
On the Possibility of Non-Interactive E-Voting in the
Public-key Setting

Rosario Giustolisi1, Vincenzo Iovino2, and Peter B. Rønne3

1 SICS Swedish ICT, fgiustol@gmail.com
2 University of Luxembourg, vinciovino@gmail.com

3 INRIA Nancy and University of Luxembourg, peter.roenne@inria.fr

Abstract. In 2010 Hao, Ryan and Zielinski proposed a simple decentralized e-
voting protocol that only requires 2 rounds of communication. Thus, for k elections
their protocol needs 2k rounds of communication.
Observing that the first round of their protocol is aimed to establish the public-
keys of the voters, we propose an extension of the protocol as a non-interactive
e-voting scheme in the public-key setting (NIVS) in which the voters, after having
published their public-keys, can use the corresponding secret-keys to participate in
an arbitrary number of one-round elections.
We first construct a NIVS with a standard tally function where the number of votes
for each candidate is counted.
Further, we present constructions for two alternative types of elections. Specifically
in the first type (dead or alive elections) the tally shows if at least one voter cast a
vote for the candidate. In the second one (elections by unanimity), the tally shows
if all voters cast a vote for the candidate.
Our constructions are based on bilinear maps of prime order.
As definitional contribution we provide formal computational definitions for privacy
and verifiability of NIVSs. We conclude by showing intriguing relations between our
results, secure computation, electronic exams and conference management systems.

Keywords: e-voting, bilinear maps, secure computation, electronic exams, confer-
ence management systems.

Table of Contents

On the Possibility of Non-Interactive E-Voting in the Public-key Setting 1
Rosario Giustolisi, Vincenzo Iovino, and Peter B. Rønne

1 Introduction . 3
1.1 Multiple non-interactive elections in the PK setting . 3
1.2 Beyond YES/NO elections . 5

Dead or alive elections. 6
Elections by unanimity. 6

1.3 Relation to secure computation . 6
1.4 Applications to secure conference management systems and e-exams 7
1.5 Our results in a nutshell . 8

2 Definitions . 8
2.1 Non-interactive voting scheme in the PK setting . 9
2.2 Bilinear maps . 11
2.3 NIZK in the RO . 12

NIZK in the RO for encryption of 0 or 1. 13
3 NIVS for YES/NO elections . 13

3.1 Properties and security of the scheme . 14
4 Acknowledgments . 17

1 Introduction

Background. In 2010 Hao, Ryan and Zielinski [HRZ10] (see also [KSRH12]) designed
a simple decentralized e-voting protocol that only needs 2 rounds of communication and
is (publicly) verifiable. Their protocol for n participants can be summarized as follows.
Let us assume that a trusted authority sets up a Diffie-Hellman [DH76] group G of prime
order p with generator g. In the first round, each voter j chooses a secret element xj ← Zp
and forwards gxj to the public bulletin-board. Now, each voter j computes the value

gyj
4
= g

∑
k<j xk−

∑
k>j xk and in the second round sends her ballot Bltj

4
= gvjgxjyj , where

vj ∈ {0, 1} is her vote.
From the values Bltj ’s the tally can be computed as the product, in fact it is easy to see

that
∏
j∈[n] g

xjyj = 1 and thus r
4
=

∏
j∈[n] Bltj = g

∑
vj .

Assuming that the result is small it can be computed by computing the discrete log of r
in base g. The previous explanation is an oversimplification that skips some aspects, like
zero-knowledge proofs for verifiability, that we will take into consideration later.

1.1 Multiple non-interactive elections in the PK setting

The Public-key Setting. The first round of the protocol outlined above can be viewed
as the publication of the public-key (PK, henceforth) of the users. That is, we can imagine
the element gxj as the PK of user j and xj as her secret-key (SK, henceforth). After
establishing these pairs of PKs/SKs the voter can cast her vote non-interactively (i.e., in
a single round of interaction).
Note also that non-interactive e-voting is provable impossible to achieve without the PK
setting because it clashes with any reasonable notion of privacy. In fact, if it were possible
to compute the result of a 0/1 election4 from a tuple S of n ballots computed in a non-
interactive way, then it would be possible to perform the following attack: discard the first
n− 1 ballots in S and replace them with another tuple of ballots that all encode the vote
for 0, and compute the tally to learn the vote of the n-th voter in S.
We thus raise the following question:

In a PK setting, can we achieve a protocol that allows the voters to participate in
an unbounded number of elections? That is, after the users make public their PKs
and retaining for them the corresponding SKs, is it possible for them to engage in
an unbounded number of one-round voting protocols?

The protocol of Hao et al. fails to satisfy this property. In fact, even if in their scheme
we consider the first round as the establishment of the PKs/SKs, if the voters make two
non-interactive elections then the privacy is completely broken. The reason is that the
ballots are not randomized so that the two ballots belonging to the same voter leak her
votes.
We solve the issue by resorting to bilinear maps [BF01,Jou04]. Our new protocol extends
the one of Hao et al. as follows. First of all, we will associate a unique identifier id ∈ {0, 1}λ
to each election. That is, voters will associate an identifier id to their ballots and only
ballots for the same identifier (i.e., for the same election) can be put together to compute

4 In the sequel we will use the terms 0/1 and YES/NO elections as synonyms. This type of
election is also called as referendum.

the tally.

Let us assume a bilinear instance I 4= (p,G,GT , e) (see Section 2.2) in which G is a group
of prime order p and e is a bilinear function mapping elements of G to elements of GT
satisfying non-degeneracy and bilinearity, and let Hash be a hash function taking as input
I, an identifier of an election id and outputs elements of G. In our analysis Hash will be
modeled as a Random Oracle (RO, in short) model [BR93]. Our protocol in the PK setting
is described next.
All voters randomly choose their secret-key xj ← Zp and publish their public-key Pkj =
gxj . Each voter computes a random value Hash(I, id) ∈ G to be used in the election
associated with identifier id.
In election id each voter j will cast her vote vj as

Bltj
4
= e(gyj ,Hash(I, id))xj · e(gvj ,Hash(I, id)), where gyj is computed from the PKs gxj ’s

exactly as in the Hao et al.’s protocol described above. As will be explained below, the
ballot is cast with a proof of well-formedness.

If we write gid = e(g,Hash(I, id)) the ballot can be written as Bltj = g
vj
id g

xjyj
id and the

relation to Hao et al.’s approach becomes clear. In the target group of the bilinear map,
we have constructed a hash function creating new generators for each election in such a
way that the PK for any participant in the new generator can be calculated by the other
participants and the SKs stay unchanged.

