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Abstract

In this work we consider a setting, that we call Device-Enhanced PAKE (DE-PAKE), where PAKE
(password-authenticated key exchange) protocols are strengthened against online and offline attacks
through the use of an auxiliary device that aids the user in the authentication process. We build such
schemes and show that their security, properly formalized, achieves maximal-attainable resistance to
online and offline attacks in both PKI and PKI-free settings. Notably, our solutions do not require secure
channels, and nothing (in an information-theoretic sense) is learned about the password by the device
(or a malicious software running on the device) or over the client-device channel, even without any ex-
ternal protection of this channel. An attacker taking over the device still requires a full online attack
to impersonate the user. Importantly, our DE-PAKE schemes can be deployed at the user end without
need to modify the server and without the server having to be aware that the user is using a DE-PAKE
scheme. In particular, the schemes can work with standard servers running the usual password-over-TLS
authentication.

1 Introduction

Today, passwords constitute the prevalent authentication mechanism for bootstrapping security in most on-
line applications (and many offline systems). A plethora of sensitive information stored in many differ-
ent contexts therefore depends on the security of password-based authentication. However, passwords are
vulnerable to both online and offline dictionary attacks that build on password dictionaries from which a
significant portion of passwords are chosen. Candidate passwords for authenticating a user to a server can
be tested by an attacker through online interactions with the server. Furthermore, an attacker breaking into
a server can mount an offline attack that uses information stored on the server (typically, a salted one-way
mapping of the password) to test the different passwords in the dictionary. Such offline dictionary attacks are
a serious concern, especially in light of frequent attacks against major commercial vendors recently, such as
PayPal [2], LinkedIn [9], Blizzard [3] and Gmail [8]. The offline attacks are particularly devastating because
a single server break-in may lead to compromising a huge number of user accounts [14]. Furthermore, since
many users re-use their passwords across multiple services, compromising one service may compromise
user accounts at other services.
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One important and increasingly common line of defense against password attacks is the use of two-
factor password authentication (TFA) schemes. TFA mechanisms are used for authenticating a user U to
a server S, and establishing a session key between the two, where the user has a password and a personal
device D (e.g., a smartphone) that contains some secret auxiliary information. This secret information is
used to increase the security of password authentication by preventing online attacks for an adversary that
does not have access to D. Typically, D displays a short one-time PIN (OTP), received directly from the
server or computed by D based on a key shared with the server, that the user manually copies over to the
authentication terminal in addition to providing her password. Traditionally, these TFA schemes have been
used for increasing resistance to online dictionary attacks. However, as correctly argued by Shirvanian et
al. [33], with the increasing vulnerabilities of servers to compromise [11, 13], TFA schemes should also be
enhanced to strengthen security against offline attacks.

In this paper, we follow the viewpoint of [33], and present solutions directed to enhance password
protocols against both online and offline attacks by an active man-in-the-middle attacker acting on both
user-server and user-device links, and capable of compromising devices and servers by learning their full
internal state (e.g., a server’s password file or the device’s secrets). The work of [33] presented several
schemes for achieving this goal. The main idea underlying all their TFA protocols is for the server to store
a randomized hash of the password, h = H(p, s), and for the device to store the corresponding random
secret s. The authentication protocol then checks whether the user types the correct password p and owns
the device, which stores s.

There are, however, two important aspects in which the schemes of [33] can be improved. First, all
their schemes assume a PKI setting, namely, the user (through a client application) must be in possession
of an authentic public key of the server which is used to establish a secure channel, e.g., via TLS. If such
public key is not available or is compromised, the security of the scheme completely breaks down. Given
the vulnerabilities of PKI to certification failures and man-in-the-middle attacks (either due to programmatic
errors or human mistakes), e.g., [18, 22, 34], reducing the dependency of authentication security on public
keys is an important goal. Second, their schemes require the authentication server to run a different protocol
than currently standard PKI-setting TFA schemes which can inhibit the deployment of such schemes. For
example, an individual user (or an application) cannot adopt the schemes from [33] to protect her password
stored by a web service without that service being modified to support the new TFA method.

1.1 Our Contributions

In this work we consider a setting, that we call Device-Enhanced PAKE (DE-PAKE), where PAKE (password-
authenticated key exchange) protocols are strengthened against online and offline attacks through the use of
an auxiliary device that aids the user in the authentication process. We build such schemes and show that
their security, properly formalized, achieves maximal-attainable resistance to online and offline attacks in
both PKI and PKI-free1 settings. Moreover, our DE-PAKE scheme can be deployed at the user end with-
out need to modify the server and without the server having to be aware that the user is using a DE-PAKE
scheme. In particular, the scheme can work with servers running the usual password-over-TLS authentica-
tion. We expand on these properties.

Resistance to online and offline attacks: As said, our DE-PAKE schemes provide maximal-attainable secu-
rity in terms of resistance to both online and offline attacks. That is, the only attack allowed by the scheme

1We stress that PKI-freeness in password protocols refers to dispensing of PKI for user authentication but some form of secure
channel is needed for password registration. Note that the latter process, being much less frequent than regular login, can use special
safeguards.
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is the unavoidable online guessing attack where the attacker tests if a given value p is the user U’s password
by interacting with both device and server in the role of U with password p and observing whether the server
accepts. In other words, each guess attempt requires the attacker to interact on both U-D and U-S links. No
amount of attacking on one link helps without a corresponding attack on the other. Moreover, fully com-
promising the device still requires a full online guessing attack on the U-S link and fully compromising the
server requires a full online guessing attack on the U-D link. And even if both S and D are compromised,
a full offline dictionary attack is required. More formally, to have an impersonation probability of q/|Dict|,
where Dict is the passwords dictionary, the attacker needs to run q online interactions with D and q online
interactions with S. Moreover, even when compromising the device and finding all its secrets, the attacker
still needs to run q online interactions with S, and if the server is compromised, q online interactions with
D are necessary. Compromising both device and server still requires a full offline dictionary attack. We
formalize these properties through a security model that extends the traditional PAKE security setting and
then use this model to prove the security of our schemes.

PKI-agnostic: The above security is achieved even when the user-server channel is not protected by a server
public key. On the other hand, when such protection is available one obtains the additional benefit that
impersonating the server to the user is infeasible even if the user’s password is disclosed. Luckily, our
schemes can work, without modification and without having to be aware of it, with PKI-based and PKI-free
authentication protocols.

Modularity and server-transparency: Our design is modular allowing for the use of independent device
and server components, in particular enabling the use of our scheme with existing password protocols and
without the need to modify the server side. See Section 5.2.

Organization. We present an overview of our design and proof methodology in Section 2 with full details
given in Section 4. Section 3 presents the formal DE-PAKE security model on which we base our analysis.
Section 5 presents protocol instantiations and extensions: A fully specified DE-PAKE scheme secure in
the PKI-free (or CRS) model; a description of our approach for armoring existing servers against online and
offline attacks while keeping the servers unmodified; and a discussion of extensions to address issues related
to client security (not covered in our DE-PAKE model). We close with more information on related work
and with conclusions. We plan to report on implementation in a future update.

2 Overview: Design and Analysis

Our design follows the “password hardening” approach of Ford and Kaliski [19], but dispenses of authen-
ticated channels (other than during a registration phase), multiple servers and/or other safeguards that were
required for the secure use of these techniques in prior work [19, 23].

Our idea is simple: the user memorizes a regular password pwd but uses as her password with server
S a value rwd = Fk(pwd) where F is a pseudorandom function and k is a key held by device D (rwd
is a mnemonics for “randomized password”). Before authenticating to S, U contacts D (through a client
application) and obtains rwd. Without knowledge of k, the value rwd has full entropy (in the range set of
function F ) hence dictionary attacks do not apply against rwd (neither online or offline attacks, not even if
the server is compromised). Moreover, we will ensure that even if D (or S) is compromised, offline attacks
against pwd are infeasible. Thus, the challenge is in implementing the protocol with D, to which we refer as
PTR (for Password-to-Random), so that no one, even the device itself, learns anything about the password
and no one learns anything about the key k. Note that we cannot assume an authenticated or secret channel
between the client and D since this would either require knowing a device public key or storing pwd-related
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information at D (the latter would open pwd to an offline dictionary attack upon compromising D). We show
that in spite of the client-device link being unauthenticated, hence controlled by the attacker, the “blinded
DH” approach of Ford-Kaliski (see Section 4.1), can be used to implement the PTR protocol.

