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Abstract

To have an efficient asymmetric key encryption scheme, such as el-
liptic curves, hyperelliptic curves, pairing ... etc we have to go through
arithmetic optimization then hardware optimization. Regarding restricted
environments’ compromises, we should strike a balance between efficiency
and memory resources. For this reason, we studied the mathematical as-
pect of pairing computation and gave new development of the methods
that compute the hard part of the final exponentiation in [1]. They prove
that these new methods save an important number of temporary variables
and they are certainly faster than the existing one. In this paper, we will
also present a new way of computing Miller loop, more precisely in the
doubling algorithm, so we will use this result and the arithmetic optimiza-
tion presented in [1], then we will apply hardware optimization to find a
satisfactory design which give the best compromise between area occu-
pation and execution time. Our hardware implementation, on a Virtex-6
FPGA(XC6VHX250T), used only 9476 Slices, which is less resources used
compared with state-of-the-art hardware implementations, so we can say
that our approach cope with the limited resources of restricted environ-
ment.

Keywords: BN curves, Optimal Ate Pairing, Final Exponentiation,
Miller Loop, Arithmetic optimization, Asymmetric Encryption, memory
resources, hardware implementations.

1 Introduction

The performance of pairing based protocols depends on the efficiency of pairing
computation. The computation of these pairings consists of two parts: The
Miller loop and then the final exponentiation. The Miller loop consists of the
computation of the function fu,P and then evaluate this function on the point
Q, where P and Q are two points of an elliptic curve E. The function fu,P is
defined by its divisor Div(fu,P ) = u(P ) − ([u]P ) − (u − 1)(P∞) where u is an
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integer and P∞ denotes the point at infinity. The computation of this function
is done thanks to the equality of Miller:

f[i+j],P = f[i],P f[j],P

l[i]P,[j]P

v[i+j]P

where

• l[i]P,[j]P is the line passing through [i]P and [j]P ,

• v[i+j]P is the vertical to E at [i + j]P .

The efficiency of the Miller step depends certainly on the bit length of u and also
its hamming. After computing the Miller loop f1 = fu,P (Q), we have to raising
the result f1 to the power pk−1

r . Thanks to the cyclotomic polynomial, this
exponent can be simplified using the following decomposition (let k′ = k/2):

pk − 1
r

=
(
pk′ − 1

)[
(pk′ + 1)

φk(p)

] [
φk(p)

r

]
With r is a large prime divisor of the order of the group of rational points of
E and k is the embedding degree which is defined as the smallest integer such
that r divides pk − 1.
In our case the embedding degree k is equal to 12. Then we compute the final
exponentiation

p12 − 1
r

=
(
p6 − 1

) (
p2 + 1

) p4 − p2 + 1
r

on two steps: At first we compute f = f
(p6−1)(p2+1)
1 which is the easy part, then

we have to evaluate f to the power p4−p2+1
r which is the hard part of the final

exponentiation.
New hardware approaches are needed in order to implement some computa-
tional heavy and power consuming functions in order to meet the current re-
stricted environment requirements. In general, hardware implementations have
been proved better approaches compared with the software developments, in the
terms of throughput, area and operating frequency, but every algorithm should
be demonstrated in software before coming to hardware.
In this paper we will be interested by the FPGA implementation of Optimal
Ate Pairing. During the last years, several hardware implementations of bilinear
pairings, targeting the 128-bit security level, have been presented. In 2011, Ray
C.C.Cheung et al. [3] give two designs using the Residue Number System which
is suitable for parallel architectures and lazy reduction to speed up optimal ate
pairing at 126-bit security. In 2012, J.Fan and al. [4] present a hardware im-
plementation of Fp-arithmetic for pairing and they introduce a new reduction
algorithm for polynomial form modulo which is Hybrid Modular Multiplication
composed of four phases, polynomial multiplication, a partial coefficient reduc-
tion, polynomial reduction and coefficient reduction.Then in 2013, S.Ghosh and
al. [7] speed up optimal ate pairing computation having 126-bit security by
exploiting IP cores available in modern FPGAs and they present a pipelined
datapaths for Fp-operations.
Until now, many hardware and software implementations was presented and to
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speed-up pairing computation we should speed-up arithmetic operations. For
this reason, many mathematical studies are done to accelerate arithmetic cal-
culus.
Our work focus on two important mathematical results, first optimized algo-
rithms presented by Duquesne et al. in [1] was implemented, these algorithms
compute the hard part of the final exponentiation, which are New Development
of f

p4−p2+1
r , New Addition Chain, Variant of Fuentes Method and New Multiple

of the final exponentiation, and then we implemented a new way of computing
Miller loop.Our approach touch resource constrained embedded systems, which
can benefit greatly from employing cryptographic algorithms that are tuned to
consume as little system resources as possible, while at the same time providing
reasonable performance.
The latest years, pairing implementations have been very attractive for the hard-
ware designers, and retrained environment which have limited computing power
and minimized storage capacity. Therefore, to provide good level of security for
these applications, we should define a flexible architecture. For this reason, our
hardware design is more suited for environment which allocate a huge amount
of storage or which require an extensive computation power. We verified that
our design is the most performing in term of area and cycle number.
In this paper, we are interested, firstly, by the arithmetic optimization con-
cerning the first part optimal ate pairing algorithm, which is the Miller Loop
computation, so we present a new way of computing it, more precisely in the
doubling algorithm. In addition we will apply our results given in [1] and our
hardware optimization to find an efficient architecture computing the optimal
ate pairing, where we found a compromise between efficiency and memory re-
sources. The proposed architecture design is based on an hybrid methodology.
This paper deals with three issues, namely, proposing architecture for hard-
ware implementation on FPGA, optimizing the architecture and comparing the
performance metrics of different FPGA, that implement a pairing. Our im-
plementation proved the results given by Duquesne et al. in [1] and that is
more efficient than others implementations presented in the literature and that
is more suitable for restricted environments.
The remaining paper is organized as follow, the second section is a presenta-
tion of BN curves, Optimal ate pairing and also we detailed the computation
of doubling step where we present a new variant of the original work and we
detailed also addition step. In the section 3, the proposed system presented and
the internal components of this architecture are described in detail.Hardware
optimization are given in section 4. The synthesis results of the FPGA imple-
mentation and a comparison with other related works are presented in section
5. Finally, conclusions and observations are given in section 6.

