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Abstract

A theorem by Galbraith, Malone-Lee, and Smart (GMLS) from 2002 showed that, for Schnorr
signatures, single-user security tightly implies multi-user security. Recently, Bernstein pointed to an
error in the above theorem and promoted a key-prefixing variant of Schnorr signatures for which he
proved a tight implication from single to multi-user security. Even worse, he identified an “apparently
insurmountable obstacle to the claimed [GMLS] theorem”.

This paper shows that, without key prefixing, single-user security of Schnorr signatures tightly
implies multi-user security of the same scheme.
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1 Introduction

Single-user vs. multi-user security for signature schemes. When it comes to security of digital
signature schemes, in the literature almost exclusively the standard security notion of unforgeability
against chosen message attacks (UF-CMA) [10] is considered. This is a single-user setting, where an
adversary obtains one single public-key and it is said to break the scheme’s security if he can produce (after
obtaining Q many signatures on messages of his choice) a valid forgery, i.e. a message-signature pair that
verifies on the given public-key. However, in the real world the attacker is usually confronted with many
public-keys and presumably he is happy if he can produce a valid forgery under any of the given public-
keys. This scenario is captured in the multi-user setting for signatures schemes. Concretely, in multi-user
unforgeability against chosen message attack (MU-UF-CMA) the attacker obtains N independent public-
keys and is said to break the scheme’s security if he can produce (after obtaining Q many signatures on
public-keys of his choice) a valid forgery that verifies under any of the public-keys.

There are essentially two reasons why one typically only analyzes signatures in the single-user setting.
First, the single-user security notion and consequently their analysis are simpler. Second, there exists
a simple generic security reduction [8] between multi-user security and standard single-user security.
Namely, for any signature system, attacking the scheme in the multi-user setting with N public-keys
cannot decrease the attacker’s success probability by a factor more than N compared to attacking the
scheme in the single-user setting. As the number of public-keys N is bounded by a polynomial, asymp-
totically, the single-user and the multi-user setting are equivalent. However, the security reduction is not
tight as it loses a non-constant factor N . This is clearly not satisfactory as in complex environments
one can easily assume the existence of at least N = 230 public-keys, thereby increasing the upper bound
on the attacker’s success probability by a factor of 230. For example, if we assume the best algorithm
breaking the single-user security having success probability ε = 2−80, then it can only be argued that the
best algorithm breaking the multi-user security has success probability ε′ = 2−80 · 230 = 2−50, which is
not a safe security margin that defends against today’s attackers.
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Security notion Multi-user setting? Signing queries allowed? Strong unforgeability?
UF-KOA — — —
UF-CMA —

√
—

SUF-CMA —
√ √

MU-UF-CMA
√ √

—
MU-SUF-CMA

√ √ √

Figure 1: Overview of the considered security notions for signature schemes. Here MU stands for multi-user,
(S)UF stands for (strong) unforgeability, KOA stands for key only attack, and CMA stands for chosen message
attack.

Schnorr signatures and their multi-user security. One of the most important signature schemes
is the Schnorr signature scheme [15]. To mitigate the generic security loss problem discussed above for
the special case of Schnorr’s signature scheme, Galbraith, Malone-Lee, and Smart (GMLS) proved [8] a
tight reduction, namely that attacking the Schnorr signatures in the multi-user setting with N public-
keys provably cannot decrease (by more than a small constant factor) the attacker’s success probability
compared to attacking the scheme in the single-user setting. Unfortunately, Bernstein [3] recently pointed
out an error in the GMLS proof leaving a tight security reduction for Schnorr signatures as an open
problem. Even worse, Bernstein identifies an “apparently insurmountable obstacle to the claimed [GMLS]
theorem”. Section 4.3 of [3] further expands on the insurmountable obstacle.

1.1 Our results
Our main result states that the original GMLS theorem is correct, namely that single-user security of the
Schnorr signatures scheme tightly implies multi-user security of the same scheme. We even show a much
stronger result, namely that multi-user security of Schnorr’s signature scheme is already tightly implied
by the weak single-user security notion of unforgeability against key-only attack (UF-KOA). In UF-KOA
security the adversary is only given the public-key and has to produce a valid forgery without obtaining
any signature.

