
Even More Practical Key Exchanges for the Internet using

Lattice Cryptography

Vikram Singh∗

Arjun Chopra†

Abstract

In 2014, Peikert described the first practical lattice-based key exchange that is provably
secure and provides perfect forward security. However, his presentation lacks concrete pro-
posals for parameters. We aim to provide a clear description of how the algorithm can be
implemented along with some analysis for potential parameters.

Previously in 2015, Singh considered the simpler case, as chosen by Bos, Costello, Naehrig
and Stebila in 2014, of cyclotomic rings with power-of-two degree. In this work we focus on
the case of cyclotomic rings with degree p− 1 for prime p. This allows for a greater degree
of flexibility in choosing lattice dimension, which determines the security level and efficiency
of the scheme. We describe the necessary arithmetic setup and then present Peikert’s Diffie-
Hellman-like key exchange along with security, correctness and implementation analysis.

Keywords: Cryptography, Lattice, Ring-LWE, Ring Learning With Errors, Key Ex-
change, IKE, TLS

1 Introduction

Lattice-based primitives, and schemes based on ring learning with errors (ring-LWE) [10, 11]
in particular, are increasingly viewed as offering the most promising post-quantum alternatives
to classical Diffie-Hellman key exchanges or RSA key transport. They are efficient in terms of
both computation and key size and provide strong provable security guarantees against classical
and quantum adversaries. Most importantly, they have been shown to work within real-world
protocols such as Internet Key Exchange (IKE) and Transport Layer Security (TLS) [14, 3].

The scheme presented by Peikert [14] is a Diffie-Hellman-like key exchange based on ring-LWE
over a cyclotomic ring R. Alice chooses a private key s0 ∈ R and error term e0 ∈ R, both
sampled from a “small” distribution, and uses these to construct her public key b = a · s0 + e0.
If Bob’s public key is c = a · s1 + e1 then they can arrive at an approximate shared secret

∗vs77814@gmail.com. Principal Consultant, VS Communications.
†arjun.chopra.vsc@outlook.com. Associate Consultant, VS Communications.

1

s0 · c = s0 · a · s1 + s0 · e1 ≈ s0 · a · s1 + s1 · e0 = s1 · b since s0 · e1 − s1 · e0 is small. To convert
this approximate agreement into an exact agreement, Bob sends Alice an additional string of
“masking bits”. These masking bits are fed into a “reconciliation” technique which allows Alice
to recover enough of Bob’s approximate shared secret so that they can both derive an exact
shared secret.

Although intended to demonstrate the practicality of ring-LWE, Peikert’s description of his key
agreement was still at a quite abstract level. Consequently, in [15] we considered the concrete
case of power-of-two cyclotomic rings and were able to hide many of the complexities of ring
arithmetic and give a cleaner explanation of the system. We now extend our analysis to prime
cyclotomic rings where there is a much greater range of potential parameter choices available.
This allows smaller keys than the power-of-two case [3, 15] while still avoiding the complication
incurred for general cyclotomics. See [11] for the fully general case.

In Section 2 we establish the necessary setup, defining subgaussian random variables, the ring-
LWE problem, and the cyclotomic rings we shall use including the power, decoding, and Chinese
Remainder bases. We define the error distribution we shall use to randomly draw small ring
elements. In Section 3 we sketch the key exchange and describe how masking bits and the
reconciliation mechanism are used to generate key from the approximate shared secrets. The
reconciliation mechanism is a slight variation on Peikert’s, which is cleaner but has the same
effect.

In Section 4 we present Peikert’s basic key exchange algorithm in detail in the context of our
implementation choices. We refer the reader to our earlier work, [15], for a presentation of
Peikert’s development of provably actively secure key exchanges in order to protect against an
adversary that can choose ciphertexts, and his development of provably secure authenticated
key exchanges in order to assure each party that the key is agreed only with the holder of the
desired certified identity.

In Section 5 we describe our parameter choices along with a consideration of their security, an
analysis of correctness, and some initial findings on implementing the schemes. We suggest that
our parameters are both more efficient and more secure than any previous work. We conclude
in Section 6. Sample sage code is available in the Appendix of [15].

2 Preliminaries and definitions

For any integer q, let Zq denote the quotient ring Z/qZ, i.e. the ring of integers modulo q. The
elements of this ring can be considered in terms of a distinguished set of representatives, e.g.
the set {−(q − 1)/2, . . . , 0, . . . , q − 1}.

For any two subsets X,Y of an additive group, we define −X := {−x : x ∈ X} and X + Y :=
{x+ y : x ∈ X, y ∈ Y }. Similarly, we define x+ Y := {x+ y : y ∈ Y } for a fixed element x.

2

We define the infinity norm on a ring R with basis Y = {yj} to be ||r||∞ := maxj(rj) for
r =

∑
j rj · yj ∈ R. We will be interested in the growth of individual basis coefficients of

elements of R and will perform our analysis on this infinity norm || · ||∞ rather the Euclidean
norm || · ||2 as this slows for tighter bounds.

2.1 Gaussian and subgaussian distributions

Early exposition of ring-LWE ([10]) relied on Gaussian distributions for all error sampling.
For r > 0, the Gaussian distribution Dr over R with parameter r has probability distribution
function 1

re
(−πx2/r2). More recent works [11, 14] have updated these ideas to be based on the

notion of a subgaussian distribution. For any δ ≥ 0, we say that a random variable X (or
its distribution) over R is δ-subgaussian with parameter r > 0 if for all t ∈ R, the (scaled)
moment-generating function satisfies

E[exp(2πtX)] ≤ exp(δ) · exp(πr2t2).