Privacy game. This new model calls for new security definitions. We define the privacy
for non-interactive e-voting schemes in the PK setting (NIVS, in short) by means of the
following game.
The challenger computes a pair of PK/SK for each voter and feeds the adversary with the
PKs. Then a random bit b is chosen and the adversary can adaptively make an unbounded
number of queries to an oracle invoking it with two sets of votes, S0 and S1 with the same
sum and receiving back the ballots computed with Sb by means of the SKs. At any point
the adversary can output its guess b′ and it wins the game iff b′ = b.
A formal definition that also takes in account an adversary that corrupts a set of voters
seeing their SKs is given in Section 2.1.
We will prove the following theorem.

Theorem 1 If the Bilinear Decision Diffie-Hellman Assumption [Boy08] defined in Section
2.2 holds, then in the RO model no non-uniform PPT adversary can break the privacy
(see Definition 2) of the scheme of Section 3 with non-negligible probability.

The proof is given in Section 3.1. Note that the privacy definition does not capture e.g. vote
copying attacks. In fact, it implicitly assumes a perfect synchronous broadcast channel.
We postpone a stronger ballot privacy definition for future work.

Verifiability. As a further definitional contribution we provide a formal definition for
verifiability. Verifiability for NIVSs is somewhat different from schemes with trusted au-
thorities. For example everybody, also third parties, can perform the tally. Further we will
think of being in a setting where the ballots and proofs are cast using authenticated chan-
nel using the PK structure. Alternative signatures can be added. This prevents attacks
where an adversary votes on behalf of another voter. Intuitively verifiability should then
guarantee the ability of verifying that a voter cast a ballot according to the vote rules and
that the tally has ideal functionality. First of all, let us analyze how a well-formed ballot

look like.
We expect that a well-formed ballot give consistent results with other honestly computed
ballots. That is, a ballot Blt should uniquely determine a vote v that, along with any other
set of valid ballots, results in a consistent computation.
Our definition of verifiability given in Section 2.1 is divided in two parts (that have to
hold together). The first part states that a ballot uniquely determines a vote v such that
for any other set of ballots corresponding to another vector of votes v the output of the
algorithm that computes the tally will be equal either to the output of the functionality
with inputs v and v or to an error ⊥.
The second part states that there exists an algorithm VerifyBallot whose aim is to verify
the well-formedness of a ballot Blt such that if the verification passes for Blt then for any
other set B of honestly computed ballots the result of the tally with respect to the set of
ballots B ∪ {Blt} will not result in an error ⊥.
In order to guarantee verifiability of the above sketched NIVS, like in Hao et al., we add
proofs of well-formedness of the ballot. Specifically we add a proof that the vote in the
ballot is 0 or 1 using the Cramer et al. technique adapted to the bilinear setting. We
discuss this in Section 2.3. Note that unlike Hao et al. we do not add proofs of knowledge
to the public-keys as in our work we do not address malleability or copying attacks.
We stress that the proof of well-formedness of the ballot is sufficient to satisfy our notion
of verifiability. However, it is easy to see that one can also add proofs of knowledge to the
PKs to prevent stronger attacks not taken in account in our model.

We note that this protocol is not fair, e.g. the last to cast a ballot can compute the
result before casting her own vote. As explained in [KSRH12] this can be mitigated by an
extra commitment round. Also the protocol is not robust, we cannot tally if someone fails
to vote. This was also considered in [KSRH12] and in this event it is enough to run an
extra round to recover the result.

1.2 Beyond YES/NO elections

The drawback of the previous scheme is that it only supports YES/NO elections. Hao et
al. showed how to extend their basic scheme to handle multiple candidates by using paral-
lel repetition, i.e., making the voter to cast a ciphertext for any candidate. They mention
possible improvements with better communication efficiency at the cost of having a very
expensive tallying procedure. However, none of their solutions support multiple elections.

Multiple candidates. The techniques of Hao et al. for handling multiple candidates
also extend to our context in a natural way. However, we can do even better. The point is
that in the same way that we can construct independent generators for each election, we
can also inside each election construct independent generators for each candidate gid,a =
e(g,Hash(I, id, a)) where a ∈ {1, . . . , c} and we have c candidates. Voter j now casts c
ballots Bltj,a = g

vj,a
id,a g

xjyj
id,a where vj,a is 1 for the chosen candidate and 0 otherwise. The

voter gives a single zero-knowledge proof of this. Namely, she gives an OR-proof that the
El Gamal encryption (

∏
a g

xj

id,a,
∏
a Bltj,a) is an encryption of one of the elements in the

set {gid,1, . . . , gid,c}. Unlike the parallel approach of Hao et al. the voter can only cast one
vote and we thus have a standard c-candidate election. Where the vote casting part scales
roughly with c, the tally part is almost as efficient as in the YES/NO case and the brute
force calculation requires maximally n calculations.

However in this work we also present a novel approach to support multiple elections in
the PK setting for elections using special tally functions.

Dead or alive elections. In the sequel we consider two new special YES/NO elections
and when we say that the voter casts (resp. does not cast) a vote for the candidate we
mean that she casts 1 (resp. 0). In the first one, that we call dead or alive elections we
have 1 candidate and the tally has to compute the predicate P6=0 that is true iff at least
one voter cast a vote for the candidate.
The idea is to change the previous NIVS for YES/NO elections so that if the j-th voter
casts a vote for 0 she sets vj = 0, otherwise she sets vj to a random number in Zp. That is

the ballot Bltj will be defined as Bltj
4
= e(gyj ,Hash(id, I))xj · e(gvj ,Hash(id, I)), but with

vj set as described before.
As before, the product of the e(gyj ,Hash(id, I))xj ’s will cancel out when tallying.

Hence, only the product of the e(gvj ,Hash(id, I))’s will be left. Therefore, this part will be
null if and only if no voter cast a vote for the candidate. Note that here, as the result is
Boolean, we do not need to make brute-force computation to extract the result and thus
to assume that the number of voters be small.