2 Background of pairings

2.1 BN curves presentation

Barreto and Naherig presented in [30] a method to generate pairing friendly
elliptic curves over a prime field Fp with embedding degree k = 12 and a prime
order n.
These curves are called BN curves and are defined over Fp by the following
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equation
E : y2 = x3 + b,

where b 6= 0 is nor a square neither a cube and by a parameter u such that

t = 6u2 + 1
n = 36u4 + 36u3 + 18u2 + 6u + 1
p = 36u4 + 36u3 + 24u2 + 6u + 1

where t is the trace of Frobenius map on the curve. The parameter u is chosen
such that E has prime order. We assume this is the case in this paper, and
more precisely in our implementations we will choose a special value for u given
in the following example.

Example 2.1 Nogami et al. [28] have suggested the following choice of

u = −(4080000000000001)16.

The Hamming weight of −u is wu = 3 and the length of −u in base 2 is lu = 63.

Barreto-Naherig (BN) curves are the ideal solution for computing pairing for a
128 bits security level, specially for computing Optimal Ate pairing which is the
following map:

eopt : G2 ×G1 → G3

(Q,P ) 7−→ (fs,Q(P )l[s]Q,φp(Q)(P )l[s]Q+φp(Q),−φ2
p(Q)(P ))

pk−1
r

with:

• s = 6u + 2,

• φp the Frobenius map,

• G1 = E(Fp)[r]

• G2 = E′(Fp2)[r]

• G3 = F×p12

To compute a pairing, as we said, we have two steps: Miller loop and final
exponentiation. At first we have to compute the Miller function then we carry
out the result to the power p12−1

r which is the final exponentiation. Let us at
first present the Miller loop:

2.2 Miller loop

In the case of Optimal Ate pairing, the Miller function consists in the compu-
tation of the following expression:

f = fs,Q(P )l[s]Q,φp(Q)(P )l[s]Q+φp(Q),−φ2
p(Q)(P )

For computing f we have the following algorithm1 [31]:

Points doubling and corresponding their line evaluations dominate the cost of
Miller loop. Also the additions points with their corresponding line evaluations
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Algorithm 1 : Optimal Ate pairing on general BLS curves

Input: P ∈ G1, Q ∈ G2, s =| 6u + 2 |=
∑log2(s)

i=0 si2i

Output: eopt(Q,P )
1: d← lQ,Q(P ), S ← 2Q, e← 1
2: if sblog2(s)c−1 = 1 then e← lS,Q(P ), S ← T + Q
3: f ← d.e
4: for i = blog2(s)c − 2 downto 0 do
5: f ← f2.lS,S(P ), S ← 2S
6: if si = 1 then f ← f.lS,Q(P ), S ← S + Q
7: end for
8: If u < 0 S ← −S, f ← fp6

9: Q1 ← φp(Q), Q2 ← φp2(Q)
10: d← lS,Q1(P ), S ← S + Q1, e← lS,Q2(P ), S ← S −Q2, f ← f.(d.e)
11: return f

depend to the Hamming weight of the Miller variable u.
Pairing can be computed over elliptic curves represented in any coordinates
system such affine coordinates, Jacobien coordinates, projective coordinates,
. . .
The choice of projective coordinates has proven especially advantageous at the
128-bit security level for single pairing computation [31] and it is our case in
this paper.
Now we present at first the projective coordinates. Then to perform step 5 in
Miller algorithm, we present the way of the computation of lQ,Q(P ) and the
doubling step. Also to compute step 6 in algorithm 1 we have to compute
lS,Q(P ) and the addition.
The elliptic curve E which we consider in our implementation is defined over
Fp in affine coordinates by:

y2 = x3 + 2

As we said we will compute the pairing in the projective coordinates so we have
to make the following change of variables:

(x, y) =
(

X

Z
,
Y

Z

)
So the elliptic curve equation in the projective coordinates E is given by:

E : y2z = x3 + 2z3.

E′ : y2z = x3 + (1− i)z3.

Computation of lQ,Q(P ) and the doubling step:

The slope of the tangent at S is

λS,S =
3x2

S

2yS
=

3x′2S′

2y′S′
γ =

N1

D1
γ
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where N1 = 3x2
S′ and D1 = 2yS′zS′ in Fp2 . Then,

lS,S(P ) = yP −yS−λS,S(xP −xS) = yP −
yS′

zS′
γ3− 3x2

S′

2yS′zS′
γ(xP −

xS′

zS′
γ2) =

N2

D2

where D2 = 2yS′z
2
S′ and

N2 = yP D2 − 3xP x2
S′zS′γ + (3x3

S′ − 2y2
S′zS′)γ3.

Because D1 is in Fp2 it suffices to compute in the doubling step in Miller loop
f ← f2 then updating f by computing f ← fN2.
These operations cost in projective coordinate S12 + 15M2 + 21A2 + 4A′

2.