Subgaussians are useful to simplify the analysis and have many nice features, such as the sum
of independent subgaussians is another subgaussian whose parameters can be calculated. Most
importantly, as noted in [14], any B-bounded centered random variable X (i.e., E[X] = 0 and
|X| ≤ B always) is 0-subgaussian with parameter B

√
2π. Thus simple bounded distributions,

such as uniform random from an interval, are subgaussian. We will utilise this fact to provide
significant efficiency gains and simplification to our key establishment.

2.2 Ring-LWE

We now recall the ring-LWE probability distribution and (decisional) problem as presented in
[14]; see [10] for a more general form.

Definition 1 (Ring-LWE Distribution). For an s ∈ R and a distribution χ over R, a sample
from the Ring-LWE Distribution As,χ over Rq ×Rq is generated by choosing a← Rq uniformly
at random, choosing e← χ, and outputting (a, b = a · s+ e).

Definition 2 (Ring-LWE Decision). The decision version of the ring-LWE problem, denoted
R-DLWEq,χ,is to distinguish with non-negligible advantage between independent samples from
As,χ, where s ← χ is chosen once and for all, and the same number of uniformly random and
independent samples from Rq ×Rq.

The main theorem of [10] can be stated informally as follows:

Theorem 1. Suppose that it is hard for polynomial-time quantum algorithms to approximate
(the search version of) the shortest vector problem (SVP) in the worst case on ideal lattices
in R to within a fixed poly(n) factor. Then any poly(n) number of samples drawn from the
R-LWE distribution are pseudorandom to any polynomial-time (possibly quantum) attacker.

3

This tells us that distinguishing the Ring-LWE Distribution from random or recovering its secret
is hard, provided SVP is hard.

A main benefit of ring-LWE over traditional LWE and other lattice-based techniques is in
efficiency. Whereas LWE requires the use of Ω(n) samples (ai, bi) ∈ Znq × Zq, for ring-LWE,
typically only a very small number of samples (a, b) ∈ R × R are used.1 Essentially, ring-
LWE offers a compact representation for the lattice in question. The reason for this is that
each polynomial v ∈ R represents n vectors in the lattice, one for each multiple v · xi for
i ∈ {0, . . . , n − 1}.2 If a is fixed for all users, then the public key is just the element b ∈ R.
We see that this results in smaller public keys for ring-LWE because LWE would have Ω(n2)
modular values whereas ring-LWE can have only n.

2.3 Cyclotomic rings

Let R := Z[ζm] ∼= Z[x]/〈Φm(x)〉 be the mth cyclotomic ring, where Φ is defined by xm − 1 =∏
d|m Φd(x) and ζm is a primitive mth root of unity. The degree of R is the degree of Φ, which

is given by the Euler totient function n := φ(m). We shall mainly be interested in the quotient
ring Rq := R/qR ∼= Zq[ζm] where all of our operations can be defined.

In order to access a larger set of potential parameter options, in this paper we will focus on the
special case m prime. In this case, n = φ(m) = m− 1 and Φm(x) = 1 + x+ x2 + · · ·+ xn. We
shall utilise prime q such that q ≡ 1 (mod m), as is required by the Security Proof stated in
Theorem 2.7 of [10]. As in the previous work [15], this also allows arithmetic speed-ups using
the Chinese Remainder basis: the ideal < q >:= qR factors as m−1 prime ideals which provide
the orthogonal components required by the Chinese Remainder Theorem. For the remainder of
this paper, we consider m and q of this form unless explicitly stated. We also drop the subscript
m on ζm.

2.3.1 Bases for cyclotomic rings

In [11], multiple bases for the cyclotomic ring R are defined. As we choose to work with m
prime, the power and powerful bases will coincide. Here we will describe the power, decoding,
and Chinese remainder bases.

The power basis for R or Rq is the natural basis of powers of ζ:

~p := (ζi)i=0,...,n−1

1A careful statement of the above worst-case hardness result shows that it deteriorates with the number of
samples; fortunately, all our applications require only a small number of samples.

2In ring-LWE, each ring element actually represents a so-called ideal lattice: a lattice L is an ideal lattice if
for all v ∈ L, x · v is also in L. Thus one polynomial in R defines a space of n vectors in L.

4

The decoding basis ~d for the ring of integers R is defined in [11] as the scaled dual of the
conjugate power basis. An equivalent and more concrete definition in our case is

di :=

n−1∑
j=i

ζj for i ∈ {0, . . . , n− 1}.

By inverting the definition, we have an O(n)-complexity change of basis mapping coefficients
from the power to the decoding basis of R:

~p · a = d̃ ·

a0

a1 − a0
a2 − a1

...
an−1 − an−2

If we write a ∈ R in the power basis as a = ~p · a, then the canonical embedding3 defines the
Chinese Remainder Theorem matrix CRT as the square matrix

σ(a) = CRT · a =

1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...

1 ωm−1 ω(m−1)2 · · · ω(m−1)(n−1)

 · a
where the rows are indexed by Z∗m and the columns by {0, 1, . . . , n−1} for n = m−1. Note that
multiplication by CRT can be done by fast Fourier transform methods in O(n log n) complexity.