Elections by unanimity. With a similar technique we can handle elections by unanim-
ity, in which the tally has to compute the predicate P∀ that is true iff all voters cast a
vote for the candidate, where a voter can cast a vote for a single candidate.
The idea is similar to the former except that in a ballot for voter j we invert the setting
of vj by choosing vj = 0 if the voter wants to cast a 1 vote or choosing vj at random in
Zp if the voter wants to cast a 0 vote. Note that in this case the e(gvj ,Hash(id, I))-part
will be null either if and only if all voters cast a vote for the candidate.
For both dead or alive elections and elections by unanimity, it would be better (to prevent
further attacks not considered in our model) that the votes be cast with a proof of knowl-
edge of vj , though not adding any proof does not break either the privacy or verifiability
as defined.5

We mention that both schemes could be extended to support multiple candidates using
bilinear groups of composite order but we skip the details.
A drawback of the above constructions (for dead or alive elections and elections by una-
nimity) is that if an adversary, who is a participating voter, manages to perform a privacy
attack on voter j and gets to know vj , then this adversary can cancel the vote of j by vot-
ing −vj . That is, a privacy attack can be turned into an undetectable verifiability attack.
In the setting of composite groups we also plan to repair on this. However, we stress that
these attacks are not taken in account by our security model but in a future work we will
generalize it to withstand stronger attacks.

1.3 Relation to secure computation

Our results relate to secure computation [Yao88,Gol04] of specific functionalities. A recent
result of Garg et al. [GGHR14] showed the first 2-rounds secure computation protocol in

5 Precisely, for the verifiability to hold, it is sufficient to check that the ballot be a valid group
element, as any group element is in the range of the Cast algorithm.

the CRS model for any functionality.
However, even if we wish to use the protocol of Garg et al. to execute k secure evaluations
of the functions described in this paper, we would need 2k rounds of communication.
Instead, using our NIVSs we only need k + 1 rounds, one for establishing the PKs and
one for each non-interactive secure function evaluation (of the functions supported by our
schemes) in the PK setting.
Another related cryptographic notion is Input-Indistinguishable Computation proposed
by Micali, Pass and Rosen [MPR06] that shares the indistinguishability-based flavor of
NIVS but was implemented with more rounds than ours (though the main focus of the
authors was on general functionalities and security under concurrent executions).
It seems that Multi-input Functional Encryption (MIFE, in short) [GGG+14] could be also
used to obtain a form of a NIVS in the CRS model (setting the CRS to a token for the
desired function). However, this is not straightforward since MIFE would have to be likely
combined with signature schemes and, as the indistinguishability-security of MIFE only
holds when the two challenge vectors of inputs are not ’splittable’ under the functionality,6

it would offer no security guarantee because there will be exist many values splitting the
challenge vectors.7 A generalization of MIFE studied by Iovino and Żebrowski [IZ15] could
be useful in this context.
It is an intriguing research direction to investigate the class of functionalities we can
compute in our setting.

1.4 Applications to secure conference management systems and e-exams

Our results are applicable also in the context of secure exams and conference manage-
ment. In fact, the voters can represent the examiners (or reviewers) who assign a grade to
a homework (or scientific paper), and the tally corresponds to its evaluation. More specif-
ically, let [d] be the set of possible grades. Our first NIVS for YES/NO elections can be
easily extended to support votes (that now will represent grades) in [d] so that the tally
divided by the number of examiners would give the average grade for the homework.

Our schemes for dead or alive elections and elections by unanimity could be also useful
for the review process of a conference management system.

Our NIVS can be used to get a first evaluation of a paper from the committee members
who are involved into the review process. The goal is to preserve anonymity of the review
grades also towards the chair, that is, a form of strong blind reviewing. Here, a vote for
1 corresponds to acceptance and a vote for 0 to rejection (as said before, the scheme
can be easily extended to support different grades such as borderline). The chair of the
conference who is in charge for accepting or rejecting a paper computes the tally to get a
first evaluation of the paper without knowning the grades assigned by each reviewers to
the paper.

If a paper gets a very high (resp. very low) average grade, then the chair can easily take
the final decision, otherwise he may assign “Maybe Accept” (resp. “Maybe Reject”) to the

6 For instance a value z splits two vectors (x1, x2) and (y1, y2) under a function f if f(x1, z) 6=
f(y1, z) or f(z, x2) 6= f(z, y2). Two vectors are splittable if there exists a value z that splits
them.

7 Precisely, whereas it would be difficult to find an input that splits the two challenge vectors
under the functionality (as it accounts to forge a signature), such splitting inputs exist and
thus the security of MIFE is vacuous.

paper. If a paper has been assigned the grade of “Maybe Accept”, the chair may call for
a dead or alive election to reject the paper iff all committee members will vote rejection.
On the other hand, if the paper has been assigned the grade of “Maybe Reject”, the chair
may call for an election by unanimity to accept the paper iff all committee members agree
on acceptance.

Similarly, we expect further applications of our work to secure exams in general.

1.5 Our results in a nutshell

Our contributions can be summarized as follows.

– A new model. We introduce the novel concept of non-interactive voting schemes in
the PK setting that extends the two-rounds elections of Hao et al.. In this model, n
voters publish their public-keys retaining the corresponding secret-keys, and each voter
using her secret-key can compute her ballot and send it to a public bulletin board.
Then, the n ballots can be put together to compute the result of the election.
Therefore, in this model k elections can be executed with k+ 1 rounds of communica-
tions whereas using Hao et al.’s schemes would result in 2k rounds.

– Formal definitions. In Section 2.1 we provide formal definitions for non-interactive
voting schemes in the PK setting, in particular for privacy and verifiability, for which
a formal treatment was missing.

– Scheme for YES/NO elections. In Section 3 we present a non-interactive voting
scheme in the PK setting for YES/NO elections (i.e, in which each voter can cast 0
or 1 and the tally computes the sum of all votes) that is provably secure from the
Bilinear Decision Diffie-Hellman assumption.

– Alternative types of elections. In Section 1.2 we present schemes for alternative
types of (YES/NO) elections that could be of independent interest. In particular we
can support a dead or alive election in which n voters can choose 1 candidate and the
result shows for if at least one voter cast a vote for him. Another type of election we
support is election by unanimity, in which the result shows if all voters cast a vote for
the candidate.

– Relation to secure computation. In Section 1.3 we show relations between our
results and secure computation.

– Applications to secure electronic exams and conference systems. In Section
1.4 we show that our results have direct applications to secure electronic exams and
conference management systems.

2 Definitions

Notation. A negligible function negl(k) is a function that is smaller than the inverse of
any polynomial in k (from a certain point and on). We denote by [n] the set of numbers
{1, . . . , n}, and we shorten Probabilistic Polynomial-Time as PPT. If g and A are elements
of the same cyclic group, we denote by dloggA the discrete log of A in base g. If S is a
finite set we denote by a← S the process of setting a equal to a uniformly chosen element
of S.