Let S = (X1, Y1, Z1) ∈ E′(Fp2) a point in projective coordinates, we compute
the doubling of S so 2S with the following formula presented in [33]:

• X3 = 2xT yT zT (9x3
T − 8y2

T zT )

• Y3 = 9x3
T (4y2

T zT − 3x3
T )− 8y4

T z2
T

• Z3 = (2yT zT )3

To simplify these expressions, we can use the equation of the curve where we
have y2

S′zS′ − (1− i)z2
S′ = x3

S′ . Then we got:

• X3 = 2xT yT z2
T (y2

T − 9(1− i)z2
T )

• Y3 = z2
T

(
(y2

T + 9(1− i)z2
T )2 − 108(1− i)2z4

T

)
• Z3 = (2yT zT )3

So that:

N2 = yP (2yT z2
T )− 3xP x2

T zT γ +
(
y2

T zT − 3(1i)z3
T

)
γ3

The advantage of these expressions that they are a multiple of z2
T which is an

element of Fp2 so we can simplify xT , yT and zT and getting the following
formulae:

• X3 = 2xS′yS′(y2
S′ − 9(1− i)z2

S′

• Y3 =
(
(y2

S′ + 9(1− i)z2
S′)

2 − 108(1− i)2z4
S′

)
• Z3 = 8y3

T zT

Then;
N2 = 2yS′zS′yP − 3xP x2

S′γ +
(
y2

S′ − 3(1i)z2
S′

)
γ3

Let X1, Y1, Z3 the projective coordinates of S′ in E′(Fp2) and X3, Y3, Z3

the projective coordinates of 2S′. We consider that the tangent to E at S eval-
uated on P is lS,S = t0 + t1γ + t3γ

3.
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So we present the following algorithm:

Algorithm 2:
Input: x′P = −3xP , yP Computed Terms Complexity
X1, Y1, Z3

Output:X3, Y3, Z3

t0, t1, t2
Temp. var used:
T1, T2, T3

T1 ← X2
1 S2

T2 ← Y 2
1 S2

T3 ← Z2
1 S2

X3 ← X1 + Y1 A2

X3 ← X2
3 S2

X3 ← X3 − T1 A2

X3 ← X3 − T2 2X1Y1 A2

t1 ← Y1 + Z1 A2

t1 ← t21 S2

t1 ← t1 − T2 A2

t1 ← t1 − T3 2Y1Z1 A2

t0← (1− i)T3 Ã2

t3 ← 2t0 A2

t0 ← t0 + t3 3(1− i)Z2
1 A2

Y3 ← 2t0 A2

t3 ← t0 + Y3 9(1− i)Z2
1 A2

Z3 ← T2 − t3 Y 2
1 − 9(1− i)Z2

1 A2

X3 ← X3Z3 M2

t3 ← T2 + t3 A2

t3 ← t23 (Y 2
1 + 9(1− i)Z2

1 )2 S2

Y3 ← Y 2
3 36(1− i)2Z4

1 S2

t3 ← t3 − Y3 (Y 2
1 + 9(1− i)Z2

1 )2 − 36(1− i)2Z4
1 A2

Y3 ← 2Y3 A2

Y3 ← t3 − Y3 A2

Z3 ← T2t1 2Y 3
1 Z1 M2

Z3 ← 2Z3 A2

Z3 ← 2Z3 8Y 3
1 Z1 A2

t3 ← T2 − t0 A2

t0 ← yP t1 2Y1Z1yP 2m
t1 ← x′P T1 −3xP X2

1 2m

This algorithm requires 2M2 +7S2 +4M +18A2 +A′
2 for computing the line N ′

which is lS,S(P ) and updating S′ ← 2S′ instead of 2M2 +7S2 +4M +23A2 +A′
2

if we use the Jacobien coordinates.
In this algorithm also for computing 2XY we use the fact that 2XY = (X +
Y )2 − X2 − Y 2. So in this case it is better to compute directly 2XY by a
multiplication and an addition.
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Computation of lS,Q(P ) and the addition step:

We assume that S must be different to {Q,−Q}, The slope of the line lS,Q

is

λS,Q =
yS − yQ

xS − xQ
=

y′S′ − y′Q′

x′S′ − x′Q′
γ =

N ′
1

D′
1

γ

Where N ′
1 = yS′ − yQ′zS′ and D′

1 = xS′ − xQ′zS′ , D′
1 ∈ Fp2 .

The line lS,Q evaluated on the point P is:

lS,Q(P ) = yP − yQ − λS,Q(xP − xQ)

= yP −
xP (yS′ − yQ′zS′)

xS′ − xQ′zS′
γ +

(
xQ′(yS′ − yQ′zS′)

xS′ − xQ′zS′
− yQ′

)
γ3

= yP −
xP N ′

1

xS′ − xQ′zS′
γ +

(
xQ′yS′ − yQ′xS′

xS′ − xQ′zS′

)
γ3

=
N ′

2

D′
2

Because D′
2 ∈ Fp2 then we will evaluate lS,Q as

lS,Q = yP D′
2 − xP (N ′

1)γ + (xQ′yS′ − yQ′xS′)γ3.

Finally to compute the add the two points S′ and Q′ we need to the following
expressions:

• C = (N ′
1)

2zS′ + (D′
1)

3 − 2(D′
1)

2xS′

• X3 = D′
1.C

• Y3 = N ′
1((D

′
1)

2xS′ − C)− (D′
1)

3yS′

• Z3 = (D′
1)

3zS′

So to evaluate this equation and also to update S′ ← S′ + Q′ we implemented
the following algorithm: Let X1, Y1, Z3 the projective coordinates of S′ in
E′(Fp2), X2, Y2, Z2 the projective coordinates of Q′ in E′(Fp2) and X3, Y3, Z3

the projective coordinates of S′ + Q′. We consider that the line joint S and
Q evaluated on P is lS,Q(P ) = t0 + t1γ + t3γ

3. So we present the following
algorithm:
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Algorithm 3:
Input: x”P = −xP , yP