In [11], the CRT matrix is defined as a general object over any commutative ring containing a
primitive mth root of unity ω. By fixing a specific primitive mth root of unity ζ in Zq, we can
turn the CRT matrix into an important and powerful tool for working in Rq. As q was chosen
with q ≡ 1 (mod m), the cyclotomic polynomial will factor completely modulo q:

xn + · · ·+ x+ 1 = (x− ζ)(x− ζ2)(x− ζ3) · · · (x− ζn)

for ζ a primitive mth root of unity in Zq and n = m − 1. Thus, multiplication by CRT gives
evaluation of the polynomial at each of the mth roots of unity, that is, at the primitive root ζ and
each of its powers. Each polynomial in Rq has a unique representation from evaluating at the
roots of unity, so this form can be used as a basis, the Chinese Remainder basis. While addition
can be performed component-wise in all bases, the unique thing about the Chinese Remainder
basis is that multiplication is also component-wise4: for any two polynomials z, z′ ∈ Rq and
any c ∈ Zq, z(c) · z′(c) = (z · z′)(c). Naively multiplication would require summing O(n2)

3The canonical embedding σ : R→ H ⊂ Cn is given by v 7→ (v(ωim))
i∈Z×

m
for ωm := e2πi/m.

4Lift z and z′ to Zq[x], and observe that adding multiples of the cyclotomic polynomial to z · z′ does not
change the evaluation at any primitive mth root of unity, and this is the only polynomial for which this is true.

5

cross-products of all pairs of coefficients but use of the Chinese Remainder basis brings that to
O(n)-complexity.

The Chinese Remainder basis ~c is defined for Rq by

~cT := ~pT · CRT−1q , where CRTq := CRT (mod q)

and thus admits O(n log n) fast Fourier transform method conversion between itself and the
power basis. We have shown we can convert between any of these bases and the Chinese
Remainder basis in O(n log n), hence can perform multiplication in O(n log n).

2.4 Error distributions

In order that each party has some secret information that can be combined in Diffie-Hellman
fashion to obtain a shared secret value accessible only to the two parties, it is necessary to
produce the short error elements that act as private keys. The aim is to produce errors that
are subgaussian with parameters as tight as possible, so that the security parameters of these
errors can be nicely controlled once they have been combined to form shared secret values.

Previously ([15]) we generated the error terms by sampling each of the coefficients from a
discrete Gaussian with parameter σ or a bounded uniform distribution with bound B. As the
power and decoding bases coincide in the power-of-two case there was no ambiguity in which
basis to use for the sampling. However, in the prime case we need to choose whether to sample
with respect to the power basis or the decoding basis. It transpires that when multiplying error
terms the noise growth is worse in the decoding basis (see Section 5.3.2) so we will instead opt
for the better correctness properties of the power basis5.

The discrete Gaussian assigns to each x ∈ Z a probability proportional to e−x
2/(2σ2), normalized

by the factor S = 1 + 2
∑∞

k=1 e
−k2/(2σ2), given by DZ,σ(x) = 1

S e
−x2/(2σ2). To sample from Rq

according to a discretised Gaussian distribution, we use the method in [3, 15]: precompute a
lookup table T of size 52 where T [0] := b2192/Sc and

T [i] :=
⌊
2192 ·

(1

S
+ 2

i∑
x=1

DZ,σ(x)
)⌋

for i = 1, . . . , 50, and where T [51] := 2192. We sample each coefficient by generating a 192-bit
integer t at random, finding the index ind ∈ [0, 50] such that T [ind] ≤ t < T [ind+ 1], and then
generating an additional random bit for the sign sign ∈ {−1, 1}:

5This deviates slightly from the sampling method suggested by Ducas and Durmus [4], but it allows us to
apply the concrete security estimates from Albrecht et al [1] while still avoiding the Poly-LWE attacks by Elias
et al [5].

6

GaussSample

Input: standard deviation σ
Output: error vector e

for i = 1, . . . , n

t
$← (0, 2192)

indi = 0
repeat indi += 1 until
T [indi] ≤ t < T [indi + 1]

signi
$← {−1, 1}

ei = signi · indi
e← ~p · (e1, . . . , en)

As in [15], we will set σ = 8/
√

2π ≈ 3.192 so that the discrete Gaussian DZn,σ approximates
the continuous Gaussian Dσ extremely well.

In instantiations of ring-LWE, sampling the error terms from Gaussian distributions is typically
by far the most expensive operation. As noted in Section 2.2 of [14], uniform sampling from
a B-bounded interval is subgaussian with parameter B

√
2π, and uniform sampling of each

coefficient is both simpler and significantly more efficient:

UniformSample

Input: bound B
Output: error vector e

for i = 1, . . . , n

ei
$← {−B, . . . , B}

e← ~p · (e1, . . . , en)

As the discrete uniform distribution is itself subgaussian and need not attempt to closely ap-
proximate a continuous distribution, we have more flexibility in setting the parameter B. In
order to provide a fair comparison between the two alternatives, as in [15], we set B = 5 so
that the standard deviation of the two distributions is approximately equal. Thus we can use
a uniform random distribution choosing the coefficients from the set {−5, . . . , 5}.