2.1 Non-interactive voting scheme in the PK setting

A non-interactive voting scheme in the PK setting (NIVS, in short) is associated with a
natural number n > 0, the number of voters, a set D, the domain of valid votes, a set Σ,
the range of possible results, and a count function F : Dn → Σ. After that an authority
sets-up the public parameters pp, each voter generates a pair of public- and secret- keys.
By means of an algorithm Cast and of her own secret-key each voter can cast her vote
v ∈ D generating a ballot Blt and, using the public-keys of all voters, the tally can be
publicly computed by means of an algorithm EvalTally. A single ballot can be verified to
be the output of the Cast algorithm with input a valid vote v ∈ D and with respect to a
public-key of a voter by means of the algorithm VerifyBallot.

Definition 1 [Non-Interactive Voting Scheme] A (n,D,Σ, F)-non-interactive voting scheme
in the PK setting NIVS for number of voters n, domain of valid voters D, range of possible
results Σ and count function F is a tuple

NIVS
4
= (Setup,KeyGen,Cast,VerifyBallot,EvalTally) of 5 algorithms with the following

syntax:

1. Setup(1λ), on input the security parameter in unary, outputs public parameters pp.
2. KeyGen(pp), on input the public parameters pp outputs a public-key Pk and a secret-key

Sk.
3. Cast(pp, j, id,Sk, (Pk)i∈[n]−{j}, v), on input the public parameters pp, the secret-key Sk

of voter j, the identifier id ∈ {0, 1}λ of the election, the public keys (Pki)i∈[v]−{j} of
the other voters, and a vote v ∈ D, outputs a ballot Blt;

4. VerifyBallot(pp,Pk, id,Blt), on input the public parameters pp, a public-key Pk of a
voter, the identifier id ∈ {0, 1}λ of the election and a ballot Blt, outputs a value in
{⊥,OK};

5. EvalTally(pp,Pk1, . . . ,Pkn, id,Blt1, . . . ,Bltn), on input the public parameters pp, the
public-keys of all voters, the identifier id ∈ {0, 1}λ of the election, and the ballots cast
by all voter, outputs y ∈ Σ ∪ {⊥}.

In addition we require the following properties.

1. Correctness or self-tallying. For all pp ← Setup(1λ), for all (Pk1,Sk1), . . . , (Pkn,Skn)
such that for all i ∈ [n] (Pki,Ski)← KeyGen(pp), all v1, . . . , vn ∈ D, for all identifiers
id ∈ {0, 1}λ, for all Blt1, . . . ,Bltn such that for all i ∈ [v] Blti ← Cast(pp, j, id,Sk, (Pk)i∈[n]−{j}, v),
we have that EvalTally(pp,Pk1, . . . ,Pkn, id,Blt1, . . . ,Bltn) = F (v1, . . . , vn).

2. Verifiability or dispute-freeness. With all except negligible probability in λ over the
choices of the randomness, the following holds. For all pp← Setup(1λ), all j ∈ [n], all
Pk, all Blt, there exists a vote v ∈ D such that:
for all identifiers id ∈ {0, 1}λ, all (Pki,Ski)i∈[n]−{j} such that for all i ∈ [n] − {j}
(Pki,Ski) ← KeyGen(pp), and all vi ∈ D with i ∈ [n] − {j} and with (Blti)i∈[n]−{j}
satisfying Blti ← Cast(pp, i, id,Sk, (Pk)j∈[n]−{i}, vi), it holds that
EvalTally(pp,Pk1, . . . ,Pkj−1,Pk,Pkj+1, . . . ,Pkn, id,Blt1, . . . ,Bltj−1,Blt,Bltj+1, . . . ,Bltn)
outputs either F (v1, . . . , vj−1, v, vj+1, . . . , vn) or ⊥.

In addition, with all except negligible probability in λ over the choices of the random-
ness, the following holds. For all pp ← Setup(1λ), for all j ∈ [n], all Pk, all Blt, if
VerifyBallot(pp,Pk, id,Blt) = OK then:

for all identifiers id ∈ {0, 1}λ, all (Pki,Ski)i∈[n]−{j} such that for all i ∈ [n] − {j}
(Pki,Ski) ← KeyGen(pp), all v1, . . . , vn1

∈ D, all (Blti)i∈[n]−{j} such that for all
i ∈ [v]− {j} Blti ← Cast(pp, j, id,Sk, (Pk)i∈[n]−{j}, v), it holds that
EvalTally(pp,Pk1, . . . ,Pkj−1,Pk,Pkj+1, . . . ,Pkn, id,Blt1, . . . ,Bltj−1,Blt,Bltj+1, . . . ,Bltn) 6=⊥.

Privacy. Now we formalize the notion of privacy (also called maximal ballot privacy in Hao
et al.) in the style of indistinguishability-based security for encryption and related primi-

tives. The privacy for a (n,D,Σ, F)-NIVS NIVS
4
= (Setup,KeyGen,Cast,VerifyBallot,EvalTally)

is formalized by means of the following game Privn,D,Σ,F,NIVSA between an adversary (with

access to an oracle) A 4= (A0,A1) and a challenger C.

Privn,D,Σ,F,NIVSA (1λ)

– Setup phase. C generates pp← Setup(1λ), choose a random bit b← {0, 1} and runs
A0 on input pp;

– Corruption phase. A0, on input pp, outputs a set S ⊂ [n] of indices of voters it wants
to corrupt.

– Key Generation Phase. For all i ∈ [n] the challenger generates n pairs of public- and

secret- keys (Pki,Ski) ← KeyGen(pp), and runs AVote(·)
1 on input (Pki,Ski)i∈S and

(Pki)i∈[n]−S .
– Query phase. The adversary A1 has access to a stateful oracle Vote. The

oracle Vote on input an identifier id ∈ {0, 1}λ and a pair of vectors

v0
4
= (v0,1, . . . , v0,n) and v1

4
= (v1,1, . . . , v1,n) outputs the set of ballots

(Cast(pp, 1, id, Sk1, (Pki)i∈[n]−{1}, vb,1), . . . ,Cast(pp, n, id, Skn, (Pki)i∈[n]−{n}, vb,n).
– Output. At some point the adversary outputs its guess b′.
– Winning condition. The adversary wins the game if the following conditions hold:

1. b′ = b.
2. v0,i = v1,i for any i ∈ S.
3. for any pair of vectors (v0,v1) for which A asked a query to the oracle Vote it

holds that: for any vector v, F (v′0) = F (v′1) where for b = 0, 1 v′b is the vector
equal to v in all indices in S and equal to vb elsewhere.

