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Abstract

Recently there has been much interest in performing database queries over encrypted data to enable
functionality while protecting sensitive data. One particularly efficient mechanism for executing such
queries is order-preserving encryption/encoding (OPE) which results in ciphertexts that preserve the
relative order of the underlying plaintexts thus allowing range and comparison queries to be performed
directly over the ciphertext. In particular, Popa et al. (S&P 2013) recently gave the first interactive, muta-
ble order-preserving encoding scheme achieving the strongest possible security for OPE while allowing
for efficient range queries. However, this construction requires the bulk of the work to be performed
when inserting data into the database, something that is not desirable for the high insertion rates of
today’s big data databases.

In this paper, we propose an alternative approach to range queries over encrypted data that is op-
timized for efficient insert while still maintaining search functionality. Specifically, we propose a new
primitive called partial order preserving encoding (POPE) that achieves ideal OPE security while pro-
viding extremely fast insertion and efficient (amortized) search. Our scheme is better suited to today’s
insert-heavy database scenarios. For example, with about one million insertions and one thousand range
queries, our POPE scheme is 20X faster than the scheme by Popa et al.

We also propose a new form of frequency-hiding security for POPE, as recently studied by Ker-
schbaum (CCS 2015) for OPE, and show how to extend our scheme to satisfy it. Altogether, one view of
our results is that POPE is a new, fast “gracefully-leaky ORAM” for a particular, randomized interpreta-
tion of the (partial) sorting functionality.

1 Introduction

A common workflow in “Big Data” applications is to collect and store a large volume of information,
then later perform some analysis (i.e., queries) over the stored data. In many popular NoSQL key-value
stores such as Google BigTable [CDG+06] and its descendants, e.g. [DHJ+07, Thea, Theb, Thec], the most
important query operation is a range query, which selects rows in a contiguous block sorted according to
any label such as an index, timestamp, or row id.

In order to support high availability, low cost, and massive scalability, these databases are increasingly
stored on remote and potentially untrusted servers, driving the need to secure the stored data. While tra-
ditional encryption protects the confidentiality of stored data, it also destroys ordering information that is
necessary for the efficient server-side processing, notably for range queries. An important and practical goal
is therefore to provide data security for the client while allowing efficient query handling by the database
server.
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Order-preserving encryption (OPE) [AKSX04, BCLO09, BCO11] offers a simple and efficient solution
for performing range queries over encrypted data. Specifically, OPE guarantees that enc(x) > enc(y) iff
x > y. Thus, range queries can be performed directly over the ciphertexts in the same way that such a query
would be performed over the plaintext data. However, OPE comes with a security cost. None of the original
schemes [AKSX04, BCLO09] achieve the ideal security goal for OPE of IND-OCPA (indistinguishabil-
ity under ordered chosen-plaintext attack) [BCLO09] in which ciphertexts reveal no additional information
beyond the order of the plaintexts. In fact Boldyreva et al. [BCLO09] prove that achieving a stateless en-
cryption scheme with this security goal is impossible under reasonable assumptions. The existing schemes,
instead, either lack formal analysis or strive for weaker notions of security which have been shown to reveal
significant amount of information about the plaintext [BCO11].

This impossibility was recently circumvented by Popa et al. [PLZ13] who showed how to build an
order-preserving encoding scheme1. This scheme differs from traditional encryption in two ways. First,
the encoding procedure is interactive requiring multiple rounds of communication between the data owner
(client) and the database (server). Second, the ciphertexts produced are mutable so previously encoded
ciphertexts may have to be updated when a new value is encoded. Roughly, the Popa et al. scheme works
by building a binary search tree containing (encrypted versions of) all the data elements at the leaves. The
OPE encoding of a value is just its position in this binary search tree. Thus, encoding works by the client
and server jointly traversing this tree with the client decrypting the value at the internal nodes and indicating
whether the value being encoded is larger or smaller. If the part of the tree into which the inserted value
would go is already full, Popa et al. use a tree rebalancing procedure to make space for the new value.
Clearly, this approach requires O(log n) rounds of communication and total communication of O(log n)
encrypted values per encoding to traverse the binary tree; the same amount of communication is needed per
range query to encode the end-values of the range. However, the client only needs enough memory to store
two ciphertexts at a time for comparison. A different trade-off between client storage and communication
is given by Kerchbaum and Schropfer [KS14] achieving minimal O(1) communication to encode elements
(from a uniform random distribution), but requiring linear-size, persistent client storage — proportional to
the storage requirements on the remote database itself.

When used for range queries over encrypted data these two schemes either require require significant
communication and work by the server, or significant client storage to handle data insertion in order to
achieve efficient range queries that can be executed directly over the OPE encodings. As such, these schemes
work well when there are relatively few inserts and many queries performed over the data. However, in
many big data applications, the opposite is true with many more values added to the database than are ever
searched or retrieved. For example, a typical application might be the collection of data from low-powered
sensor networks as in [WGA06], where insertions are numerous and happen in real-time, whereas queries
are processed later and on more capable hardware.

Hence, this paper asks the following question:

In the scenario of a huge number of insertions and a moderate number of range queries, can
we design a secure range-query scheme with small client storage and much better efficiency?

1.1 Our Work

Our contributions. In this paper we give a positive answer to the above question, proposing an alternative
scheme for range queries that we call a partially order preserving encoding or POPE. Specifically, our POPE

1We abuse notation and use OPE to refer to both order-preserving encryption and order-preserving encoding.
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Comm. Rounds Amortized Client Storage
Insert Query Communication Storage Size Persistence

Here 1 O(1) O(1) O(nε) No
[PLZ13] O(log n) O(log n) O(log n) O(1) No
[KS14] 1 1 O(1) O(n) Yes

Figure 1: Comparison of OPE-based range search schemes. n is the total number of inserts. The commu-
nication complexity is given in number of encrypted elements. For our scheme we require at most O(n1−ε)
total number of queries.

construction satisfies the following properties when storing n items, provided at least O(nε) client-side
memory and at most O(n1−ε) number of range queries for any constant 1 > ε > 0:

• IND-OCPA security leaking nothing beyond the order of inserted elements.

• Trivial insert operations consisting of 1 message from the client to the server and no computation for
the server.

• Expected O(1)-round, amortized O(1)-bandwidth per range query.

• No persistent client storage between query operations.

See Figure 1 for how this compares to existing schemes. Our scheme is especially suitable for typical
big data applications where there are many more inserts than queries. As an example data point, with about
one million insertions and one thousand range queries, our POPE scheme is 20X faster than the scheme by
Popa et al. See Section 7 for a more detailed comparison.

Our approach. Our main technique to make this possible is lazy sorting. Specifically, unlike OPE, we do
not sort the encoded values on insert, instead only partially sorting values when necessary during querying.
If we regard the actual location in the search tree data structure as an implicit encoding of an encrypted value,
our scheme gives partially ordered encoding, and hence the name of our construction POPE (partially order
preserving encoding). This allows for extremely efficient insertion and for the cost of sorting encrypted
elements to be amortized over the queries performed. In particular, on each query we only need to sort the
part of the data that is accessed during the search, leaving much of the data untouched. Additionally, since
encodings are sorted during searches, the cost of performing a batch of search queries is often much cheaper
than performing these queries individually as later queries no longer need to sort any elements already sorted
in earlier queries.

At a high level, our scheme works by building a buffer tree [Arg03] where every node contains an
unsorted buffer and a sorted list of elements. The invariant that we maintain is that the elements stored in the
sorted list of a node impose a partial order on the values stored (both in the sorted list and unsorted buffer) at
that node’s children. That is, all values at child i will lie between values i−1 and i in the parent’s sorted list.
Intuitively, this enables the sorted values at each node to serve as an array of simultaneous pivot elements,
in the sense of Quicksort [Hoa62]. To maintain this property we make use of client storage to partition a set
of unsorted elements according to the values at the parent. Specifically, we require the client to be able to
read in a buffer of O(nε) encrypted values and to partition them according to these split points. Using this
amount of storage we can ensure that the depth of the buffer tree remains O(1) allowing for low amortized
latency over batches of client queries.

Frequency-hiding security. Recently, Naveed et al. [NKW15] showed a concrete attack on ideal OPE
security (IND-OCPA), using the revealed order information to learn a large fraction of underlying data
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in a medical database protected by the security tools underlying CryptDB [PRZB11] (though this did not
constitute an attack on CryptDB itself [PZB15]). To counter the [NKW15] attack, Kerschbaum [Ker15]
proposed a stronger notion of security that also hides the frequency of OPE-encoded elements (i.e. hides
equality). To show security, Kerschbaum’s scheme requires programming a random oracle in the proof.

In Section 6, we propose a new definition of frequency-hiding for POPE, and show how to extend our
scheme to satisfy it without using a random oracle. Further, we argue that the ROM is likely too strong of
an assumption in the context of POPE. Indeed, with a programmable random oracle we can also achieve an
even stronger, “non-committing” notion of POPE security (so strong as to be unrealistic).

1.2 Related Work

OPE alternatives. In addition to OPE there are several other lines of work that enable searching over
encrypted data. Typically, these works stronger security than provided by OPE; in particular they do not
reveal the full order of the underlying data as happens with OPE. However, this comes at a significant
performance cost with even the latest schemes being one to two orders of magnitude slower than the latest
OPE-based implementations [PRZB11, KGM+14].