3 Key generation and reconciliation mechanism

In [14], Peikert presents a ring-LWE based Diffie-Hellman-type key exchange algorithm in which
two users exchange ring-LWE public keys to arrive at approximate or “noisy” agreement on a
ring element. In order to (non-interactively) reach exact agreement, the second party sends
along an additional bit-string (the “masking bits”) which can be fed into the “reconciliation”
technique from [14] which we will develop in this section.

7

3.1 Description of the exchange

We begin with an informal sketch of how the key exchange works. In the basic key exchange,
the first party creates a public key b = a · s1 + s0 and transmits that to the second party. Upon
receipt of the public key b, the second party creates his public key u = e0 · a + e1 and his
version of the approximate shared secret v = e0 · b+ e2 = e0 · a · s1 + e0 · s0 + e2. Upon receipt
of the public key u and masking bits, the first party forms her version of the shared secret
w = u · s1 = e0 · a · s1 + e1 · s1, and feeds w and the received masking bits into the reconciliation
function to recover the key stream. Since s0, s1, e0, e1, e2 are all small, w ≈ v and the masking
bits provide sufficient information for the two parties to exactly agree; however, for adversaries,
the masking bits do not give any help in determining what the underlying key bit will be.

Party A Party B

pk = b = a · s1 + s0
b−−−−−−−−→

pk = u = e0 · a+ e1
SSV = v = e0 · b+ e2 =
e0 · a · s1 + e0 · s0 + e2

key = bve2
(u,〈v〉2)←−−−−−−−− mask = 〈v〉2

w = u · s1
key = rec(w, 〈v〉2)

Figure 1: Basic key exchange algorithm.

The key stream that the two users will agree upon will be generated by applying the modular
rounding function b·e2 to each coefficient of the shared secret to round to the closer of 0 or q

2 .
In order for the two parties to achieve exact agreement, the second party also sends over the
“masking bits” for his version of the approximate shared secret as generated by the function 〈·〉2
which labels which “quadrant” modulo q a coefficient falls into. If an equal number of elements
of Zq were in each quadrant, then key would be unbiased and the masking bits would give no
information about the key. However, q is odd so there is an imbalance. Randomization is used
to correct this.

8

q/4

q/2

3q/4

0

0

1

(a) The key stream as generated by
the function b·e2

q/4

q/2

3q/4

0

0

0

1

1

(b) The masking bits as generated by
the function 〈·〉2

Figure 2: The key stream and mask bits generating functions.

3.2 Randomized Rounding

For full detail on each of the functions required to generate the key stream and masking bits, the
reconciliation function, and proofs of the claims, we refer the reader to [15]. For completeness
we provide the necessary definitions and claims here.

We begin by partitioning the elements of v ∈ Zq into four quadrants as

I0 := Zq ∩ [0, q/4) I ′1 := Zq ∩ [q/4, q/2)
I ′0 := Zq ∩ [q/2, 3q/4) I1 := Zq ∩ [3q/4, q)

Then we define our randomized rounding procedure to make probabilistic nudges on the bound-
aries of the quadrants in order to balance the relative probabilities of I0 ∪ I ′0 and I1 ∪ I ′1. This
is defined for the two separate cases:

• q ≡ 1 (mod 4). |I0| > |I ′0| = |I1| = |I ′1| so we need to map out of I0. If v = 0, we draw a
uniform random bit and map 0 to either itself or q − 1 depending on the bit. This moves
an element from I0 to I1 with 50% probability. Independently, if v = (q − 1)/4, we map
(q− 1)/4 to either itself or (q+ 3)/4 depending on a random bit, thus moving an element
from I0 to I ′1 with 50% probability.

• q ≡ 3 (mod 4). |I0| = |I ′0| = |I ′1| > |I1| so we need to map into I1. If v = 0, we draw a
uniform random bit and map 0 to either itself or q − 1 depending on the bit. This moves
an element from I0 to I1 with 50% probability. Independently, if v = (3q − 1)/4, we map
(3q−1)/4 to either itself or (3q+3)/4 depending on a random bit, thus moving an element
from I ′0 to I1 with 50% probability.

9

This randomized rounding procedure produces a similar effect to the dbl(·) procedure from [14],
without the additional computational burden of mapping all elements of Zq into Z2q and with
fewer random bits needing to be sampled. We will denote the randomized rounding of v by v̄
and apply it before deriving mask and key bits.

3.3 Reconciliation mechanism

We define the modular rounding function b·e2 : Zq → Z2 as

bve2 := b2
q
· ve (mod 2).

We will use bv̄e2 to generate the key stream, which will not be biased due to the use of ran-
domized rounding. As in [14], we define the cross rounding function 〈·〉2 : Zq → Z2 as

〈v〉2 :=
⌊4

q
· v
⌋

(mod 2).

Equivalently, 〈v̄〉2 is the b ∈ {0, 1} such that v̄ ∈ Ib ∪ I ′b. We use 〈v̄〉2 to generate the masking
bit-string. If v is uniform random in Zq, then 〈v̄〉2 will be biased in Z2 despite the randomized
rounding. Regardless of this bias, however, 〈v̄〉2 hides bv̄e2 perfectly:

Claim 1. If v ∈ Zq is uniform random and randomized rounded as outlined above, then bve2
is uniform random given 〈v〉2.

Let E := [−q/8, q/8) ∩ Z, and define the reconciliation function rec : Zq × Z2 → Z2 as

rec(w, b) :=

{
0 if w ∈ Ib + E (mod q)

1 otherwise.

