
The Multivariate Hidden Number Problem

Steven D. Galbraith and Barak Shani
Department of Mathematics, University of Auckland, New Zealand

Abstract

This work extends the line of research on the hidden number problem. Motivated
by studying bit security in finite fields, we define the multivariate hidden number prob-
lem. Here, the secret and the multiplier are vectors, and partial information about their
dot product is given. Using tools from discrete Fourier analysis introduced by Akavia,
Goldwasser and Safra, we show that if one can find the significant Fourier coefficients of
some function, then one can solve the multivariate hidden number problem for that func-
tion. This allows us to generalise the work of Akavia on the hidden number problem with
(non-adaptive) chosen multipliers to all finite fields.

We give two further applications of our results, both of which generalise previous
works to all (finite) extension fields. The first considers the general (random samples)
hidden number problem in Fpm and assumes an advice is given to the algorithm. The
second considers a model that allows changing representations, where we show hardness
of individual bits for elliptic curve and pairing based functions for elliptic curves over
extension fields, as well as hardness of any bit of any component of the Diffie-Hellman
secret in Fpm (m > 1).

Keywords: hidden number problem, bit security, hardcore bits

1. INTRODUCTION

The computational Diffie-Hellman assumption (CDH) states that for appropriate groups G,
given values g, ga, gb ∈ G, the Diffie-Hellman secret gab is hard to compute. However, this
assumption does not rule out the possibility that some bits of gab are predictable. This leads
to interesting theoretical questions about the security of bits arising from computational prob-
lems. A useful language to express these ideas is the hidden number problem. Informally, the
hidden number problem in a (multiplicative) group G with a (non-constant) function f defined
over G is the problem of recovering a hidden element s ∈ G given pairs (ti, f(sti)).

This problem was introduced by Boneh and Venkatesan [7] in order to study bit security
(specifically blocks of most-significant bits) of the Diffie-Hellman secret. They were the first

1

to prove hardness of bits for Diffie-Hellman key exchange. Today, this problem is studied in
its own right and is of theoretical interest, and also leads to practical results, outside the scope
of the Diffie-Hellman key exchange (see, for example, [10, 14]). It is most desirable to prove
security of the smallest possible blocks of bits (i.e., blocks of size 1).

Interested in the hidden number problem in (finite) extension fields, we study the following
variant of the hidden number problem, which we call the multivariate hidden number problem.
Here, the problem takes place over a ring R, on which a function f is defined, and the secret
s = (s1, . . . , sm) is an m-tuple in Rm. Informally again, the problem is recovering the secret
s given pairs (ti, f(s · ti)), where s · ti is the dot product of s and ti. That is, f(s · x) =

f(s1x1 + · · ·+ smxm) for x = (x1, . . . , xm) ∈ Rm.
This problem arises naturally from the following observation. Assume an oracle O gives

partial information, e.g. one bit, of one (fixed) component of sx, for a secret s and a multiplier
x in Fpm . One would like to learn s. First, the component can be expressed as a dot product
s̃ · x for x ∈ (Fp)m, a vector that represents x, and some s̃ ∈ (Fp)m. If one can learn s̃ given
O(x) = bit(̃s · x), then the learner can solve the hidden number problem by computing s from
s̃.

Previous Work
The hidden number problem has been extensively studied, and different variants have been

proposed throughout the years, as well as numerous extensions (for a comprehensive overview
of the different extensions, see Shparlinski’s survey [18]). Boneh and Venkatesan [7] consid-
ered G = Z∗p for prime p and showed that the

√
log p + log log p most-significant bits of the

Diffie-Hellman secret gab are as hard to compute as the whole secret. Their approach uses
lattice basis reduction. There is a considerable subsequent literature, including the case of
extension fields, but lattice methods are unable to obtain hardness results for single bits.

Significant progress resulted from the introduction of tools from Fourier analysis (learning
theory) by Akavia, Goldwasser and Safra [3] (for a complete description, see Akavia’s the-
sis [1]). They showed that if one can find the heavy Fourier coefficients of a function, then
one can solve the hidden number problem for that function. In addition, they built on the fun-
damental work of Goldreich and Levin [13] and Kushilevitz and Mansour [15] and provided
an algorithm to find heavy Fourier coefficients of a function, under the membership queries

model. This new approach allows to consider hardness of single bits, even for noisy oracles
that only have a non-negligible advantage over the bias of the function in question. Since
these tools work under specific query-access models, they can only be used to solve the hidden
number problem when the solver has the suitable access to the function.

2

This new approach, involving Fourier analysis, laid the groundwork for subsequent inter-
esting results in the study of bit security. Akavia [2] gave a solution to the hidden number prob-
lem with chosen multipliers in the multiplicative group of prime fields Fp for a family of func-
tions, called concentrated functions, where multipliers are chosen non-adaptively1. Akavia
also showed that the most-significant-bit function is concentrated. Morillo and Ràfols [16]
proved that, for any integer 1 ≤ k ≤ log2(N), the k-th bit function on ZN is concentrated
(they specifically considered N a prime or an RSA modulus). This can be combined with
Akavia’s result on concentrated functions.

By combining the above with the work of Boneh and Shparlinski [6], Duc and Jetchev [9]
showed the hardness of any single bit of elliptic curve and pairing based functions for elliptic
curves over prime fields, in a model that allows the solver to change the representation of the
group. In a similar model, Fazio, Gennaro, Perera and Skeith [12] gave the first single bit
hardness result for Diffie-Hellman secrets in an extension field – excluding hardness of the
constant-term component bits – where they considered the field Fp2 = Fp[x]/(x2 + Ax + B)

(with p a prime) using a polynomial basis representation. A very recent result by Wang, Zhan
and Zhang [20] generalised this work to extension fields Fpm , where m is polynomial in log p.
As in [12], only polynomial basis representations are considered in [20].

Our Contribution
Our contribution is first and foremost of a mathematical nature. We show that if one can

find heavy Fourier coefficients of a function f , then one can solve the multivariate hidden
number problem for f . This is done by proving an algebraic relation between the Fourier
transforms of f and fs, where fs(x) := f(s · x) as above. Using the algorithm from [1, 3], we
give a solution to a chosen-multiplier version of the multivariate hidden number problem for
concentrated functions f over Fp, where multipliers are chosen non-adaptively.

This allows us to generalise the solution to the hidden number problem with chosen multi-
pliers to all finite fields Fpm for concentrated functions, which include the k-th bit function of
each component, for every 1 ≤ k ≤ log2(p).

We also give several application of our main results. We show how the results can be used
in different models, one of which is the “representation changing” model. By constructing
isomorphisms between representations of Fpm that forms a dot product (as in the multivariate
hidden number problem) in a specific component, we show that changing field representa-
tions gives the required multipliers needed to solve the multivariate hidden number problem,
for concentrated functions over Fp. Specifically, we prove hardness of any single bit of any

1As noted in [7], if we let “the queries be correlated” the problem already had a known solution for a block of
one bit “even when the oracle is noisy”.