To state our results more formally, we consider the security notions described in Figure 1. In the multi-
user setting, the adversary obtains N public-keys, in the single-user setting exactly one. If signing queries
are allowed, the adversary can ask for signatures on messages under any of the obtained public-key(s). He
wins, if he outputs a valid signature/message pair that verifies on any of the obtained public-key(s). For
standard unforgeability we exclude the trivial attacks, where the adversary forges for a message/public-
key pair he queried the signing oracle on. For strong unforgeability we relax the winning condition
and exclude only those attacks, where the adversary forges for a message/public-key/signature triple he
previously obtained from the signing oracle. Note that strong and standard unforgeability is the same
for key-only attacks.

The implications among the security notions for Schnorr signatures are shown in Figure 2. Theorem 3.1
(SUF-CMA → MU-SUF-CMA) is our main result and the intuition behind its proof is given below. We
note that Theorem 3.2 (UF-KOA→SUF-CMA in the random oracle model) is already contained implicitly
in Pointcheval and Stern’s early work on Schnorr signatures [14]. Its proof is given here for completeness.
(Intuitively, it is true since the Schnorr identification protocol is honest-verifier zero-knowledge and hence
the signatures can be simulated by programming the random oracle.) Combining these two theorems we
recover the original GMLS theorem UF-CMA→MU-SUF-CMA in the random oracle model. We leave it
as an open problem to prove the GMLS theorem in the standard model.

To complete the picture of provable security, [14] also proved that the discrete logarithm (DLOG)
assumption implies UF-KOA security of Schnorr’s signature scheme in the random oracle model. How-
ever, their security reduction uses the Forking Lemma and therefore it not tight. Furthermore, a tight
reduction (from UF-KOA security) to the DLOG assumption (or even any natural, possibly interactive,
computational assumption) can be proven to be impossible [13, 9, 16, 7].

Overall, this gives a complete picture of the security of Schnorr signatures. Our interpretation is as
follows. Strong security in the multi-user setting (MU-SUF-CMA) is tightly equivalent to UF-KOA security.
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DLOG UF-KOA SUF-CMA MU-SUF-CMA

UF-CMA MU-UF-CMA

(non-tight) [14]

[13, 9, 16, 7]

Thrm. 3.2 Thrm. 3.1

︸ ︷︷ ︸
Single-user setting

︸ ︷︷ ︸
Multi-user setting

Figure 2: Implications among various security notions for the Schnorr signature scheme and the discrete loga-
rithm assumption DLOG. Here X→ Y means that X-security tightly implies Y-security and X 99K Y means that
X-security loosely implies Y-security. Striked lines indicate impossibility results. Red arrows denote implications
in the random oracle model and black arrows unconditional implications. All remaining implications can be
derived from the diagram using transitivity. In particular, all notions are tightly equivalent in the random ora-
cle model. For example, UF-CMA→MU-SUF-CMA is obtained via the path UF-CMA → UF-KOA→SUF-CMA →
MU-SUF-CMA.

The latter is a simple non-interactive assumption defined over a cyclic group G = 〈g〉, namely that given
gx and hash function H, it is hard to come up with (h, s) such that H(gs−xh) = h. Even though this
non-interactive assumption is not tightly equivalent to the standard DLOG assumption, still more than 25
years of cryptanalytic effort have failed to find an attack without breaking the DLOG assumption. Hence
it is reasonable to assume Schnorr’s UF-KOA security. In contrast, UF-CMA and MU-UF-CMA security
are more complex interactive security notions which have not been the target of cryptanalytic efforts.
Our results show that such efforts are useless.

Proof details of the main theorem. We give some details about the proof of Theorem 3.1
(SUF-CMA→MU-SUF-CMA). The basic idea of the original GMLS security reduction is that from a
given public key pk we can derive properly distributed pk1, . . . , pkN such that any signature σ̂ which is
valid under pk can be transformed into a signature σ which is valid under pki and vice-versa.

