtain a contradiction. The fact that
we show it for the inner product is because we can show that the preprocessed
data one needs to compute an inner product is of size at least proportional to
the length of the vectors, while on the other hand the inner product itself is just
one field element, so that the cost of doing reconstruction of such a result will
be independent of the length of the vectors.

In order to obtain the above result and give more details, we proceed by
proving some auxiliary results with lower bounds on the amount of preprocessed
data needed for a secure evaluation of a function f .

Lower bounds for secure function evaluation in the preprocessing
model. In this section we will give lower bounds for secure implementations
of functions f : X × Y → Z from a functionality PUf ,Vf

which outputs corre-
lated randomness for the semi-honest model. In particular, we are in the setting
where the parties A,B have access to a functionality that gives a random variable
Uf to A and Vf to B with some guaranteed joint distribution PUf ,Vf

of Uf , Vf .
Given this, the parties compute securely a function f : X × Y → Z where A
holds x ∈ X , and B holds y ∈ Y. This function should have no redundant inputs
for party A 3 :

∀x, x′ ∈ X (x 6= x′ → ∃y ∈ Y : f(x, y) 6= f(x′, y)) (1)

The authors of [WW10] obtained Theorem 4 that gives a lower bound on
the conditional entropy of PUf ,Vf

. Their bound applies for input distributions X
and Y which are independent and uniformly distributed. This implies worst case

3 Party A must enter all the information about X into the protocol. An example of a
function that satisfies this property is the inner product IP.
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communication complexity. Our bound in Theorem 5 also applies to independent
and uniform distributions.

Theorem 4. Let f : X × Y → Z be a function that satisfies property (1).
Assume there exists a protocol having access to PUf ,Vf

which is an ε-secure im-
plementation of f in the semi-honest model with t = 1 corruptions. Then

H(Uf |Vf ) ≥ max
y

H(X|f(X, y))− (3|Y| − 2)(ε log |Z|+ h(ε))− ε log |X | − h(ε).

Our general result will only apply to functions where the output lives in a
ring Z. As it will become apparent, for the next theorem we require the following
property for a function f : X × Y → Z:

∀x, x′ ∈ X (x 6= x′ → ∃y1, y2 ∈ Y : f(x, y1)−f(x, y2) 6= f(x′, y1)−f(x′, y2)) (2)

Note that the bound in Theorem 4 still applies for functions f that satisfy
properties (1) and (2).

In the following we explore the lower bounds on the amount of preprocessed
data with respect to composition of functions. In Theorem 5 we prove a lower
bound on the conditional entropy of PUh,Vh

for a function h which is a linear
combination of two functions f and g. Our bound also applies to compositions of
k functions where k is an arbitrary number. Basically we show that the amount
of preprocessed data you need to compute the sum of f and g is the sum of
what you need to compute f and g separately, as long as f and g are applied to
distinct and independent inputs. We clearly need this assumption, as otherwise
the theorem is clearly false, just think of applying f = g on the same inputs.

Theorem 5. Let f : X × Y → Zf , g : Z ×W → Zg be functions that satisfy
properties (1) and (2). Assume that Zf = Zg. Let h be a linear combination of f
and g, namely: ∀x ∈ X , y ∈ Y, z ∈ Z, w ∈ W, h(x, z, y, w) := αf(x, y)+βg(z, w)
for some α, β 6= 0. If there exists a protocol that securely implements the function
h with access to PUh,Vh

, then it holds that

H(Uh|Vh) ≥ max
y

H(X|f(X, y)) + max
w

H(Z|g(Z,w)) .

Furthermore, the function h will have the following property:

∀x 6= x′ ∈ X , z 6= z′ ∈ Z ∃y1, y2 ∈ Y, w1, w2 ∈ W :

h(x, z, y1, w1)− h(x, z, y2, w2) 6= h(x′, z′, y1, w1)− h(x′, z′, y2, w2) (3)

Proof. We start by proving that the function h has this property:

∀x, x′ ∈ X , z, z′ ∈ Z((x, z) 6= (x′, z′)→
∃y ∈ Y, w ∈ W : h(x, z, y, w) 6= h(x′, z′, y, w) (4)

By assumption we consider the following two properties on the function g:

∀z 6= z′ ∈ Z ∃w ∈ W : g(z, w) 6= g(z′, w) (5)
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∀z 6= z′ ∈ Z ∃w1, w2 ∈ W : g(z, w1)− g(z, w2) 6= g(z′, w1)− g(z′, w2) (6)

and properties (1) and (2).
In order to prove properties (4) and (3) for the function h we proceed as

follows:

Case 1. x = x′, z 6= z′:
Suppose that ∃y such that f(x′, y) = f(x′, y). By assumption ∃w ∈ W :
g(z, w) 6= g(z′, w). Therefore, it follows that f(x′, y) − f(x, y) 6= g(z, w) −
g(z′, w) and property (4) holds.