3

component for Diffie-Hellman secrets in Fpm . We do not restrict only to polynomial repre-
sentations. This result holds for general vector space representations and also normal basis
representations of Fpm . We also give bit security results for elliptic curve and pairing based
functions for elliptic curves over Fpm .

We stress that as with previous work our results are not sufficient to prove (single) bit
security of the classic Diffie-Hellman key exchange. This is due to the fact that the chosen
multipliers needed for these approaches cannot be obtained when attacking the Diffie-Hellman
protocol. However, one can obtain bit security results for Diffie-Hellman and related schemes
by considering algorithms with advice, as was done by Akavia [2], for example.
Paper organisation. The paper is organised as follows. Section 2 gives definitions and some
facts needed for our later results. Sections 3 and 4 are our main theoretical contributions.
In section 3 we introduce the multivariate hidden number problem and establish our main
tool, to be used in Section 4, where we give our main results: solutions to the multivariate
hidden number problem over Fp and the hidden number problem in Fpm . Section 5 focuses on
other applications. We discuss two models in which our results can be applied, by giving the
appropriate background and summarizing recent results. We then show how one can use our
results to prove bit security in these models, and how it relates to previous work.

2. PRELIMINARIES

2.1 Fourier Analysis on Finite Groups

Let (R,+, ·) be a finite ring and denote by G := (R,+) the corresponding additive abelian
group. We are interested in the set of functions {f : R→ C}. This set of functions is a vector
space (over the complex field), whose dimension is |R|, since, for instance, the Kronecker
delta functions {δi}i∈R

(
δi(j) = 1 if j = i, otherwise δi(j) = 0

)
form a basis for this vector

space; every function f : R → C can be written as f(x) =
∑

i∈R f(i)δi(x). Let z denote
the complex conjugate of a complex number z. We define an inner product in this vector
space by 〈f, g〉 := Ex∈R

[
f(x) · g(x)

]
= 1
|R|
∑

x∈R f(x) · g(x). The l2 norm of a function f is

‖f‖2 :=
√
〈f, f〉.

A character of G is a group homomorphism taking values in the non-zero complex num-
bers, namely χ : G → C∗ such that χ(x + y) = χ(x)χ(y). Since χ(x)|G| = χ(|G| · x) =

χ(0G) = 1, we get that the characters take values in the complex |G|-th roots of unity. More-
over, there are exactly|G| of them, so we associate each character χ to a group element a ∈ G,
yielding χa. That is, denote by Ĝ the set (group) of characters of G, and consider the map

4

ϕ : G→ Ĝ, given by ϕ(a) := χa. The map ϕ can be shown to be an isomorphism.
An alternative basis for {f : R→ C} is the Fourier basis consisting of all the characters χ.

Standard facts in Fourier analysis on finite groups are: for the trivial character χ0 ∈ Ĝ it holds
that

∑
x∈G χ0(x) = |G|, and

∑
x∈G χ(x) = 0 if χ0 6= χ ∈ Ĝ; in addition, these characters are

orthogonal and have l2 norm of 1, hence the Fourier basis is an orthonormal basis. Therefore,
we can represent each function f : R → C as a linear combination of the characters χa. This
linear combination is given by f(x) =

∑
a∈G f̂(a)χa(x), where each coefficient is the Fourier

transform f̂(a) := 〈f, χa〉. Let χa be the conjugate to the character χa. That is, χa(x) = χa(x).
For G = ZN we define the characters χa by χa(x) := e

2πi
N
ax. For G = ZN1 × ... × ZNm ,

let a = (a1, . . . , am) and x = (x1, . . . , xm); the character χa(x) is given by χa(x) :=

χa1(x1) · ... · χam(xm) = e
2πi
N1

a1x1 · ... · e
2πi
Nm

amxm .
Let f : Zp → C and define the function fs : Zp → C by fs(x) := f(sx), for s ∈ Z∗p.

The well-known scaling property of the Fourier transform is the following relation between
the Fourier transforms (with respect to the additive group G = (Zp,+)) of f and fs:
f̂s(z) = f̂(zs−1). This is a basic property of the Fourier transform, which follows from the
fact that χz(sx) = χzs(x). This relation inspires our approach in Lemma 13, and so we see fit
to show its proof.

Lemma 1. Let s ∈ Z∗p, let f : Zp → C and define fs : Zp → C by fs(x) := f(sx) for every

x ∈ Zp. The Fourier transform of fs satisfies f̂s(z) = f̂(zs−1) for every z ∈ Zp.

Proof. By definition of the Fourier transform we get that

f̂s(z) =
1

p

∑
x∈Zp

fs(x)χz(x) =
1

p

∑
x∈Zp

f(sx)χz(x) .

Since x′ := sx is a permutation of Zp, we change the order of summation and sum over x′.
Therefore,

f̂s(z) =
1

p

∑
x′

f(x′)χz(s
−1x′)

=
1

p

∑
x′

f(x′)e−
2πi
p
z(s−1x′) =

1

p

∑
x′

f(x)e−
2πi
p

(zs−1)x′

=
1

p

∑
x′

f(x′)χzs−1(x′) = f̂(zs−1) .

We now recall some definitions from [3, 9, 16]. The same definitions can be made for
functions over rings R where G is their additive group.

5

Definition 2 (Restriction). Given a function f : G → C and a set of characters Γ, the restric-

tion of f to Γ is the function f |Γ : G→ C defined by f |Γ :=
∑

χa∈Γ f̂(a)χa.

Definition 3 (Concentration). A function f : G → C is Fourier concentrated if for every
ε > 0 there exist a set Γ of poly

(
log
(
|G|
ε

))
characters, such that ‖f − f |Γ‖2

2 ≤ ε.

Definition 4 (Heavy coefficient). For a function f : G → C and a threshold τ > 0, we say
that a coefficient f̂(a) (corresponding to the character χa) is τ -heavy if |f̂(a)|2 > τ .

Theorem 5 (Akavia [1]). There is a probabilistic algorithm that given a finite group G, a

threshold τ > 0 and oracle query access to a function f : G → C, finds all the τ -heavy

Fourier coefficients. The algorithm runs in polynomial time in log
(
|G|
)
, 1
τ

and ‖f‖2.

The models of oracle access in this paper are discussed in Remark 8 below.