4. S has cardinality < n, v0 and v1 are vectors of n values in D and id ∈ {0, 1}λ.

The advantage of adversary A in the above game is defined as

AdvNIVS,PrivA (1λ)
4
= |Prob[Privn,DΣ,F,NIVSA (1λ) = 1]− 1/2|

Definition 2 We say that NIVS for parameters (n,D,Σ, F) is private if all PPT adver-

saries A 4= (A0,A1) have at most negligible advantage in the above game.

Remark 1 We make some remarks on the previous definitions.

– Perfect synchronous broadcast channel. Our security definition implicitly as-
sumes a synchronous broadcast channel and as such does not model e.g. malleability
and copying attacks.

– Parameterization. A (n,D,Σ, F)-NIVS is fully specified only for the 4 parameters
n,D,Σ and F , but often for simplicity we will drop the parameters and we will talk
about a NIVS when it is clear from the context.

– Supporting multiple functions. It is possible to extend the definition of a (n,D,Σ, F)-
NIVS by replacing the function F with a set of functions F so as to have a system that
in each election can allow to evaluate the tally according to any function f ∈ F. In this
case, the setup algorithm has to take as additional input a finite description of the set
and the other algorithms have to take as additional input a certain function f ∈ F.
The correctness, verifiability and privacy have to be changed accordingly. We point
out that our NIVSs for 0/1 elections, for dead or alive elections and for elections by
unanimity can be easily unified in a single NIVS for the set of the three corresponding
functions.

– Verifiability. Note that the first part of the verifiability states that a ballot uniquely
determines a single vote v that is compatible with any other correctly computed set
of ballots. The second part guarantees that the VerifyBallot algorithm can discover
whether a ballot is cast correctly. Thus, if the check is satisfies (i.e., with output OK),
it means that for a given ballot Blt, any set of n − 1 correctly computed ballots, will
give consistent results.

– Constant or polynomial number of voters. The reader may have noticed that
we leave unspecified the relation between the parameter n and the security parameter.
In more cases, setting n to a constant is enough. However one could set n to be any
polynomial in the security parameter.

– Programmable RO. Actually we will assume a definition of privacy identical to the
one we formulated except that it is in the (programmable) RO model. In this case the
adversary would have in addition oracle access to a function O drawn at random from
the space of functions O that map {0, 1}λ to some space Σ but possibly modified by
a PPT simulator in a polynomial (in λ) number of points. We skip details of formal
definitions.
In our schemes we will assume that the adversary has access to more than one oracle,
but using standard techniques it could be modified to use only one oracle but not to
overburden the presentation we do not do that.

– CRS vs public-coin model. The public parameters can be seen as a CRS, so one can
wonder whether there is difference between the public-coin model and the CRS model.
The difference is that in the CRS model the party that generates the public parameters
is not trusted (though we mention that the trust could be distributed among a set of
trusted parties in a threshold way), whereas in the standard model the security should
hold even with respect to the party who generated the parameters.
The above definition of privacy only takes in account the CRS model but can be
changed to the standard model by allowing the adversary to see the random coins
with which the public parameters are generated. We stress that our construction of
Section 3 satisfies this stronger definition assuming a variant of BDDH (see Section
2.2).

2.2 Bilinear maps

In this section we describe the bilinear setting with groups of prime order and the as-
sumption that we will use to prove the privacy of the NIVSs presented in Sections 3 and
1.2.

Prime order bilinear groups. Prime order bilinear groups were first used in Cryptog-
raphy by Boneh and Franklin [BF01], and Joux [Jou04]. We suppose the existence of an

efficient group generator algorithm G which takes as input the security parameter λ and

outputs a description I 4= (p,G,GT , e) of a bilinear instance of prime order, where G and
GT are cyclic groups of prime order p, and e : G × G → GT is a map with the following
properties:

1. (Bilinearity): ∀ g, h ∈ G and a, b ∈ Zp it holds that e(ga, hb) = e(g, h)ab.
2. (Non-degeneracy): ∃ g ∈ G such that e(g, g) has order p in GT .

Bilinear Decision Diffie-Hellman Assumption. More formally, we have the following

definition. First pick a random bilinear instance I 4= (p,G,GT , e)← G(1λ) and then pick

g ← G, a, b, c, z ← Zp , and set D
4
= (I, g, ga, gb, gc), T0

4
= e(g, g)abc and T1

4
= e(g, g)z. We

define the advantage of any A in breaking the BDDH Assumption (with respect to G) to
be

AdvA,GBDDH(λ)
4
= |Prob[A(D,T0) = 1]− Prob[A(D,T1) = 1]| .

We say that Assumption BDDH holds for generator G if for all non-uniform PPT

algorithms A, Adv
A(λ),G
BDDH is a negligible function of λ.

We mention that if we wish that our NIVS of Section 3 satisfy privacy in the public-
coin model, we need to assume a stronger variant of the above definition in which the
adversary also sees the random coins used to generate the bilinear instance.

2.3 NIZK in the RO

Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R we call x the
statement and w the witness. Let L be the language consisting of statements in R.

Definition 3 [NIZK] A non-interactive zero-knowledge proof system [BFM88,FLS90] (NIZK,
in short) in the RO model [BR93,BFW15] NIZK = (Prove,Verify) for a relation R consists
of the following PPT algorithms with access to an oracle O randomly drawn from a space
O of functions with domain and co-domain {0, 1}λ:

– ProveO(·)(x,w): takes as input a statement x and a witness w for x, and with oracle
access to O produces a proof π.

– VerifyO(·)(x, π): takes in input a statement x and a proof π, and with oracle access to
O outputs 1 if the proof is accepted and 0 otherwise.

We call NIZK a non-interactive zero-knowledge proof system for R if it has the prop-
erties described below.

– Perfect completeness. A proof system is complete if an honest prover with a valid
witness can convince an honest verifier. Formally we have that for any (x,w) ∈ R

Pr[O ← O; π ← ProveO(·)(x,w) : VerifyO(·)(x, π) = 1] = 1 .

– Statistical soundness. A proof system is sound if it is infeasible to convince an honest
verifier when the statement is false. For all (even unbounded) non-uniform adversaries
A we have

Pr[O ← O; ∃(x, π) : VerifyO(·)(x, π) = 1 ∧ x /∈ L] = negl(λ) .