In effect, the reconciliation function takes the received mask bit b and uses this knowledge of
the other party’s quadrant to tilt the key stream function b·e2 from Figure 2 by q/8:

0

1

(a) The key stream for b = 0

0

1

(b) The key stream for b = 1

Figure 3: The key stream as updated in the reconciliation function.

10

Provided the difference between shared secrets |w − v̄| is no more than one-eighth q then the
shared secrets are sufficiently close that the recipient can infer which quadrant v̄ was in, hence
infer the key bit bv̄e2.

Claim 2. If w = v + e (mod q) for some v ∈ Zq and e ∈ E, then rec(w, 〈v〉2) = bve2.

We extend the rounding and reconciliation functions to the cyclotomic ring R by applying the
functions coordinate-wise to the Zq-coefficients of the inputs with respect to the power basis.
Formally, if v ∈ Rq has coefficients vj ∈ Zq, then bve2 := (bvje2) ∈ Zn2 and similarly for 〈v〉2. The
reconciliation function can be extended to rec : Rq×Zn2 → Zn2 by setting rec(w, b) := (rec(wj , bj))
where wj ∈ Zq are the coefficients of w and b = (bj) ∈ Zn2 .

4 Ring-LWE Key Exchange

In [14], Peikert presents a ring-LWE based Diffie-Hellman-type key exchange algorithm that is
provably passively secure, and then shows how to use this basic primitive to construct provably
actively secure key exchanges and provably secure authenticated key exchanges. Each of the
variants can be presented in the prime setting under consideration in this paper. However, for
brevity, we will only present the basic key exchange; see [15] for the other variants.

The passively secure key encapsulation mechanism (KEM1) is constructed using the reconcil-
iation technique from Section 3 to allow the two parties to derive an ephemeral key from a
pseudorandom value in Rq on which they approximately agree. The parameters for KEM1 will
be (m, q, a, χ) where

• m is prime, and so n = φ(m) = m− 1;

• q is an odd prime integer such that q ≡ 1 (mod m);

• a is a fixed element of the ring Rq := Z/qZ[ζm] ∼= Zq[x]/〈Φm(x)〉; and

• χ is an error distribution over Rq.

We will denote by Sample(χ) the function used to sample error terms from χ. For exam-
ple, this could be GaussSample(σ) for the discrete Gaussian with standard deviation σ, or
UniformSample(B) for the uniform distribution on the interval {−B, . . . , B}.

Key generation samples error terms from χ to produce a private key (s0, s1), and combines it
with the generator a to form the public key. Note that decapsulation only needs s1 so we can
discard s0.

11

KEM1.Generate

Input: Domain parameters (m, q, a, χ)
Output: Private key s1 and public key b

s0 ← Sample(χ)
s1 ← Sample(χ)
b← s1 · a+ s0 ∈ Rq

Encapsulation6 takes the recipient’s public key b and produces a shared key µ and a ciphertext
c. The shared keys will belong to K = {0, 1}n and their corresponding encapsulations will
belong to C = Rq × Zn2 .

KEM1.Encapsulate

Input: Recipient’s public key b
Output: Shared key µ and encapsulation c

e0 ← Sample(χ)
e1 ← Sample(χ)
e2 ← Sample(χ)
u← e0 · a+ e1 ∈ Rq
v ← e0 · b+ e2 ∈ Rq
v̄ ← RandomizedRound(v)
µ← bv̄e2 ∈ Zn2
c← (u, 〈v̄〉2) ∈ Rq × Zn2

Decapsulation forms the approximate shared secret

w = u · s1 = e0 · a · s1 + e1 · s1 ≈ e0 · a · s1 + e0 · s0 + e2 = e0 · b+ e2 = v

and uses the reconciliation mechanism from Section 3 to derive the shared secret key µ.

KEM1.Decapsulate

Input: Recipient’s private key s1 and encapsulation c
Output: Shared key µ

(u, v′)← c
w ← u · s1 ∈ Rq
µ← Rec(w, v′)

Lemma 1 (Lemma 4.1 from [14]). The KEM1 is IND-CPA secure, assuming the hardness of
R-DLWEq,χ given two samples.

Proof. Analogous to the proof of Lemma 4.1 from [14].

6The encapsulation and decapsulation functions in [14] include a term g which ours omit. The g is used to
control the growth of the error terms in the decoding basis; as we use the power basis it is unnecessary.

12

5 Analysis

5.1 Instantiating the parameters

We would like to choose concrete parameters that can be tested as practical candidates. Allow-
ing m to be any prime offers much greater flexibility for parameter selection than the power-
of-two case. Our aim is to use this flexibility to reduce the public key length while maintaining
security and correctness. In order to so, we refer to the guidance in Section 4.4 of [14] on how
to set the lattice dimension n = φ(m) and modulus q.

The security analysis in [14] gives a practical bound on the size of the modulus of q ≈ n(3/2).
We will also choose q ≡ 1 (mod m) to maintain consistency with the proof of security for Ring-
LWE. Thus, for a given m we search for the smallest q > n(3/2) that is congruent to 1 modulo
m and provides a failure rate of at most 2−80. We then select the pairs (m, q) with the smallest
public keys that achieve a range of target security levels between 96 and 256 bits.