2.2 Finite Field Representations

Let F be a finite field. A known fact is that if F has q elements, then q is a power of some
prime p, that is, q = pm for a prime p and a positive integer m. Hence, we denote that
field by Fq. Another known fact is that given a number q = pm as above, there is a unique
field with q elements, up to isomorphism. Yet, Fq has different (all isomorphic to each other)
representations. One representation of a field Fpm is given by Fp[x]/ (h), where Fp[x] is the
ring of polynomials with coefficients in Fp, the polynomial h is a monic irreducible polynomial
of degreem in Fp[x], and (h) is the principal ideal generated by h. We emphasize that there are
also other representations, like the normal basis {θ, θp, θp2 , . . . , θpm−1}, where θ is an element
of the field such that this set is linearly independent, and θpm = θ.

The field Fpm is a vector space of dimension m over the field Fp, equipped with a bilinear
inner product. For an aribtrary vector space basis of Fpm there are m3 structure coefficients
which determine the multiplication rule in Fpm . For completeness we state and prove the
following standard result.

Lemma 6. Let {b1, . . . , bm} be a basis of the vector space Fpm over Fp. For elements

u, v ∈ Fpm , let u, v be the coefficient vectors in Fmp corresponding to this vector space ba-

sis. There exist m invertible matrices M1, . . . ,Mm such that uv =
∑m

k=1 wkbk, where each

coefficient is given by wk = uMkvT .

Proof. For a basis {b1, . . . ,bm} ⊆ Fpm , the structure coefficients determine the product
of all the basis elements. That is, bibj =

∑m
k=1 c

k
i,jbk, where cki,j are the structure coeffi-

cients. Then, by the bilinearity of multiplication, we get that a product of any two elements

6

u =
∑m

i=1 uibi and v =
∑m

j=1 vjbj is of the form

uv =
m∑
i=1

ui

m∑
j=1

vj
(
bibj

)
=

m∑
i=1

ui

m∑
j=1

vj

m∑
k=1

cki,jbk =
m∑
k=1

m∑
i=1

uiṽki bk ,

where ṽki is a linear combination of the scalars vi with cki,j as coefficients. In other words,
by representing the multiplication of u and v as linear combination of the basis elements –
uv =

∑m
k=1 wkbk – every coefficient wk in this linear combination is of the linear form

u1ṽk1 + ... + umṽkm, where ui are the coefficients of u. The existence of the matrices Mk

follows.
Assume that Mk is not invertible, then there exists u 6= 0 such that uMk = 0. Hence, for

every v, the coefficient wk = 0. Let u 6= 0 be the field element corresponding to u. We get that
multiplication by u is not an injection. Therefore u is a zero divisor – a contradiction.

2.3 Hidden Number Problem

The hidden number problem was introduced in [7] in order to study the bit security of Diffie-
Hellman key exchange. The relation between the two is explained in Remark 9 below. The
problem was introduced over the multiplicative group Z∗p, but it can be generalised to arbitrary
finite (abelian) groups. Since our applications involve single bit functions, we present the
problem with a single bit function.

Definition 7 (Hidden number problem (single bit)). Let (G, ·) be a group, let s 6= 0 be a secret
element of G and let f : G → {−1, 1}. The goal is to find the secret element s using oracle
access to the function fs(x) := f(sx).

Remark 8 (Access models). We use the term oracle access as a general term for any of the
following oracle models. We follow the language from [17] in describing the oracle access
models in this paper. When we write query access we refer to the membership queries model,
where the learner can query the function on any input x ∈ G and receive the sample (x, fs(x)).
In the uniform distribution model, the learner has access to a random source of samples: at each
time the learning algorithm queries, a random input x ∈ G is chosen uniformly, and the sample
(x, fs(x)) is returned to the algorithm.

Models of HNP. We adopt the notation from [6] and write HNP-CM for a chosen-multiplier
version of the hidden number problem, which is under the membership queries model. That is,
in HNP-CM the learner can query the function on any input. We emphasize that in this paper,
unlike [6], any queries in this model are made non-adaptively. This means that the algorithm

7

first chooses all its queries, and after receiving the response starts its process. This is opposed
to adaptive queries, where the queries may depend on the secret s and are adjusted during the
process of recovering s. When a solver can choose multipliers adaptively the problem already
has a solution (based on the work in [5], and later [4]).

In the original (more general) variant of the hidden number problem, which we denote by
HNP, the oracle access is in the uniform distribution model. That is, the solver only gets pairs
(ti, fs(ti)), for d elements t1, . . . , td ∈ G chosen independently and uniformly at random. This
is probably the most frequently discussed variant of the hidden number problem.

Unfortunately, the algorithm in Theorem 5 cannot be used in the uniform distribution
model, and therefore cannot be used to solve HNP. The upside of Theorem 5 is that it is
strong enough to handle oracles that only have a non-negligible advantage over the bias of the
function in question. That is, the results hold even for a noisy oracle, i.e., an oracle that does
not give a correct answer all the time, but with some probability. Since this work focuses on a
mathematical framework, we do not elaborate on this noise model. The interested reader can
look at [1, 3, 9, 16].

Remark 9. One historical motivation for the hidden number problem is the following. Given
a group G, an element g in the group and the values ga and gb, the shared Diffie-Hellman
secret s is the value s = DHg(g

a, gb) = gab. Notice that one can choose a number k and
calculate gk, then by multiplying gk and ga, one gets gagk = ga+k. An active attacker in the
static Diffie-Hellman protocol (where Bob always uses a fixed value gb), who has access to
some bit of the shared secret, can send the value ga+k to Bob, so that Bob calculates the value
(ga+k)b = gabgbk = sgbk and we notice that the attacker can calculate the value gbk by (gb)k,
yielding the (uniformly distributed) multiplier for the secret (in the hidden number problem).
The attacker’s goal (computing s) is exactly the hidden number problem.

An alternative interpretation is to consider a Diffie-Hellman oracle. Suppose we have an
oracle that on input gx and gy outputs some bits of gxy. We can query this oracle on gb and
ga+k for several k’s, and if we can solve the hidden number problem, we can find the secret
s = gab.

Terminology. Adopting the language from [2], we say that an algorithm (l, δ, t)-solves the
(multivariate) hidden number problem if the number of queries to the oracle is at most l, the
algorithm outputs the hidden number s with probability at least δ, and the running time is at
most t. We say that an algorithm solves the (multivariate) hidden number problem if 1

δ
, l and t

are polynomials in log
(
|G|
)
.

8

We now recall the main result of Akavia [2] and sketch its proof. A full proof can be
found in [2] (with a different terminology of the hidden number problem; for more details see
our discussion in Section 5.1). We divide the result into two parts. Theorem 10 shows that
an algorithm that learns heavy Fourier coefficients of functions over Fp, leads to a solution
to the hidden number problem in Z∗p. Corollary 11 shows how to solve (with non-adaptive
queries) HNP-CM for concentrated functions in Zp. The ability to choose multipliers in HNP-
CM is what allows one to have the oracle query access needed in applying the algorithm from
Theorem 5, which allows to solve the hidden number problem.