– (Adaptive Multi-theorem) Computational zero-knowledge [BFW15]. A proof system is
computational zero-knowledge8 in the RO model if the proofs do not reveal any
information about the witnesses to a bounded adversary. We say a non-interactive
proof NIZK is computational zero-knowledge if there exists a PPT stateful simulator
Sim = (Sim.RO,Sim) that without access to the witness can simulate proofs having in
addition the capability of programming the oracle O at any point, i.e, for any x and

y it is able to set O(x)
4
= y. For all non-uniform PPT adversaries A with access to an

oracle O, we have that the following quantity is negligible in λ:

|Pr[O ← O : AO(·),ProveO(·)
2 (·,·)(1λ) = 1]−

Pr[O ← O : ASim.ROO(·),Sim
O(·)
2 (·,·)(1λ) = 1]| ,

where Prove
O(·)
2 (x,w)

4
= ProveO(·)(x,w) for (x,w) ∈ R, Sim

O(·)
2 (x,w)

4
= SimO(·)(x) for

(x,w) ∈ R, the latter oracles output ⊥ for (x,w) /∈ R and Sim.RO simulates the oracle
O possibly modifying it at an arbitrary number of points.

NIZK in the RO for encryption of 0 or 1. Recall that Hao et al. used a protocol of
Cramer et al. [CDS94] to prove that their ballot correspond to a vote of either 0 or 1. To
that aim they convert the terms of their protocol into the form of ElGamal encryptions
by seeing the pair (g, gyi) terms as El Gamal PKs and thus seeing the pair gxi , gyixigvi as
an El Gamal encryption with randomness xi, public-key gyi and plaintext vi. The Cramer
et al.’s sigma protocol can prove that vi is either 0 or 1 without revealing which. Using
the Fiat-Shamir’s heuristic [FS87] (see also [BFW15] for discussions about adaptiveness)
it can be converted in a NIZK in the RO model.

In our work we need a NIZK in the RO for a relation identical as above except that g is
an element of the target group of a bilinear group. Specifically the variable g above takes

the form g
4
= e(g′,Hash(I, s)) where g′ is an element of a bilinear group, I is a bilinear

instance, s is some string and Hash is an hash function mapping the input to the base
group.

It is straightforward to see that the protocol of Cramer et al. also work when g has this
form. In fact the computational assumption on which the security of the sigma protocol
of Cramer et al. depends, also holds when the underlying group is the target group of a
bilinear group, and in particular when the generator of such group has the above form.
This is easy to verify assuming standard assumptions on bilinear maps, but in order not
to overburden the presentation we skip the details.

Precisely our relation Rwf is the following.

Definition 4 [Relation Rwf] Rwf(x,w)
4
= 1 if x = (I, g, A,B,C) consists of a bilinear

instance I 4= (p,G,GT , e) and a triple of 3 elements of GT and w = (x, y, v) are such that
A = gy, B = gx, C = gxygv.

3 NIVS for YES/NO elections

In this Section we present our NIVS for YES/NO elections.

8 Note that our definition of zero-knowledgeness is multi-theorem and adaptive like in [BFW15].

Definition 5 [NIVS for YES/NO elections] Let O and O2 be two random oracles (that
in the implementation will be set to two secure hash functions, e.g., SHA3). Let G be a
generator for a bilinear instance of prime order, let NIZK = (ProveO,VerifyO) be a NIZK in

the RO for the relation Rwf of Definition 4. Let n(λ) be the number of voters, D
4
= {0, 1}

be the domain of valid votes, Σ
4
= [n] and F the sum function. Furthermore, we assume

that the oracle O2 takes as input a description of a bilinear instance I = (p,G,GT , e) and
maps strings from {0, 1}λ to G, and that oracle O maps strings from {0, 1}λ to {0, 1}p(?)
for some polynomial p(·) as needed by NIZK.

We define a (n,D,Σ, F)-NIVS
NIVS = (Setup,KeyGen,Cast,VerifyBallot,EvalTally) in the RO model as follows.

– Setup(1λ): on input the security parameter in unary, it outputs pp
4
= I where I 4=

(p,G,GT , e)← G(1λ).

– KeyGen(pp): on input the public parameters pp
4
= (g, p,G,GT , e), the algorithm chooses

a random x← Zp and outputs the pair (Pk
4
= gx,Sk

4
= x).

– Cast(pp, j, id,Sk, (Pk)i∈[n]−{j}, v), on input the public parameters pp, the secret-key

Sk
4
= x of voter j, the identifier id of the election, the public keys (Pki)i∈[v]−{j} of

the other voters, and a vote v ∈ D, outputs a pair (Blt, π) where the ballot Blt
4
=

e(Yj , O2(I, id))Sk · e(g,O2(I, id))v, where Yj
4
=

∏
i<j Pki/

∏
j>i Pki = g

∑
i<j xi−

∑
i>j xi

and π is the proof computed by NIZK.ProveO with witness xi and v of the fact that
the ballot is well-formed and v ∈ {0, 1}.

– VerifyBallot(pp,Pk, id,Blt), on input the public parameters pp, a public-key Pk of a

voter, the identifier id ∈ {0, 1}λ of the election and a ballot Blt
4
= (Blt, π), outputs OK

if NIZK.VerifyO(Blt, π) = 1 or ⊥ otherwise.
– EvalTally(pp,Pk1, . . . ,Pkn, id,Blt1, . . . ,Bltn), on input the public parameters pp, the

public-keys of all voters, the identifier id ∈ {0, 1}λ of the election, and the ballots cast
by all voter, computes what follows.
It runs VerifyBallot on any ballot Blti, i ∈ [n] and if for any ballot the verification fails,
it outputs ⊥. Otherwise it computes R =

∏
i∈[n] Blti and by brute force computes

r
4
= dloge(g,O2(I,id))R. Finally, the algorithm outputs r.

3.1 Properties and security of the scheme

Correctness. It is straightforward to verify that the scheme satisfy the correctness as,
by construction of the yi’s it follows that

∑
xiyi = 0.

Verifiability. The verifiability follows from the statistical soundness of NIZK.

Privacy. We prove Theorem 1 using a standard hybrid argument. Assume by contra-
diction that there exist a PPT adversary A with non-negligible advantage in the privacy
game. To that aim we define a sequence of hybrid experiments against a non-uniform PPT
adversary A attacking the privacy game by asking at most q queries to its oracle Vote and
we prove their computational indistinguishability.