Hence, we obtain our DE-PAKE scheme as the composition of a PTR protocol and any secure Password-
Authenticated Key Exchange (PAKE) protocol. In order to prove the security of such scheme, we first
extend (Section 3) the established security models for the PAKE functionality to the DE-PAKE setting.
For the DE-PAKE modeling we consider a fully capable man-in-the-middle attacker active on all the links
between all parties and one who is allowed to compromise servers and devices at will. No external source
of authentication is assumed other than the user’s password (except for secure registration of a user with
the server and device). Second, we define the security requirements from a PTR protocol and show that
our PTR instantiation, FK-PTR, satisfies this definition. Finally, we prove a generic security composition
theorem showing that the composition of a secure PTR scheme (run between user and device on the basis
of the user’s password pwd) with a secure PAKE protocol (run between user and server on the basis of the
hardened password rwd) results in a secure DE-PAKE protocol. Any PAKE protocol that is secure against
server compromise (e.g., [21, 24]) can be used. Since our FK-PTR scheme does not require PKI, using a
PKI-free PAKE in the above composition results in a DE-PAKE protocol that does not rely on public keys
or other secure channels.

In order to demonstrate a full standalone solution, in Section 5 we compose our FK-PTR scheme with
a specific PAKE protocol - a single-server variant of threshold PAKE from [24] - which does not require
PKI and is secure against server compromise. However, our FK-PTR scheme can be used with any existing
password protocol and without changing the server that implements that protocol (see Section 5.2). If the
password protocol is PKI-free so is the DE-PAKE protocol, and if the password protocol is secure against
server compromise (see Section 3) so is the DE-PAKE protocol.

3 Security Model

We introduce the Device-Enhanced PAKE (DE-PAKE) security model under which we prove the security of
our schemes. The model extends the standard PAKE (Password Authenticated Key Exchange) formalisms to
include user-specific devices and formulates a security definition that guarantees maximal online and offline
security of password protocols.

We start by recalling the PAKE security model (adapted to the client-server setting) and then present the
DE-PAKE extensions.

3.1 PAKE Security Model

We recall the security model for PAKE (Password-based Authenticated Key Exchange) protocols based
on the original model of Bellare, Pointcheval and Rogaway [16] that extends authenticated key exchange
models to account for the inherent vulnerability of password protocols to online guessing attacks. We adapt
the model to the client-server setting borrowing some of the formalism from [24] (we refer to the client as
the “user”). At the end of this section we present an extension of the PAKE model to security against server
compromise.

Protocol participants. There are two types of parties participating in a PAKE protocol, users and servers.
Each user is associated with a single server while servers may be associated with multiple users.

Protocol execution. A PAKE protocol has two phases: initialization and key exchange. In the initialization
phase each user U chooses a random password from a given dictionary Dict and interacts with its associated
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server S producing a user’s state σS(U) that S stores while U only remembers its password. Initialization
is assumed to be executed securely, e.g., over secure channels. In the key exchange phase, users interact
with servers over insecure (adversary-controlled) channels to establish session keys. Each user may execute
the protocol multiple times with its associated server in a concurrent fashion. Each execution defines a
user instance, denoted ΠU

i , where i serves to differentiate between instances of same U. Servers also have
instances denoted ΠS

i with each instance associated with a single user. Each party’s instance is associated
with a single session and with the following variables: a session identifier sid, which we equate with the
message transcript observed by this instance (where both U and S order their interaction transcripts starting
with U’s message), a peer identity pid, and a session key sk. For a user instance the peer is always the
user’s server while for a server instance the peer is the user authenticated in the session. The output of an
execution consists of the above three variables which can be set to ⊥ if the party aborts the session (e.g.,
when authentication fails, a misformed message is received, etc.). When a session outputs sk 6=⊥ we say
that the session accepts.

PAKE Security. To define security we consider a probabilistic attacker A which schedules all actions in
the protocol and controls all communication channels with full ability to transport, modify, inject, delay
or drop messages. In addition, the attacker knows (or even chooses) the dictionaries used by users. The
model defines the following queries or activations through which the adversary interacts with, and learns
information from, the protocol’s participants.

send(P, i, P ′,M): causes message M to be delivered to instance ΠP
i purportedly coming from P ′. In

response to a send query the instance takes the actions specified by the protocol and outputs a message given
to A. When a session accepts, a message indicating acceptance is given to A. A send message with a new
value i (possibly with null M ) creates a new instance at P with pid P ′. For simplicity, we assume that the
pair {P, P ′} in any send message contains a user and the server associated to that user (a non-compliant
message would cause the receiving instance to abort).

reveal(P, i): If instance ΠP
i has accepted, this query causes the output of the corresponding session key

sk; otherwise the output is ⊥.

corrupt(P ): Outputs all the internal information at party P ; A gains full control of P . We say that P is
corrupted.

compromise(S,U): Outputs state σS(U) at S. We say that S is U-compromised.
test(P, i): If instance ΠP

i has accepted, this query causes ΠP
i to flip a random bit b. If b = 1 the

instance’s session key sk is output and if b = 0 a string drawn uniformly from the space of session keys is
output. A test query may be asked at any time during the execution of the protocol, but may only be asked
once. We will refer to the party P against which a test query was issued and to its peer as the target parties.

The following notion taken from [24] is used in the security definition below to ensure that legitimate
messages exchanged between honest parties do not help the attacker in online password guessing attempts
(only adversarially-generated messages count towards such online attacks). It has similar motivation as
the execute query in [16], but the latter fails to capture the ability of the attacker to delay and interleave
messages from different sessions.

Rogue send queries (rogue activations): We say that a send(P, i, P ′,M) query is rogue if it was not gen-
erated and/or delivered according to the specification of the protocol. That is, the message M has been
changed or injected by the attacker, or the delivery order differs from what is stipulated by the protocol (de-
laying message delivery or interleaving messages from different sessions is not considered a rogue operation
as long as internal session ordering is preserved). We also consider as rogue any send(P, i, P ′,M) query
where P is uncorrupted and P ′ is corrupted.
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Throughout the paper we will refer to messages delivered through rogue send queries as rogue activations
by A.

Matching sessions. A session in instance ΠP
i and a session in instance ΠP ′

j are said to be matching if both
have the same session identifier sid (i.e., their transcripts match), the first has pid = P ′, the second has
pid = P , and both have accepted.

Fresh sessions. A session at instance ΠP
i with peer P ′, where {P, P ′} = {U,S}, is called fresh, if none

of the queries corrupt(U), corrupt(S), compromise(S,U), reveal(P, i) or reveal(P ′, i′) were issued, where
ΠP ′
i′ represents the instance whose session is matching to the session at ΠP

i (if such matching session exists).

Correctness. Matching sessions between uncorrupted peers output the same session key.

Attacker’s advantage. Let PAKE be a PAKE protocol and A be an attacker with the above capabilities running
against PAKE. Assume that A issues a single test query against a fresh session at a user or server and ends
its run with an output bit b′. We say that A wins if b′ = b where b is the bit chosen internally by the test
session. The advantage of A against PAKE is defined as

AdvPAKE
A = 2 · Pr [A wins against PAKE]− 1.

Definition 1. A PAKE protocol PAKE is (qS , qU , T, ε)-secure if it is correct and for any password dictionary
Dict and any attacker A that runs in time T , it holds that AdvPAKE

A ≤ qU+qS
|Dict| + ε where qU is the number of

rogue send queries having the target user U as recipient and qS is the number of rogue send queries having
the target S as recipient.

Dictionary size 2d. For notational convenience, we will use 2d to denote the size of password dictionaries,
although our treatment does not depend on these sizes being a power of 2.

PAKE security against server compromise. To achieve full DE-PAKE security in the case of server
compromise we need the PAKE protocol used in the PTR-PAKE composition to be “secure against server
compromise.” That is, one requires that even if server S is U-compromised, a PAKE-attacker A needs to run
an offline dictionary attack before it can impersonate U to S.2 Security against server compromise has been
formalized in the UC model in [21]. Here we extend the above indistinguishability-based PAKE formalism
to capture this requirement through the following game. We consider a PAKE setting as before except for
the following changes. A user U (associated with server S) chooses its password at random from a dictionary
Dict, where Dict is a random subset of {0, 1}τ of size 2d (for integers d < τ ). The PAKE attacker A is only
given a random subset of Dict of size q as well as the server’s state σS(U). In addition, A is required, to
choose the test session at an instance of S with peer U (in the regular PAKE case this is not allowed since
S is U-compromised). A PAKE protocol is ε-secure against server compromise if for any q ≤ 2d, the
attacker’s advantage in the above game is at most q/2d + ε.