The transformation is used as an interface between the single and the multi-user setting. That is,
in the reduction the multi-user signing queries on message mi under pkj can be perfectly simulated by
single-user signing queries on message mi under pk. A forgery of the multi-user adversary is transformed
back into a forgery in the single-user setting. Can we argue that this is a valid forgery? As pointed out
by Bernstein [3], the problem in the GMLS reduction is that a multi-user adversary could first obtain a
signature on message m under pk1 and then submit a valid forgery on the same message m but under
pk2. In that case the above reduction fails to produce a valid forgery, since the reduction queries for a
signature on message m and later submits a forgery on the same message m.

In order to circumvent the above problem we make a simple probabilistic argument. In our reduction,
about one half of the multi-user public-keys are derived using the above transformation, for the other half
the reduction knows the corresponding secret-keys. Which keys are known is hidden from the adversary.
Now, if the multi-user adversary first obtains a signature on message m under pk1 and then submits a
forgery on the same message m under pk2, the reduction hopes for the good case that one of the public-
keys was obtained using the transformation and the other one is known. This happens with probability
1/2 which is precisely the loss of our new reduction. In the good case we either get a valid forgery for the
single-user case or efficiently extract the secret key sk (similar to the extraction of the secret-key using
the Forking Lemma). (If the multi-user adversary submits a forgery on a message he did not previously
query the signing oracle on, we simply use the old GMLS reduction.)
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1.2 Schnorr signatures vs. Key-Prefixed Schnorr signatures
After identifying the error in the GMLS proof, Bernstein [3] uses the lack of a tight security reduction for
Schnorr’s signature scheme as a motivation to promote a “key-prefixed” modification to Schnorr’s signature
scheme which includes the verifier’s public-key in the hash function. The EdDSA signature scheme by
Bernstein, Duif, Lange, Schwabe, and Yang [4] is essentially a key-prefixing variant of Schnorr’s signature
scheme. (In the context of security in a multi-user setting, key-prefixing was considered before, e.g., in
[5].) In [4] key-prefixing is advertized as “an inexpensive way to alleviate concerns that several public keys
could be attacked simultaneously.” Indeed, Bernstein [3] proves that single-user security of the original
Schnorr signatures scheme tightly implies multi-user security of the key-prefixed variant of the scheme.

The TLS standard used to secure HTTPS connections is maintained by the Internet Engineering
Task Force (IETF) which delegates research questions to the Internet Research Task Force (IRTF).
Cryptographic research questions are usually discussed in the Crypto Forum Research Group (CFRG)
mailing list. In the last months the CFRG discussed the issue of key-prefixing.

Key-prefixing comes with the disadvantage that the entire public-key has to be available at the time
of signing. Specifically, in a CFRG message from September 2015 Hamburg [11] argues “having to hold
the public key along with the private key can be annoying” and “can matter for constrained devices”.
Independent of efficiency, we believe that a cryptographic protocol should be as light as possible and
prefixing (just as any other component) should only be included if its presence is justified. Naturally,
in light of the GMLS proof, Hamburg [11] and Struik [17] (among others) recommended against key
prefixing for Schnorr. Shortly after, Bernstein [2] identifies the error in the GMLS theorem and posts
a tight security proof for the key-prefixed variant of Schnorr signatures. In what happens next, the
participant of the CFRG mailing list switched their minds and mutually agree that key-prefixing should
be preferred, despite of its previously discussed disadvantages. Specifically, Brown writes about Schnorr
signatures that “this justifies a MUST for inclusion of the public key in the message of the classic signature”
[6]. As a consequence, key-prefixing is contained in the current draft for EdDSA [12]. In the light of our
new results, we recommend to reconsider this decision.

The history of tight security of standard Schnorr signatures in the multi-user setting also shows that
provable security aspects should play (among other things) an integral role in security evaluations and
deciding about future standards. In fact, our result is the consequence of a failed attempt to formally
prove the impossibility of a tight reduction.

2 Definitions

2.1 Preliminaries
For an integer p, define [p] := {1, . . . , p} and Zp as the residual ring Z/pZ. If A is a set, then a ← A
denotes picking a from A according to the uniform distribution. All our algorithms are probabilistic
unless states otherwise. If A is an algorithm, then a← A(b) denotes the random variable which is defined
as the output of A on input b.

2.2 Digital Signatures
We now define the syntax of a digital signature scheme. Let par be common system parameters shared
among all participants.