Symmetric searchable encryption (SSE) was first proposed by Sawn, Wagner, and Perrig [SWP00] who
showed how to search over encrypted data for keyword matches in sub-linear time. Goh [Goh03] showed
how to support conjunctive queries, Curtmola et al. [CGKO06] showed how to support multiple querying
clients, and Kamara et al. [KPR12] showed how to allow for stateful modifications to the database. Recent
works [PKV+14,CJJ+13,FJK+15] achieve performance within a couple orders of magnitude of unencrypted
databases for rich classes of queries including boolean formulas over keyword, and range queries. We refer
interested readers to the survey by Bosch et al. [BHJP14] for an excellent overview of this area.

Oblivious RAM [Gol87,SCSL11,SvDS+13,WCS15] and oblivious storage schemes [GMOT12,AKST14,
DvDF+16,MMB15] can be used for the same applications as OPE and POPE, but achieve a stronger security
definition that additionally hides the access pattern, and therefore incur a larger performance cost than our
approach. Indeed, one view of our results is that POPE is a (fast) “gracefully-leaky ORAM” for a certain,
randomized interpretation of the (partial) sorting functionality.

Finally, we note that techniques such as fully-homomorphic encryption [Gen09], public-key searchable
encryption [BCOP04, BW07, SBC+07], and secure multi-party computation [Yao86, BGW88, GMW86]
can enable searching over encrypted data while achieving the strongest possible security. However, these
approaches would require performing expensive cryptographic operations over the entire database on each
query and are thus prohibitively expensive. Very recently cryptographic primitives such as order-revealing
encryption [BLR+15] and garbled random-access memory [GLOS15] have offered the potential to achieve
this level of security for sub-linear time search. However, all constructions of these primitive either rely on
very non-standard assumptions or are prohibitively slow.

Lazy data structures and I/O complexity. The data structure that forms the basis for our construction
is similar in concept to the Buffer Tree of [Arg03]. Their data structure delays insertions and searches in
a buffer stored at each node, which are cleared (thus executing the actual operations) when they become
sufficiently full. The main difference here is that our buffers contain only insertions, and they are cleared
only when a search operation passes through that node.

We also point out an interesting connection to I/O complexity regarding the size of local storage. In
our construction, as in [PRZB11], the client is treated as an oracle to perform comparisons of ciphertexts.
If we think of the client’s memory as a “working space” of size L, and the server’s memory as external
disk, then from [AV87] it can be seen that performing m range queries on a database of size n ≥ m
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requires a total transfer bandwidth of at least Ω(m logLm) ciphertexts. (This is due to the lower bound on
the I/O complexity of sorting, and the fact that m range queries can reveal the order of a size-m subset.)
In particular, this means that the mOPE construction from [PRZB11] cannot be improved without either
limiting the number of queries, or increasing the client-side storage, both of which we will do.

2 System Settings and Considerations

Data format. We view the data elements inserted into the database as blocks consisting of a label ` and a
value v. All range searches are performed over the labels and the corresponding values are returned for the
matching labels.

Participants. Our range query system consists of three entities: the client, the server, and the comparison
oracle.

• The clientC has no relevant storage or computational capability other than encryption and decryption.
The client initiates all the operations on the database by sending encrypted queries to the cloud server
(and decrypting the responses). C must have the ability to encrypt both labels and values; i.e., C must
hold all cryptographic keys. There can be multiple clients sharing the same cryptographic keys as
long as they are able to coherently decrypt and encrypt labels and values.

• The cloud server S stores the entire encrypted database, and is responsible to execute all operations
efficiently. S holds no encryption or decryption keys, and should learn nothing about the database
contents except an (partial) order on the plaintext labels.

• The comparison oracle O holds the decryption key for labels (but not values) in the database, and
is therefore able to decrypt the labels, perform comparison-based computations at the request of the
server S, and return the results. The operations of O are constrained so that nothing more is learned
by S than the order of the encrypted labels.

We generally assume that the server S has the largest computational and storage capabilities, followed by
the oracle O which has polynomially smaller storage and constrained computational costs, and the client C
which has finite (i.e. O(1)) storage and no computational responsibility beyond encryption and decryption.

Possible deployment scenarios. Introducing the comparison oracle as a separate entity allows us to con-
sider several different scenarios:

• If C and O are the same (and S is distinct), then we have the typical single-user cloud scenario
described in the introduction. The client and server will execute a protocol in order to insert and
retrieve database entries without revealing too much information to the server about the contents of
the database. The client has limited space and computational resources, and we want to develop
efficient protocols under these restrictions.

• If C, S, and O are all distinct, then we have the multi-user cloud scenario, where O is a semi-trusted
third party with limited resources.

• If S and O are the same (and C is distinct), then the client trusts the cloud server with a decryption
key for the labels, in order to provide greater efficiency. The client’s data is secure from any third
parties that access the server’s long-term (encrypted) storage. Note that this seems to be a typical
use-case in currently-available cloud platforms, where data is stored encrypted but (some) decryption
is performed remotely.
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• IfC, S, andO are all the same machine, then we may consider the server’s memory to be high-volume
persistent memory (such as a hard disk), and O’s storage to be the erasable, secure memory (such as
RAM or an encrypted thumb drive). Then the database contents will be hidden from an attacker who
can access the persistent memory but not the erasable memory.

Performance goals and relevant parameters. In our analysis we assume the storage capabilities of the
oracle O are fixed and known. We wish to minimize (in decreasing order of priority)

• the amount of communication between S and O,

• the amount of computation required by O,

• the amount of storage required on the server S,

• and finally, the amount of computation required by S.

These costs will be expressed in terms of three parameters:

• n: The total number of items inserted into the database.

• m: The total number of range search (or range delete) operations performed.

• L: The total number of encrypted labels that the oracle O can store in its local memory.

3 Partial Order Preserving Encoding

In this section, we define partial order preserving encoding schemes and their security requirements. We
assume that readers are familiar with security notions of standard cryptographic primitives [KL07]. Let λ
denote the security parameter.

Syntax. We first define the syntax for POPE schemes. Let Π` = (KeyGen,Enc,Dec) and Πv =
(vKeyGen, vEnc, vDec) be both standard private-key encryption schemes. A POPE scheme is defined as

(Π`,Πv, InitState,Cmp, Insert,Search,Delete).

Here, Π` and Πv are used when the client encrypts labels and values respectively. Moreover, after the client
creates the encryption keys (k, k′) for both labels and variables, she sends the label encryption key k to the
comparison oracle. We will use ¯̀ and v̄ to denote the encrypted version of label ` and value v. The other
algorithms are defined as follows:

• st← InitState(1λ). The server S will run this algorithm, which takes as input the security parameter
and outputs an initial state st.

• Cmp(k, (¯̀
1, . . . ¯̀

q)). The comparison oracle will run this comparison algorithm that takes as input
the label encryption key and an arbitrary number q of encrypted labels. The output of the algorithm
will be determined by specific POPE constructions; the only restriction is that the output should be
determined only by the input encrypted labels and the order of the labels, that is, (¯̀

1, . . . , ¯̀
q) and

(j1, . . . , jq) where `i is the ji-th largest element in the sequence.

• st′← InsertCmp(k,·)((¯̀, v̄), st). The server runs this insertion algorithm to insert the encrypted label-
value pair in its state st. The algorithm outputs the updated state st′. Note this algorithm may po-
tentially query the oracle Cmp(k, ·), which captures the interactions between the server S and the
comparison oracle O.
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• (st′, {(¯̀′
j , v̄
′
j)}j)←SearchCmp(k,·)(¯̀

1, ¯̀
2, st). The server will run this search algorithm with the help

of the oracle Cmp, i.e., we will have `1 ≤ `′j ≤ `2.

• st′←DeleteCmp(k,·)(¯̀
1, ¯̀

2, st). The server will run this deletion algorithm with the help of the oracle
Cmp. All encrypted items {(¯̀′

j , v̄
′
j)}j such that `1 ≤ `′j ≤ `2 will be deleted from the server database.

We remark that the above syntax is for the sake of generality, and Insert (resp., Search, Delete) may not
use the comparison oracle or randomness. In fact, Insert in our construction is a deterministic algorithm
which doesn’t query Cmp.

Security. We now give the formal definition of security for POPE.

Definition 1 (IND-OCPA security). Security of POPE is defined through the following experiment. For an
algorithm F with access to oracles, define the view of F’s execution, written VIEW(F), as the collection of
the input to F, the randomness used by F, and the answers from the oracles.

Experiment EXPind-ocpa
A (POPE, λ, b)

k←KeyGen(1λ); k′← vKeyGen(1λ); st← InitState(1λ);
Send st to A;
i← 1;
For j = 1, . . . , poly(λ):

opj←A
If opj is ‘insert’:

Fj← Insert
((`0i , v

0
i ), (`1i , v

1
i ))←A

¯̀
i←Enck(`bi ); v̄i← vEnck′(v

b
i ); F

Cmp(k,·)
j (¯̀

i, v̄i, st)
i← i+ 1

Else if opj is ‘search’ or ‘delete’:
Fj←Search or Delete depending on opj .
((`0i , `

0
i+1), (`1i , `

1
i+1))←A

¯̀
i←Enck(`bi );

¯̀
i+1←Enck(`bi+1); F

Cmp(k,·)
j (¯̀

i, ¯̀
i+1, st)

i← i+ 2
Send VIEW(Fj) to A.
Update st from the output of Fj .

Output what A outputs.