This definition captures the property that in spite of possessing the user’s state at S (the “passwords
file”), the attacker still needs to invest work proportional to an offline exhaustive search of the password to
be able to impersonate the user to the server.

3.2 DE-PAKE Security Model

We extend the PAKE model to the DE-PAKE setting. Besides servers and users in the PAKE model, each
user is associated with a device D with which it communicates over a two-way link. The initialization phase

2Impersonating S to U when S is U-compromised is unavoidable except if one assumes, as in the PKI model, an independent
authenticated channel from S to U.
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of PAKE is extended to include the user-device communication that establishes the state stored at D. As
before, users only remember their passwords. As in the PAKE case, initialization (including the user-device
interaction) is assumed to run over secure channels. After initialization, the links between users and devices
are subject to the same man-in-the-middle adversarial activity as in the links between users and servers.
Device instances ΠD

i are created similarly to user and server instances, and are activated by A via send
queries that include users and devices as senders and receivers. However, device instances do not produce
output other than the outgoing messages. In particular, reveal queries do not apply to them, but corrupt
queries can be issued against devices, in which case the internal state of the device is revealed to A who then
controls the device. The session-related notions, including the test query, do not apply to devices.

The attacker’s goal remains the same as before, namely, win the test experiment at a user or server
instance exactly as in the PAKE setting. Also the correctness property is unchanged. However, to the
attacker resources we add the number of rogue send queries (see Section 3.1) where the target user is the
recipient and the device the sender (denoted q′U ) and the number of rogue send queries where the target
user is the sender and the device the recipient (denoted qD). We refer to this more powerful adversary as a
DE-PAKE attacker.

The following security definition captures the maximal-attainable online and offline security from a DE-
PAKE protocol as informally discussed in the introduction. Let DPK be a DE-PAKE protocol and A be an
attacker with the above capabilities running against DPK. As in the PAKE model, we assume that A issues a
single test query against some U or S session, that A output bit b′, and we say that A wins if b′ = b where b
is the bit chosen by the test session. We define

AdvDPK
A = 2 · Pr [A wins against DPK]− 1.

Definition 2. A DE-PAKE protocol is called (qS , qU , q
′
U , qD, T, ε)-secure if it is correct, and for any pass-

word dictionary Dict of size 2d and any attacker that runs in time T , the following properties hold (for
qS , qU , q

′
U , qD as defined above):

1. If S and D are uncorrupted, the following bound holds:

AdvDPK
A ≤

min{qU + qS , q
′
U + qD}

2d
+ ε. (1)

2. If D is corrupted then AdvDPK
A ≤ (qU + qS)/2d + ε.

3. If S ic corrupted then AdvDPK
A ≤ (q′U + qD)/2d + ε.

4. When both D and S are corrupted, expression (1) holds but qD and qS are replaced by the number of
offline operations performed based on D’s and S’s state, respectively.

Notes. One could define the above bounds more generally by replacing the expression min{qU + qS , q
′
U +

qD}/2d+εwith some more general function of the q parameters but we choose the simpler and more natural
case. Also, note that the expression (1) can be achieved by the adversary via generic attacks (e.g., qU + qS
is achievable when A plays man-in-the-middle between S and D on a guessed password, and q′U + qD is
achievable when A acts between U and D on the guessed password). Finally, we note that item 2 (resp. 3)
could be covered by (1) if one replaced qD (resp. qS) in this expression with the number of offline operations
performed based on D’s (resp. S’s) state.

Note on client security. Our model and definitions are intended to capture (maximal) security against online
and offline attacks where the attacker fully controls all communication channels and can compromise servers
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and devices. However, as it is customary in the PAKE setting, the model does not consider the security of the
machine (the “client”) into which the user enters his or her password. Yet, our solutions, while vulnerable to
some forms of attack by an attacker controlling the client machine, also provide defenses to common attacks
such as keyloggers or phishing attacks (see Section 5.3).

4 A modular DE-PAKE Scheme

In this section we present and analyze our generic DE-PAKE scheme, named PTR-PAKE, that results from
the composition of two independent cryptographic primitives, a PTR protocol and a PAKE protocol. For a
high level description of the functionality of a PTR (password-to-random) scheme and its use for obtaining a
DE-PAKE scheme see Section 2. Here we formalize the PTR notion and its security requirements. We then
present a specific efficient PTR implementation that we call FK-PTR (FK is for Ford-Kaliski [19], whose
approach we follow here) and prove it to satisfy the PTR security notion. Finally, we prove that the generic
composition of any secure PTR scheme and any PAKE scheme secure against server compromise results in
a secure DE-PAKE scheme. If the PAKE scheme is in the password-only model3 then the DE-PAKE scheme
is also secure in this model. Thus, our generic scheme can be instantiated with our FK-PTR scheme as the
PTR part and any secure PAKE protocol with the above properties (e.g., [21, 24]).

Refer to Figure 1 for the specification of the DE-PAKE scheme that results from composing our FK-PTR
scheme with any PAKE protocol. We elaborate on the FK-PTR scheme next.

4.1 The FK-PTR Scheme

The particular instantiation of a PTR scheme (i.e., the FK-PTR scheme described as part of Figure 1) is based
on Ford-Kaliski’s “password hardening” [19] or its more general interpretation as an Oblivious PRF (OPRF)
[20,26,27]. It is shown in the figure as the interaction between U and D by which U retrieves a random value
rwd with the help of its password pwd. At initialization, U chooses and remembers password pwd while D
chooses and stores k ← Zq. To retrieve rwd, U first blinds pwd by raising the hashed value H ′(pwd) to a
random exponent ρ, and send it to D. This perfectly hides pwd from D and from any eavesdropper on the
U − D link. D checks that the received value is in the group G and if so it raises it to the secret exponent
k. Now, U can de-blind this value by raising it to the power 1/ρ to obtain H ′(pwd)k. Finally, U hashes this
value with pwd to obtain the randomized password rwd.

Note that D contains no information related to pwd hence an attacker interacting with D or even breaking
into it learns nothing about pwd. Also, U does not run any test on the value reconstructed in the FK-PTR
protocol. Hence, an attacker that interacts with U in the role of D does not learn anything about pwd from
watching the behavior of U. These “obliviousness” and minimality properties of FK-PTR are essential to
achieve PTR security and make the security analysis challenging. We will use this scheme to motivate the
security requirements from a PTR scheme as needed for composing it with a PAKE protocol and obtain
a secure DE-PAKE protocol. We establish these requirements in the next subsection and then prove the
security of FK-PTR.

3This model assumes that user/password registration is implemented over secure channels but user authentication after registra-
tion does not assume public keys or secure channels for any party in the system - only the existence of public parameters, e.g., for
defining an elliptic curve, is assumed. These parameters are common to all users of the system and are part of the client program
run by a user; they require the same integrity guarantees as the program itself.
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Setup

• Group G. The scheme works over a cyclic group G of prime order q, |q| = `, with generator g.

• Hash functions H,H ′ map arbitrary-length strings into elements of {0, 1}τ and G, respectively, where τ is a
security parameter.

• OPRF. For a key k ← Zq , we define function Fk as Fk(x) = H(x, (H ′(x))k).

• Parties. User U, Device D, Server S.

• Dictionary Dict of size 2d (a power of 2 is used for notational convenience only).

• Any PAKE protocol Π.

Initialization Phase

• FK-PTR Initialization: U chooses and remembers password pwd ← Dict; D chooses and stores OPRF key
k ← Zq .

• PAKE Initialization: User U and server S are initialized with password rwd = Fk(pwd) according to the
specification of PAKE protocol Π.

Login Phase

• User-Device Interaction (FK-PTR)

1. U chooses ρ← Zq; sends α = (H ′(pwd))ρ to D.

2. D checks that the received α ∈ G and if so it responds with β = αk.

3. U sets rwd = H(pwd, β1/ρ).

• User-Server Interaction (PAKE)

Follows the specification of the PAKE protocol Π where U uses rwd as its password.

Figure 1: The FK-PTR-PAKE Scheme

4.2 PTR Security Model

Here we present the security model for (generic) PTR schemes. We first define the adversarial game under-
lying this model and then use the FK-PTR scheme and explicit potential attacks against it to motivate the
security definition.

PTR adversarial game. The game is parameterized by a function family F and a password dictionary Dict
of size 2d for some d (the power of two is chosen for notational convenience only). User U is initialized
with password pwd ← Dict and device D with a key k defining function Fk. Later, the parties interact
so that in an undisturbed interaction between U and D, where U runs with input pwd, U outputs the secret
rwd = Fk(pwd). Attacker A has oracle access to U and D, calling these parties with any message of its
choice and receiving the corresponding response as defined by the scheme depending on the internal secrets
and state of the responding party. The security requirements are defined below in Definition 3 but we first
motivate them as follows.