Targets Public
m n q σ B Security Correctness Key Size

I 337 336 32353 3.192 5 96 −80 5040 bits

II 433 432 35507 3.192 5 128 −80 6912 bits

III 541 540 41117 3.192 5 160 −80 8640 bits

IV 631 630 44171 3.192 5 192 −80 10080 bits

V 739 738 47297 3.192 5 224 −80 11808 bits

VI 821 820 49261 3.192 5 256 −80 13120 bits

[15] 1024 512 25601 3.192 5 128 −70 7680 bits

[15] 2048 1024 40961 3.192 5 256 −90 16384 bits

[3] 2048 1024 232 − 1 3.192 - 128 −217 32768 bits

Figure 4: Our parameters compared with previous m = 2` parameters.

If we compare these parameter choices with the power-of-two parameters from [15], we can
see that we offer options with smaller key sizes for equivalent security targets and provide a
larger variety of parameters to meet the needs of different use case scenarios. We also note that
the maximum length of the data field of a packet sent over Ethernet is 1500 bytes or 12000
bits. If the public keys are too large, they will not fit into a single packet which increases
the possibility of key establishment failures due to fragmentation. Parameter sets I–V will fit
into a single Ethernet packet and offer security ranging from 96 to 224 bits, unlike the 128-bit
secure parameters proposed by [3] which would require three maximum sized Ethernet packets.
Moreover, each of our parameter sets fit in two Ethernet packets, thus providing greater security
with less data overhead than the choice in [3].

13

5.2 Security

To estimate the security of each parameter set we rely on the analysis from [1], and the associated
code [2], which provides approximate costs for a range of different attacks. Although intended
for LWE, we will apply it to Ring-LWE by using the approach from [8]. This embeds the Ring-
LWE problem in an LWE problem and allows the number of samples to vary. It is possible that
this technique may cause issues with attacks which require very large numbers of samples, such
as BKW, but these are not among the best attacks on the chosen parameters.

We also update the estimate of the cost of lattice sieving used in the lattice-based attacks.
The assumption in [1] is that HashSieve [6] is used which has an asymptotic complexity of
20.3366k+o(k). To set the constant term they quote experimental results from [6] which suggest
a cost of 20.45k+12.31 cycles for small k. However, more recent results using a parallel version of
HashSieve [12] give a least-squares approximation of 20.3377k+17.76 cycles for lattice dimensions
86 ≤ k ≤ 96. This is a better match for the asymptotic complexity so we will estimate the cost
of lattice sieving as 20.3377k+17.76 cycles for small k and 20.3366k+17.76 cycles more generally.

MitM BKW SIS Dec Kannan
Target bop mem L bop mem L bkz2 sieve L bop enum L bkz2 sieve L

I 96 305 301 9 184 176 169 126 116 28 104 88 21 113 104 15
II 128 388 384 9 230 222 214 185 150 40 160 144 45 176 133 15
III 160 482 478 9 282 273 265 258 184 44 216 200 45 258 167 16
IV 192 560 556 9 324 316 308 325 215 52 270 254 45 334 196 16
V 224 654 650 10 370 362 353 411 251 59 339 323 46 437 233 16
VI 256 725 721 10 408 400 391 481 280 65 395 380 46 521 261 16

Figure 5: Attack estimates for parameters with uniform noise (B = 5)

MitM BKW SIS Dec Kannan
Target bop mem L bop mem L bkz2 sieve L bop enum L bkz2 sieve L

I 96 295 292 9 184 175 168 125 115 28 102 86 21 112 103 15
II 128 376 372 9 229 221 213 183 149 40 159 143 45 174 132 15
III 160 467 463 9 281 273 264 254 185 48 214 198 45 253 165 16
IV 192 542 539 9 323 315 307 321 215 54 266 251 45 330 194 16
V 224 633 629 10 369 361 352 407 250 59 336 320 46 431 231 16
VI 256 702 698 10 407 399 390 476 277 63 390 374 46 514 259 16

Figure 6: Attack estimates for parameters with Gaussian noise (σ = 3.192)

For the meet-in-the middle (MitM) and BKW attacks, “bops” gives the cost in log2 cycles,
“mem” gives the log2 memory requirements and L is the log2 number of LWE samples. For
the distinguishing (SIS) and unique SVP (Kannan) attacks, “bkz2” and “sieve” give the cost
of using BKZ 2.0 with pruned enumeration and lattice sieving, respectively. For the bounded-
distance decoding (Dec) attack, “bops” gives the overall cost of the attack in cycles and “enum”
gives the number of enumerations needed in the decoding stage. From Tables 5 and 6 it is clear
that the best attacks on our parameters are comfortably above the target security levels.

Since this scheme is designed as a post-quantum proposal, we should additionally consider

14

its security against a quantum attacker. In [7], Laarhoven et al. give a quantum variant of
HashSieve with an asymptotic complexity of 20.286k+o(k). We introduce a quantum variant into
the code from [2] by utilising this calculated quantum complexity and maintaining the constant
as before. While quantum attacks may improve, and perhaps would be expected to once a
quantum computer becomes available, these results provide an interesting insight into security
in a post-quantum world.

Security Levels Security Estimates
Classical Quantum Classical Quantum

I 96 90 102 93

II 128 112 132 118

III 160 128 165 146

IV 192 160 194 171

V 224 192 231 202

VI 256 224 259 226

Figure 7: Classical and quantum security for our parameters.