Definition 2.1 (Digital signature). A digital signature scheme SIG is defined as a triple of probabilistic
algorithms SIG = (Gen,Sign,Ver):
• The key generation algorithm Gen(par) returns the public and secret key (pk, sk).
• The signing algorithm Sign(sk,m) returns a signature σ.
• The deterministic verification algorithm Ver(pk,m, σ) returns 1 (accept) or 0 (reject).

We require that for all (pk, sk) ∈ Gen(par), all messages m ∈ {0, 1}∗, we have Ver(pk,m,Sign(sk,m)) = 1.

Definition 2.2 (Multi-user security). A signature scheme SIG is said to be (t, ε,N,Qs)-MU-SUF-CMA
secure (multi-user strongly unforgeable against chosen message attack) if for all adversaries A running in
time at most t and making at most Qs queries to the signing oracle,

4



Pr

[
Ver(pki∗ ,m

∗, σ∗) = 1
∧ (i∗,m∗, σ∗) /∈ {(ij ,mj , σj) | j ∈ [Qs]}

∣∣∣∣ For i = 1, . . . , N : (pki, ski)← Gen(par)
(i∗,m∗, σ∗)← ASign(·,·)(pk1, . . . , pkN )

]
≤ ε,

where on the j-th query (ij ,mj) ∈ [N ] × {0, 1}∗ (j ∈ [Qs]) the signing oracle Sign returns σj ←
Sign(skij ,mj) to A, i.e., a signature on message mj under public-key pkij .

We stress an adversary in particular breaks multi-user security if he asks for a signature on message
m under pk1 and submits a valid forgery on the same message m under pk2.

The first condition in the probability statement of Definition 2.2 is called the correctness condition,
the second condition is called the freshness condition. Definition 2.2 covers strong security in the sense
that a new signature on a previously queried message is considered as a fresh forgery. For standard
(non-strong) MU-UF-CMA security (multi-user unforgeablility against chosen message attack) we modify
the freshness condition in the experiment to (i∗,m∗) /∈ {(ij ,mj , ) | j ∈ [Qs]}, i.e., to break the scheme
the adversary has to come up with a signature on a message-key pair which has not been queried to the
signing oracle.

Definition 2.3 (Single-user security of signature schemes). In the single-user setting, i.e. N = 1
users, (t, ε,Qs)-SUF-CMA security (strong unforgeablility against chosen message attack) is defined as
(t, ε, 1, Qs)-MU-SUF-CMA security. Similarly, standard (non-strong) (t, ε,Qs)-UF-CMA security (un-
forgeablility against chosen message attack) is defined as (t, ε, 1, Qs)-MU-UF-CMA security. Further,
(t, ε)-UF-KOA security (unforgeablility against key-only attack) is defined as (t, ε, 1, 0)-MU-SUF-CMA se-
curity, i.e., N = 1 users and Qs = 0 signing queries.

Security in the random oracle model. The security of signature scheme containing a hash function
can be analyzed in the random oracle model [1]. In this model hash values can only be accessed by an
adversary through queries to an oracleH. On input x this oracle returns a uniformly random outputH(x)
which is consistent with previous queries for input x. Using the random oracle model, the maximal number
of queries to H becomes a parameter in the concrete security notions. For example, for (t, ε,N,Qs, Qh)-
MU-SUF-CMA security we consider all adversaries making at most Qh queries to the random oracle.

3 Schnorr’s Signature scheme

In this section let par := (H, p, g,G) be a set of system parameters, where G = 〈g〉 is a cyclic group
of prime order p with a hard discrete logarithm problem. Examples of groups G include appropriate
subgroups of certain elliptic curve groups, or subgroups of Z∗q . We assume that each element x ∈ G has
a unique representation as a bit-string in {0, 1}`G , for some integer `G. Function H : {0, 1}∗ → {0, 1}n is
a hash function with n < log2(p). The Schnorr signature scheme Schnorr := (Gen,Sign,Ver) is defined as
follows:

Gen(par):
sk := x← Zp

pk := X = gx

Return (pk, sk)

Sign(sk,m):
r ← Zp; R = gr

h = H(R,m)
s = x · h+ r mod p
Return σ = (h, s) ∈ {0, 1}n × Zp

Ver(sk,m, σ):
Parse σ = (h, s) ∈ {0, 1}n × Zp

R = gsX−h

If h = H(R,m) then return 1
Else return 0.