Note in the above experiment, we assume the adversaryA is stateful, and the variable i is used as a counter
for the label encryptions. We call the adversary A admissible if A always chooses labels and values such
that all labels are of the same length, and all values are of the same length, `0i < `0j iff `1i < `1j for all i, j.
We say that a POPE scheme is IND-OCPA if for any admissible PPT adversary A, the following ensembles
are computationally indistinguishable:

{EXPind-ocpa
A (POPE, λ, 0)}λ ≈c {EXPind-ocpa

A (POPE, λ, 1)}λ.

Remark on VIEW(F). The view of F’s execution is essentially the view of the semi-honest server. The
input label encryption(s) corresponds to the message from the client, and the input state corresponds to the
data structure containing the label encryptions. The randomness used by F is the randomness used by the
server, and the oracle answer is the message from the comparison oracle.
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4 Main Construction

Recall that the parameter n represents the total number of items inserted into the database, and the parameter
m represents the total number of range search (or range delete) operations performed. The comparison oracle
Cmp can store L+O(1) labels in its local memory. Let L = nε for constant ε > 0.

In our system, the client C and comparison oracle Cmp share a secret key k for the label encryption
scheme Π`. Whenever the client must communicate a block (`, v) to the server, C sends (¯̀, v̄) to S, where
¯̀←Enck(`) and v̄← vEnck′(v)) with a value encryption key k held only by the client. Whenever the server
must communicate an encrypted label ¯̀ to the oracle, S forwards the ciphertext ¯̀ to Cmp, which internally
uses shared key k to operate on plaintext label ` directly.

However for the remainder of the construction description, we will suppress explicit notation for encryp-
tion and decryption, deferring discussion of the properties required (or desired) of schemes Enc and vEnc to
the subsequent analysis in Section 5.

Server memory layout. The server S maintains a type of lazy buffer tree T , which is a balanced tree with
root r where every node has at most L+ 1 children.

• Each non-leaf node u of the tree will be associated with an unsorted buffer and a sorted list. An
unsorted buffer can hold an a-priori unbounded number of blocks {(`1, v1), (`2, v2), ...}, and a sorted
list can hold up to L labels (`1, ..., `L).

• Each leaf node uleaf has only an unsorted buffer {(`1, v1), (`2, v2), ...}.

We remark that, in general, for every distinct label `, there could be many distinct blocks (`, v1), (`, v2), ...
stored in T . However, in the presentation of the Split algorithm below, we will restrict to the special case
when for each label ` there is at most one block (`, v) in T in order to convey the main ideas more clearly.

Main invariant of tree T . We will enforce the following order-invariant on tree T :

Let `j−1 and `j be the (j − 1)th and jth sorted labels at some non-leaf node u in T . Then, for
all labels ` in the sub-tree Tuj rooted at the jth child uj of u, we have `j−1 < ` ≤ `j .

Intuitively, this guarantee of global partial ordering enables the L sorted labels `1, ..., `L at each node
u to serve as an array of simultaneous pivot elements, in the sense of Quicksort [Hoa62], for the L + 1
sub-trees rooted at u’s (at most) L+ 1 children u1, ..., uL+1. We will use this idea plus the parameter setting
L = nε, implying T has depth d1/εe = O(1), to enable the server to traverse and maintain the tree T with
low amortized latency over repeated batches of client-queries.

Organization. For simplicity of presentation, we separate the various interfaces into (i) client-server
operations and (ii) server-oracle subroutines. We assume that action begins with some client request to
the server, selected from the list of available operations. During the execution of some operation, the server
may invoke one or more subroutine calls involving server-queries to the comparison oracle Cmp.

In particular, the final subroutine, Split, is at the core of our construction, but is quite detailed. For the
reader’s sake, we devote extra care to explaining in detail how this subroutine behaves.

4.1 Client-Server Operations

There are two basic operations – Insert (for batches of blocks) and Search (for ranges of blocks) – that
are defined recursively at each node u of the tree T . Without loss of generality, the client C will always
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initiate requests to the server S as “ Insert(·, r)” and “ Search(·, r)” for current root r of tree T . However,
the server may recursively call these operations on non-root nodes u ∈ T . On receipt of a valid client
operation-request, i.e. for the current root r of T , the server S will initiate a sequence of interactive queries
to the comparison oracle Cmp in order to update/navigate the tree T and (for searches) will also return any
identified blocks {(`′1, v′1), (`′2, v′2), ...} to C.

We also show how to efficiently implement a third operation, Delete (for ranges of blocks), by making
minor changes to our implementation of Search. Altogether, this defines the tuple of operations Op =
(Insert, Search,Delete).

The Insert operation. We use the following syntax for inserting unstructured batches of blocks2:

Op.InsertT ({(`i, vi)}i, u) ,

where the sub-tree Tu ⊆ T rooted at u is updated with u′. To insert blocks at node u ∈ T :

Algorithm 1: Insert Operation
let u′ be u but with blocks {(`1, v1), (`2, v2), ...} appended to its buffer;
store u′ in T instead of u.

The Search operation. We use the following syntax for retrieving ordered ranges of blocks:

{(`′j , v′j)}j←Op.SearchT ,Cmp(k,·) (`1, `2, u) ,

where the sequence of blocks {(`′1, v′1), (`′2, v′2), ...} is returned. If the search originated at root r ∈ T , the
sequence of blocks is returned to the client; else, the server returns a (sub)sequence to its own recursive call.
To search for blocks in the range [`1, `2] contained in the sub-tree Tu ⊆ T rooted at u ∈ T :

Algorithm 2: Search Operation

let
(
(`∗1, v

∗
1), found1

)
:= SubR.SplitT ,Cmp(k,·)(`1, u, left);

let
(
(`∗2, v

∗
2), found2

)
:= SubR.SplitT ,Cmp(k,·)(`2, u, right);

let {(`′1, v′1), (`′2, v′2), ...} := SubR.TraverseT (`∗1, `
∗
2);

output {(`′1, v′1), (`′2, v′2), ...}.

Roughly speaking, the output (`∗, v∗) from SubR.Split is the leftmost (resp. rightmost) block matching
the split-point `1 or `2. See below for the actual detailed description of the subroutine.

The Delete operation. We use the following syntax for deleting ordered ranges of blocks:

Op.DeleteT ,Cmp(k,·) (`1, `2, u) ,

To remove all blocks in the range [`1, `2] contained in the sub-tree Tu ⊆ T rooted at u ∈ T :

2We suppress the Cmp oracle notation for Insert, since the oracle is unused.
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Algorithm 3: Delete Operation

let {(`′j , v′j)}j := Op.SearchT ,Cmp(k,·) (`1, `2, u);
remove every block in the sequence {(`′1, v′1), (`′2, v′2), ...} from T .

4.2 Server-Oracle Subroutines

The server S locally invokes subroutines and queries the comparison oracle Cmp to complete them. We
define the tuple of subroutines SubR = (Traverse,Rebalance,Split).

Comparison oracle. The comparison oracle is parameterized by public L ∈ N, and we have q ≤ L; it
stores secret key k to access labels ` of ciphertexts ¯̀. We use the notation

Cmp[`1, ..., `q](k, `)

to describe the oracle. We differentiate between two modes of operation: sorting and streaming.

• When sorting, the input is (`1, ..., `q, `), and the output is a sorted list (`i1 , . . . , `iq) and (j, found) ∈
[q + 1] × {0, 1}, where j is such that `ij−1 < ` ≤ `ij , with `i0 and `iq+1 defined as −∞ and ∞
respectively, and found = 1 iff ` = `j for some j ∈ [q].

• When streaming, semi-persistent inputs (`1, ..., `q) are first uploaded to the oracle, and then input ` is
received from a stream. In the streaming mode, only (j, found) is returned as output.

The Traverse subroutine. We use the following syntax for traversing the tree T from `1 to `2:

{(`′1, v′1), (`′2, v′2), ...}←SubR.TraverseT (`1, `2),

where a sequence of every block (`′i, v
′
i) found between `1 and `2 in the partial ordering of T is returned to

the server. Traversals may be implemented by any common tree-traversal algorithm.

The Rebalance subroutine. We use the following syntax for rebalancing the tree T at a node u:

SubR.RebalanceT (u),

We demand the following, additional invariants on calls to SubR.Rebalance(u):

1. u is a non-leaf node,

2. u has an empty unsorted buffer,

3. and u contains at most 2L sorted labels and 2L+ 1 children.

To rebalance the tree T at node u, proceed as in Algorithm 4.

4.3 The Split Subroutine

Intuition — How to Split a Tree. The Split subroutine simultaneously services two primary objectives:

1. Search for an end-point logical position, e.g. in order to answer some client-generated range query
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Algorithm 4: Rebalance Subroutine

if u has L or fewer labels :
halt

if u has no parent :
create a new root node r;

choose the median label of u to promote to the list of the parent of u;
split labels and children of u accordingly, creating a new sibling internal node u∗;
call SubR.RebalanceT (parent(u));

2. Re-arrange the tree to speed up subsequent calls to Split (and achieve good amortized costs).

The idea is best explained by illustrating the desired behavior/effect of splitting the tree at different
stages of its lifecycle. Details follow.

Prior to the first split of the tree T , a (potentially large) sequence of unsorted ciphertexts have been
(blindly) inserted into the lone buffer of the single, initial node/root r ∈ T . So immediately prior to the first
split of the tree, we can picture the state of the server’s data as the monolithic node r in Figure 2.

Figure 2: The server’s tree T immediately prior to its first split: just an unsorted buffer.