5.3 Correctness of the scheme

For the system described in Section 4, we need each coefficient of the error term to be bounded
by q/8; that is, we must have that ||s0e0 + e2 − s1e1||∞ < bq/8c in order to be guaranteed
correctness of the algorithm. This comes from Claim 2 of Section 3, being the maximum
difference between shared secret values such that the reconciliation function still produces the
correct key. To conduct a direct analysis of the growth of the coefficients of the error term,
we will consider the power and decoding bases separately, beginning with a consideration of
multiplication in each basis.

5.3.1 Power basis

Multiplication in the power basis is fairly straightforward. Recall thatR := Z[ζ] = Z[x]/〈Φm(x)〉 =
Z[x]/〈xn + · · ·+ x2 + x+ 1〉 for ζ a primitive mth root of unity and n = φ(m) = m− 1. If we
multiply ζi · ζj then we just need to reduce modulo the equation Φm(x) = 1 +x+x2 + · · ·+xn,
so ζn = −1 − ζ2 − · · · − ζn−1. Let a ∈ Rq be written as

∑n−1
i=0 aiζ

i, and similarly let
b =

∑n−1
j=0 bjζ

j ∈ Rq. The product of any two elements a, b written in the power basis for

15

Rq is given by

n−1∑
i=0

aiζ
i ·

n−1∑
j=0

bjζ
j =

2n−2∑
k=0

(∑
i+j=k

aibj
)
ζk

=
n−1∑
k=0

(∑
i+j=k

aibj
)
ζk +

∑
i+j=n

aibjζ
n +

2n−2∑
k=n+1

(∑
i+j=k

aibj
)
ζ(k−m)

=
n−1∑
k=0

(k∑
i=0

aibk−i −
n−1∑
i=1

aibn−i +
n−1∑
i=k+2

aibm+k−i
)
ζk

Thus we see that each coefficient of a product of two elements in the power basis consists of a
sum of 2n− 2 terms, each term being the product of two independent random variables.

If we create the private keys and error vectors by drawing coefficients of the power basis uni-
formly at random from {−B, . . . , 0, . . . , B}, then it is fairly simple to directly analyse the
correctness of the system and compute specific probabilities of failure. In this case, each
of the ai and bj are independent random variables following a uniform distribution over the
set {−B, . . . , 0, . . . , B}. The product of two such random variables is itself a random vari-
able over {−B2, . . . , 0, . . . , B2} and the sum of such variables yields a convolution of their
distributions. Thus the coefficients of a product a · b are random variables with support
{−(2n− 2) ·B2, . . . , 0, . . . , (2n− 2) ·B2}.

We can calculate the probability that ||s0e0 + e2 − s1e1||∞ < bq/8c by considering the correct
convolution of probability distributions. If we wish to consider the probability of failure of the
key exchange, we must recognise that there are n coefficients, each of which could exceed the
q/8 bound. However, the q/8 bound is only tight for coefficients falling at the boundary of a
quadrant: {0,±bq/4e, bq/2e}. Most coefficients will not lie on or near these boundaries, which
will lead to a higher permissible bound. For each of our proposed parameter sets, we calculate
the probability that a coefficient exceeds q/8 or that a key exchange failure will occur and record
these in Table 8.

I II II IV V VI

Target -80 -80 -80 -80 -80 -80
Coefficient Failure -91.751 -86.109 -92.112 -91.146 -89.272 -87.208
Agreement Failure -91.300 -85.204 -90.985 -89.782 -87.650 -85.401

Figure 8: log2 failure probabilities for uniform noise (B = 5).

If error terms are generated by sampling a Gaussian distribution, then each of the independent
random variables ai, bj comes from a discretised Gaussian distribution centered at 0 and with
variance σ2. By invoking (a generalisation of) the Central Limit Theorem7, we can say that

7Each of the ai and bj is independent; however, when summing up the products of such terms, a given ai or
bj will appear on average in two such products, creating a weak dependence between the summands.

16

each of the coefficients of the product is well approximated by a Gaussian distribution centered
at 0 with variance (2n − 2)σ4, and to approximate the coefficients of s0e0 + e2 − s1e1 we can
consider a Gaussian distribution centered at 0 with variance 2(2n− 2)σ4 +σ2. We estimate the
probability that a coefficient exceeds q/8 or that a key exchange failure will occur and record
these in Table 9.

I II II IV V VI

Target -80 -80 -80 -80 -80 -80
Coefficient Failure -88 -83 -89 -88 -86 -84
Agreement Failure -88 -82 -87 -86 -84 -82

Figure 9: log2 failure probabilities for Gaussian noise (σ = 3.192).

5.3.2 Decoding basis

If we instead use the decoding basis for R, then describing the multiplication of two elements
is slightly more complicated. Let ~d = {di} be the decoding basis for R as described in Section
2.3.1. The product of two or more error terms in the decoding basis should also be multiplied
by g := 1− ζ to help control the growth of these noise terms. The product of (1− ζ) times two
basis elements can be computed using algebra and is given by the formula

(1− ζ) · di · dj = di+j mod m − di−1 mod m − dj−1 mod m + dn−1.