3.1 Single-user tightly implies multi-user security

The following result is our main theorem and says that SUF-CMA security tightly implies MU-SUF-CMA
security of Schnorr’s signature scheme. Our theorem only requires strong security but via the chain of
implication from Figure 2 we obtain that UF-KOA security (and therefore in particular UF-CMA security)
tightly implies MU-SUF-CMA security of Schnorr in the random oracle model.
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Theorem 3.1 (SUF-CMA ⇒ MU-SUF-CMA). If Schnorr is (t, ε,Qs)-SUF-CMA secure then, for any
N ≥ 1, Schnorr is (t′, ε′, N,Qs)-MU-SUF-CMA secure, where

ε′ ≤ 2ε+
Q2

s

p
, t′ ≈ t,

Qs is an upper bounds on the number of signing queries and N is the number of users.

Proof. Let A be an adversary that breaks (t′, ε′, N,Qs)-MU-SUF-CMA security of Schnorr. We construct
an adversary B that breaks (t, ε,Qs)-SUF-CMA security of Schnorr. Adversary B is executed in the
SUF-CMA experiment. It obtains a public-key pk = X = gx and has access to a signing oracle Sign.

Simulation of public-keys. First, for each i ∈ [N ], adversary B picks ai ← Zp, secret bits bi ← {0, 1},
and computes

pki = Xi := Xbi · gai . (1)

That is, if bi = 0, then ski = ai is known to B; if bi = 1 then ski = x+ ai is unknown to B. Note that the
public-keys are correctly distributed. Next, B runs A on input (pk1, . . . , pkN ) answering signing queries
as follows.

Simulation of signing queries. On A’s j-th signing query (ij ,mj) ∈ [N ]× {0, 1}∗, B is supposed to
return a signature σj on message mj under pkij . Those are computed by adversary B according to the
following case distinction.

• Case A: bij = 0. In that case skij = aij is known to B and the signature is computed as σj :=
(hj , sj)← Sign(skij ,mj).

• Case B: bij = 1. In that case skij = x+ aij is unknown to B and the signature is computed using
B’s signing oracle by first querying (hj , ŝj) ← Sign(mj). Then σj = (hj , sj := ŝj + aijhj) is a
valid signature on message mj under pkij . Indeed, Ver(pkij ,mj) = 1 because H(gsjX

−hj

ij
,mj) =

H(gŝjX−hj ,mj) = hj .

Adversary B returns σj = (hj , sj) which in both cases is a correctly distributed valid signature. For
future reference we also define Rj := gsjX

−hj

ij
and by (1)

rj := logg(Rj) = sj − (bijx+ aij )hj . (2)

We assume that
∀k 6= j ∈ [Qs] : rk 6= rj . (3)

Since sj and hence rj are uniform elements from Zp, condition (3) is not satisfied with probability at most
Q2

s/p. Note that the simulation of the public-keys and the signing queries do not leak any information
about the secret bits bi.

Forgery. Eventually, A will submit a forgery (i∗,m∗, σ∗ := (h∗, s∗)) and terminate. For the remainder
of this proof we assume σ∗ is a correct signature on m∗ under pki∗ , i.e., for R∗ := gs

∗
X−h

∗

i∗ it holds that
H(R∗,m∗) = h∗. Using (1) the correctness condition can be equivalently expressed as

r∗ := logg(R
∗) = s∗ − (bi∗x+ ai∗)h

∗. (4)

Furthermore we assume that σ∗ is a valid fresh forgery in the MU-SUF-CMA experiment:

(i∗,m∗, h∗, s∗) 6∈ {(ij ,mj , hj , sj) | j ∈ [Qs]}. (5)

After receiving A’s forgery, B is supposed to compute its own valid forgery under pk = X. To this
end, B defines the set of all indices j such that it queried mj to its signing oracle J := {j ∈ [Qs] | bij = 1}
and makes the following case distinction. A pictorial overview of all cases is given in Figure 3.