X1, Y1, Z3

X2, Y2, Z2 Computed Terms Complexity
Output:X3, Y3, Z3

t0, t1, t2
Temp. var used: A, D, N
t0 ← X2Y1 M2

t1 ← X1Y2 M2

t3 ← t0− t1 X2Y1 −X1Y2 A2

A← X2Z2 M2

D ← X1 −A X1 −X2Z1 A2

A← Y2Z2 M2

N ← Y1 −A Y1 − Y2Z1 A2

t0 ← D2 S2

t1 ← Dt0 D3 M2

t0 ← t0X1 D2X1 M2

A← N2 S2

A← AZ1 M2

A← A + t1 A2

A← A− t0 A2

A← A− t0 N2Z1 + D3 − 2D2X1 A2

X3 ← DA M2

Y3 ← t1Y1 D3Y1 M2

t0 ← t0 −A A2

t0 ← Nt0 N(D2X1 −A) M2

Y3 ← t0 − Y3 N(D2X1 −A)−D3Y1 A2

Z3 ← t1Z1 M2

t0 ← yP D 2m
t1 ← xP ”N 2m

The global cost of this algorithm which allows as to compute the line lS,Q and
the addition of T and P is 11M2 + 2S2 + 4m + 8A2. We need also to add the
cost of the update f ← flS,Q which is 15M2 + 21A2 + 4A′

2 for computing the
addition step in Miller loop.
So the total cost of the addition step in Miller’s algorithm is 26M2 +2S2 +4m+
29A2 + 4A′

2.

2.3 Final Exponentiation

The final exponentiation has become the most significant parameter of the over-
all cost of the pairing. This step consist on the fact that a Miller loop result
must be raised to the power pk−1

r .
Our paper is based in the implementation of a new variants of the final expo-
nentiation presented by Duquesne et al. in [1].
Recall that the final exponentiation can be broken down into three components
as follow.
In our case k = 12, so the final exponent becomes

p12 − 1
r

=
(
p6 − 1

) (
p2 + 1

) p4 − p2 + 1
r
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This is the natural decomposition used for the calculation of the final exponen-
tiation.
There are certainly many methods in the literature alow us to compute this part
of the pairing, but in our implementation we are interested by reducing memory
usage, for this reason we will present our implementation results of new variants
presented by Duquesne et al in [1]
In this paper, we will not present the methods studied in [1], but we will just
present its final results in the table 1, which give a comparison between Duquesne
et al. [1] results and results given in the literature.
After studying mathematical aspect and finding the appropriate arithmetic op-

Method Cost in Fp Cost Temp. Memory
saving var. in Fp saving

Naive 25671 M + I 34
Lucas Sequence I + 22903 M 46
Devigili 3938 M + 2 I 70
Their variant 3711M + 3 I 5.75% 58 17%
Addition chain 3366 M + 3 I 130
Their variant 3363M + 3 I −0.1% 82 37%
Fuentes method 3324 M + 3 I 82
Their variant 3318M + 3 I 0,2% 70 15%
New multiple 3591M + 3 I −6.4% 58 29%

Table 1: Important result of computing the hard part of the final exponentiation.

timization, we will apply the resulting algorithm and the hardware techniques
to present an efficient hardware design, in the following section.

3 Pairing Processor Design and implementation

Until know, Pairings is massively used in cryptographic applications. Optimal-
ate pairing is an alternatives derived from the Tate pairing which is the original
one. It is the most efficient one computed over elliptic curves (E) defined over
a large prime field Fp, up to date. Many algebraic curves have been used for
providing efficient pairing computation technique and achieving higher security,
called pairing-friendly curves, the most popular one is BN curves. So one of
the best choices is to implement the optimal-ate pairing on BN curves which
is the case of our work. This section presents the proposed hardware design to
compute the memory saving of optimal ate pairing. This design is based on two
steps: Miller Loop and Final Exponentiation.

3.1 Processor Design

In this part, we will introduce the properties of the proposal design and its im-
plementation. A block based top-level implementation of our proposed processor
is shown in figure 1. The optimal ate pairing is based on Final Exponentiation
and Miller Loop. To compute Miller Loop, we need Point Addition (PA) and
Point Doubling (PD). Whereas, the Final exponentiation requires operations
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calculated in Fp, Fp2 , Fp6 and Fp12 .
The proposed design necessitates five based blocks:

• Random Data Unit (RDU): to compute optimal ate pairing we need
random values generated in the first step, Random Number Generator
(RNG), in other high level languages, is a function of a special library.
But in VHDL, RNG is achieved by designing a pseudo random sequence
generator (PRSG) of suitable length. The RDU values will be the inputs
of all Fk

p Arithmetic Unit(Fk
pAU) and Pairing Function Unit (PFU).

• The Data Access Unit (DAU): is designed to control the flow of data
in the design, as well as the movement of data between registers and
the Execution Unit. It contains an Access Control Unit (ACU) which
coordinates all the system operations and operands. After the first step of
random generation values, the ACU is totally responsible for the system
management. It defines the proper constants and operation word length,
it manages the ROM blocks and it controls all modules. After computing
Fk

p operation, it stores all results in different registers to be used in the
next step.

• Storage Unit (SU): In our design we have some pre-calculation func-
tions, so we need to store functions’s output values to be used later. RAM
model allows the storage of the different calculated values and other con-
stants such as curve parameters. Then, we will read the appropriate value
from different RAM locations.

• Fk
p Arithmetic Unit (Fk

pAU): is the first part of Execution Unit (EU).
It represents one of the main data path component of the system archi-
tecture. This unit is responsible of computing all arithmetic operations
in Fp, Fp2 , Fp6 and Fp12 . It executes and coordinates all models and then
sends the results to be stored in registers and then reused in next calculus.

• Pairing Function Unit (PFU): it’s the second part of the execution
Unit, it contains all principal units to compute pairing. This unit includes
the models that compute: the four methods of hard part of the final
exponentiation mentioned in [1], the final exponentiation and Miller loop
algorithms which are Addition Step and Doubling Step. The PFU uses
models of Fk

pAU to compute optimal ate pairing.