Theorem 10 ([2]). Let A be an algorithm that learns the τ -heavy Fourier coefficients of func-

tions defined over Fp. For any concentrated2 function f : Fp → {−1, 1}, there exists an

algorithm that solves the hidden number problem in Z∗p.

Proof sketch. Let fs : Fp → {−1, 1} be the function from the hidden number problem, i.e.,
fs(x) := f(sx). By the scaling property (Lemma 1) we know that the Fourier coefficients of fs
are simply the Fourier coefficients of f permuted by s−1. One might imagine that it is easy to
compute the lists of Fourier coefficents of both f and fs and then match them up to deduce the
permuting element s−1. However, this is not an efficient task when p is large (in both aspects:
computing and comparing). This is where the idea of using concentrated functions is crucial.
Instead of computing all the Fourier coefficients we just locate the τ -heavy ones for suitable
τ , using the learning algorithm A on both f and fs. These lists are short (by Parseval) and so
matching up the values to find the permutation factor s−1 is efficient.

Corollary 11 ([2]). For any concentrated3function f : Fp → {−1, 1}, there exists an algo-

rithm that solves HNP-CM in Z∗p, where the queries are made non-adaptively.

Akavia proved that the most-significant-bit function MSB : Zp → {−1, 1} is concen-
trated, and hence proved that HNP-CM in Z∗p with the MSB function can be solved. Later on,
Morillo and Ràfols [16] proved that, for any integer 1 ≤ k ≤ log2(p), the k-th bit function on
Zp is concentrated. Therefore, HNP-CM in Z∗p can also be solved with these functions.

3. MULTIVARIATE HIDDEN NUMBER PROBLEM

In this section we define our variant of the hidden number problem, which we call the multi-
variate hidden number problem, and then introduce the tool that helps us solve this problem.

2In [2], a different definition of concentration is taken. We use the definition from [3]. Both papers use the
same method to obtain the proof of Theorem 10.

3See previous footnote.

9

Definition 12 (Multivariate hidden number problem (single bit)). Let R be a ring, let
s = (s1, . . . , sm) 6= (0, . . . , 0) be a secret in Rm, and let f : R → {−1, 1}. The goal is to find
the secret s using oracle access to the function fs(x) := f(s · x) = f(s1x1 + · · ·+ smxm).

For m = 1 the multivariate hidden number problem is simply the hidden number problem.
As noted in [18], a polynomial version of the hidden number problem (poly-HNP) can be
considered. This polynomial version can be seen as a special case of the multivariate hidden
number problem. As above, we write MV-HNP-CM for a chosen-multiplier version of the
multivariate hidden number problem, and MV-HNP for uniformly random multipliers.

The following lemma gives a relation between the Fourier transforms of fs and f , anal-
ogous to the relation in Lemma 1 (scaling property). This lemma may be of independent
interest.

Lemma 13. Let f : Zp → C, let s = (s1, . . . , sm) ∈ Zmp be such that not all si = 0, and define

fs : Zmp → C by fs(x) := f(s · x). For any sk 6= 0, the Fourier transform of fs satisfies

f̂s(z1, . . . , zm) =

{
f̂(zks

−1
k) if zj − zks−1

k sj = 0, ∀1 ≤ j 6= k ≤ m;

0 otherwise.
(1)

Proof. Recall that a character in Zp is defined by χa(x) = e
2πi
p
ax and that for an element

a = (a1, . . . , am) ∈ Zmp the character χa(x) is given by χa(x) =
∏m

i=1 χai (xi). Therefore, for
1 ≤ k ≤ m, we have

χ(a1,...,am) (x1, . . . , xm) =
m∏
i=1

χai (xi) =
∏
i 6=k

χai (xi)χak (xk)

= χ(a1,...,ak−1,ak+1,am)(x1, . . . , xk−1, xk+1, xm)χak(xk) .

Assume without loss of generality that sm 6= 0. Then, f̂s (z1, . . . , zm) =

1

pm

∑
(x1,...,xm)∈Zmp

fs (x1, . . . , xm)χ(z1,...,zm) (x1, . . . , xm)

=
1

pm

∑
x1,...,xm∈Zp

f (s1x1 + · · ·+ smxm)χ(z1,...,zm) (x1, . . . , xm)

=
1

pm

∑
x1,...,xm−1

∑
xm

f (s1x1 + · · ·+ smxm)χ(z1,...,zm−1) (x1, . . . , xm−1)χzm (xm)

=
1

pm

∑
x1,...,xm−1

χ(z1,...,zm−1) (x1, . . . , xm−1)
∑
xm

f (s1x1 + · · ·+ smxm)χzm (xm) .

10

Since x′m := smxm is a permutation of Zp, we change the order of summation and sum over
x′m. Therefore, f̂s (z1, . . . , zm) =

1

pm

∑
x1,...,xm−1

χ(z1,...,zm−1) (x1, . . . , xm−1)
∑
x′m

f
(
s1x1 + · · ·+ sm−1xm−1 + x′m

)
χzm(s−1

m x′m) .

Let y := s1x1 + · · · + sm−1xm−1 + x′m, so that f (s1x1 + · · ·+ sm1xm1 + x′m) = f (y). We
get that f̂s (z1, . . . , zm) =

1

pm−1

∑
x1,...,xm−1

χ(z1,...,zm−1) (x1, . . . , xm−1) ·

1

p

∑
y

f (y)χzm
(
s−1
m (y − s1x1 − · · · − sm−1xm−1)

)
=

1

pm−1

∑
x1,...,xm−1

χ(z1,...,zm−1) (x1, . . . , xm−1) ·

1

p

∑
y

f(y)χzms−1
m

(y)χ(−zms−1
m s1,...,−zms−1

m sm−1) (x1, . . . , xm−1)

=
1

pm−1

∑
x1,...,xm−1

χ(z1−zms−1
m s1,...,zm−1−zms−1

m sm−1) (x1, . . . , xm−1) f̂
(
zms

−1
m

)
= f̂

(
zms

−1
m

) 1

pm−1

∑
x1,...,xm−1

χ(z1−zms−1
m s1,...,zm−1−zms−1

m sm−1) (x1, . . . , xm−1) .

The last sum equals 0 unless the character χ(z1−zms−1
m s1,...,zm−1−zms−1

m sm−1) is the trivial char-
acter in Zm−1

p , in which case it equals pm−1.4 Therefore we get that f̂s(z1, ..., zm) = f̂(zms
−1
m)

when zj − zms
−1
m sj = 0 for all 1 ≤ j ≤ m − 1 and otherwise f̂s(z1, ..., zm) = 0, as stated

in (1).