In the first split of the sole node r ∈ T , L random labels are chosen uniformly without replacement
from the buffer of r. These are sent to the oracle, who sorts them. A new root node r′ is created with new
children u1, ..., uL+1. (It is possible to view the old node r as being equal to one of the otherwise-newly-
created ui.)

The server then streams every block’s label ` in the buffer of r through the oracle, and learns the sorted
position i ∈ [L+ 1] of each such block. All blocks originally in the buffer of r are inserted into the buffer of
their respective ui matching revealed order i ∈ [L+ 1]. (During the course of this procedure, the searched-
for end-point label `∗ will be identified to the server by the oracle when it is streamed through the oracle’s
view.)

The new state of the tree T , immediately after the first Split call, is depicted in Figure 3.
In subsequent splits of the tree T , the split is recursively evaluated node-wise on the path beginning at

the current root r∗ ∈ T and terminating in the particular leaf node u∗ that contains the search term `∗ (if it
exists in the tree).

For these later queries, the splitting behavior depends on whether the current action is on an internal
(i.e. non-leaf) node of the tree, or on a leaf node of the tree. (It also depends on whether the search-label
`∗ is encountered prior to reaching a leaf, as in this case, we will terminate this path-wise recursion of Split,
and just output the answer to the client’s query more quickly.)
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Figure 3: The server’s tree T after one split: a root, and L+ 1 leaves — i.e. “Splitting” a leaf.

At internal nodes u, subsequent touches by Split will emphasize “clearing the buffer of u,” which in-
volves streaming every block stored at u to the oracle, and partitioning these blocks into the L+ 1 children
of u according to the oracle’s index-responses. (Note, however, we do not need to pick L random labels to
promote here, since the node u already contains a fixed list of L labels that we have previously promoted to
u.)

This behavior of subsequent splits of internal nodes is illustrated in Figure 4.

Figure 4: Internal blocks in subsequent splits of the server’s tree T — i.e. “Flushing” (recursively).
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At leaf nodes u, the recursive procedure of path-splitting naturally terminates, since the global Split
evaluation either must find the search-label `∗ by this point, or conclude no such `∗ exists in T (and instead
find the best-possible logical address for the corresponding range query). However, we enforce an additional
(more stringent) requirement on termination of Split at leaf nodes of the tree — namely, that the leaves of
the tree should be approximately balanced both in the number of blocks stored, and their depth in the tree.
(Fortunately, it will turn out to be very cheap to achieve this.)

More concretely, if the leaf node u is low weight (i.e. contains less than L blocks), then we are content
and halt Split with the output discovered at u. If on the other hand, the leaf node u is high weight (i.e. con-
tains more than L blocks), then the server will internally and independently (without additional interaction
with the comparison oracle) rebalance the structure while maintaining the partial order invariant of the tree.
As (infrequently) required, this rebalancing may (recursively) spawn a fresh root r∗∗ of the tree (and split
the extra blocks across the two new, equal-size sub-trees) More frequently, the server will simply re-arrange
its logical positioning of blocks laterally.

Formal Split syntax. We use the following syntax for splitting sub-trees Tu ⊆ T along label `∗:(
(`∗, v∗), found

)
← SubR.SplitT ,Cmp(k,·)(`, u, side).

for side ∈ {left, right} . The subroutine updates subtree Tu so that it maintains a partial ordering of blocks
in Tu with respect to `. The output block (`∗, v∗) is (if possible) the leftmost (resp. rightmost) block best-
matching the split-point `. If `∗ and ` match, found = 1.

Formal Split pseudocode. For ease of presentation, we partition the pseudocode of Split into three possible
branches “at the top level” of the global Split subroutine’s logic. Concretely, the server’s (stateful) execution
of a request to SubR.SplitT ,Cmp(k,·)(`∗, u, side) will begin by branching based on which one of the three
following conditions is presently true of the node u ∈ T :

If u is an internal (i.e. non-leaf) node: Run Algorithm 5, as depicted in Figure 4.

Algorithm 5: Split Subroutine: Case (1)
(when u is an internal node)

if u is an internal node : B clear the buffer of u
upload query `∗ and the sorted labels (`∗, `1, ..., `L) at u to Cmp;
for each block (`, v) in the buffer of u do

as a stream, send ` to the oracle Cmp[`∗, `1, ..., `L](k, ·);
for each label ` in the stream do

Cmp returns a pair (j, found);
B index j ∈ [L+ 2] is order of ` in {`∗, `1, ..., `L, `}

if found = 1 :
halt and output (`∗, v∗) := (`, v);

else:
call Op.InsertT (`, uj) for node uj the j-th child of u;

query Cmp[`∗, `1, ..., `L](k, `∗) to obtain (j∗, 1);
call and output from SubR.SplitT ,Cmp(k,·)(`∗, uj∗) for j∗th child uj∗ ;
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If u a leaf node and |u| ≤ L: Run a brute-force search; i.e. Algorithm 6.

Algorithm 6: Split Subroutine: Case (2)
(when u is a leaf node and stores at most L blocks)

else if u is a leaf node :
if u contains at most L blocks : B find output

upload all ` ∈ u and `∗ to Cmp;
if `∗ = `j∗ is in the list :

Cmp returns a sorted list (`1, `2, ..., `s),
plus the pair (j∗, found) for j∗ ∈ [s];

else:
Cmp returns the pair (j′, not found) for j′ ∈ {0} ∪ [s]
immediately preceding `∗ in the sorted order;

let u′ be the node with (temporarily) sorted buffer (`1, ..., `s);
halt and output (`j∗ , v) (resp. (`j′ ,⊥));

If u a leaf node and |u| > L: Run Algorithm 7, as depicted in Figure 3 (plus rebalancing as in Algorithm 4).

Algorithm 7: Split Subroutine: Case (3)
(when u is a leaf node and stores more than L blocks)

else if u contains more than L blocks : B then split u
uniformly sample L labels {`′r1 , ..., `

′
rL
} from u;

send {`′r1 , ..., `
′
rL
} to Cmp(k, ·); receive the sorted list (`′1, ..., `

′
L);

if u is the j-th child of parent p with L′ ≤ L sorted labels :
expand p’s list to contain (`1, ..., `j−1, `

′
1, ..., `

′
L, `j , ..., `L′);

query Cmp[`′1, ..., `
′
L](k, `∗) to obtain (j∗, found) and let u be the (j + j∗ − 1)th child of p;

as a stream for ` ∈ u,
(j′, found) := Cmp[`′1, ..., `

′
L, `
∗](k, `);

for each (`, j′) pair:
call Op.InsertT ((`, v), uj+j′−1);

then call SubR.RebalanceT (p);
then call SubR.SplitT ,Cmp(k,·)(`∗, u, side);

else if u has no parent (i.e. it is the only node in the tree) :
create a new root r with empty buffer and sorted list (`′1, ..., `

′
L);

query Cmp[`′1, ..., `
′
L](k, `∗) to obtain (j∗, found) and let u be the j∗th child of r;

as a stream for ` ∈ u,
(j, found) := Cmp[`′1, ..., `

′
L, `
∗](k, `);

for each (`, j) pair: if found = 1 :
halt and output (`∗, v∗) := (`, v);

else:
call Op.InsertT (`, uj) for node uj the j-th child of r;
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5 Analysis

5.1 Cost Analysis

We derive amortized upper bounds on server/oracle rounds and bandwidth per operation.

Theorem 1. After n insertions and m searches with local storage of size L, our scheme has the following
server/oracle query costs:

1. Insert is free,

2. Search requiresO(logL n) rounds in expectation. SinceL = nε, ε > 0, this isO(1) rounds in expectation.

3. The total bandwidth over all (n+m) operations is O(mL logL(n) + n logL(m) + n logL(log(n))).

4. Without restriction, the amortized bandwidth per operation is O((L/ log(L)) log(n)).

5. When mL = O(n), the amortized bandwidth per operation is O(log(n)/ log(L)).

6. WhenmL = o(n), the amortized bandwidth per operation ISO(log(m)/ log(L)+log log(n)/ log(L)).

7. FormL ≤ n,L = nε, constant ε > 0 — i.e. m ≤ n1−ε — the amortized bandwidth per operation is O(1).

Proof. We use the following parameters for the cost analysis:

• n, the total number of blocks inserted by the client

• m, the total number of search queries by the client

• L, local storage capacity of the oracle (±O(1))

• k, the number of blocks at a fixed leaf

Choose n, ε so that L = nε > 16.
The case of Insert is trivial to analyze: The server never communicates with the oracle.
Analyzing Search (resp. Delete) is more involved. We begin by examining the most complicated com-

ponent of the construction first, i.e. the Split subroutine. At its core, this subroutine takes a leaf node with
> L blocks, and makes it smaller, creating new leaf nodes in the process. We reason about Split using the
following procedure, which is strictly worse than the actual construction but easier to analyze:

Say a leaf node has k > L blocks. Choose L labels uniformly to promote and partition all k blocks
by the (L + 1)-way split of these labels as in Split. Now consider another partition of all k items into
2L/ log(L) sorted sub-lists, each of size roughly k log(L)/(2L). After the (L + 1)-way partition, we find
the index of each of the L promoted labels in this sorted order.

Repeat this process (choosing L labels and partitioning), without creating new nodes, until at least one
of the L labels is found in each of the 2L/ log(L) sorted sub-lists. By the Coupon Collector’s Problem,
this event occurs after a single iteration with constant probability, so the expected number of iterations until
success is O(1) and the expected server/oracle bandwidth is O(k).