Figure 1 resume what’s it mentioned earlier about the functionality of every
component, we will explain data flow of our design. First of all, RDU will
generate twelve values A00, A01, A10, A11, A20, A21, B00, B01, B10, B11,
B20, B21, every one is of the length 256 bits. This block will be executed only
once, then it send all values and a signal ”START” = 1 to the ACU to begin
control the rest of component. Receiving the necessary Data, ACU generate
different CLKi, as a need, and send them to the SU, Fk

pAU and PFU. The
SU should prepare all stored values (the precalculated values) to be used by
Fk

pAU and PFU. To compute all pairing function, we need all calculus done by
Fk

pAU, so that Final Exponentiation calculus or Miller Loop calculus need all
Fk

p operations, most of the operations in PFU are performed in Fp12 . In our
design which is based on mathematical optimization [1], we tried to use lower
number of addition/subtraction, multiplications and squaring, because all Fk

p
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Figure 1: Hardware Processor Design

operations are based on operations computed in the base field Fp. Here in our
design, if we exploit parallelism, data-flow will be more complex and demands
large memory use. The proposed design tries to make a balance between speed,
area, and design complexity. We tried to do stage pipeline to provide a suitable
design which compute one optimal-ate pairing at a time.
And as it’s shown in figure 1, throughout our implementation we did a scheduling
between the pipeline approach, the serial approach and parallelism, to maximize
the utilization of individual components which certainly speeds up the pairing
computation specially with constrained resources. So, in order to maximize
components utilization, each of the component inputs is multiplexed between
the output of ACU to be used as possible as we can. And the output of each of
functional units will be stored in the register to be used later.
We should note here that the ACU have a strong role in the data-path design
because to provide control signals and scheduling of operations on different
functional units are very hard to do, so the ACU functions is performed by a
strong state machine.
In the following section, the basic units of our architecture are described.

3.2 Processor Implementation

Our hardware design is based on hybrid architecture, our approach consist on
components full time function. If calculus is independent, we use parallel ap-
proach and we use serial approach where calculus is dependant. In this case,
the outputs of each operation is redirected to registers and reused for the next
operation.

1. The Data Access Unit (DAU)
To ensure the communication and to resolve access conflicts between RDU,
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the different registers and the Fk
pAU, DAU should be well placed and well

used. The main block of DAU is Access Control Unit (ACU), his goal
is to control all other modules by sending select lines to the appropriate
model. The ACU select the RDU to send its outputs to be the inputs of
Fk

pAU. After doing the needed calculus, Fk
pAU sent results to be stored in

different registers. After that, every Fk
pAU output’s will be the inputs of

Fk
pAU in the next step.

2. Storage Unit(SU)
To calculate Frobenius, we have some pre calculation to do, this values
will be calculated once time and they will be constant during optimal ate
computation. Precalculation blocks will take increase the area occupation
and decrease execution time. So we tried to pick up execution time and
minimize area that we lose if we do the precalculation during optimal ate
computing. For this reason, we used RAM to store these values. In our
design we need three different precalculation, in every one we will store 10
values written in 256 bits, so we will use three RAM-256-bits.

3. Fk
p Arithmetic Unit(Fk

pAU)
It allows computing different Fk

p − operations like it shown in Figure 2,
it take the input data from RDU in first step then from respective regis-
ters in the other steps. It contains all arithmetic operations blocks which
are addition/subtraction, square, multiplication, inversion in Fk

p. In the-
ory only addition and subtraction take minimal time and area. Whereas,
multiplication and inversion module take a lot of processor time and area.
But in our case, we compute modular addition and subtraction, so we
should take this into consideration. In addition, we need Frobenius calcu-
lus and Rapid exponentiation calculus. Figure 2, presents Fk

p arithmetic

Figure 2: Fk
p Arithmetic Unit

operations needed to our implementation. To compute Fp12 operations,
we need Fp6 operations which need Fp2 operations, and all Fk

p operations
are based on Fp ones. Let’s take the example of inversion computation in
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Fp12 , this operation need at the same time: multiplication in Fp6 , square
in Fp6 and inversion in Fp6 .

4. Pairing Function Unit
PFU execute all algorithms needed to compute Optimal Ate Pairing. In
first time, it compute Miller Loop as it mentioned in figure 3, by calcula-
tion of Phi-Calculus, Addition Step and doubling Step. These operation
need Fp operations. In second time, it calculate hard part of final expo-
nentiation then the final exponentiation, as it’s shown in figure 1.

Figure 3: Miller Loop Computation

In the next section, we will present the hardware optimizations used in our
design to find the efficient way to compute Optimal Ate Pairing.

4 Hardware optimization

After algorithmic optimization presented in [1],we concentrated our optimiza-
tion efforts on hardware design. The problem of hardware implementation is
a function of two different factors: cryptographic algorithms architectures and
the efficient integration of them.
The algorithms used to compute our optimal ate processor are partitioned into a
sequence of hardware implementable models. Every model represents the serial
behavior of the algorithm and can be executed sequentially. In this section, we
will present different optimizations done to perform our architecture.

4.1 Pre calculation and RAM use

Pre calculation is needed to compute Frobenius calculus. It need four modu-
lar additions, four modular subtraction, two modular multiplication and two
modular square. All these modules occupies an important memory and increase
execution time, and we should note that the covered area resource is one of the
most important factors to be considered. In order to face this problem, execu-
tion time and memory usage can be reduced by using a storage unit capable of
storing all pre calculation values and constants needed in our implementation
using FPGA Block RAM features.
In Xilinx FPGA, we find two types of RAM: block RAM’s and distributed
RAM’s. The first type is a dedicated two port memory containing several kilo
bits of RAM. The configuration logic blocks (CLB) in most of the Xilinx FPGA’s
contain small single port or double port RAM which is normally distributed
throughout the FPGA and it is called ”distributed RAM”. With this type, for
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implementing larger and wider memory functions we can connect several dis-
tributed RAM’s in parallel which automatically done by the Xilinx synthesizer.
As we can see from the definitions, distributed RAM is ideal for small sized
memories. But when comes to large memories, this may cause a extra wiring
delays. But Block RAM’s are fixed RAM modules so if we implement a small
RAM with a block RAM it will be wastage of the rest of the space in RAM. So
use block RAM for large sized memories and distributed RAM for small sized
memories or FIFO’s.
In other hand, we can note that the calculation is not always parallel, it’s exe-
cuted sequentially. This means that data acquisition can be done step by step
so we don’t need larger number of I/O devices for the system.