Attack avenues and PTR security requirements. We define security of a PTR scheme in a way that
guarantees that the generic composition of PTR and PAKE protocols results in a secure DE-PAKE scheme.
The definition consists of several requirements that we motivate next via concrete attacks showing these
requirements to be necessary (and by virtue of Thm. 3 also sufficient). We use the notation RDict =
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{Fk(p) : p ∈ Dict} where k is D’s secret key.

Attack avenue 1: Leakage on rwd = Fk(pwd). Given that A can obtain values in RDict by interacting with
D on input any password in Dict we need to assure that nothing in the scheme leaks information on the
specific value of rwd = Fk(pwd) or otherwise the attacker can use this information to gain advantage on
guessing which of the RDict values is more plausible to be the correct rwd (e.g., it shouldn’t be possible for
A to test a possible value p as a candidate for pwd or to test a value r as a candidate for rwd). More generally,
to apply PAKE we need to ensure that the view of the attacker at the end of the PTR run is independent,
computationally or statistically, from rwd.

To capture this property we define the following experiment referred to as the distinguishing test. Let
rwd = Fk(pwd) and choose r ← RDict \ {rwd}. A is given both rwd, r (in random order) and it needs to
guess which one equals Fk(pwd).

Attack avenue 2: Learning values in RDict. Since A can learn values in RDict by interacting with D, A
can later interact with S in the PAKE protocol using these values. Thus, the best we can do is to require
the PTR protocol not to leak to A more than one value in RDict for each interaction with D. We formalize
this by defining a game where the attacker, at the end of its run, outputs a set of candidate values in RDict,
and requiring that this set does not contain more than qD correct values where qD is the number of rogue
activations of D by A.

Attack avenue 3: Using U to test passwords. Since the attacker can influence the values output by U in the
PTR protocol, the possibility exists, at least in principle, that A makes U output a value Fk(pwd′) where
pwd′ ∈ Dict is known to A. In this case, A can observe the PAKE run of U with S and see if pwd′ is the
correct password. This allows A to test passwords in Dict without having to act as an active MitM in the
PAKE protocol between U and S. While this attack is not possible against FK-PTR (as we will prove later),
one can show PTR schemes where this attack is feasible. There are two ways of dealing with this issue.
We either show that any such “dictated password” requires a specific rogue activation of D (as in Attack
2 above) hence treating it as any other password in RDict that A may learn by interacting with D or we
require that a secure PTR scheme does not allow for such attack. The latter is better as it prevents A from
testing passwords without a rogue activation of U but the former can be acceptable in a protocol that allows
the attack. Given that our FK-PTR protocol does not allow the attacker to use U as an oracle for testing
passwords in RDict \ {rwd}, we choose the stronger notion by adding an explicit requirement against such
possibility.

On the basis of this discussion we will require the probability that the output from U in a PTR run is
Fk(pwd

′) for pwd′ ∈ Dict \ {pwd} to be negligible.

Attack avenue 4: Running U on passwords outside RDict. The PTR-PAKE composition presents an attack
avenue not present in regular PAKE protocols: A can make U run the PAKE protocol on a password from
a dictionary RDict∗ different than RDict (note that this is different from attack scenario 3). To see this,
consider an attack in which A impersonates D to U running the protocol with a key k′ chosen by A. As a
consequence, U will run the PAKE protocol with the value Fk′(pwd), i.e., with a value uniformly distributed
over RDict∗ = {Fk′(p) : p ∈ Dict} where RDict∗ is known to A. This allows A to attack the PAKE protocol
as follows. It impersonates S to U as if the server’s state was initialized with password Fk′(p) for p ∈ Dict.
If p = pwd, A succeeds in the impersonation and learns pwd.4 This attack is not contemplated in standard

4This attack recovers pwd with 2d impersonation attempts (of S) against U and it only requires one value Fk′(pwd) used by U
as its PAKE password. Does this imply a break of the DE-PAKE scheme? The answer is no since for each impersonation attempt
against U, A needs to perform a rogue activation of U in PTR. In other words, if q′U is the number of rogue activations of U in PTR
and qU is the number of rogue calls to U in PAKE, then the probability of successful impersonation is at most min{qU , q′U}/2d.
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PAKE models where the user is assumed to run with a password from the specified dictionary and without
adversarial choice of the password. To illustrate the dangers of such attack, imagine that the family F has a
key k∗ such that Fk∗(·) is a constant function (with an output known to A). This is a real possibility against
FK-PTR if we define Fk(p) to be H((H ′(p)k) in which case k∗ = 0 has exactly this effect. Similarly, if
there is a key k∗ for which Fk∗ is a t-to-1 function, A could discard t passwords with each S-impersonation
attempt against U. Again, this is possible against FK-PTR with the modified Fk where A can choose β′, the
response returned to U, to be in a group of small-order. (Such an implementation of FK-PTR would require
to test β′ ∈ G \ {1}.)

To prevent this attack avenue we will require that any attack strategy by A for generating a dictionary
RDict∗ will induce a 1-1 function. We formalize this as follows. Let c denote a set of coins for parties
U,D,A in a PTR run. For any such c define fc(p) as the output from U if its password was p. We require
that except for negligible probability over the choice of c, fc is 1-1. (Note that each such c defines a
dictionary RDict∗ = {fc(p) : p ∈ Dict} of size |Dict|.)
We are now ready to define PTR security.

Definition 3. We say that a PTR scheme is (qD, qU , T, ε)-secure if for any PTR attacker A that runs time
T and performs qD and qU rogue activations of D and U, respectively, ε is an upper bound on the values
ε1, ε2, ε3, ε4 defined as follows (these εi are functions of qD, qU , T and they correspond to the above attack
avenues):

1. the probability that A passes the distinguishing test of attack avenue 1 is at most 1/2 + ε1;
2. the probability that A outputs more than qD values in RDict according to attack avenue 2 is at most
ε2;

3. the probability that U outputs Fk(pwd′) for pwd′ ∈ Dict \ {pwd} is at most ε3;
4. the probability that fc, as defined in attack avenue 4, is not 1-1 is less than ε4.

where in all four cases the probability goes over random PTR key k and random pwd in Dict.

4.3 Security of the FK-PTR Scheme

Theorem 1 below summarizes the security of the FK-PTR scheme in terms of Definition 3. It uses the
One-More Gap Diffie-Hellman assumption defined next.

The One-More Gap DH (OMG-DH) Assumption [15, 27]: Let G be a group of prime order q and k a
random value in Zq. Let DHk be an oracle5 that on input g ∈ G outputs gk, and let DDHk be an oracle
that on input a pair (a, b) answers whether b = ak. We say that G satisfies the εomg-OMG-DH assumption
for function εomg if any attacker A that runs in time T has probability at most εomg(T, qdh, qddh) to win the
following game: A is given access to the DHk and DDHk oracles, which it queries qdh and qddh times, resp.,
and is given a set R of random elements in G. It wins if it outputs qdh + 1 different pairs (g, gk), g ∈ R.

Theorem 1. Let G be a group where the εomg(·)-One-More Gap DH holds. Let the hash functions H,H ′

be modeled as random oracles and qH be the number of invocations to H . Then, the FK-PTR scheme run
over group G with a dictionary Dict ⊂ {0, 1}τ is (qD, qU , T, ε)-secure where ε = max{ε1, ε2, ε3, ε4} with
ε1 = 0, ε2 ≤ T/2τ + εomg(T, qD, qH), ε3 ≤ 1/2τ , ε4 ≤ |Dict|2/2τ .

Note that this implies that it is insecure for U to cache the value retrieved from D for use in multiple sessions - doing so allows the
above attack without A having to act as a MitM between U and D in each DE-PAKE session.

5DHk is not defined over elements outside G hence one needs to check the input to the oracle - it can be done by an explicit
group membership check or by co-factor exponentiation.
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Proof. To show that ε1 = 0, note that the only information A sees related to the particular value pwd is
α = (H ′(pwd))ρ but since ρ is chosen by U uniformly in Zq, α is uniformly distributed in G independently
of pwd. Thus, the view of A is independent of U’s password pwd and the probability of A to win the
distinguishing test is 1/2. The bound on ε2 follows from Lemma 2 below proven based on the OMG-DH
assumption. The bound on ε3 follows from the fact that pwd is included under H , hence the probability that
for some pwd′ ∈ Dict \ {pwd}, we have H(pwd′, (H ′(pwd′))k) = H(pwd, (H ′(pwd))k) is 2−τ where τ is
the length of the output from H . Similarly, the bound on ε4 follows from the collision resistance properties
of the (random) H .