After this process terminates, select one label in each of the 2L/ log(L) sorted sub-lists, and then split
the leaf node according to these chosen labels; i.e. these 2L/ log(L) labels are “actually” promoted to the
parent node. The result is 2L/ log(L) + 1 sibling leaf nodes, each of size at most k log(L)/L. Recurse on
the node that contains the label being searched for until the size that node is at most L.
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Observe that whenever L > 4, 2 log(L)/L < 1, so each Split call reduces the size of the leaf node by at
least a constant factor. More specifically, the maximum number of splits required to reach a leaf of size at
most L is at most

log(k)

log(L/ log(L))
, (1)

which is at most 2 log(k)/ log(L) = 2 logL(k) whenever L ≥ 16.
The number of sequential Split calls on a given leaf determines the round complexity of Search, so there

are O(logL k) rounds of communication starting with a size-k leaf node. Note the total bandwidth over all
Split calls is still O(k).

Given these bounds on Split, we examine the resulting tree T , whose structure is populated entirely
by calls to Split. Since k < n, the total number of Split calls over all m Search operations is at most
2m log(n)/ log(L). Consider the sorted labels in non-leaf nodes of the tree. Each such label is inserted by
a Split operation from a leaf, and each Split inserts at most 2L/ log(L) labels. Therefore, the total number
of labels stored in the sorted, non-leaf portion of the tree T is at most mL log(n).

So, more concretely, the sorted labels in the non-leaf nodes of the tree form aB-tree with between L and
L/2 labels per node. Therefore, the maximum height of this portion of the tree is log(mL log(n))/ log(L/2)
at most, which implies the height of the entire tree is bounded by

O(logL(m) + logL(log(n))). (2)

Given the bounds on the number of total Split calls in Equation (1) and the height of the tree in
Equation (2), we find that the (non-amortized) expected round complexity for every Search operation is
O(logL n). It remains to count the total bandwidth.

Each round of a Search call involves uploading at most L labels to serve as partition indices, incurring a
total bandwidth of

O(mL logL(n)) (3)

for this component. In addition, all the labels in buffers along the search path was sent to the comparison
oracle – some more than once. Observe that blocks in buffers only move to a lower buffer, or laterally
from leaf nodes to leaf nodes during Split operations. Therefore, the expected total number of blocks in any
non-leaf buffer, across all Search operations, is

O(n · height(T )) = O(n logL(m) + n logL(log(n))). (4)

Finally, we consider the total size of all leaf nodes encountered during Search operations. The worst-
case scenario for the construction is when all n insertions happen before all m searches, and each search’s
splits land in the largest remaining leaf node(s). Using the procedure described at the beginning of the
analysis, the largest leaf nodes have the following sizes:

- 1 node of size n,
- 2L/ log(L) nodes of size at most n log(L)/L and total size < n,
- 4L2/ log2(L) nodes of size at most n log2(L)/L2 and total size < n, etc.

Therefore, we encounter the m largest leaf nodes within at most logL/ log(L)(m) ≤ 2 logL(m) rounds. So
the total size of the m largest leaf nodes is bounded by

O(n logLm). (5)

From Equations (3), (4), and (5), we find that the total bandwidth over all (n + m) operations is
O(mL logL(n) + n logL(m) + n logL(log(n))), and Theorem 1 follows. �
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5.2 Security Analysis

Bellare et al. [BKN02] introduced a security notion called indistinguishability under distinct chosen ci-
phertext attack (IND-DCPA). This security notion is strictly weaker than IND-CPA (i.e. semantic security),
since the plaintexts chosen by the adversary should be distinct. We remark that a pseudorandom permutation
(PRP) meets this security notion [BBO07]. Jumping ahead, we will use a deterministic IND-DCPA-secure
symmetric encryption to encrypt labels; this weaker security notion is enough for us, since we allow the
order of labels to be leaked.

Let Π = (gen, enc, dec) be a symmetric encryption scheme. Let LR(·, ·, b) be the function that on
inputs m0,m1 returns mb. Consider the following experiment.

Experiment EXPind-dcpa
A (Π, λ, b)

k← gen(1λ)

b′←Aenck(LR(·,·,b))

If b = b′, return 1; otherwise return 0

We call the adversary A admissible if all left messages of A’s queries are unique and all right messages
of A’s are unique. We define the advantage of the adversary A in the experiment above as:

Advind-dcpa
A (Π, λ) =

∣∣Pr[EXPind-dcpa
A (Π, λ, 0) = 1]

−Pr[EXPind-dcpa
A (Π, λ, 1) = 1]

∣∣. (6)

We say that a symmetric encryption scheme Π is IND-DCPA secure if for any sufficiently large λ and any
PPT admissible adversary A, there is a negligible function negl such that Advind-dcpa

A (Π, λ) ≤ negl(λ).

Theorem 2. If Π` is a deterministic private encryption scheme with IND-DCPA security, and Πv is an
IND-CPA secure private-key encryption scheme, our POPE construction is IND-OCPA secure.

Proof. We prove security of our scheme using a standard hybrid argument. Given a sequence of messages
(x1, . . . , xi), let first(x1, . . . , xi) denote the position in which the last element xi appears for the first time
in the given sequence. For example, we have first(1, 5, 2, 4) = 4 and first(1, 5, 2, 4, 2) = 3.

We consider the following hybrids:

• HYBRID0: It’s EXPind-ocpa
A (POPE, λ, 0).

• HYBRID1: It’s the same as HYBRID0 except that each encrypted value v̄i is computed by performing
vEnc(0|v

0
i |).

• HYBRID2: It’s the same as HYBRID1 except that the comparison oracle answers are simulated by
associating each encrypted label ¯̀

i with `0i rather than actually performing the decryption.

• HYBRID3: It’s the same as HYBRID2 except that each encrypted label ¯̀
i is computed by perform-

ing Enc(first(`01, . . . , `
0
i )). The comparison oracle answers are still simulated by associating each

encrypted label ¯̀
i with `0i rather than actually performing the decryption.

• HYBRID4: It’s the same as HYBRID3 except that each encrypted label ¯̀
i is computed by performing

Enc(first(`11, . . . , `
1
i )). The comparison oracle answers are simulated by associating each encrypted

label ¯̀
i with `1i rather than actually performing the decryption.

• HYBRID5: It’s the same as HYBRID4 except except that each encrypted label ¯̀
i is computed by per-

forming Enc(`1i ). The comparison oracle answers are still simulated by associating each encrypted
label ¯̀

i with `1i rather than actually performing the decryption.
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• HYBRID6: It’s the same as HYBRID5 except that it uses a real comparison oracle.

• HYBRID7: It’s the same as HYBRID6 except that each encrypted value v̄i is computed by performing
vEnc(v1i ). Note that HYBRID7 is EXPind-ocpa

A (POPE, λ, 1).

HYBRID0 and HYBRID1 are computationally indistinguishable due to IND-CPA security of the underly-
ing encryption scheme Πv; Symmetrically, HYBRID6 and HYBRID7 are also computationally indistinguish-
able.

For hybrids HYBRID1 and HYBRID2, observe that the server never creates a new ciphertext; it only uses
the ciphertexts from the client in its query. Therefore, the comparison oracle can be perfectly simulated
by associating ¯̀

i with `0i . Therefore, HYBRID1 and HYBRID2 are identically distributed. Symmetrically,
HYBRID5 and HYBRID6 are also identically distributed.

HYBRID2 and HYBRID3 are computationally indistinguishable due to IND-DCPA security of the under-
lying encryption scheme Π`. In particular, if there is an adversary A distinguishing the two hybrids, we
can construct an adversary B breaking IND-DCPA security of the underlying encryption algorithm enc as
follows:

The adversary B sets up HYBRID2/HYBRID3. In particular, it creates the key for the value encryption,
and sets up the server state. When A submits an insertion/search/deletion operation using label `0i , B
does the following:

– If the label `0i is not new, copy the old encryption ¯̀
f , where f = first(`01, . . . , `

0
i ).

– If the label `0i is new, submit (`0i , first(`01, . . . , `
0
i )) to IND-DCPA experiment and receives a

ciphertext encrypting one of the two messages. Now, use this ciphertext as `i.

B outputs whatever A outputs.

Note that B is admissible adversary for IND-DCPA experiment. Moreover, the comparison oracle be-
haves identically in both hybrids, so it holds thatA’s advantage of distinguishing HYBRID2 and HYBRID3 is
exactly the same as B’s advantage of breaking IND-DCPA security of the label encryption scheme. There-
fore, due to IND-DCPA security of the label encryption scheme, HYBRID2 and HYBRID3 are computation-
ally indistinguishable. Symmetrically, HYBRID4 and HYBRID5 are computationally indistinguishable.

For HYBRID3 and HYBRID4, observe that the answers from the comparison oracle in both hybrids are
identically distributed. This is because the adversary is admissible; i.e. the ordering of labels in both hybrids
is the same, even though the actual labels may be different. Moreover, for all i, we have first(`01, . . . , `

0
i ) =

first(`11, . . . , `
1
i ). Therefore, the hybrids are identically distributed. �

If a randomized label encryption scheme is used, the scheme needs to be IND-CPA.

Theorem 3. If Π` and Πv are both IND-CPA secure private-key encryption schemes, our POPE is IND-
OCPA secure.