4.2 Arithmetic operation optimization

In most of the cryptosystems, there is a need of big number calculation, as it’s
mentioned in table 2, operations complexities in Fp6 and Fp12 can be expressed
in term of Fp arithmetic. So, it necessary to explore different arithmetic func-
tions such as multiplication, inversion, addition and square.
we should note that modular multiplication and inversion in base field are the

Operation Notation Cost in Fp

Multiplication in Fp M M
Squaring in Fp S S
Inversion in Fp I I
Multiplication in Fp2 M2 3M
Squaring in Fp2 S2 2M
Multiplication in Fp6 M6 18M
Squaring in Fp6 S6 12M
Inversion in Fp6 I6 37M + I
Multiplication in Fp12 M12 54M
Cyclotomic Squaring in Fp12 S12 18M
Inversion in Fp12 I12 15M

Table 2: Operation cost in the extension tower [1]

most important operations for computing a cryptographic pairing. Until now,
inversion operation doesn’t have optimization, so computing inversion is based
on Fermat and Euclid algorithms, and it is avoided mostly by use of projective
coordinates. Moreover, squaring is considered a special case of multiplication.
Whereas, researches are oriented to the modular multiplication.
Multiplication is the process of repeating additions of the same number, it’s
the most costly operation after inversion, for this reason it was well studied
by researches, and many different and efficient multiplication algorithms had
been proposed. The three most popular big number multiplication algorithms
are the Karatsuba-Ofman, Toom-Cook, and FFT. Every algorithm has a cer-
tain complexity, which is essentially a measure for how long it takes to run
the algorithm and the difficulty of computational problems against many differ-
ent computational resources such as time, area etc. Thus, to design an efficient
cryptosystem, computational complexity is primordial step to choose algorithms
that are easy to implement but hard to break. Karatsuba [29], Toom [33] and
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Cook [32] found polynomial multiplication methods which have lower asymp-
totic complexity, from O(n2) to O(ne), where 1 < e ≤ log2 3, many efforts have
been done to find optimized implementations.
Area occupation and running time are the most important computational re-

Work Mult.Type Platform Field Size Area Freq.(MHz) Time
(µs)

Ours Toom-
Cook-
Karatsuba

Virtex6 256 2250
Slices
and 15
DSP

145 0.89

[2] R4MIM Virtex6 256 4630
Slices

86.6 1.487

[2] R8MIM Virtex6 256 5657
Slices

71 0.93

[2] IMM Virtex6 256 3566
Slices

116 2.21

[26] MIM on
ML

Virtex6 256 3475
Slices

128 2

[27] MIM on
ML

Virtex6 256 3600
Slices

145 1.8

[25] MR Virtex6 256 4815
Slices
and 12
DSP

223 -

Table 3: Performance Comparison of different Multiplier

sources in hardware implementation especially in restrained environment, and
they depend on the basic steps taken by an algorithm. Thereby, to find an
efficient way to multiply two number we can apply ”Divide and conquer algo-
rithm” which is a method for solving a problem by dividing it into different
sub-problems, each one is recursively solved, and the sub-problems solutions
are then combined to find the solution to the main problem. One of the good
approaches is to combine Karatsuba method with Toom-Cook one, which is the
case of our work, these two ways to efficiently multiply polynomials and long
integers are well-known and well studied in the literature. Karatsuba method
was used to split the input numbers into limbs of smaller size and equal width,
and then expresses the larger input product in terms of calculations made on
the smaller parts. Then the multiplication was performed by applying Toom-
Cook method, 32-bit multiplier, we could choose B = 231 = 2, 147, 483, 648 or
B = 109 = 1, 000, 000, 000, and store each digit as a separate 32-bit binary
word, in this way Toom-Cook multiplier allows hardware implementation per-
formance with increase of the execution time and fewer shifts, in this way, we
should propose technique to maximize FPGA’s resources exploitation available
and their features devices to speed up pairing computation, so we can use the
FPGA 32-bit Multiplier.
After performing multiplication, for each Fp-multiplication, we will reduce the
result, here the difficulty is in the reductions modulo p, which are, essentially,
division operations, and they are costly in execution time, so we need an ef-
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ficient algorithm to do the reduction. The most used method is Montgomery
reduction, specially by cryptosystems which are based on arithmetic operations
modulo a large number. Montgomery algorithm is easier to implement in hard-
ware,because the modulus reduction is done by shift operations avoiding the
division operations.
But we should note that modular addition is required, because computing mod-
ular additions and multiplications can use the same cells for both purposes
without having a full-length array of multiplexors. Therefore, these two oper-
ations have a common parts with others, so in multiplication block we need
modular addition/subtraction block.
Table 3 compare the performance of our proposed multiplier with different mod-
ular multiplication implementations in the literature. Our proposed multiplier
compute one multiplication using 2250 Slices and 15 DSP in only 0.89 µs achiev-
ing a maximum frequency of 145 MHz which is less area occupation comparing
to the other, and it presents the best compromise between area, frequency and
execution time.