Note: The bound |Dict|2/2τ on ε4 can be reduced significantly if one relaxes requirement 4 of PTR security
to allow for some deviation from injectiveness, e.g., allowing RDict to be of size α · |Dict| for some α, say
α = 1/2.

Lemma 2. LetG be a group where the εomg-One-More Gap DH assumption holds and model hash functions
H,H ′ as random oracles. Let A be a PTR-attacker against the FK-PTR scheme that runs time T and
activates D qD times with values chosen by A (i.e., rogue activations). Then, the probability that A outputs
more than qD values in RDict (as in attack avenue 2) is at most ε2 = T/2τ + εomg(T

′, qD, qH) where qH is
the number of invocations of H by A and T ′ ≈ T .

Proof. Given a PTR attacker A against the FK-PTR scheme over a εomg-OMG-DH group G, we build an
attacker A′ against OMG-DH in group G. A′ gets access to a DHk and DDHk oracles and an input in the
form of an ordered set R = g1, ..., gN of random elements in G. A′ runs A on a simulated run of FK-PTR.
A′ uses DHk to answer queries to D (i.e., A′ simulates an instance of D under key k) and uses the set R to
answer H ′ queries. Namely, if R = g1, ..., gN then the first H ′ query is answered with g1, the second with
g2, etc. Queries (x, y) to H are answered with random values in {0, 1}τ . A′ keeps a table of defined inputs-
outputs for these oracles and answers to repeated queries with the corresponding values in these tables. A′

chooses pwd, sets H ′(pwd) = g1 (i.e., this is done prior to answering any H ′ query from A), and queries g1

to DHk obtaining gk1 which we denote by y∗.
A′ simulates the actions of U faithfully, namely, it outputs messages of the form α = gρ1 for random

ρ ← Zq and upon receiving a response β from A it computes r′ = H(pwd, β1/ρ). When A delivers a
message α′ to D, A′ responds to it as follows. If α′ was output by U, in which case A′ knows ρ such that
α′ = gρ1 , A′ responds with yρ1 ; otherwise A′ queries α′ from DHk. In addition, for inputs (x, y) to H , A′

checks that H ′(x) was queried and if so it checks, using the DDHk oracle, whether the gj ∈ R returned as
the result of H ′(x) satisfies y = gkj . If all checks pass, A′ stores the pair (gj , y) in a list L.

Note that the above simulation of A is perfect hence the output from A is the same as in a real execution
of FK-PTR. As claimed in the proof of Theorem 1, the view of A is independent of pwd and g1 (A only
sees values of the form gρ1 for one-time random ρ’s) hence it is independent of rwd (which is computed as
H(pwd, (H ′(pwd))k)).

Denote by R′ the set of values in RDict output by A. Let E1 denote the event that R′ contains a value
r′ = H(p, (H ′(p))k) for p ∈ Dict and that A did not query H on (p, (H ′(p))k) or H ′ on p; the probability
of E1 is at most T/2τ . Assuming E1 does not happen we have that if r′ = H(p, (H ′(p))k) ∈ R′ then A
queried H ′ on p and H on (p, (H ′(p))k). Since A′ chooses its responses to H ′ queries from elements in the
set R, we have that r′ = H(p, gj

k) for gj ∈ R so the query H(p, (H ′(p))k) resulted in the pair (gj , gj
k)

being included by A′ into the list L. Thus, |R′| ≤ |L|.
Note that A′ has obtained pairs (gj , g

k
j ) for all pairs in L as well as for (g1, g

k
1 ). Let L′ = L∪{(g1, g

k
1 )}.

By the DH-OMG assumption we have that the probability that L′ contains more than qdh elements is at
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most εomg(T ′, qdh, qddh) where T ′ is the running time of A′. So, except for this probability, we can assume
|L′| ≤ qdh. We show |L| ≤ qD and therefore |R′| ≤ qD as claimed by the lemma.

A′ queries DHk in two cases: Upon rogue activations of D by A and for obtaining gk1 . Thus, if (g1, g
k
1 ) /∈

L we have qdh = qD + 1, and together with the assumption qdh ≥ |L′| = |L| + 1 we obtain that |L| ≤
qdh − 1 = qD. If (g1, g

k
1 ) ∈ L (meaning that g1 was also queried by A through a rogue activation) then

qdh = qD and together with qdh ≥ |L′| = |L| we obtain that |L| ≤ qdh = qD.
In all, we have that except for probability ε2 = εomg(T

′, qD, qH)+T/2τ , |R′| ≤ |L| ≤ qD. The running
time of A′ is essentially that of A if we count U activations as part of A running time and equate the cost of
a call to DHk to that of a D activation and the cost of a H ′ call to that of a DDHk invocation.

4.4 PTR-PAKE Composition Theorem

We are now ready to prove the composition theorem showing that composing a secure PTR with a PAKE, se-
cure against server compromise results in a secure DE-PAKE scheme (with security definitions as presented
in Section 3). The composition of PTR and PAKE is as described earlier (i.e., using the device to map the
user’s password pwd into a random value rwd that is then used as the password in the PAKE protocol). As
noted earlier, if the PTR and PAKE schemes dispense of PKI so does our DE-PAKE protocol. An example
of such composed scheme free of PKI (except for initialization) is presented in Section 5.1.

Theorem 3. Let P be a (qD, q
′
U , TP , εP )-secure PTR scheme and Π be a (qS , qU , TΠ, εΠ)-secure PAKE

protocol that is also εSC-secure against server compromise, then the DE-PAKE scheme C that uses the
composition of both protocols is a (qS , qU , q

′
U , qD, TC , εC)-secure DE-PAKE protocol where εC = εΠ +

(3q′U + 1)εP + εSC + qU+qS
2τ−1 .

Proof. The proof of the Theorem is presented in Appendix A.

5 Instantiation and Extensions

In this section, we discuss several DE-PAKE instantiations and extensions of our PTR-PAKE scheme show-
ing the practicality and flexibility of our approach. We first present a full and detailed instantiation of
PTR-PAKE that is secure in the PKI-free setting . Then, we show how to provide transparent DE-PAKE
support to currently deployed web services, namely, armoring an existing service against online and of-
fline attacks without changing the server. Finally, we comment on extensions that provide defenses against
client-side and phishing attacks.

5.1 PKI-Free DE-PAKE

Figure 2 describes a full instantiation of a PKI-free PTR-PAKE protocol using the FK-PTR scheme from
Figure 1 and a PKI-free PAKE protocol adapted from the threshold PAKE (TPAKE) protocol of [24, 25].
More precisely, the PAKE protocol we use is an adaptation of the TPAKE protocol from [24, 25], proven
secure in the PKI-free (or CRS) model, to the single-server case (i.e., a (1,1)-TPAKE).

The protocol as described in Figure 2 also requires a key-exchange mechanism (the “KE formula”) to
set a session key between server and user (in particular for the sake of mutual authentication). Different
protocols can be used here, for example, based on shared keys or public keys, with or without forward
secrecy, etc. However, we note that in order to achieve security against server compromise (needed to
provide the maximal security of a PTR-PAKE scheme) one must use a public key mechanism. Otherwise, the
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Parties: User U, Device D, Server S.
Public Parameters and Components

• Group G of prime order q with generator g.
• Hash functions H,H ′ with ranges {0, 1}2τ , G and Zq , respectively, for τ a security parameter.
• Pseudorandom function (PRF) f with range {0, 1}2τ .
• OPRF function Fk(x) = H(x, (H ′(x))k) for key k ∈ Zq .
• Key exchange formula KE which on input long-term and ephemeral private and public keys outputs a shared

key K ∈ {0, 1}τ .

Initialization Phase

• FK-PTR Initialization: Run FK-PTR initialization of Fig. 1 to choose pwd and device’s OPRF key kd.

• PAKE Initialization:

1. S sends to U a public key Ps = gps (the same Ps can be used by S with part or all of its users).
2. U chooses z ∈R {0, 1}τ , ks ∈R Zq;

sets values rwd = Fkd(pwd), c = z ⊕ Fks(rwd), r = fz(0), C = H(r, rwd, c), pu = fz(1) mod q;
computes Pu = gpu and mu = fz(2, Pu, Ps); and sends to S the values c, C, ks, Pu, mu.