6 FH-POPE: Hiding Frequency with POPE

Our POPE construction achieves a notion of IND-OCPA security (from the selective model of OPE) fitted to
our adaptive POPE setting. However, a recent attack [NKW15] has demonstrated that this level of security
is sometimes insufficient (at least in the OPE setting), by showing how the revealed order can be used
to statistically recover a significant amount of plaintext data stored in a medical database by specifically
targeting the OPE encoded fields.
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To address the above issue, [Ker15] recently proposed a stronger security notion for OPE, called indis-
tinguishability under frequency-analyzing ordered chosen plaintext attack (IND-FA-OCPA). This definition
is modeled around the notion of a randomized order of some sequenceX of (possibly non-distinct) elements
xi. Intuitively, a “randomized order” Y (some permutation of [n] for n-element sequences) is one of the
possible total order extensions of a given partial order on a sequence.

For example, the randomized order of the sequences X1 = (1, 2, 3, 4) and X2 = (2, 3, 4, 5) could only
be Y1 = (1, 2, 3, 4) (meaning “first in sorted order was inserted first,” “second in sorted order . . . ,” and so
on) because X1, X2 began totally ordered, but the sequence X3 = (1, 2, 2, 3) has two possible extensions
to total orders, namely Y1 = (1, 2, 3, 4) and Y2 = (1, 3, 2, 4). On the other hand, note that for any particular
randomized order, e.g. Y1 = (1, 2, 3, 4), there are many sequences that could map onto it (depending
only on the domain of the sequence and the constraints imposed by “known” partial order information on
the sequence). For example, the sequences (1, 1, 1, 1), (10, 20, 30, 40), (10, 20, 20, 40) and (2, 2, 17, 17) all
share Y1 as a possible “randomized order,” but the sequence (4, 3, 2, 1) does not.

Given this idea of a “randomized order,” the definition of [Ker15] (IND-FA-OCPA) asks that for any
two sequences of plaintexts X1, X2, if X1, X2 share some randomized order Y , then the frequency-hiding
(FH-OPE) encodings of X1, X2 should be indistinguishable. For example, sequences X1 = (1, 1, 1, 1)
and X2 = (10, 20, 30, 40) should be indistinguishable under FH-OPE encoding, because they share order
Y = (1, 2, 3, 4). For the same reason, X1 = (10, 20, 20, 30) and X2 = (10, 20, 30, 40) should be indistin-
guishable under FH-OPE encoding.

To turn an OPE scheme (for sequences of only distinct elements sharing an order) into an FH-OPE
scheme, consider adding a small, random fractional component to the OPE-ordered field during encoding,
e.g. X1 = (1, 1, 2, 2) becomes e.g. X ′1 = (1.12, 1.36, 2.41, 2.30) (which randomly maps X1 to the total
ordering Y = (1, 2, 4, 3)), and then X ′1 is encoded under the OPE scheme. In [Ker15], this type of scheme
is shown IND-FA-OCPA secure in the programmable random oracle model by programming in appropriate
randomness to “break ties in the correct direction” on repeated plaintext values (in order to land on a common
randomized order Y ) to ensure indistinguishability of X1 and X2’s encodings.

6.1 Considerations in Defining Frequency-Hiding POPE

Differences between FH-OPE and FH-POPE. The motivating example for frequency-hiding security is a
database that stores a large number n of encodings for which the underlying label space L = {`1, ..., `T } is
small, i.e. T � n. [Ker15] suggested a setting where each label is either `1 = “female” (F ) or `2 = “male”
(M), with the sequence (F, F,M,M) ideally encoded as, say, (1, 2, 3, 4). Examining only (1, 2, 3, 4) does
not reveal if the underlying sequence was originally (F, F, F, F ), (F, F, F,M), (F, F,M,M), (F,M,M,M),
or (M,M,M,M) — yet, you can still search for all female entries by range query for [1, 2], or all male
entries by range query for [3, 4], so functionality is maintained as well.

However, defining frequency-hiding for FH-POPE in an identical way to [Ker15] for FH-OPE raises a
number of challenges. We highlight a few of these differences here.

First, one issue is that the IND-FA-OCPA security game in the OPE setting considers no semantic
information on the FH-OPE encoding (1, 2, 3, 4) that would be gained by seeing many queries for, say,
[1, 2], [3, 4], and [1, 4] (but not any for, e.g. [1, 1]). In the POPE setting, this is analogous to defining a
security game that only includes Insert operations but no Search (or Delete) queries! Because our POPE
scheme leaks no order information prior to the first Search query, it turns out that (formally) IND-OCPA for
POPE implies IND-FA-OCPA (in the sense of FH-OPE) with no extra modification.

Of course, this conclusion is not fully satisfying; we haven’t yet said anything about frequency-hiding
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of our POPE scheme! This raises a second concern: Is it even possible to achieve frequency-hiding in the
adaptive query setting of the IND-OCPA definition for POPE? Consider, in the complexity-theoretic model,
the following adversarial choice of sequences (possibly, with repeated elements) in the style of IND-OCPA
for POPE. The first sequence X1 is (1, 1, 1...), while the second sequence X2 = (x1, x2, ...) is statefully
generated with a random coin flip for every i-th element xi ∈ X2. If the i-th coin flip is heads, then xi = i;
if tails, xi = −i.

Note that X2 is a completely distinct sequence, so its (unique) randomized order will only depend on
xi’s sign as determined by the i-th coin flip. On the other hand, the sequence X1 can take on exponentially-
many total orders depending only the randomness used to encode, independent of the exact elements of
X1. Therefore, for fixed sequences X1, X2 of length n as above, the randomized order of X1 induced by
a real encoding will differ from the unique order of X2 with probability about (1 − 2−n) ≈ 1, unless the
randomness used to encode X1 is explicitly correlated with the adversarially chosen sequence X2 itself in
the proof.

This issue is partially avoided in [Ker15], since the two sequences X1, X2 must be fully specified at
once, before the FH-OPE system is run. (In the analogous POPE notion, the adversary adaptively chooses
queries and sees the outcome of each before choosing again, which we can view as the coin flip game
when the i-th coin is not fixed until the i-th insertion.) Yet even with the advantage of a selective choice
of sequences X1, X2, the security proof of [Ker15] still needs that the randomness for X1’s encoding is
correlated with the sequence X2. This requires programming the random oracle.

FH-POPE is easy with the random oracle. Briefly, we sketch an informal justification for why using a
programmable random oracle in the manner of [Ker15], particularly in the context of POPE or FH-POPE,
appears to be too strong of an assumption. The idea is that, given the ability to program a random oracle,
we can do more than break ties (and hide local frequency differences) when deciding a randomized order.
In the context of POPE, we can easily achieve something much stronger, resembling a “non-committing”
notion of POPE security. In particular, consider the following encryption scheme:

• Enck(`i): Choose u and ri at random. Compute `′i← `i‖ri, where the randomness ri is used to break
the tie. We call `′i an augmented label. The output ciphertext is

(
fk(u), H(u) ⊕ `′i

)
, where fk is a

pseudorandom permutation and H is the random oracle.

The above encryption is non-committing as in [Nie02]; that is, given any ciphertext c, the simulator may
claim that the ciphertext c encrypts whatever augmented label `′i it would like, by programming the random
oracle H .

With the above label encryption scheme, consider the following game, played between an adversary and
simulator, loosely modeled after our IND-OCPA definition for POPE (i.e. Definition 1, but strengthened):

First, some FH-POPE scheme is initialized (e.g. by initializing our underlying POPE scheme using the
above label encryption). Then in as many iterations as it would like, a stateful adversary A requests its
choice of operations be performed. A crucial difference is that whenever A requests an Insert, it does not
specify which label should be encrypted at all. (In contrast, frequency-hiding for OPE requires specifying
two sequences X0, X1 that demand one of two labels are encrypted. Our simulator here is at a significant
disadvantage.) Nonetheless, the simulator S responds by choosing not necessarily distinct junk strings xi
for each i-th insertion query, then encrypting xi and inserting it according to our (distinct-element) POPE.

For Search (resp. Delete) queries, the adversary not only specifies plaintext end-point labels `1, `2 for
a range query, but may also name its choice of constraint on specific ciphertext movements within the
FH-POPE data structure. The simulator then implements some Search execution following any constraint
specified by the adversary, and making arbitrary (but consistent) decisions about the other partial orders that
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must be induced between ciphertexts, independent of their underlying plaintexts xi, in order to process each
given query.

Eventually,A stops making queries, and demands that S open all ciphertexts in the transcript of accesses
by providing the private symmetric keys K used by S to encrypt ciphertexts in the course of the game. In
particular, the adversary will check if S was able to “correctly guess” appropriate underlying plaintexts
`1, ..., `n whose order information is consistent with the movement of ciphertexts throughout the game.

We claim that intuitively, since S was given no information about the future ciphertext movement when
it had to commit to some ciphertext (and thus, to some choice of initial plaintext xi), the simulator should
only be able to suceed with negligible probability in this situation. However, by instantiating the POPE
encryption with a non-committing encryption scheme (using the full power of programming the random
oracle), the simulator S can first find (any) valid labeling `i of the ciphertexts’ plaintexts that is consistent
with the game’s transcript, then open the ciphertexts to these labels `i 6= xi in the view of the adversary
A, guaranteeing success w.h.p. We take this as evidence that definitions of frequency-hiding in the random
oracle model (at least in the case of POPE) may not approximate the real world well.

6.2 Security of Frequency-Hiding POPE

We define frequency-hiding security IND-FA-POCPA (indistinguishability under frequency-analyzing partial-
order chosen plaintext attack) for POPE without using the random oracle. What our definition captures is
the following: Encryption of non-distinct labels implicitly chooses a randomized partial order, and the
ciphertexts reveal nothing more than this order.