4.3 Miller Loop and Final Exponentiation optimization

Optimal ate pairing computation consists of two operations: the Miller’s algo-
rithm and the final exponentiation. There are two proposed method to compute
optimal ate pairing, first it can be implemented using one processor to compute
Miller Loop then final exponentiation, second two separate processors can be
implemented on which these two operations are pipelined. We should remark
that two separate processors in pipeline helps to reduce the computation time,
but, at the same time it needs larger area. But in our implementation, we are
interested to applications demanding area-constrained devices, so it is important
to take care of the overall area requirement for pairing computation respecting
a reasonable computation time.
This paper attempts to optimize the area of the optimal ate pairing cryptopro-
cessor. Our architecture is based on a common datapath for computing both
the Miller algorithm and the final exponentiation. Our architecture design uses
adequate parallelism and serialization in the datapath to achieve a reasonable
speed cryptoprocessor with a good area-constrained devices. The proposed ar-
chitecture design shown in figure 1 first computes the Miller’s Algorithm then
the final exponentiation.
Applying Miller’s Algorithm in section 2, and the fact of reuse needed compo-
nent, we have a gain in area occupation.

When speaking about the Final Exponentiation, the most famous methods

Methos Components Number

New development of f
p4−p2+1

r 24A + 12S + 2M + 2Sq + 1Inv
New Addition chain 19A + 12S + 3M + 2Sq + 1Inv
New development of Fuentes 24A + 12S + 2M + 2Sq + 1Inv
Vriant of Fuentes 12A + 6S + 2M + 2Sq + 1Inv

Table 4: Components Number Need for final exponentiation computation

to compute its hard part was detailed and developed in [1], to obtain a new

variants which are: a new development of f
p4−p2+1

r , a new addition chain, a
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new development of Fuentes method and a variant of Fuentes based on a new
multiple of the final exponentiation. These new variant require less memory
resources than the previous ones, and offer a gain of complexity with a neg-
ligible losses in execution time which makes these method very interesting for
implementations in restricted environments.
As it mentioned in table 4, by the reuse of Fk

p components, we can limit the
number of component needed to compute every method of the hard part of
the final exponentiation. Based on the results cited in table 1, we note that
the method of Divigili is the most suitable to restricted environment in term
of temporary variable and memory saving. We implemented the four methods
cited below and we proved this results, so in the final design we used Divigili
method to compute the entire Optimal Ate Pairing.

4.4 Component Use Optimization

Our pairing processor architecture included a Fk
p Arithmetic Unit capable of

computing modular additions/subtractions, modular multiplication, modular
squaring and modular inversion. Moreover, squaring is considered a special
case of multiplication, and inversion is avoided mostly by use of projective co-
ordinates.
Our approach, to implement our processor, is based on reuse blocks as possible
as we can, because every algorithm need a defined number of arithmetic opera-
tions which can be computed in parallel or serial. Let’s take the example of Fp6

multiplication algorithm 2:
Algorithm 2 resumes all steps needed to compute F6

p multiplication, so we
remark that we have in every step some parallel operations which can be exe-
cuted in the same time, and if we pass to the next step we can reuse the same
component used before. So here we apply the parallel approach firstly then the
serial one.

Applying the algorithm 2, we dressed table 5 which lists the components

Steps MultipF2
p Add1 Add2 Add3 Add4 Sub1 Sub2

1 X X X X X - -
2 X X X X X - -
3 X - - - - X X
4 - - - - - X X
5 X X - - - X -
6 X X X - - - -
7 - - - - - X X
8 - - - - - X X
9 - X X - - - -
10 - X X X - X -
11 - X X X X - -
12 X - - - - X X
13 - - - - - X X

Table 5: Clock distribution of F6
p Multiplication Module

activated and desactivated in every step of Fp6 multiplication algorithm. In
addition, it give us, in every step, how many component we used.
The idea of activated and desactivated components, can be more clear in figure
4, in every step, component that compute independent calculus was activated
with their special clock generated by a CLK Generator Block. And the other
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Algorithm 2 : F6
p Multiplication

Input : a00, a01, a10, a11, a20, a21, c00, c01, c10, c11, c20, c21,p
Output :t8,t9,t6,t7,t0,t1
Step1:
t2,t3=Multiplication F2

p(a10,c10,a11,c11)
V1, V2, V3, V4 = (a10+a20,c10+c20,a11+a21,c11+c21)
Step2:
t6,t7=Multiplication F2

p(V1,V2,V3,V4)
V1, V2, V3, V4 = (a00+a10,c00+c10,a01+a11,c01+c11)
Step3:
t4,t5=Multiplication F2

p(a20,c20,a21,c21)
t6, t7 = (t6-t2 , t7-t3)
Step4:
t6, t7 = (t6-t4 , t7-t5)
Step5:
t8,t9=(t6-t7, t6+t7)
t0,t1=Multiplication F2

p(a00,c00,a01,c01)
Step6:
t8,t9=(t8+t0 , t9+t1)
t6,t7=Multiplication F2

p(V1,V2,V3,V4)
Step7:
t6,t7=(t6-t0,t7-t1)
Step8:
t6,t7=(t6-t2,t7-t3)
Step9:
t6, t7= (t6+t4, t7+t5)
Step10:
t6, t7=(t6-t5 , t7+t4)
V1, V2 = (a00+a20,c00+c20)
Step11:
t0,t1=(t0+t4, t1+t5)
V3, V4 = (a01+a21,c01+c21) Step12:
t0,t1=(t0-t2, t1-t3)
t2,t3=Multiplication F2

p(V1,V2,V3,V4)
Step13:
t0,t1=(t2-t0, t3-t1)

components were deactivated. We can note also that F6
p multiplication need

6 F2
p multiplication blocks, 14 subtraction blocks and 18 addition blocks. But,

considering operation independency, we will use only 2 F2
p multiplication blocks,