The interesting property of fs(x) is that its Fourier coefficients are equal to zero outside
the line (x1, . . . , xm) = (ts1, . . . , tsm) for t ∈ Zp. Along this line the Fourier coefficients of
fs(x) are those of f(x). So it is like the graph of the Fourier spectrum of f(x) is drawn along
a diagonal line in the space Zmp .

We now give our main tool that allows to attack the multivariate hidden number problem
using Fourier learning. Denote by Heavyτ (f) = {ci | |f̂(ci)|2 > τ} the list that represents all
τ -heavy Fourier coefficients of f .

Proposition 14. Let f : Zp → {−1, 1}, let s = (s1, . . . , sm) ∈ Zmp be such that not all si = 0,

and let fs : Zmp → {−1, 1} be the function fs(x) := f(s · x). Then, Heavyτ (f) = {c1, . . . , ct}

4Recall that
∑

x∈G χ(x) = 0 if χ0 6= χ ∈ Ĝ, and for the trivial character χ0 ∈ Ĝ we get
∑

x∈G χ0(x) = |G|.

11

if and only if Heavyτ (fs) = {(cis1, . . . , cism) | 1 ≤ i ≤ t}. In other words, a coefficient

f̂s(z1, . . . , zm) of fs is τ -heavy if and only if there exists 1 ≤ i ≤ t such that zj = cisj for every

1 ≤ j ≤ m and f̂(ci) is τ -heavy.

Proof. The claim follows from Lemma 13. Let 1 ≤ k ≤ m such that sk 6= 0.
Assume c ∈ Heavyτ (f) and consider the vector (z1, . . . , zm) = (cs1, . . . , csm). Specifically
zk = csk, so c = zks

−1
k and therefore for every 1 ≤ j ≤ m one gets zj = csj = zks

−1
k sj

or zj − zks
−1
k sj = 0. From Lemma 13 we get that f̂s(cs1, . . . , csm) = f̂s(z1, . . . , zm) =

f̂(zks
−1
k) = f̂(c). Therefore, we get that (cs1, . . . , csm) ∈ Heavyτ (fs). That is,

|f̂(c)|2 > τ =⇒ |f̂s(cs1, . . . , csm)|2 > τ .

Conversely,

|f̂s(z1, . . . , zm)|2 > τ =⇒ f̂s(z1, . . . , zm) 6= 0

=⇒ zj = zks
−1
k sj for every 1 ≤ j ≤ m

=⇒ zj = csj for c = zks
−1
k ∈ Zp

=⇒ f̂(c) = f̂(zks
−1
k) = f̂s(z1, . . . , zm)

=⇒ |f̂(c)|2 > τ .

That is, the coefficient f̂s(z1, . . . , zm) is τ -heavy if and only if there exists 1 ≤ i ≤ t such that
zj = cisj for every 1 ≤ j ≤ m and f̂(ci) is τ -heavy.

Corollary 15. Let f be a function defined over Zp, let s = (s1, . . . , sm) ∈ Zmp be a secret, and

let fs be a function over Zmp defined by fs(x) := f(s · x). The function f is concentrated if and

only if the function fs is concentrated.

Proof. Let Γ be a set of characters of Zp, and define Γs := {χa | a = (as1, . . . , asm), χa ∈ Γ}
to be the corresponding set of characters of Zmp . The proof is evident, since

∑
a∈Γs
|f̂s(a)|2 =∑

a∈Γ |f̂(a)|2.

4. MAIN RESULTS

In this section we show that an algorithm that learns heavy Fourier coefficients of functions
over finite abelian groups, leads to solutions to the multivariate hidden number problem over
Fp and to the hidden number problem in Fpm .

Theorem 16. Let A be an algorithm that learns the τ -heavy Fourier coefficients of functions

defined over finite abelian groups. For any concentrated function f : Fp → {−1, 1}, there

exists an algorithm that solves the multivariate hidden number problem over Fp.

12

Proof. The proof follows from Proposition 14 and the proof of Theorem 10. Since the function
f is concentrated, we can run the learning algorithm A (on f) in the group Zp. When p is
very small we can just compute the list of all Fourier coefficients. When p is large we can
experiment with the learning algorithm (in polynomial time) to choose a suitable threshold τ ,
so that one can obtain in polynomial time in log(p) a short list of τ -heavy coefficients of f .

From Corollary 15, the function fs is concentrated, so running the learning algorithm A
(on fs with the same threshold τ) in the group Zmp outputs in polynomial time in log(pm) =

m log(p) the list of τ -heavy coefficients of fs. We use the relation between the (τ -heavy)
coefficients of fs and f from Proposition 14 and follow the same process from the proof of
Theorem 10 to recover the secrets s1, . . . , sm.

Since the algorithm from Theorem 5 can learn heavy Fourier coefficients for functions over
arbitrary finite fields in the membership queries model, even in the presence of noise, we get
the following:

Corollary 17. For any concentrated function f : Fp → {−1, 1}, there exists an algorithm that

solves MV-HNP-CM over Fp, where the queries are made non-adaptively.

Proof. Take A to be the algorithm from Theorem 5 and apply Theorem 16.

We turn from the multivariate hidden number problem to the hidden number problem.
Recall that the hidden number problem in the group (R∗, ·) considers the multiplication in R,
and not the dot product used in the multivariate hidden number problem. We now consider
R = Fpm as a vector space. Given a basis of Fpm we represent an element a ∈ Fpm by its
components vector (related to the given basis): a = (a1, . . . , am). We use Lemma 6 to show
that for every 1 ≤ i ≤ m, the i-th component of the product as (for a, s ∈ Fpm) can be
represented as aMisT , where Mi is an invertible matrix. Therefore, for a function F over
Fpm we have Fs(a) := F (sa) = F (aM1sT , . . . , aMmsT). Note that this is a general property
of Fpm as a vector space, and therefore applies to all types of field representation. Hence, the
following theorem can be applied for normal bases, polynomial bases or any other vector space
basis for Fpm .

Theorem 18. Let A be an algorithm that learns the τ -heavy Fourier coefficients of functions

over finite abelian groups. Fix 1 ≤ i ≤ m, and let f : Fp → {−1, 1} be a concentrated

function. For any function F : Fpm → {−1, 1} given by F (x) = F (x1, . . . , xm) := f(xi),

there exists an algorithm that solves the hidden number problem in Fpm .

Proof. Let s ∈ Fpm be the secret element in the hidden number problem, written as s =

(s1, . . . , sm) with respect to any vector space basis of Fpm . Fix 1 ≤ i ≤ m and consider

13

the i-th component in Fmp . Lemma 6 shows that for each multiplier a ∈ Fpm (written as
a = (a1, . . . , am)) in the hidden number problem we can represent the i-th component of the
product as by aMisT =

∑m
j=1 aj s̃j , where s̃j :=

(
MisT

)
j
. Therefore Fs(x) := F (sx) =

f(s̃1x1 + ... + s̃mxm mod p). Thus, oracle access to Fs(x) is equivalent to oracle access
to f(s̃1x1 + ... + s̃mxm mod p). The latter is the multivariate hidden number problem over
Fp with the concentrated function f . By Theorem 16 we can solve this problem to retrieve
s̃ = (s̃1, . . . , s̃m). Since the matrix Mi is invertible, and since aMisT =

∑m
j=1 aj s̃j = a · s̃T ,

we can recover the secret s by sT = M−1
i s̃T , that is, s = s̃

(
M−1

i

)T .