The IND-FA-POCPA definition considers an experiment with two adversary non-communicating algo-
rithms A0 and A1 which proceeds as follows:

Experiment EXPind-fa-pocpa
A0,A1

(POPE, λ, b):

1. A0 adaptively chooses operations where the labels may be non-distinct. That is, each timeA0 chooses
an operation, the environment performs the operation and sends the view of the operation toA0, based
on which A0 chooses the next operation.

2. The environment determines the partial order that the above operations leak, and gives this order to
A1.

3. A1 adaptively chooses operations, where the type of each operation should be the same as the coun-
terpart in the above, and the labels should be distinct and subject to the given partial order. The
operations are performed using the same randomness for the operations performed in step 1).

4. The environment outputs the view of operations for Ab.

We require that the following ensembles should be computationally indistinguishable:

{EXPind-fa-pocpa
A0,A1

(POPE, λ, 0)}λ
≈c {EXPind-fa-pocpa

A0,A1
(POPE, λ, 1)}λ.

We note a few aspects of the above experiment.

• The partial order that A0’s operations leak is defined as follows:

– (Base case) If `i and `j were directly compared through the comparison oracle, and the oracle
said `i is less than `j , we have `i ≺ `j .
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– (Transitive closure) If there is `k such that `i ≺ `k and `k ≺ `j , we have `i ≺ `j .
– Otherwise, `i and `j are incomparable.

• The same random coins are used for A0’s operation sequence and A1’s. Here, the randomness cor-
responds to what the buffer tree uses when it choose labels to promote to the parent node. This
randomness actually affects which labels to be compared through the comparison oracle, and using
the same randomness enforces the same-indexed labels to be compared in both operation sequences.

• We require A1 use distinct labels. As discussed above, in order to achieve indistinguishability when
A1 uses nondistinct labels, we need to use stronger assumptions such as the programmable random
oracle.

6.3 Construction of Frequency-Hiding POPE

We give a construction for a frequency-hiding POPE scheme by augmenting our original POPE construction.
The main idea is that each label encryptions add a random fraction to the input label to break the tie.

Let (Π′`,Πv, InitState,Cmp′, Insert, Search,Delete) be an IND-OCPA secure POPE, for the symmetric
encryption scheme Π′` = (gen, enc, dec). Our augmented frequency-hiding POPE construction is as follows:

(Π`,Πv, InitState,Cmp, Insert,Search,Delete),

where Π` = (KeyGen,Enc,Dec). That is, we only change the label encryption scheme and the comparison
oracle.

Label encryption. The label encryption is slightly changed so that it randomly breaks the tie. In particular,
the algorithms (KeyGen,Enc,Dec) for encrypting labels are specified below.

• KeyGen(1λ): Compute k← gen(1λ) and return k.

• Enck(`): Choose r←{0, 1}λ, compute ¯̀← enc(`′) with `′ = `‖r, and return ¯̀.

• Deck(¯̀): Compute `′← deck(¯̀) and return ` by removing λ rightmost bits from `′.

Comparison oracle. The comparison oracle compares the encrypted labels by considering not only the
label but also the tie-breaking random value.

• Cmp(k, (¯̀
1, . . . ¯̀

q)): This algorithm works essentially the same as that of the original POPE scheme,
except that the comparison of the elements are based on deck(¯̀

i)s instead of Deck(¯̀
i)s.

6.4 Analysis of Frequency-Hiding POPE

Security. Security is easy to see:

Theorem 4. The above POPE is IND-FA-POCPA secure.

Proof. Observe that the augmented labels (i.e., the label and the tie-breaking random value) for A0 has the
same ordering as those for A1. Moreover, each sequence has distinct augmented labels. Therefore due
to IND-OCPA security of the original POPE construction, EXPind-fa-pocpa

A0,A1
(POPE, λ, 0) is computationally

indistinguishable from EXPind-fa-pocpa
A0,A1

(POPE, λ, 1) augmented POPE construction. �
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Partial Order Leakage. A feature of our IND-FA-POCPA definition, as well as our POPE construction,
is that the server only learns a partial order of the ciphertexts, rather than a total order as is revealed by
existing OPE constructions.

Recall that a strict partial order ≺ on a set of elements S is isomorphic to a directed acyclic graph,
closed under transitive closure, whose nodes are elements of S and whose edges encode the binary relation.
A total order (such as the randomized order of [Ker15]) on n items always has

(
n
2

)
edges. In any partial

order, two elements x, y ∈ S are said to be incomparable iff neither x ≺ y nor y ≺ x. In a total order, no
pair of elements is incomparable.

Therefore, a scheme providing IND-FA-POCPA is more secure if the partial order leaked in step (2), is
truly a partial order and not a total order. The strength of such a scheme can be measured by the number of
pairs of incomparable elements in the partial order leaked by the experiment.

Theorem 5. Whenever adversary A0 chooses n insertions and m range queries, then the partial order re-
vealed by the POPE construction above leaves at least Ω(n2/(mL logL n)) pairs of incomparable elements.

Proof. We model the server’s view of the ciphertext ordering as some k ciphertexts whose order is com-
pletely known, and where the remaining n−k ciphertexts are partitioned into one of k+1 buckets according
to the k ordered ciphertexts. Essentially, this is a worst-case scenario where all internal node buffers in the
POPE tree are empty, the total size of all internal node sorted lists is k, and the remaining n− k ciphertexts
reside in leaf node buffers.

From theorem 1, the total rounds of communication with the comparison oracle after n insertions and
m range queries is O(m logL n). From the construction, each round of communication with the comparison
oracle can add at most L new ciphertexts to those whose sorted order is completely known.

Therefore, in the worst case, the server has k = O(mL logL n) ciphertexts in its sorted order, and at
least b(n− k)/(k+ 1)c ciphertexts in each unsorted bucket. Each bucket contains Ω((n/k)2) incomparable
items, for a total of Ω(n2/k) incomparable pairs.

Observe that this is the worst case; having all n−k unsorted ciphertexts in the same bucket, for instance,
would result in a larger number of incomparable pairs. �

In our construction, we require that mL ≤ n and logL n ∈ O(1), so that n2/(mL logL n) will be at
least Ω(n) incomparable pairs. By contrast, all previous OPE constructions impose a total ordering on the
ciphertexts (at best), leaving 0 incomparable pairs of elements.

Performance. For the original POPE construction, an IND-DCPA secure encryption scheme can simply be
instantiated with a pseudorandom permutation (PRP) by treating each value as one block message.

However, since the frequency-hiding POPE construction needs to encrypt the label and the tie-breaking
random value, the plaintext becomes two blocks, and a simple PRP is not enough for instantiating IND-
DCPA secure encryption in this case. An easy solution to this issue is just using CTR or CBC mode that
ensures IND-CPA security. However, now the length of the ciphertext is three blocks. This will incur 3x
blow-up in terms of communication complexity.

A better solution in this case to utilize the already-existing tie-breaking random value and simulate a
mode of operation. In particular, let f be a PRP. To encrypt:

• enck(m‖r):
return (fk(r), fk(r + 1)⊕m).

Here, the encryption simulates the CTR mode using the tie-breaking random value, but one can use other
secure mode of operations. To decrypt:
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• deck(c1, c2):
compute r← f−1k (c1),m← fk(r + 1)⊕c2
return m‖r.

Note the probability that the inputs to fk have a collision is negligible, since each input is a random
value r or r + 1. Therefore, IND-DCPA security follows from security of PRP. With this construction, we
will have only 2x blow-up in terms of communication complexity.

Enforcing consistent output. Suppose the following labels have been inserted: (1, 2, 2, 3).
Suppose in addition that the client would search labels that are at least 2 and at most 4. When our

frequency-hiding POPE is used, due to the random tie-breaking property, the client may get (3) or (2, 3) or
(2, 2, 3) depending how the tie would be broken. This feature may be inconvenient to the client.

With two additional bits, this problem can be fixed easily. We introduce three different two-bit tags, i.e.,
τl = 00, τm = 01, τr = 10 for left, middle, right positions. When a label is inserted, the middle tag τm is
attached at the end of the label. For a search/delete query, the left tag τl is used for the left label, and the
right tag τr for the right label.

Continuing the prior example, the server now holds labels:

1‖01, 2‖01, 2‖01, 3‖01.

The client will use labels (2‖00, 4‖10) for search, and therefore it will get the desired result (2‖01, 2‖01, 3‖01).

7 Evaluation

We have made a proof-of-concept implementation of our POPE scheme in order to test the practical utility
of our new approach. The code is written in Python3 and our tests were performed using a single core
on a machine with an Intel Xeon E5-2440 2.4 GHz CPU and 72GB available RAM. Our implementation
follows the details presented in Section 4, with a single shared key for the client and comparison Oracle.
The symmetric cipher used is 128-bit AES, as provided by the PyCrypto library. The full source code of our
implementation is available upon request.

While we performed experiments on a wide range of database sizes and number of range queries, our
“typical” starting point is one million insertions and one thousand range queries. This is the same scale as
recent work in the databases community for supporting range queries on outsourced data [LLWB14], and
would therefore seem to be a good comparison point for practical purposes.

7.1 Experimental setup

Our tests measured communication (in terms of rounds and total ciphertexts transferred) between the server
and the comparison oracle, and total server-plus-oracle computation time. We did not measure the commu-
nication between client and server, since this is inherent in the operation being performed and would be the
same for any alternative implementation.