• Case 1: For all j ∈ [Qs] we have: h∗ 6= hj or r∗ 6= rj ,
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∀j ∈ [Qs] : (h
∗ 6= hj ∨ r∗ 6= rj) ?

Case 1
bi∗ = 1?

3 7

i∗ = ij?

Case 2
bi∗ = 1?

3 7

h∗ 6= 0?

Case 3
bi∗ 6= bij?

3 7

Case 4
bij = 0?

3 7

Figure 3: Overview of the case distinction in the proof of Theorem 3.1. Each node contains a condition. If the
condition is satisfied then we continue to the left child, otherwise to the right child. A leaf denotes either a good
case (getting a valid SUF-CMA forgery, marked with “3”, or extracting the secret-key, marked with “3”) or a bad
case, marked with “7” (in which we abort).

– Case 1a: bi∗ = 1. Then for ŝ∗ := s∗ − ai∗h∗ we have

H(gŝ
∗
X−h

∗
,m∗) = H(gs

∗
X−h

∗

i∗ ,m∗) = h∗

and hence
σ̂∗ := (h∗, ŝ∗)

is a correct signature on message m∗ under pk = X. It remains to show that σ̂∗ is a fresh
strong forgery in the SUF-CMA experiment.
On the one hand, if h∗ 6∈ {h1, . . . , hQs

}, we directly obtain σ̂∗ = (h∗, ŝ∗) 6∈ {(hj , ŝj) | j ∈ J }
(the set of all signatures obtained from the SUF-CMA signing oracle) which means that (m∗, σ̂∗)
satisfies the freshness condition of the SUF-CMA experiment. On the other hand, if the set
J ∗ of indices j ∈ [Qs] such that hj = h∗ is non-empty, then we will use the condition r∗ 6= rj
to show that the corresponding ŝj values are all distinct from ŝ∗. Indeed, for all k ∈ J ∗ ∩ J
we have ŝk = rk + xh∗ 6= r∗ + xh∗ and therefore ŝ∗ = r∗ + xh∗ 6∈ {ŝk | k ∈ J ∗ ∩ J }. For
all k ∈ J \ J ∗ we have h∗ 6= hk and therefore h∗ 6∈ {hk | k ∈ J \ J ∗}. Consequently, σ̂∗ =
(h∗, ŝ∗) 6∈ {(hk, ŝk) | k ∈ J } and (m∗, σ̂∗) satisfies the freshness condition of the SUF-CMA
experiment.

– Case 1b: bi∗ = 0. Then B aborts.

Note that in case 1, B aborts with probability exactly 1/2. If it does not abort, it outputs a valid
strong forgery.

• Case 2: There exists a j ∈ [Qs] such that h∗ = hj and r∗ = rj and i∗ = ij .

Note that if j exists it is uniquely defined by (3).

– Case 2a: bi∗ = 1. As in case 1a,

σ̂∗ := (h∗, ŝ∗ := s∗ − ai∗h∗)

is a correct signature on message m∗ under pk = X. By r∗ = rj and h∗ = hj we obtain
(h∗, s∗) = (hj , sj). Since we also have i∗ = ij , A’s freshness condition (5) implies m∗ 6= mj

meaning that σ̂∗ is a valid fresh forgery in the SUF-CMA experiment.

– Case 2b: bi∗ = 0. Then B aborts.
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Note that in case 2, B aborts with probability exactly 1/2. If it does not abort, it outputs a valid
strong forgery.

• Case 3: There exists a j ∈ [Qs] such that h∗ = hj 6= 0 and r∗ = rj and i∗ 6= ij .

Note that if j exists it is uniquely defined by (3).

– Case 3a: bij 6= bi∗ . By (2) and (4) we obtain two equations in the intermediates (r∗, x)

r∗ = s∗ − (bi∗x+ ai∗)h
∗

r∗ = sj − (bijx+ aij )h
∗,

from which B can extract the single-user scheme’s secret-key x = logg(X) as

x := ((s∗ − sj)(h∗)−1 + aij − ai∗) · (bi∗ − bij )−1.

Using sk = x, B computes a valid forgery on any fresh message.

– Case 3b: bij = bi∗ . Then B aborts.