Corollary 19. Fix 1 ≤ i ≤ m, and let f : Fp → {−1, 1} be a concentrated function. For

any function F : Fpm → {−1, 1} given by F (x) = F (x1, . . . , xm) := f(xi), there exists an

algorithm that solves HNP-CM in Fpm , where the queries are made non-adaptively.

Remark 20. One should notice that, having the ability to query the function at specific points,
one can easily reduce the m-dimensional problem to m one-dimensional instances, then solve
them one-by-one using back substitution of previous parts that were recovered. This is in fact
how the algorithm from Theorem 5 works over direct product of groups.

Remark 21. We stress that our methods do not hold for the elliptic-curve-based hidden number
problem. One of the reasons that these methods do not work in the elliptic curve case is that,
unlike F∗pm , the elliptic curve group law in E(Fq) is not of a bilinear form s · x.

5. APPLICATIONS

In this section we give several applications, under different models, of our main results. These
applications generalise previous bit security results to all extension fields. In Section 5.1 we
generalise the work of Akavia [2] on the hidden number problem in prime fields. In Section 5.2
we generalise the works of Fazio et al. [12] on bit security of CDH in Fp2 and of Duc and
Jetchev [9] on hardness of individual bits of elliptic curve and pairing based functions for
elliptic curve over prime fields. We show how to reduce each problem to the form of MV-
HNP-CM. The bit security results follow from the solutions given in the previous section.

5.1 Solving the Hidden Number Problem in F∗pm with Multipliers of the Form gx Using
Advice

The idea of using advice to solve different variants of the hidden number problem was first
considered by Boneh and Venkatesan [8]. Using advice bits, independent of the secret s, they
were able to solve the hidden number problem with uniformly random samples in prime fields

14

Fp for a function that outputs the 2 log log p most-significant bits. Shparlinski and Winter-
hof [19] modified this work to extend the result to certain subgroups of Fp, also under the
provided advice.

The terminology of Corollary 11 above is slightly different than given in [2]. There, the
following variant of the hidden number problem is considered: the solver chooses values x
and the multipliers for the secret s are of the form gx. This is the original formulation of the
hidden number problem in [7], which has in mind attacks on Diffie-Hellman key exchange
(see Remark 9 above for more details). Clearly, this problem is harder than HNP-CM, since
one has to solve certain discrete logarithms (to the base g) in order to be able to choose the
right multipliers. For this reason an additional advice was considered in [2]. This short advice
depends only on p and g (and not on the secret s) – it is exactly certain discrete logarithms.

Since Corollary 19 is a generalisation of Corollary 11 to extension fields, our results hold
for this variant of the hidden number problem. That is, we get the following result.

Corollary 22. Let 1 ≤ i ≤ m, let f : Fp → {−1, 1} be concentrated. For any function

F : Fpm → {−1, 1} given by F (x) = F (x1, . . . , xm) := f(xi), there exists an algorithm that

solves with advice the hidden number problem with multipliers of the form gx in the group

F∗pm .

As shown in [8] and then discussed in [2, 19] this result can be applied to show bit security
of ElGamal’s public key system and Okamoto’s conference key sharing scheme.

5.2 Hardness of Every Single Bit of CDH by Changing Representations

Diffie-Hellman key exchange and many other cryptographic protocols can be considered for
Fpm with m > 1. Hence, it is of interest to consider bit security results in that context. It is
also interesting to consider bit security for elliptic curve groups E(Fq).

The idea of changing representations to show hardness of bits of Diffie-Hellman secrets
was first considered in [6] for Weierstrass equations of elliptic curves (defined over prime
fields). They show the hardness of the least-significant bit of a Diffie-Hellman secret S in
E(Fp) under a very strong model, in which the solver not only gets the value f(S) (and there-
fore the value f(S + P) for points P ∈ E(Fp), as explained in Remark 9 above),5 but also
gets the values f(φ(S)), where φ(S) is the image of the point under an elliptic curve iso-
morphism φ : E(Fp) → E ′(Fp) to a different Weierstrass model, for isomorphisms that can
be chosen by the solver. This idea was followed in [9] for elliptic curves defined over prime

5In [6] the function f is the least-significant-bit function LSB : Zp → {−1, 1}.

15

fields, where hardness of single bits of elliptic-curve-based functions is considered, and in
[12, 20] for extension fields in polynomial basis representation, where hardness of single bits
of (polynomial-represented) Diffie-Hellman secrets is considered.

5.2.1 CDH in Fpm with Field Isomorphisms

In [12] the field Fp2 is considered. Succinctly, when one considers the leading-coefficient
component (coefficient of x), they show how one can choose multipliers by taking appropriate
field isomorphisms to another polynomial basis. Let K = k1x + k0 ∈ Fp2 be unknown
(recall that k1, k0 ∈ Fp), and suppose one is interested to learn the secret value k1. Any
isomorphism φ : Fp2 → Fp2 of polynomial representations of the finite field maps K to
φ(K) = λ1k1x + λ0k1 + k0, for λ1, λ0 ∈ Fp. Therefore, in a model for which one has oracle
access to a single bit of the x-component after any such chosen isomorphism (therefore, chosen
λ1, λ0), we get HNP-CM in Fp.

The case of the constant-term component (coefficient of x0) was left open, as well as the
case of extension fields Fpm where m > 2. In [20] some steps are taken to close this gap.
They generalise the result of [12] to extension fields Fpm .6 This is done by similar methods
that give rise to HNP-CM in Fp, where the secret is one of the components ki. As in [12], the
constant-term component k0 is excluded.

For the case in which K = gab is a Diffie-Hellman secret in Fpm , one can use the results
involving summing functions from [11] and recover the entire secret K from the algorithm
that recovers a single (fixed) component ki.

Remark 23. Such models give some assurance that bits in the Diffie-Hellman protocol are
hard. The results can be interpreted as follows: considering Diffie-Hellman key exchange over
an elliptic curve (resp. a finite field), specific bits of the secret key cannot be easy to compute
for all (in fact, for a non-negligble fraction of) the representations of the elliptic curve (resp.
polynomial representations of the field) at once. That is, given the bit we wish to compute,
there exists a representation for which this bit is hard to compute. However, this model does
not prove anything about a fixed representation of the elliptic curve or finite field. It does not
give any assurance of hardness of a specific bit of a specific group representation.