3. S stores c, C, ks, Pu,mu in its U-associated storage (if Ps is user-specific, it also stores Ps and ps).

Login Phase

• User-Device Interaction (FK-PTR)
Follows the FK-PTR protocol as per Fig. 1 to obtain rwd on input pwd from U and input kd from D.

• User-Server Interaction (PAKE)

1. U chooses ρ, xu ← Zq; initiates a key exchange session with S by sending its identity U, the value
α = (H ′(rwd))ρ and Xu = gxu .

2. S proceeds as follows:

(a) Checks that α ∈ G;
(b) Retrieves (c, C, ks, Pu,mu) from its U-associated storage;
(c) Picks xs ∈R Zq and computes β = αks , Xs = gxs .
(d) Sends to U: β, c, C, Pu,mu, Ps, Xs.
(e) Computes K = KE(ps, xs, Pu, Xu) and outputs session key SK = fK(0).

3. U proceeds as follows:

(a) Sets z = c⊕H(rwd, β1/ρ), r = fz(0), pu = fz(1) mod q.
(b) Aborts unless the following conditions hold: β ∈ G, C = H(r, rwd, y, c), mu = fz(2, Pu, Ps).
(c) Computes K = KE(pu, xu, Ps, Xs) and outputs session key SK = fK(0).

• Explicit Authentication
If explicit authentication of the parties is required then S adds the value fK(1) to its message and U adds a third
message with value fK(2). Each party verifies the value received from the other party.

Figure 2: Instantiation of FK-PTR-PAKE with PKI-free PAKE protocol from [24, 25]
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server would be storing a secret authentication key for the user which would allow an attacker to impersonate
the user to the server in case of server compromise. Thus, while we allow for different key exchange
mechanisms through a general KE formula, we do require these to be based on public keys for both parties
(we also accommodate ephemeral keys if forward secrecy is desired). For illustration, and as a concrete and
efficient instantiation that preserves a minimal number of messages and provides forward secrecy, we define
next the key computation corresponding to the HMQV protocol [28] in terms of the KE formula used in the
protocol:

• Set eu = H(Xu,S), es = H(Xs,U), where S,U represent the parties’ identities.

• S computes K = H ((XuP
eu
u )xs+esps); U computes K = H ((XsP

es
s )xu+eupu).

5.2 Server-Transparent DE-PAKE

Using our PTR-PAKE scheme, one can build a mechanism where the user memorizes a nominal password
pwd from which it derives a hardened password rwd using the device. Then the user registers rwd as her
actual password with an existing server where the latter implements a standard password authentication
protocol independent of the hardening procedure. During login, the user types the password, but the client
terminal and the device communicate to construct the hardened password and send it to the server. In this
setting, no modification to an existing service is required. We refer to this mechanism as Server-Transparent
DE-PAKE.

This approach runs a PTR protocol between D and U. At initialization, D picks an OPRF key kd and
U memorizes the nominal password pwd but computes rwd and registers it with the server. At login, U
picks a random ρ and sends α = (H ′(pwd))ρ to D, D checks that α ∈ G and if so it sends β = αkd to U.
U computes rwd = H(pwd, β1/ρ) and authenticates to S using rwd over TLS, like a standard PKI-model
password protocol.

There are several advantages of this setting: (1) the user can simply remember the short nominal pwd
but register with a strong high-entropy password that significantly increases resistance to online and offline
guessing attacks (in particular, offline-only attacks on a compromised server are not possible); (2) nominal
password pwd can be the same or reused among multiple services, but the OPRF key associated with each
service stored on the device can be different (hence also rwd would be different), and therefore the compro-
mise of the password rwd at one server will not reveal the actual password pwd and will not compromise the
user’s accounts with other services; (3) rather than asking the user to frequently change the password and
memorize the updated password, only the key on the device can be changed, which improves the usability.

It is illustrative to compare the above mechanism with PwdHash [31], another solution intended to
improve security against dictionary attacks and that works as a password management scheme implemented
as a browser extension. It maps a low entropy password to a stronger one by hashing a (password, URL)
pair and registering it as a strong password with the server. The goal of PwdHash is to add resistance to
phishing attacks and provide higher security against online guessing attacks.

Our Server-Transparent DE-PAKE scheme shares many usability aspects with PwdHash but offers a
much more secure solution at the expense of using an auxiliary device. PwdHash deterministically trans-
forms a user’s password into a more complex password but, unlike our scheme, this transformation does
not help against offline dictionary attacks at a compromised server. Moreover, if a user uses the same base
password pwd with PwdHash for different services, the compromise of a single server leads to the discovery
of pwd via an offline attack and then to the (deterministic) calculation of all the user’s passwords derived
from pwd. In our case, the compromise of a server does not help the attacker learn either the randomized
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password rwd used for that server or the underlying password pwd. We note that [31] mentions the possi-
bility of using a “short secret salt” or a “global password” that acts as a form of a PRF key, but this would
be a weak key (either short key, or a password) which will be disclosed to the client machines (in addition
to raising usability issues). In contrast, in our case, the device’s key is never exposed outside the device.

We are currently studying the application of our FK-PTR-PAKE scheme to building a secure password
manager.

5.3 Resisting Client-Side & Phishing Attacks

Malicious code and keyloggers are always a threat to browsers in spite of security enhancements in the
browsers. Because we use a keyed password hardening scheme, an attacker who learns pwd by a key-logger
or shoulder surfing can not authenticate to the service without interacting with the device. However, an
attacker who compromises a client terminal by getting it to execute a malicious code can obtain rwd. Since
we require the device to use service specific keys, an attacker who obtains rwd can only compromise the
particular service associated with it, therefore our scheme would remain resistant to attacks on password
reuse. Still, in the PKI model one can reduce the threat of the malware attack by combining our scheme
with the traditional two-factor authentication (TFA) mechanism, i.e., having D generate a PRF on a time
value or a nonce under a key that D shares with S. Note that in a traditional TFA mechanism, compromising
the client allows the attacker to hijack the current login session of the user, but does not allow the attacker to
login in future sessions (due to the use of “one-time” PIN codes). Integrating our DE-PAKE protocol with
traditional TFA could provide the same level of security in the event of client compromise, while providing
all the other security properties of our DE-PAKE scheme.

Moreover, resistance to phishing attacks can be achieved if in the computation of rwd, one concatenates
the URL being accessed to pwd (i.e., rwd being computed as FKd(pwd|url)). This is similar to the PwdHash
approach [31] except that in PwdHash, the attacker that obtains the randomized password through phishing
can mount a dictionary attack to find the user’s password while in our case this is not feasible.

Integrating our DE-PAKE techniques with existing two-factor authentication mechanisms (e.g., PIN
based) to enhance security against client compromise is left as a future work item.

6 Related Work

Traditional two-factor authentication (TFA) schemes employ hardware tokens, like RSA SecureID [12],
which are specialized devices used solely for the purpose of authentication. Typically, a unique token is
needed to authenticate to each service, so the user needs to carry n tokens with her to enable authentication
to n services, which does not scale well. Moreover, due to the need for specialized tokens, provisioning of
tokens might become difficult as well as costly.

Software-based tokens provide several advantages over hardware tokens, including scalability and flex-
ibility (single personal device can be used with multiple services) as well as cost savings (provisioning soft
tokens is logistically much simpler). Many commercial soft token TFA schemes are available, including
Google Authenticator [7], Duo Security Two-Factor Authentication [5], Celestix’s HOTPin [4] and Mi-
crosoft’s PhoneFactor [10]. These tokens essentially use the same time-based cryptographic protocol to
generate one-time passwords as the hardware tokens. As in the case of TFA’s employing hardware tokens,
all these schemes store hashed passwords on the server, which means that an attacker who compromises the
server can recover passwords with O(|D|) offline effort.

16



PhoneAuth [17] is an academic (software token) TFA scheme. However, it provides the same weak
level of resistance to offline dictionary attacks as the other TFA schemes. Another recent work is U2F [6],
an open 2FA standard that enables users to access multiple services, with one single device. However, this
approach, similar to traditional TFA, may not remain secure under server and/or device compromise. We
believe that our DE-PAKE scheme can be implemented on such devices, with the advantage of resisting to
online-offline attacks and without relying on public key infrastructure. Other authentication approaches have
been proposed in the literature (e.g., [30, 32]) that aim to strengthen password-authentication by leveraging
a personal device. However, they do not provide two-factor authentication (e.g., if the password is phished,
there would be no security).