For a fair comparison to prior work, we also implemented the mOPE scheme of [PLZ13] in Python3
along with our implementation of POPE. We followed the description in their work, using a B-tree with at
most 4 items per node to store the encryptions. To get a fair comparison, we used the same framework as our
POPE experiments, with a comparison oracle that receives sorting and partitioning requests from the server.
In the case of mOPE, each round of communication consisted of sending a single B-tree node’s worth of
ciphertexts, along with one additional ciphertext to be encoded, and receiving the index of the result within
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Figure 6: Amortized communication costs for POPE and
mOPE, according to total number of insertions n. Lower
is better. The number of range queries in all cases was√
n.

that sorted order. We acknowledge that our implementation is likely less tuned for efficiency than that of
the original authors, but it gives a fair comparison to our own proof-of-concept implementation of POPE. It
is also important to note that the communication costs we are measuring depend only on the algorithm and
not on the efficiency of the implementation.

In our main experiments, we performed a number of insertions and range queries on random bigrams of
English words, encrypted using AES-128. The actual size of each range being searched was, on average,
100 database entries. While the distribution of searches does not affect the running time of mOPE, for
POPE we varied among three distributions of the random range queries: uniformly distributed queries,
either uniformly distributed among the searches or all “bunched” at the end after all insertions; or a single,
repeated query, performed at random intervals among the insertions.

According to our theoretical analysis, the “bunched” distribution should be the worst-case scenario,
although in practice we did not see much difference in performance between bunched or random queries.
Though as expected, we observed improved performance for the repeated query case.

7.2 Overview of results

A summary of the raw data from our preliminary experiments may be found in Appendix A.
In our experiments, we varied the total database size between one thousand and 100 million entries,

each time performing roughly m = n1/2 range queries and with L = n1/4 local storage on the comparison
oracle. That is, ε = 0.25 in these experiments. The size of each range being queried was randomly selected
from a geometric distribution with mean 100; that is, each range query returned on average 100 results.

We note that, for 1 million entries and using our proof-of-concept Python implementation without par-
allelization, we achieved over 55,000 operations per second with POPE vs. less than 2,000 operations per
second for mOPE.

We were able to run experiments with POPE up to 100 million entries, limited only by the storage space
available on our workstation. We observed no significant change in per-operation performance after one
million entries, indicating our construction should scale well to even larger datasets.

25



 0

 20

 40

 60

 80

 100

 120

 140

 160

103 104 105 106 107 108

th
o
u
sa

n
d
s 

o
f 

o
p
s 

p
e
r 

se
co

n
d

number of entries

POPE, repeated queries
POPE, bunched queries
POPE, random queries

mOPE

Figure 7: Operations performed per second for POPE
and mOPE. Higher is better. The number of range queries
in all cases was

√
n.

 0

 10

 20

 30

 40

 50

 60

210 212 214 216 218 220

th
o
u
sa

n
d
s 

o
f 

o
p
s 

p
e
r 

se
co

n
d

number of queries

POPE
mOPE

Figure 8: Degradation in POPE performance with increasing number
of queries, measured in operations per second. Higher is better. In all
experiments, the number of insertions n was fixed at 1 million, and the
client-side storage atL = 32. For these choices, 210 ≈

√
n queries is as

shown in prior figures, and ourO(1)-cost analysis holds up tom ≈ 215.

7.3 Experimental communication costs

Figures 5 and 6 show the communication costs, the total number of rounds of communication, and the
average number of ciphertexts transferred per operation. The number of insertions n is shown in the plots,
and for each experiment we performed m =

√
n searches allowing L = n1/4 entries stored in temporary

memory on the client.
From these figures, it is clear that the round complexity for POPE, which is constant per range query,

is several orders of magnitude less than that of mOPE. Furthermore, when averaged over all operations, the
number of ciphertexts transferred per operation for POPE is roughly 7 in the worst case, whereas for mOPE
this increases logarithmically with the database size.

7.4 Experimental computation costs

The number of operations performed per second, for our main experiments with n insertions, m =
√
n

range queries, and L = n1/4 client-side storage, are presented in Figure 7. For POPE, the performance
increases until roughly 1 million entries, after which the per-operation performance holds steadily between
50,000 operations per second with random, distinct queries, and 110,000 operations per second with a single,
repeated query.

Our POPE construction is well-suited especially to problems with many more insertions than range
queries; indeed we require that mL ≤ n for our performance guarantees to be valid. Figure 8 shows the
effects of varying number of range queries on POPE performance. While our theoretical guarantees hold
only when mL < n, we observed competitive performance to mOPE even when performing m = n range
queries, although the POPE performance clearly degrades with the number of queries performed.
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A Experimental Data

Table 9 presents raw data from our preliminary experiments. We note that our experiments with mOPE stop
at databases of 10 million items (whereas we have data for POPE up to 100 million items), because the
mOPE experiments became prohibitively slow (over a day) on our workstation past this size, performing
less than one operation per second. POPE experiments for 100 million items took about 30 minutes each,
with about 40,000 operations per second. The size of our experiments is limited primarily by the size of
statistically-sound, random data that we are able to synthesize and test on in a reasonable timeframe, which
is primarily constrained by our workstation’s RAM rather than POPE’s performance on even larger datasets.
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insertions range queries local storage comm. rounds comm. size time (seconds)
mOPE [PLZ13] 1 000 32 6 4 943 23 334 0.327

2 154 46 7 11 951 56 049 0.530
4 642 68 8 28 277 132 321 1 .209

10 000 100 10 65 805 311 042 2 .117
21 544 147 12 156 079 730 241 4 .851
46 416 215 15 352 882 1 695 090 11 .205

100 000 316 18 834 320 3 940 783 27 .666
215 443 464 22 1 917 495 9 069 763 73 .039
464 159 681 26 4 406 712 20 875 512 191 .690

1 000 000 1 000 32 10 058 650 47 772 258 554 .060
2 154 435 1 468 38 22 816 305 108 756 600 1 788 .217
4 641 589 2 154 46 52 415 869 248 152 448 7 139 .188

10 000 000 3 162 56 117 191 315 561 980 070 30 847 .342
insertions range queries local storage comm. rounds comm. size time (seconds)

POPE (this paper) 1 000 32 6 229 7 484 0.086
Random queries, 2 154 46 7 345 16 001 0.163
uniformly distributed. 4 642 68 8 514 36 686 0.298

10 000 100 10 749 73 229 0.433
21 544 147 12 1 094 156 706 0.843
46 416 215 15 1 519 328 039 1 .151

100 000 316 18 2 243 707 469 1 .867
215 443 464 22 3 279 1 523 650 4 .020
464 159 681 26 4 794 3 240 471 8 .337

1 000 000 1 000 32 6 856 6 898 429 17 .888
2 154 435 1 468 38 10 073 14 865 016 41 .170
4 641 589 2 154 46 14 693 32 039 838 82 .054

10 000 000 3 162 56 21 358 68 623 791 177 .157
21 544 347 4 642 68 30 975 146 590 749 378 .576
46 415 888 6 813 83 45 013 312 980 862 868 .758

100 000 000 10 000 100 65 771 676 386 914 2 072 .918
insertions range queries local storage comm. rounds comm. size time (seconds)

POPE (this paper) 1 000 32 6 264 8 633 0.091
Random queries, 2 154 46 7 396 17 398 0.154
bunched at the end. 4 642 68 8 602 37 554 0.316

10 000 100 10 849 78 762 0.447
21 544 147 12 1 190 158 063 0.821
46 416 215 15 1 697 325 877 1 .131

100 000 316 18 2 495 674 486 1 .880
215 443 464 22 3 548 1 395 883 3 .600
464 159 681 26 5 173 2 953 508 7 .943

1 000 000 1 000 32 7 512 6 363 063 17 .311
2 154 435 1 468 38 10 867 13 372 696 34 .492
4 641 589 2 154 46 15 752 28 724 419 70 .218

10 000 000 3 162 56 22 769 59 631 557 155 .939
21 544 347 4 642 68 33 170 126 484 416 320 .787
46 415 888 6 813 83 48 205 271 964 129 688 .054

100 000 000 10 000 100 70 082 582 794 073 1 653 .199
insertions range queries local storage comm. rounds comm. size time (seconds)

POPE (this paper) 1 000 32 6 146 3 358 0.040
A single random query, 2 154 46 7 229 6 688 0.106
repeated at uniform intervals. 4 642 68 8 334 12 746 0.168

10 000 100 10 502 27 774 0.303
21 544 147 12 726 52 790 0.573
46 416 215 15 958 108 623 0.713

100 000 316 18 1 482 237 194 1 .134
215 443 464 22 2 122 468 798 2 .433
464 159 681 26 2 564 969 315 3 .819

1 000 000 1 000 32 4 352 2 111 713 8 .787
2 154 435 1 468 38 5 690 4 432 591 18 .454
4 641 589 2 154 46 10 311 10 237 319 42 .027

10 000 000 3 162 56 12 618 20 569 205 83 .989
21 544 347 4 642 68 21 691 48 965 999 181 .853
46 415 888 6 813 83 24 866 93 983 082 387 .506

100 000 000 10 000 100 30 002 228 018 130 897 .771

Figure 9: Experimental communication costs. The actual data inserted and searches performed were exactly
the same across each row. Communication costs are measured only between the server and the comparison
oracle, and communication size counts the number of ciphertexts transferred.
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