We show that under the representation changing model in arbitrary extension fields Fpm one
can recover directly the secret K using our solution to MV-HNP-CM. For K = gab, a Diffie-
Hellman secret in Fpm , this shows hardness of any bit of any component, under the specified

6In [20] they specifically consider Fpm where m is polynomial in log p. They also show that if oracle access
to a single bit of the constant-term component in Fp2 is given, then one can recover the secret value k1.

16

model. This result improves the results of Fazio et al. [12] and Wang et al. [20] by showing
a direct reduction from the computational Diffie-Hellman assumption, with no intermediate
steps. In addition, the result holds for all extension fields Fpm . This allows us to consider the
case of large m, and in particular the case of fields with small characteristic.

Moreover, we do not restrict only to polynomial bases. The result holds for general vector
spaces and normal bases. Polynomial bases are more restrictive and do not allow to recover
the entire secret directly, since the isomorphisms restrict the multipliers of the constant term.
Note that there is no particular reason to choose polynomial bases to represent Fpm , so we
recommend to use normal bases to get efficient field arithmetic and the strongest bit security
result.

We now state our result for the Diffie-Hellman protocol. Note that in fact this result holds
for any secret element in Fpm .

Corollary 24. Let s = DHg(g
a, gb) = gab be a Diffie-Hellman secret in Fpm . Given g, ga,

gb ∈ Fpm , computing a single bit of s in a random vector space or normal bases representation

of Fpm is as hard as computing s. In other words, an algorithm that has a non-negligible

advantage over a random guess in computing a single bit of s (in a random vector space or

normal bases representation of Fpm) can be used to efficiently compute s.

Proof. Let s ∈ Fpm be a secret with components s1, . . . , sm ∈ Fp. Assume one has oracle
access to a bit of component j of elements in Fpm . Given λ = (λ1, . . . , λm) ∈ Fmp , one needs
to construct an isomorphism φjλ : Fpm → Fpm between representations of the finite field such
that component j of φjλ(s) is of the form λ1s1 + · · ·+ λmsm. The result then follows.

Recall that Fpm is a vector space of dimension m over the field Fp, that has different types
of representations. We briefly discuss the construction of a suitable isomorphism in the cases
of interest.
General vector space Fmp . Let B1 = {v1, . . . , vm}, B2 = {u1, . . . , um} be two bases of Fmp .
The mapping φjλ of an element s = s1v1 + · · ·+ smvm should satisfy

φjλ(s) = (∗)u1 + · · ·+ (λ1s1 + λ2s2 + · · ·+ λmsm)uj + · · ·+ (?)um .

Consider this linear map as a matrix. One can easily see that the j-th row of this matrix should
be (λ1 , λ2 , . . . , λm). In order for the matrix to be a full rank map – therefore an isomorphism
– it should be nonsingular. One can easily construct such a linear map.
Normal basis. Let B1 = {α, αp, . . . , αpm−1}, B2 = {β, βp, . . . , βpm−1} be two normal bases
of Fpm . The mapping φjλ of an element s = s1α + · · ·+ smα

pm−1 should satisfy

φjλ(s) = (∗)β + · · ·+ (λ1s1 + λ2s2 + · · ·+ λmsm)βp
j−1

+ · · ·+ (?)βp
m−1

. (2)

17

Consider the linear map satisfying φjλ(α) = λjβ + λj−1β
p + · · · + λj+1β

pm−1 (indices for λk
are taken modulo m such that 1 ≤ k ≤ m, i.e., λ0 = λm and λm+1 = λ1). Then

φjλ(s) = φjλ(s1α + · · ·+ smα
pm−1

) = s1φ
j
λ(α) + s2φ

j
λ(α)p + · · ·+ smφ

j
λ(α)p

m−1

= s1(λjβ + λj−1β
p + · · ·+ λj+1β

pm−1

)

+ s2(λjβ + λj−1β
p + · · ·+ λj+1β

pm−1

)p + · · ·

+ sm(λjβ + λj−1β
p + · · ·+ λj+1β

pm−1

)p
m−1

= s1(λjβ + λj−1β
p + · · ·+ λj+1β

pm−1

)

+ s2(λjβ
p + λj−1β

p2 + · · ·+ λj+1β) + · · ·

+ sm(λjβ
pm−1

+ λj−1β + · · ·+ λj+1β
pm−2

) ,

where the last equality follows from βp
m

= β for normal bases. After collecting the terms for
each βpk (with 0 ≤ k ≤ m− 1) one gets (2). In order for φjλ to be an isomorphism, one needs
to check that φjλ(α)p

m
= φjλ(α) and that the set {φjλ(α), φjλ(α)p, . . . , φjλ(α)p

m−1} is linearly
independent. This can be easily shown: the former property follows from βp

m
= β, while the

latter from the linear independence of the basis B2.

Remark 25 (Polynomial basis). Given a polynomial a = amx
m−1 + · · ·+ a2x+ a1, one looks

for an isomorphism φjλ such that

φjλ(a) = (∗)xm−1 + · · ·+ (λ1a1 + λ2a2 + · · ·+ λmam)xj−1 + · · ·+ (?)x0 .

For the constant polynomial 1 = 0 · xm−1 + · · · + 0 · x + 1 one gets that the coefficient of
xj−1 of the polynomial φjλ(1) is λ1, i.e., φjλ(1) = λ1x

j−1 + Since an isomorphism maps
the identity element to the identity element, it follows that if j 6= 1, then λ1 has to be 0,
and if j = 1, then λ1 has to be 1. Therefore, when using polynomial representations, one
cannot choose multipliers for s1 and therefore cannot recover the secret s1 using the solution
to MV-HNP-CM. One can still try to recover some, or all, of the other coefficients using the
method to solve MV-HNP-CM. We leave it for future work – it is an open problem to construct
isomorphisms that give rise to the required multipliers even for some coefficients.

5.2.2 CDH in E(Fpm) with Changing Weierstrass/ Field Representations

Let E be an elliptic curve over a field Fpm and let S = (sx, sy) ∈ E(Fpm) be a secret point. We
wish to learn S using oracle access to some function on changed representations of S. Such
results have applications for CDH and pairing functions on elliptic curves.

18

The simplest approach is to assume we can get a bit of a component of sx under changes
of field representation. The result then follows from the methods of Section 5.2.1.