Case 2. x 6= x′, z = z′:
Suppose that ∃w such that g(z′, w) = g(z′, w). By assumption ∃y ∈ Y :
f(x, y) 6= g(x′, y). It follows that f(x′, y) − f(x, y) 6= g(z, w) − g(z′, w) and
property (4) holds.

Case 3. x 6= x′, z 6= z′:
Let c = f(x′, y)− f(x, y) for some y ∈ Y. By assumption ∃w1, w2 ∈ W such
that c1 = g(z, w1)−g(z′, w1) and c2 = g(z, w2)−g(z′, w2) such that c1 6= c2.
Without loss of generality, assume that c 6= c1 then f(x′, y) − f(x, y) 6=
g(z, w1)− g(z′, w1) and property (3) follows.

Since the function h satisfy property (4) it also has property (1) and hence we
get from Theorem 4 that

H(Uh|Vh) ≥ max
y,w

H(X,Z|h(X,Z, y, w)) .

We then get that:

H(Uh|Vh) ≥ max
y,w

H(X,Z|αf(X, y) + βg(Z,w)) (7)

≥ max
y,w

H(X,Z|f(X, y), g(Z,w)) (8)

≥ max
y

H(X|f(X, y)) + max
w

H(Z|g(Z,w)) (9)

Inequality (9) follows from the independence of X,Z. This proves the theorem.
ut

Remark 1. The above theorem also applies to multiplicative relations ruling out
the cases where g(z, w) = 0 and f(x, y) = 0.

Exploiting Theorem 5 we prove a lower bound for the inner product function
IPk as per Definition 2.

Lemma 1. Let κ ≥ 1 and let f : X × Y → Z be a multiplication function as
per Definition 1. If there exist a protocol ΠIPk

which securely implements the
inner product function IPk with error probability ε in the semi-honest model and
having access to PUIPk

VIPk
then

H(UIPk
|VIPk

) ≥ k ·max
y

H(X|f(X, y)) (10)
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Proof. Since the function f satisfies properties (1) and (2), a straightforward
application of Theorem 5 for k = 2 yields H(UIP2

|VIP2
) ≥ 2 ·max

y
H(X|f(X, y)).

However it is easy to see that the proof of Theorem 5 extends to addition of k
functions for any k, so the lemma follows in the same way from this more general
result. ut

Utilising Theorem 5 in the following we prove that any function whose “pre-
processing complexity” is large enough requires lots of communication. What
“large enough” means here is determined by the output secret-sharing scheme
used in the protocol, in a sense we make precise below. In the following, when
f is a function with two inputs and one output, we will speak about a protocol
for computing shares of an f -output, denoted by Πf−output. This is essentially
the same as a MGP except that we replace multiplication by f . So the protocol
takes as input shares of x1 and x2 and computes shares of f(x1, x2) as output.
Note that the inputs x1, x2 may be vectors of field elements, whereas we will by
default assume that the output is a single field element.

In the sequel, for simplicity of exposition let Lf denote a lower bound on
the amount of preprocessed data needed for a secure implementation of f in the
preprocessing model and let Uf denote an upper bound.

Reconstruction Protocol Πrec. Let Snt be the secret-sharing scheme as per
Definition 5 and let f ′Sn

t
be the reconstruction function of Snt . Then, we can se-

curely implement the function f ′Sn
t

in the preprocessing model via the protocol

ΠSPDZ yielding the protocol Πrec.
4. It follows that Πrec demands communi-

cation and that its complexity depends only on the underlying secret-sharing
scheme Snt . In this case we obtain an upper bound Urec on the amount of pre-
processed data consumed by Πrec.

Theorem 6. Consider the preprocessing model where t of the n players may
be passively corrupted. Let Πrec be a secure output reconstruction protocol with
access to PUrec,Vrec

for the secret-sharing scheme Ŝnt . Let f be a function with
two inputs and one field element as output such that Urec < Lf . There exists no
passively secure n-player protocol Πf−output with expected anticipated commu-

nication complexity ≤ t for computing shares of an f -output with Ŝnt as output
secret-sharing scheme.

Proof. We start by assuming a fixed communication pattern. Suppose for con-
tradiction that there exists a protocol Πf where at most t players communicate.
Assume that it is the t first parties. Given two parties A and B, we are going
to construct a two-party protocol ΠA,B

f which on input a, b from A,B, respec-
tively, securely computes f(a, b). The idea is to execute the Πf−output protocol
in which A emulates the t players who communicate while B emulates the rest
of the parties but we are interest just for one additional party, say Pt+1. In
particular, protocol ΠA,B

f (a, b) proceeds as follows:

4 Note that any protocol in the preprocessing model can be used.
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Protocol ΠA,B
f (a, b):

Input Phase
Parties A,B secret share their inputs a, b using the secret-sharing scheme

Snt . More specifically, A computes [a]S
n
t ← Share(a, n, t) and B computes

[b]S
n
t ← Share(b, n, t).

Party A sends the input share (at+1, . . . , an) to party B and Party B sends
the input shares (b1, . . . , bt) to party A.