7 Conclusions and Future Work

In this paper, we considered the problem of armoring password protocols against online guessing attacks as
well as offline dictionary attacks in the event of server or device compromise. We proposed a novel, effi-
cient and modular device-enhanced password protocol (DE-PAKE) and formally analyzed its security. In
contrast to previous work on this subject, our protocol does not require the presence of a public key infras-
tructure or the availability of authenticated public keys (except, possibly, for initial password registration)
thus relaxing the concerns regarding PKI failures or compromises. At the same time, when an authentic and
uncompromised public key of the server is available, our protocol further guarantees resilience to server im-
personation even when the user’s password is disclosed. Remarkably, these benefits can be achieved without
necessitating service-side changes.

The advantages of our scheme can be highlighted by contrasting them to existing techniques. For exam-
ple, existing device-based password managers, such as [1, 29], require a confidential channel (e.g., resistant
to shoulder-surfing) between the device (e.g., a smartphone) and the client machine, and are open to dictio-
nary attacks upon device compromise. In addition, a potentially malicious code running on the device could
learn the user’s password as it is entered into the device. In contrast, our solutions do not require secure
channels, and nothing (in an information-theoretic sense) is learned about the password by the device (or a
malicious software running on the device) or over the client-device channel, even without any external pro-
tection of this channel. An attacker taking over the device still requires a full online attack to impersonate
the user.

PKI-freeness is also an advantage of our solution relative to current TFA systems that require PKI pro-
tection for hiding the server-device communication on which one-time PIN codes or challenge-response
information is transmitted. Moreover, the TFA systems that rely on the server to store the second factor
secrets become insecure upon server compromise, whereas our solution is fully resistant to such a compro-
mise. That is, in our schemes, an attacker that learns all of the server’s secrets still needs to mount a full
online dictionary attack against the device.

Finally, we note that, thanks to our modular architecture, one can further increase the resistance to server
compromise by using a threshold-PAKE protocol (e.g., [24]), in which case an attacker needs to compromise
a threshold of servers in addition to the device before being able to mount an offline dictionary attack.
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A Proofs

A.1 Proof of Lemma 2

Proof. Given a PTR attacker A against the FK-PTR scheme over a εomg-OMG-DH group G, we build an
attacker A′ against OMG-DH in group G. A′ gets access to a DHk and DDHk oracles and an input in the
form of an ordered set R = g1, ..., gN of random elements in G. A′ runs A on a simulated run of FK-PTR.
A′ uses DHk to answer queries to D (i.e., A′ simulates an instance of D under key k) and uses the set R to
answer H ′ queries. Namely, if R = g1, ..., gN then the first H ′ query is answered with g1, the second with
g2, etc. Queries (x, y) to H are answered with random values in {0, 1}τ . A′ keeps a table of defined inputs-
outputs for these oracles and answers to repeated queries with the corresponding values in these tables. A′

chooses pwd, sets H ′(pwd) = g1 (i.e., this is done prior to answering any H ′ query from A), and queries g1

to DHk obtaining gk1 which we denote by y∗.
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A′ simulates the actions of U faithfully, namely, it outputs messages of the form α = gρ1 for random
ρ ← Zq and upon receiving a response β from A it computes r′ = H(pwd, β1/ρ). When A delivers a
message α′ to D, A′ responds to it as follows. If α′ was output by U, in which case A′ knows ρ such that
α′ = gρ1 , A′ responds with yρ1 ; otherwise A′ queries α′ from DHk. In addition, for inputs (x, y) to H , A′

checks that H ′(x) was queried and if so it checks, using the DDHk oracle, whether the gj ∈ R returned as
the result of H ′(x) satisfies y = gkj . If all checks pass, A′ stores the pair (gj , y) in a list L.

Note that the above simulation of A is perfect hence the output from A is the same as in a real execution
of FK-PTR. As claimed in the proof of Theorem 1, the view of A is independent of pwd and g1 (A only
sees values of the form gρ1 for one-time random ρ’s) hence it is independent of rwd (which is computed as
H(pwd, (H ′(pwd))k)).

Denote by R′ the set of values in RDict output by A. Let E1 denote the event that R′ contains a value
r′ = H(p, (H ′(p))k) for p ∈ Dict and that A did not query H on (p, (H ′(p))k) or H ′ on p; the probability
of E1 is at most T/2τ . Assuming E1 does not happen we have that if r′ = H(p, (H ′(p))k) ∈ R′ then A
queried H ′ on p and H on (p, (H ′(p))k). Since A′ chooses its responses to H ′ queries from elements in the
set R, we have that r′ = H(p, gj

k) for gj ∈ R so the query H(p, (H ′(p))k) resulted in the pair (gj , gj
k)

being included by A′ into the list L. Thus, |R′| ≤ |L|.
Note that A′ has obtained pairs (gj , g

k
j ) for all pairs in L as well as for (g1, g

k
1 ). Let L′ = L∪{(g1, g

k
1 )}.

By the DH-OMG assumption we have that the probability that L′ contains more than qdh elements is at
most εomg(T ′, qdh, qddh) where T ′ is the running time of A′. So, except for this probability, we can assume
|L′| ≤ qdh. We show |L| ≤ qD and therefore |R′| ≤ qD as claimed by the lemma.

A′ queries DHk in two cases: Upon rogue activations of D by A and for obtaining gk1 . Thus, if (g1, g
k
1 ) /∈

L we have qdh = qD + 1, and together with the assumption qdh ≥ |L′| = |L| + 1 we obtain that |L| ≤
qdh − 1 = qD. If (g1, g

k
1 ) ∈ L (meaning that g1 was also queried by A through a rogue activation) then

qdh = qD and together with qdh ≥ |L′| = |L| we obtain that |L| ≤ qdh = qD.
In all, we have that except for probability ε2 = εomg(T

′, qD, qH)+T/2τ , |R′| ≤ |L| ≤ qD. The running
time of A′ is essentially that of A if we count U activations as part of A running time and equate the cost of
a call to DHk to that of a D activation and the cost of a H ′ call to that of a DDHk invocation.

A.2 Lemma 4

We formulate and prove Lemma 4 that we use as a main component in the proof of the composition theorem,
Theorem 3.

Lemma 4. Let Π be a (qS , qU , T, ε)-secure PAKE protocol. Then the following holds for any PAKE-
adversary A against Π. Let Dict ⊂ {0, 1}τ be a dictionary composed of the union of two disjoints sets
Dict1 and Dict2, where Dict1 is known to A and Dict2 is chosen as a random subset of {0, 1}τ \ Dict1 and
unknown to A. Then the advantage of A against Π running with dictionary Dict is at most

min{qS + qU , |Dict1|}
|Dict|

+
qS + qU

2τ−1
+ ε.

Proof. Denote qA = qS + qU . The winning probability of A when the password is selected at random in D
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satisfies (see below for explanations):

Pr [A wins : p ∈ Dict1] · Pr [p ∈ Dict1] +

Pr [A wins : p ∈ Dict2] · Pr [p ∈ Dict2]

≤ 1

2
+

min{qA, |Dict1|}
|Dict1|

|Dict1|
|Dict|

+
qA

|Dict1|
|Dict2|
|Dict|

+ ε

≤ 1

2
+

min{qA, |Dict1|}
|Dict|

+
2qA
2τ

+ ε

as claimed in the lemma.
To see why the above inequalities hold, first note that the case p ∈ Dict1 corresponds to a regular

PAKE game with known dictionary Dict1 hence the attacker’s winning probability in this case is at most
1/2 + min{qA, |Dict1|}/|Dict1| + ε; on the other hand, Pr [p ∈ Dict1] = |Dict1|/|Dict| from which the
first term in the final expression follows (ε and 1/2 are separated as they are common to both terms). Note
that the minimum in min{qA, |Dict1|} simply means that the advantage qA/|Dict1| is capped at 1 even for
larger values of qA. As for the second term, the case p ∈ Dict2 is, from the point of view of A, equivalent
to a dictionary Dict1 = 2τ \ Dict1 since all elements outside Dict1 are equiprobable. Hence, the winning
probability in this case is at most 1

2 + qA
|Dict1|

+ ε while Pr [p ∈ Dict2] = |Dict2|/|Dict|, resulting in the

second term. Finally, we observe that when |Dict1| ≤ 2τ−1, then qA
|Dict1|

|Dict2|
|Dict| ≤

qA
|Dict1|

≤ qA
2τ−1 , and when

|Dict1| ≥ 2τ−1 then qA
|Dict1|

|Dict2|
|Dict| ≤

qA
|Dict| ≤

qA
|Dict1| ≤

qA
2τ−1 .