4 addition blocks and 2 subtraction blocks.
This approach is very efficient and presents a remarkable gain in area, for this

reason we will apply it in all algorithms implementations. If we take the example
of Fp12 operations, we count the number of operations needed to compute every
algorithm then analyzing parallelism and serialism approach, we found the ex-
act number of necessary blocks to be reused in every step. Our aim was to gain
as much as possible on the number of used components, as it is mentioned in
table 6. We note that, concerning Fp12 arithmetic operations, arithmetic block
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Figure 4: Timing for computing Fp6 Multiplication

Operation Number Bloc Number
MultFp12 115A + 82S + 27M 13A + 11S + 1M
SqFp12 66A + 82S + 18M + 27Sq 10A + 12S + 1M + 1Sq
InvFp12 99A + 102S + 59M + 29Sq + 1Inv 25A + 31S + 7M + 5Sq + 1Inv
ExpoFp12 172A + 164S + 45M + 27Sq 23A + 23S + 1M + 1Sq

Table 6: Block Number Optimization for computing calculus in Fp12

number decreased in a remarkable way. If we take the example of Fp12 mul-
tiplication, there was a 88% decrease in Addition blocks number , subtraction
Blocks’s number was 86% lower then before and multiplication Blocks number
decreased by 96% . In this way, the needs of the system resources are reduced
and the system performance are increased .
Another point is that our architecture design is composed of several indepen-
dent synchronous components which operate with their own local synchronous
clocks, as you can see in figure 1, we have a CLK Generator in the ACU, which
generate a clock to every block in the entire architecture. In this case, each
component can adjust its operation speed by reporting its workload, even pause
when not seeking.

5 Implementation results

We have to highlight firstly that every algorithm should be demonstrated in
software, such is our case, Optimal Ate Pairing Algorithms was verified using
Sage Software in [34], then being implemented in hardware.
The entire architecture of the optimal ate pairing processor is coded in VHDL
language. Then the code is simulated using the Modelsim 13.1 software, com-
piled and synthesized using Xilinx ISE 14.7 Design Suite, then it is implemented
on a Virtex-6 FPGA(XC6VHX250T)
Our hardware design compute the Miller Loop then the final exponentiation.
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Mathematical optimization of the hard part of the Final Exponentiation and
the doubling step in the Miller Loop has a powerful effect on the performance
of the entire architecture. So, by applying: mathematical optimizations cited in
section 2 and in [1], hardware optimizations cited in section 4, then by the use of
FPGA features like Block RAMs on the FPGA to implement data memory and
instruction ROM, the architecture cost, in terms of area and memory saving,
was decreased.
Let’s now remember that hardware resources on an FPGA are indicated by the
number of slices that FPGA has, where a slice is comprised of look-up tables
(LUTs) and flip flops. The number of LUTs and flip flops Virtex-6 FPGA con-
tains 4 LUTs and 8 Flip Flops.
We implemented our design in two way, the first without use of DSP Slices and
then using DSP Slices and Block RAMs. In the first way, on a Xilinx Virtex-
6 FPGA (XC6VHX250T), we find that our hardware design uses 9476 Slices
achieving a maximum frequency of 145 MHz, since the number of hardware
units is minimized it also achieves the best improvement in area.
And then, by using Block RAMs and DSP Slices, the design uses 6240 Slices,
30 DSP48E1s and 3 Block RAMs. The design achieves a maximum frequency
of 160 MHz. Table 7 compares the result with the state-of-the-art implementa-
tions achieving 128-bit security. All performance measurements show that our
results is the best in term of area and execution time.
The mentioned results prove that our proposed architecture provide significant

Design Pairing Security Technology Area Freq. Cycle
Our De-
sign

Optimal
Ate

126 Xilinx
FPGA
Virtex 6

9476
Slices

145 80486

[5] Optimal
Ate

126 Xilinx
FPGA
Virtex 4

52K
Slices

50 821000

[3] Optimal
Ate

126 Xilinx
FPGA
Virtex 6

7032
Slices
and 32
DSP

250 143111

[4] Optimal
Ate

126 Xilinx
FPGA
Virtex 6

4014
Slices et
42 DSP

210 245430

[7] Optimal
Ate

126 Xilinx
FPGA
Virtex 6

5163
Slices et
144 DSP

166 62000

Table 7: Implementation results comparison

saving of area over the existing designs and it can be suitable for restricted
environment because it have the tradeoff between area and time complexities.
By implementation our hardware design, we proved experimentally that meth-
ods computing the hard part of the final exponentiation presented in [1] neces-
sitate less memory resources and they are in the most of time more quickly than
the developments presented in the literature. Thinking about the more imple-
mented method which is presented by Scott et al. and based on the addition
chain requires at least 4,16 Ko of memory to be implemented on a smart card
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but by their variant 2,36 Ko of a memory are largely enough to implement a
pairing in a restricted environment.

6 Conclusion and Future works

6.1 Conclusion

Every algorithm should be optimized firstly in mathematical point of view, then
should be demonstrated in software [34] before being implemented in hardware.
In this paper, we studied hardware implementation of the optimal ate pairing
algorithm optimized in [1], and demonstrated in software, then we gave an
efficient and optimized architecture which explore FPGA features devices. Then
we evaluated its performance and we noted that optimizations presented below
certainly make the implementation less costly.

These practical results touch resource constrained systems, which can ben-
efit greatly from our optimized cryptographic architecture that are turned to
consume as little system resources as possible but it provide reasonable perfor-
mance in the same time. For this reason pairing implementations become more
and more attractive for the hardware designers.

As mentioned earlier, presented results show that we have the best per-
formance in area and practical frequency in comparison with other hardware
designs.

6.2 Future work

Nowadays a flexible encryption system, which would calculate arithmetic op-
erations, can be implemented with hardware and software cooperation; hard-
ware/software codesign.

Compared with the other hardware devices like ASICs and FPGAs, smart
cards have limited computing power and minimized storage capacity, we can
implement our design on this embedded system.
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