Evaluation Phase
Parties A,B invoke the protocol Πf−output where A emulates the t play-

ers who communicate, and we assume these are the first t players. This
means that this phase involves no communication between A and B, but
it may consume some preprocessed data. The execution of Πf−output
yields a sharing of [c]S

n
t and outputs (c1, ..., ct) to partyA and (ct+1, . . . , cn)

to party B.
Output Phase
Both parties locally invoke protocol ΠRec with access to PUrec,Vrec

which

on input [c]Ŝ
n
t outputs the result f(a, b).

Correctness of the protocol follows immediately from the correctness ofΠf−output
and ΠRec. The protocol can be argued to be secure(private) as follows: in the
input phase, the parties receive only an unqualified set of shares whose distri-
bution can be simulated perfectly. There is no communication to be simulated
in the evaluation phase. In the output phase, simulation is guaranteed by the
invocations of the secure protocol ΠRec.

We can claim the following: Note that the communication in ΠA,B
f is actu-

ally independent of the preprocessed data needed in order to securely compute
f . Therefore, while reusing the same preprocessed data for each invocation of
Πf−output, we could have executed ` instances of ΠA,B

f on independent inputs
without affecting correctness since the simulation is independent of the prepro-
cessed data. However, since protocol ΠRec is interactive its preprocessed data
must be refreshed for each of the ` executions of ΠRec. This means that the
amount of preprocessed data needed in order to compute ` instances of f is
Uf + ` · Urec. So if we consider an ` large enough such that ` · Lf > Uf + ` · Urec,
we have a contradiction and the theorem follows.

We now generalize to dynamic communication patterns. As for Theorem 3
we can show that if the expected communication complexity is ≤ t, then we
can find a set of t parties such that with positive probability only these parties
communicate. Assume without loss of generality that it is the parties P1, . . . , Pt.
We call the parties Pt+1, . . . , Pn the external parties.

As for Theorem 3 we can show that the decision of a party Pi ∈ {P1, . . . , Pt}
to send a message to an external party or anticipate a message from an external
party cannot depend on the private randomness of Pi as the other party of
the exchange has to send/anticipate the message at the same time. We can
similarly show that the decision cannot depend on Pi’s share of a or b, as it
would leak information to an external set of t parties: the adversary can corrupt
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t external parties to get t shares and then observe whether Pi communicates
to get information on the share of Pi, which would leak information on the
secret that has been shared. This means that for all Pi ∈ {P1, . . . , Pt} there
exist a function %i such that Pi communicates with an external party if and
only if %i(u1, . . . , ut) = 1. Similarly there exists a function %t+1 such that Pt+1

communicates at all if and only if %t+1(ut+1) = 1.
Let E be the event that %i(u1, . . . , ut) = 0 for i = 1, . . . , t and that %t+1(ut+1) =

0. Let U be the distribution of the shared randomness used by Πf−output. Since
E happens with constant probability and we can determine from the communi-
cation patterns whether E occurred, it follows that E occurs with statistically
close probabilities in the real execution of (Πf−output, U) and in the simulation.
Otherwise we could use the presence of E to distinguish the real execution and
the simulation. Furthermore, the real execution conditioned on E occurring and
the simulation conditioned on E occurring must be statistically close. Other-
wise we can distinguish by outputting a random guess when E does not occur
and using the distinguisher for the case when E occurs when E actually occurs.
It therefore follows that if we look at the distribution of correlated random-
ness U ′ which is U restricted to E occurring, then Πf−output run with U ′ is
also secure. This protocol can be simulated simply by running the simulator for
(Πf−output, U) until it produces a transcript where E occurred. The proof then
follows as above but using (Πf−output, U

′) instead of (Πf−output, U). ut

Given a function f with one output and a non-zero lower bound, we can add
it to itself on distinct inputs a sufficient number of times in order to satisfy the
condition in the above theorem. An example of a function f is the inner product
function IPk which is the composition of k MULT functions. In Lemma 1 we
obtained a lower bound LIPk on the amount of preprocessed data consumed by
a protocol that securely implements the function IPk. Now, if k is large enough
to satisfy the condition Urec < LIPk

, then it holds that ` · Urec + LMULT < ` · LIPk

for large enough ` leading to a contradiction with Theorem 6.

5 Conclusions

We have shown that any protocol that follows the typical gate-by-gate design
pattern must communicate for every multiplication gate, even if only semi-honest
security is required, for both honest majority and dishonest majority with pre-
processing where the target secret sharing scheme is additive. We have also
shown similar results for any target secret sharing scheme in the dishonest ma-
jority setting. This highlights a reason why, even with preprocessing, all know
protocols which are efficient in the circuit size |C| of the evaluated function re-
quire Ω(n|C|) communication and Ω(dC) rounds where dC is the depth of C.
Our result implies that a fundamental new approach must be found in order
to construct protocols with reduced communication complexity and therefore
beat the complexities of GMW, SPDZ etc. Of course, it is also possible that our
bounds hold for any protocols efficient in the circuit size of the function, and
this is the main problem we leave open.
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