– H0. This correspond to the privacy experiment when the challenge bit is set to 0.

– H1. This experiment is identical to H0 except that the NIZK proofs are simulated.

Claim 1 Indistinguishability of H1 from H0. The indistinguishability of the two ex-
periments follow from the computational zero-knowledge of NIZK.

– Hi,j , for i ∈ [q], j = 0, . . . , n. The experiment Hi,j for i ∈ [q], j = 1, . . . , n is identical

to H1 except that the first i− 1 queries are answered as if the challenge bit were b
4
= 1

(i.e., the adversary receives a set of ballots for the vector v1), and the i-th query is
answered in the following way.
Let v0,v1 be the two vectors for the i-th query. Please remember that the two vectors
having equal Hamming weight. Through a set of intermediate vectors vj ’s we want to
change v0 to v1 from left to right by swapping bits. We compute a vector vj in the

following iterative way where we set v0 4= v0. For j = 1, . . . , n we update vj as follows.

At the beginning we set vj
4
= vj−1. If vj−1j = v1,j or j = n then leave it unchanged,

i.e, vj
4
= vj−1, otherwise find the next index lj ∈ [n], lj > j such that vj−1j = 1− vj−1lj

and v1,j = 1 − v1,lj . Such index lj exists. In fact if vj−1j 6= v1,j and j < n then,

since the sum
∑
i v
j−1
i =

∑
i v1,i (see below), there exists at least one index lj such

that vj−1lj
= 1 − v1,lj and the differences are opposite vj−1lj

− v1,lj = −(vj−1j − v1,j).

In this case we set vjj
4
= v1,j and vjlj = v1,lj . For the same reason, for j = n then

vnn = v1,n. Note that for any j = 0, 1, . . . , n the so formed vector vj is such that∑
i v
j
i =

∑
i v0,i =

∑
i v1,i, and such that vj equals v1 in the first j positions.

Then in experiment Hi,j the i-th query is answered with respect to the vector vj . We

set H1,0
4
= H1 and for i = 2, . . . , q we set Hi,0 to be identical to Hi−1,n,

Note that for any i ∈ [q] in the experiment Hi,n the so computed vector vn = v1,
where v1 is one of the two vectors on which the adversary queries its Vote oracle in
the i-th query.
An example of how the vector vj , j = 0, . . . , n is changed in the consecutive hybrid
experiments is given in Figure 1.

Claim 2 Indistinguishability of Hi,j−1 from Hi,j , for i ∈ [q], j = 1, . . . , n. The indis-
tinguishability of the two experiments follow from the BDDH Assumption.

Proof. Suppose that the vector vj−1 used in experiment Hi,j−1 differs from v1 in
position j, otherwise the experiments are identical and the proof is concluded. Let
lj > j be the index such that vj−1j = 1 − vj−1lj

and v1,j = 1 − v1,lj . Such index exist
by the assumption that the Hamming weights of v0 and v1 is equal and from the fact
that for any j = 0, . . . , n the vectors vj have same Hamming weight. Without loss of
generality let us assume that vj−1j = 1 and vj−1lj

= 0 (the other case is symmetrical).

We construct a PPT adversary B against the BDDH (with respect to generator of the
bilinear instance G) as follows.
B receives as input a bilinear instance I = (p,G,GT , e) and a tuple (g,A,B,C, Z) of

group elements where A
4
= ga, B

4
= gb, C

4
= gc are random group elements of G and

Z is either e(g, g)abc or a random element in GT . B can use I to generate the public
parameters pp and executes the adversary A on it. Then A output the set of corrupted
voter S and B computes the PKs and SKs in the following way.

Let n = 5 and v0 = (10101) and v1 = (01011) be the vectors asked by the adversary in query
i. Then, we have the following.

• In experiment Hi,0: v0 4= v0
4
= (10101).

• In experiment Hi,1: we update v1 4= (01101) because v0 is such that v01 = 1 and v1,1 = 0
so we search in v1 for the next index l1 in which v0 and v1 differ (and have opposite

difference) that in this case is l1
4
= 2.

• In experiment Hi,2: we leave v2 4= (01101) unchanged because v1 is such that v12 = v1,2.

• In experiment Hi,3: we update v3 4= (01011) because v2 is such that v23 = 1 and v1,3 = 0
so we search in v3 for the next index l3 in which v2 and v1 differ (and have opposite

difference) that in this case is l3
4
= 4.

• In experiment Hi,4: we leave v4 4= (01011) unchanged because v3 is such that v4 = 1 and
v31,4 = 1.

• In experiment Hi,5: we leave v5 4= (01011) unchanged because v4 is such that v45 = 1 and
v1,5 = 1.
Note that in all experiments the vector v has the same Hamming weight.

Fig. 1. Example of how the vector vj is iteratively updated in the hybrid experi-
ments Hi,j’s.

Note that S can not contain j and lj by the constraint in the winning condition. B
sets Pkj = A and Pklj = B and for any i 6= j, lj it chooses si ← Zp and sets Pki = gsi .

This implicitly defines Ski
4
= si, for i 6= j, lj , Skj

4
= a and Sklj

4
= b. Note also that

B ⊆ {i}i6=j,lj .

Therefore, B executes A with input the PKs and the SKs corresponding to set S (and

it can do that as it knows the secret-keys Ski
4
= si, i ∈ S). B answers an oracle query

id to O2 by setting O2(I, x)
4
= gxid for xid ← Zp and by setting O2(I, id?) = C where

id? is the identifier used by A in the i-th query.

With this setting, it is easy to see that B can simulate all queries k 6= i queries using
the group elements A,B, the values si’s and xid’s.

For the i-th query, it can set all Bltk, k 6= j, lj by using A,B,C and the values

si’s. Finally, it sets Bltj
4
= e(A,C)

∑
i<j si−

∑
i>j,i6=lj

si · Z−1 · e(g, C)v
j−1
j and Bltlj

4
=

e(B,C)
∑

i<lj,i 6=j si−
∑

i>j si · Z · e(g, C)
vj−1
lj Note that if Z

4
= e(g, g)abc then Bltj and

Bltlj are distributed like in experiment Hi,j−1. For instance,

Bltlj
4
= e(B,C)

∑
i<lj,i 6=j si−

∑
i>j si · Z · e(g, C)

vj−1
lj

4
=

e(g,O2(I, id?))Sklj (
∑

i<lj,i 6=j Ski−
∑

i>j Ski) · Z · e(g, C)
vj−1
lj

4
=

e(g,O2(I, id?))Sklj (
∑

i<lj,i 6=j Ski−
∑

i>j Ski) · e(g, g)abc · e(g, C)
vj−1
lj

4
=

e(g,O2(I, id?))Sklj (
∑

i<lj,i 6=j Ski−
∑

i>j Ski)·e(g,O2(I, id?))SkjSklj ·e(g, C)
vj−1
lj

4
= e(gyj , O2(I, id?))Sklj ·

e(g,O2(I, id?))v
j−1
lj .