Let a ∈ Rq be written as
∑n−1

i=0 aidi and similarly let b =
∑n−1

j=0 bjdj ∈ Rq and set dn := 0 =:
an = bn. Then the product of two elements a, b in the decoding basis is given by

(1− ζ) ·
(n−1∑
i=0

aidi
)
·
(n−1∑
j=0

bjdj
)

=

n−2∑
k=0

(n−1∑
i=0

aib(k−i)mod m −
n−1∑
i=0

aib(k+1)mod m −
n−1∑
j=0

a(k+1)mod mbj
)
dk

+
(n−1∑
i,j=0

aibj +

n−1∑
i=0

aib(m−2−i)mod m

)
dn−1

Thus we see that in this case the average coefficient of a product of two elements in the decoding
basis consists of a sum of 3n terms, each term being the product of two independent random
variables. Moreover, the coefficient of the basis element dn−1 is a sum of n2 + n summands,
each the product of two independent random variables. Thus we can see that the error terms
grow more rapidly in the decoding basis than in the power basis and so we prefer the use of
the power basis.8 If we wish to quantify the penalty incurred from using the decoding basis

8The growth of the average error term in the decoding basis is larger than that of the error terms in the power
basis, but the growth of the coefficient of the dn−1 term is especially problematic; this observation has been

17

in another way, we can calculate the probability of failure if secrets are chosen uniformly from
random. For example if we consider parameter set I, the probability that a coefficient will be
over the q/8 bound increases from 2−91.8 in the power basis to 2−62.0 in the decoding basis,
excluding the final coefficient of dn−1.

5.4 Timings

We plan to implement the Ring-LWE ephemeral Diffie-Hellman key encapsulation mechanism
of Section 4 in the lower level language C in order to assess its performance. This code will be
made available on the GitHub repository at https://github.com/vscrypto/ringlwe and the
results presented in an update to this paper.

6 Conclusions

The ring learning with errors problem is a promising cryptographic primitive that is believed
to be resistant to attacks by quantum computers. The decision ring-LWE problem naturally
leads to a passively secure Diffie-Hellman-like unauthenticated key exchange protocol, which
can readily be extended to an actively secure version and an authenticated version. We have
examined these key exchange mechanisms and provided both practical analysis and more prac-
tical parameter choices than were previously available. By considering prime cyclotomic rings,
we are able to produce a wider array of parameter choices and achieve smaller public keys. Once
we produce performance timings for an update to this paper we will get a sense for whether
there is an increased computational cost, and therefore a trade-off that may be appealing de-
pending on the application. We also provide the first in-depth analysis of a specific usage other
than the power-of-two case, which has produced some interesting insights into the functioning
of the decoding basis.

We plan to continue and expand upon this work in a number of ways. We plan to undertake
further coding implementations to compare the performance against classical mechanisms like
RSA or Diffie-Hellman. We would also like to explore related signature algorithms.

References

[1] M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of Learning with Errors.
http://eprint.iacr.org/2015/046.

borne out by experimentation where the dn−1 term can frequently be the cause of failure of the key exchange for
various choices of parameters, and the expected correctness of the key exchange is lower for the decoding basis
than for the power basis. Happily, the power basis is also simpler to use. If the decoding basis is chosen for some
reason, we advocate the dropping of the final coefficient term, as this will markedly improve the performance of
the system.

18

[2] M. R. Albrecht. Sage code for [1]. https://bitbucket.org/malb/lwe-estimator.

[3] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key exchange for the TLS
protocol from the ring learning with errors problem. http://eprint.iacr.org/2014/599.

[4] L. Ducas and A. Durmus. Ring-LWE in polynomial rings. In PKC 2012, pages 34-51. 2012.

[5] Y. Elias, K. E. Lauter, E. Ozman, and K. E. Stange. Provably weak instances of Ring-LWE.
In submission. Avaliable at http://eprint.iacr.org/2015/106.

[6] T. Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive hash-
ing. http://eprint.iacr.org/2014/744.

[7] T. Laarhoven, M. Mosca and J. van de Pol. Finding shortest lattice vectors faster using
quantum search. http://eprint.iacr.org/2014/907.

[8] T. Lepoint and M. Naehrig. A comparison of the homomorphic encryption schemes FV and
YASHE. In David Pointcheval and Damien Vergaud, editors, AFRICACRYPT, volume
8469 of Lecture Notes in Computer Science, pages 318-335. Springer, 2014.

[9] R. Linder and C. Peikert. Better key sizes (and attacks) for LWE-based encryption. In
CT-RSA’11, pages 319-339, 2011.

[10] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors
over rings. Journal of the AMC, 60(6):43:1-43:35, November, 2013. Preliminary version in
EUROCRYPT, pages 1-23, 2010.

[11] V. Lyubashevsky, C. Peikert, and O. Regev. A Toolkit for Ring-LWE Cryptography. In
EUROCRYPT’13, pages 35-54. 2013.

[12] A. Mariano, T. Laarhoven, and C. Bischof. Parallel (probable) lock-free HashSieve: a
practical sieving algorithm for the SVP. http://eprint.iacr.org/2015/041.

[13] D. Micciancio and O. Regev. Lattice-based cryptography. In Daniel J. Bernstein, Jo-
hannes Buchmann, and Erik Dahmaen, editors, Post-Quantum Cryptography, pages 147-
191. Springer Berlin Heidelberg, 2009.

[14] C. Peikert. Lattice Cryptography for the Internet. In Michele Mosca, editor, Proc. 6th Inter-
national Conference on Post-Quantum Cryptography (PQCrypto) 2014, LNCS 8772, pages
197-219. Springer, 2014. Full version available at http://eprint.iacr.org/2014/070

[15] V. Singh. A Practical Key Exchange for the Internet using Lattice Cryptography.
http://eprint.iacr.org/2015/138.

19