If we cannot change the field representation, then we can change the Weierstrass equation
as was done by Boneh and Shparlinski [6]. Suppose E is given by the Weierstrass Equation
W : y2 = x3 + Ax + B. For a non-zero λ ∈ Fpm let Wλ : Y 2 = X3 + Aλ4X + Bλ6.
The map φλ : W → Wλ that takes P = (x, y) on W to Pλ = (λ2x, λ3y) on Wλ is known
to be an isomorphism of groups. The image of the point S = (sx, sy) ∈ W under φλ is
φλ(S) = (λ2sx, λ

3sy).
One can see that if t is a quadratic residue in Fpm , that is t = λ2 for some λ ∈ Fpm , then by

considering only the x-coordinate, the function φλ allows to choose multipliers for the secret.
That is, φλ(S)x = sxt, where sx, t ∈ Fpm . Therefore, changing Weierstrass equations allows
to choose multipliers for the secret, as long as t is a quadratic residue in Fpm . Due to the work
in [9] for elliptic curves defined over prime fields, this is sufficient to solve HNP-CM in Fpm .
A similar approach holds for the y-coordinate. Using the solution to HNP-CM in Fpm given in
Corollary 19, this forms bit security results as in [9] for elliptic curves defined over extension
fields E(Fpm). Since the solution to HNP-CM in Fpm given in Corollary 19 does not take into
account the representation of the field Fpm , this result holds for any such representation.

These arguments give the following result, which we state for the Diffie-Hellman protocol,
but can also be stated for elliptic-curve-based one-way functions and pairing-based one-way
functions as in [9], and in fact holds for any secret element in E(Fpm).

Corollary 26. Let S = DHP ([a]P, [b]P) = [ab]P be a Diffie-Hellman secret in E(Fpm).

Given P, [a]P, [b]P ∈ E(Fpm), computing a single bit of S for a random representation of

E(Fpm) or a random representation of Fpm is as hard as computing S. In other words, an

algorithm that has a non-negligible advantage over a random guess in computing a single bit

of S (for a random representation of E(Fpm) or a random representation of Fpm) can be used

to efficiently compute S.

Acknowledgements

We thank the anonymous referees for their helpful comments.

REFERENCES

[1] Akavia, A. (2008) “Learning Noisy Characters, Multiplication Codes and Hardcore Pred-
icates.” Ph.D. Thesis, Massachusetts Institute of Technology.

19

[2] Akavia, A. (2009) “Solving Hidden Number Problem with One Bit Oracle and Advice,”
in Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 337–354. Springer, Heidelberg

[3] Akavia, A., Goldwasser, S., and Safra, S. (2003) “Proving Hard-Core Predicates Using
List Decoding,” in FOCS 2003, pp. 146–157. IEEE Computer Society, Washington, DC.

[4] Alexi, W., Chor, B., Goldreich, O., and Schnorr, C.P. (1988) “RSA and Rabin Functions:
Certain Parts are as Hard as the Whole,” in SIAM Journal on Computing, 17(2), 194–209.

[5] Ben-Or, M., Chor, B., and Shamir, A. (1983) “On the Cryptographic Security of Single
RSA Bits,” Johnson, D.S., Fagin, R., Fredman, M.L., Harel, D., Karp, R.M., Lynch,
N.A., Papadimitriou, C.H., Rivest, R.L., Ruzzo, W.L., Seiferas, J.I. (eds.) STOC 1983,
pp. 421–430. ACM, New York.

[6] Boneh, D., and Shparlinski, I. (2001) “On the Unpredictability of Bits of the Elliptic
Curve Diffie–Hellman Scheme,” in Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
201–212. Springer, Heidelberg.

[7] Boneh, D., and Venkatesan, R. (1996) “Hardness of Computing the Most Significant Bits
of Secret Keys in Diffie-Hellman and Related Schemes,” in Koblitz, N. (ed.) CRYPTO
1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg.

[8] Boneh, D., and Venkatesan, R. (1997) “Rounding in Lattices and its Cryptographic Ap-
plications,” in Saks, M.E. (ed.) SODA 1997, pp. 675–681. ACM/SIAM, Philadelphia.

[9] Duc, A., and Jetchev, D. (2012) “Hardness of Computing Individual Bits for One-Way
Functions on Elliptic Curves,” in Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 832–849. Springer, Heidelberg.

[10] De Mulder, E., Hutter, M., Marson, M.E., and Pearson, P. (2013) “Using Bleichen-
bacher’s Solution to the Hidden Number Problem to Attack Nonce Leaks in 384-Bit
ECDSA,” in Bertoni, G., Coron, J.S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 435–452.
Springer, Heidelberg.

[11] Verheul, E.R. (2000) “Certificates of Recoverability with Scalable Recovery Agent Secu-
rity,” in Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 258–275. Springer,
Heidelberg.

20

[12] Fazio, N., Gennaro, R., Perera I.M., and Skeith III, W.E. (2013) “Hard-Core Predi-
cates for a Diffie-Hellman Problem over Finite Fields,” in Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8043, pp. 148–165. Springer, Heidelberg.

[13] Goldreich, O., and Levin, L.A. (1989) “A Hard-Core Predicate for all One-Way Func-
tions,” in Johnson, D.S. (ed.) STOC 1989, pp. 25–32. ACM, New York.

[14] Aranha, D.F., Fouque, P-A., Grard B., Kammerer, J-G., Tibouchi., M, and Zapalowicz,
J-C. (2014) “GLV/GLS Decomposition, Power Analysis, and Attacks on ECDSA Sig-
natures with Single-Bit Nonce Bias,” in Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014.
LNCS, vol. 8873, pp. 262–281. Springer, Heidelberg.

[15] Kushilevitz, E., and Mansour, Y. (1991) “Learning Decision Trees Using the Fourier
Sprectrum,” in Koutsougeras, C., Vitter, J.S. (eds.) STOC 1991, pp. 455–464. ACM,
New York.

[16] Morillo, P., and Ràfols, C. (2009) “The Security of All Bits Using List Decoding,” in
Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 15–33. Springer, Heidel-
berg.

[17] Mansour, Y. (1994) “Learning Boolean Functions via the Fourier Transform,” in Roy-
chowdhury, V., Siu, K.Y., Orlitsky, A. (eds.) Theoretical Advances in Neural Computa-
tion and Learning, pp. 391–424. Kluwer Academic Publishers.

[18] Shparlinski, I. (2002) “Playing “Hide-and-Seek” in Finite Fields: Hidden Number Prob-
lem and its Applications,” in Proceedings of the Seventh Spanish Meeting on Cryptology
and Information Security, vol. 1, pp. 49–72. University of Oviedo.

[19] Shparlinski, I., and Winterhof, A. (2004) “A Nonuniform Algorithm for the Hidden Num-
ber Problem in Subgroups,” in Bao, F., Deng, R.H., Zhou, J. (eds.) PKC 2004. LNCS,
vol. 2947, pp. 416–424. Springer, Heidelberg.

[20] Wang, M., Zhan, T., and Zhang, H. (2014) “Bits Security of the CDH
Problems over Finite Fields,” in Cryptology ePrint Archive, Report 2014/685.
http://eprint.iacr.org/2014/685.

21