A.3 Proof of Theorem 3

Proof. We consider 4 cases as in Definition 2 according to whether D and S are corrupted or not. We focus
on the main ideas of the proof - a formal presentation would represent the arguments in the proof below as
a sequence of game transitions.
Case 1: No corruption. We start by addressing the following modeling issue. In the CRS setting, a PTR-
PAKE attacker A can make the user U run with a password generated via a function fc applied to the U’s
password pwd as in attack avenue 4. Since A has no information about pwd (first PTR requirement), this
is equivalent to U choosing a random independent password rwd∗ from the dictionary RDict∗ = fc(Dict)
(which by the 1-1 requirement is of the same size as user U’s dictionary Dict). Also, since by the third
requirement of PTR security, rwd∗ is different than U’s real password rwd = Fk(pwd), then the runs of U
with rwd∗ are independent from those with rwd (runs of a user with different passwords are independent
of each other since the only shared state between runs, or sessions, is the password). Thus, we can treat U
running with rwd∗ as a separate user from U, one created by the attacker with dictionary RDict∗ = fc(Dict).
Note that U does not have rwd∗ registered with S or any other server (the attacker is allowed to create such
unregistered users). We will refer to these derived users as “split users” and consider them as additional
regular users in a PAKE protocol.6

In summary, thanks to requirements 1, 3, 4 of PTR security, the ability of the PTR attacker to induce dif-
ferent password outputs from U translates into the ability of the PAKE adversary to create independent “split
users”. Note that user U can run with different dictionaries RDict∗, corresponding to different functions fc,
and each such run generates a new split user. On the other hand, the PTR attacker may choose to use the

6The only difference with traditional users is that they are not registered with any server, although we could define a special
server S with which the attacker register split users but S is never activated by the attacker.
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same fc multiple times which we model as repeated runs of the same split user (since in all these runs the
user will use the same password rwd∗). Thus, in what follows, we assume a setting (or game) where each
split user runs with a password pwd∗ that is independent of pwd and independent of other users’ pwd∗, and
that these passwords are chosen from dictionaries RDict∗ of size 2d. Formally, we need to apply a standard
sequence-of-games argument to quantify the increase in the advantage of the attacker in this game transition.
Specifically, each split user activation adds a ε1 + ε3 + ε4 advantage to the attacker success for a total of
q′U (ε1 + ε3 + ε4).

For clarity, we will use Π∗ to denote the PAKE protocol Π when run against an attacker that can create
split users with independent passwords as above. The PAKE security of Π implies the PAKE security of Π∗

(the PAKE model requires Π to be secure with any number of adversarially generated users).
Having established this correspondence between PTR-induced passwords and split users we can now

reduce the DE-PAKE security of a PTR-PAKE scheme to the PAKE security of Π. That is, we build a PAKE
attacker SIM against Π given a DE-PAKE attacker A against the composed DE-PAKE scheme C. For this
SIM simulates the PTR part of the protocol as follows. Let Dict be the dictionary used by the target user U.
SIM chooses k for D and pwd ← Dict for U in the PTR game. It defines the dictionary on which Π∗ runs
as RDict = {Fk(p) : p ∈ Dict}. By the 1-1 property of Fk, RDict is of the same size as Dict (note that Π
needs to be secure against any dictionary, even an adversarially chosen one).

This simulation of P is perfect as it uses full information on the parties’ secrets (pwd and k). Then, by
virtue of PTR security (requirement 1), we have that the view of the DE-PAKE attacker A is independent,
up to an advantage loss of ε1, of pwd and of the password rwd = Fk(pwd) used by U in protocol Π.

Now consider the PAKE activations by the DE-PAKE attacker A of the target pair (U,S), i.e., the acti-
vations of S as well as of U running with password rwd and of U running with passwords induced by A in
the PTR activation of U. We start by considering the activations of S and U according to the regular PAKE
model and then consider the activations related to split users.

The attacker has partial knowledge of the dictionary RDict from which U’s password rwd is chosen.
Specifically, by requirement 2 of PTR security, we can assume (up to an advantage difference of ε2), that A
knows at most qD elements in RDict, where qD is the number of rogue activations of D by A. In the view of
A, the rest of RDict is distributed uniformly (or pseudorandomly) in {0, 1}τ . Thus, we are in the setting of
Lemma 4, hence the probability of A winning the DE-PAKE game in a session at U or S is at most

min{qU + qS , qD}
|Dict|

+
qU + qS

2τ−1
+ εΠ. (2)

We now consider Π activations of U running with a password from an attacker-induced dictionary
RDict∗, or the equivalent Π∗-activation by A of a split user U∗. Such user runs with a password rwd∗ from
a dictionary RDict∗ of the same size as Dict and where rwd∗ 6= rwd; in particular, rwd∗ is not registered
with S. Thus, activations of S are irrelevant to this case but A may activate U∗ (with rogue send messages
purportedly coming from S) in order to attempt at winning a test session at U∗. Since this attack is a legit-
imate attack against the PAKE protocol Π∗, we have that its success is at most q∗U/|RDict

∗| = q∗U/|Dict|
where q∗U is the number of activations of U∗. The sum of all activations of all split users U∗ derived from U
is bounded by the number of activations in Π of user U thus the total success probability of A against split
users (i.e., against U running on an induced password pwd∗) is bounded by qU/|Dict|.

However, note that each activation of U in C with an induced password other than rwd (equivalently,
the activation of a split user U∗ in Π∗) requires a rogue activation of U by A in the PTR protocol. Thus, if
we denote by q′U the number of rogue U activations in the PTR protocol, we need to adjust the above bound
to min{qU , q′U}/|Dict| (i.e., this form of attack can be exploited only if the activation of U as a Π user is
matched by a rogue activation of U as a PTR user).
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The final bound on A’s advantage is obtained by adding together the above term min{qU , q′U}/|Dict| and
the one in (2). Before doing so we note that the value qU in (2) only counts rogue activations of U running
on the correct U’s password rwd while the qU in min{qU , q′U}/|Dict| counts rogue activations running on
an unregistered password rwd∗. If we denote the number of the first type of activations by pU and the latter
type by p∗U , we have that the total advantage of the attacker is

min{pU + qS , qD}
|Dict|

+
min{p∗U , q′U}
|Dict|

+
pU + qS

2τ−1
+ εΠ

≤
min{pU + qS + p∗U , qD + q′U}

|Dict|
+
pU + qS

2τ−1
+ εΠ.

Noting that qU = pU + p∗U and adding to the above expression the attacker’s advantage from PTR game
transitions (ε2 + q′U (ε1 + ε3 + ε4)), we get that the total advantage of the DE-PAKE attacker A is bounded
by

min{qU + qS , qD + q′U}
|Dict|

+ ε′C

where ε′C = pU+qS
2τ−1 + εΠ + (3q′U + 1)εP .

We now consider the cases where server or device are corrupted. In all these cases the above analysis of
case 1 holds except that some of the online operations can now be performed offline.

Case 2: D corrupted. In this case the attacker learns k, hence it does not need to access D via online
activations. By the same argument in Case 1 based on Lemma 4, we have that if A computes qD values
from the dictionary RDict (by offline computation using k), its advantage in the DE-PAKE game where it
activates S and U for qS and qU times, respectively, is bounded by equation (2). If, in addition, A attacks U
in PTR with q′U queries, qD in (2) becomes qD + q′U . But in any case, given the min in (2), A’s advantage
(even with |Dict| offline Fk computations) is at most (qU + qS)/|Dict|+ ε′C .

Case 3: S corrupted (or U-compromised). Consider first attacks that do not involve rogue queries to
U. In this case, by virtue of the PAKE protocol Π being εSC-secure against server compromise, we
have that an attacker against Π that knows q passwords from the dictionary RDict has advantage at most
min{qS , q}/|Dict| + εSC , where qS counts offline operations based on S’s state. On the other hand, as in
the argument of case 1, by requirement 2 of PTR security, we can assume that A knows at most qD elements
in RDict, where qD is the number of rogue activations of D by A. Thus, we have (up to probability ε2) that
q ≤ qD, and the advantage of the attacker (without U queries) is at most min{qS , qD}/|Dict|+ εSC . When
adding attacks via U we get this expression to be min{qS + qU , qD + q′U}/|Dict|+ εSC + ε′C and, regardless
of the value of qS , this is at most (qD + q′U )/|Dict|+ εSC + ε′C .

Case 4: D and S corrupted. The combination of the arguments in cases 2 and 3 implies that an attack when
both S and D are corrupted achieves equation (2) where qD is the number of outputs of Fk computed by A
using its knowledge of k and qS is the number of passwords run by A in its offline dictionary attack based
on S’s state.
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