Note that in case 3, since bi∗ 6= bij , B aborts with probability exactly 1/2. If it does not abort, it
outputs a valid strong forgery.

• Case 4: There exists a j ∈ [Qs] such that hj = h∗ = 0 and r∗ = rj and i∗ 6= ij .∗

Again, if j exists it is uniquely defined by (3).

– Case 4a: bij = 0. Then
σ̂∗ := (0, s∗)

is a correct signature on m∗ under pk = X. For all k 6= j with hk = h∗ = 0 we have by (3)
r∗ 6= rk and therefore s∗ = r∗ 6= rk = ŝk. This means that σ̂∗ = (0, s∗) = (0, r∗) 6∈ {(hk, ŝk) |
k ∈ J } (the set of all signatures obtained from the SUF-CMA signing oracle). Therefore
(m∗, σ̂∗) satisfies the freshness condition of the SUF-CMA experiment.

– Case 4b: bij = 1. Then B aborts.

Note that in case 4, B aborts with probability exactly 1/2. If it does not abort, it outputs a valid
strong forgery.

Overall, B returns a fresh strong forgery (m∗, σ̂∗) under pk = X with probability ε = 1
2

(
ε′ − Q2

s

p

)
.

Adversary B makes at most Qs signing queries (in expectation only Qs/2). Its running time is that of A
plus some additional small computation for each signing query and each user (which we neglect), hence
t′ ≈ t.

We remark that due to forgery cases 1 and 4 our reduction requires strong SUF-CMA security and
does not work with standard UF-CMA security.

3.2 Key-only security tightly implies single-user security

The following result is implicitly contained in [14]. Its proof is given for completeness.

Theorem 3.2 (UF-KOA ⇒ SUF-CMA). If Schnorr is (t, ε,Qh)-UF-KOA secure and H is modeled as a
random oracle, then Schnorr is (t′, ε′, Qs, Qh)-SUF-CMA secure, where

ε′ ≤ ε+ (Qh +Qs)Qs

p
, t′ ≈ t,

and Qs, Qh are upper bounds on the number of signing and hash queries, respectively.
∗By assuming the hash function to be zero-resistant we may as well discard this case.

8



Proof. Let A be an algorithm that breaks (t′, ε′, Qs)-SUF-CMA security of Schnorr. We will describe an
adversary B invoking A that breaks (t, ε)-UF-KOA security of Schnorr with (t, ε) as stated in the theorem.
Adversary B is executed in the UF-KOA experiment and obtains a public-key pk := X = gx, and has
access to a random oracle H. B runs A on input pk answering hash and signing queries as follows.

Simulation of hash queries. A hash query is answered by B by querying its own hash oracle and
returning its answer.

Simulation of signing queries. On the j-th signature query on message mj , B samples random
sj ← Zp, hj ← {0, 1}n and computes Rj := gsj ·X−hj . If H(Rj ,mj) was already defined (via one of A’s
queries), B aborts. Otherwise, it defines the random oracle

H(Rj ,mj) := hj (6)

and returns σj := (hj , sj), which is a correctly distributed valid signatures on mj . Note that for each
signing query B aborts with probability at most (Qh +Qs)/p because Rj is uniformly distributed. Since
the number of signing queries is bounded by Qs, B aborts overall with probability at most (Qh+Qs)Qs/p.

Forgery. Eventually, A will submit its forgery (m∗, σ∗ := (h∗, s∗)). We assume that it is a valid forgery,
i.e., for R∗ = gs

∗
X−h

∗
we have H(R∗,m∗) = h∗ and

(m∗, h∗, s∗) 6∈ {(mj , hj , sj) : j ∈ [Qs]}. (7)

If there exists a j ∈ [Qs] such that (R∗,m∗) = (Rj ,mj) then we have h∗ = hj and s∗ = sj which
contradicts the freshness condition (7). This implies (R∗,m∗) 6∈ {(Ri,mi) : i ∈ [Qs]} which means that
the hash value H(R∗,m∗) was not programmed by B in (6). Finally B returns (m∗, σ∗) to its UF-KOA
experiment, which is a valid fresh forgery. Its running time is that of A plus some additional small
computation for each signing query (which we neglect), hence t′ ≈ t.
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