Similarly for Bltj . Hence, Bltj (resp. Bltlj) is distributed correctly as output of the

Cast algorithm for identifier id, set of PKs {Pki}i∈[n], SK Ski
4
= a (resp. Sklj

4
= b) and

vote vj−1j (resp. vj−1lj
).

On the other hand if Z is uniform in GT then it is equal to e(g, g)z for some z ∈ Zp.
Setting z

4
= z′+logg C for z′

4
= z−logg C and by recalling that we assumed that vj−1j =

1 and vj−1lj
= 0, we see that Bltj = e(A,C)

∑
i<j si−

∑
i>j,i6=lj

si · e(g, g)−z
′ · e(g, C)

vj−1
lj

and Bltlj = e(B,C)
∑

i<lj,i 6=j si−
∑

i>j si · e(g, g)z
′ · e(g, C)v

j−1
j .

Let us call HRnd,vj−1

i the previous experiment simulated by B when Z is uniform in
GT and the i-th query is answered with vector vj−1. What we showed before implies

that experiment HRnd,vj−1

i is distributed identically to an experiment HRnd,vj

i that is

identical to HRnd,vj−1

i except that the i-th query is answered with vj . Moreover, if Z
4
=

e(g, g)abc B simulates perfectly experiment Hi,j−1. By BDDH, Hi,j−1 ≈c HRnd,vj−1

i ≡
HRnd,vj

i . Furthermore, by symmetry it is easy to see that Hi,j ≈c HRnd,vj

i , and thus
we conclude that Hi,j−1 ≈c Hi,j as we had to prove.

Note that the hybrid H1,0 is by definition identical to the real experiment for bit b
4
= 0

and Hq,n is identical to the real experiment for bit b
4
= 1. Thus, the indistinguishability

of these two experiments implies that no PPT non-uniform adversary has non-negligible
advantage in the privacy game.

4 Acknowledgments

Vincenzo Iovino is supported by the National Research Fund, Luxembourg. We thank Yu
Li for useful comments.

References

BF01. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.
In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture
Notes in Computer Science, pages 213–229. Springer, August 2001.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications (extended abstract). In 20th Annual ACM Symposium on Theory of
Computing, pages 103–112. ACM Press, 1988.

BFW15. David Bernhard, Marc Fischlin, and Bogdan Warinschi. Adaptive proofs of knowl-
edge in the random oracle model. In Public-Key Cryptography - PKC 2015 - 18th
IACR International Conference on Practice and Theory in Public-Key Cryptography,
Gaithersburg, MD, USA, March 30 - April 1, 2015, Proceedings, pages 629–649, 2015.

Boy08. Xavier Boyen. The uber-assumption family (invited talk). In Steven D. Galbraith
and Kenneth G. Paterson, editors, PAIRING 2008: 2nd International Conference on
Pairing-based Cryptography, volume 5209 of Lecture Notes in Computer Science, pages
39–56. Springer, September 2008.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference on
Computer and Communications Security, pages 62–73. ACM Press, November 1993.

CDS94. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In Yvo Desmedt, editor, Advances in
Cryptology – CRYPTO’94, volume 839 of Lecture Notes in Computer Science, pages
174–187. Springer, August 1994.

DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976.

FLS90. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In 31st Annual Symposium
on Foundations of Computer Science, pages 308–317. IEEE Computer Society Press,
October 1990.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifica-
tion and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology
– CRYPTO’86, volume 263 of Lecture Notes in Computer Science, pages 186–194.
Springer, August 1987.

GGG+14. Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-
Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional en-
cryption. In Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, pages 578–602, 2014.

GGHR14. Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In Theory of Cryptography - 11th Theory
of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014.
Proceedings, pages 74–94, 2014.

Gol04. Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-
bridge University Press, Cambridge, UK, 2004.

HRZ10. Feng Hao, Peter Y. A. Ryan, and Piotr Zielinski. Anonymous voting by two-round
public discussion. IET Information Security, 4(2):62–67, 2010.

IZ15. Vincenzo Iovino and Karol Zebrowski. Simulation-based secure functional encryption
in the random oracle model. In Progress in Cryptology - LATINCRYPT 2015 - 4th
International Conference on Cryptology and Information Security in Latin America,
Guadalajara, Mexico, August 23-26, 2015, Proceedings, pages 21–39, 2015.

Jou04. Antoine Joux. A one round protocol for tripartite Diffie-Hellman. Journal of Cryptol-
ogy, 17(4):263–276, September 2004.

KSRH12. Dalia Khader, Ben Smyth, Peter Y. A. Ryan, and Feng Hao. A fair and robust voting
system by broadcast. In 5th International Conference on Electronic Voting 2012,
(EVOTE 2012), Co-organized by the Council of Europe, Gesellschaft für Informatik
and E-Voting.CC, July 11-14, 2012, Castle Hofen, Bregenz, Austria, pages 285–299,
2012.

MPR06. Silvio Micali, Rafael Pass, and Alon Rosen. Input-indistinguishable computation. In
47th Annual Symposium on Foundations of Computer Science, pages 367–378. IEEE
Computer Society Press, October 2006.

Yao88. Andrew Chi-Chih Yao. Near-optimal time-space tradeoff for element distinctness. In
29th Annual Symposium on Foundations of Computer Science, pages 91–97. IEEE
Computer Society Press, October 1988.

	On the Possibility of Non-Interactive E-Voting in the Public-key Setting
	Introduction
	Multiple non-interactive elections in the PK setting
	Beyond YES/NO elections
	Dead or alive elections.
	Elections by unanimity.

	Relation to secure computation
	Applications to secure conference management systems and e-exams
	Our results in a nutshell

	Definitions
	Non-interactive voting scheme in the PK setting
	Bilinear maps
	NIZK in the RO
	NIZK in the RO for encryption of 0 or 1.

	NIVS for YES/NO elections
	Properties and security of the scheme

	Acknowledgments

