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Abstract

In this note, we show how to transform a large class of erroneous cryptographic schemes into
perfectly correct ones. The transformation works for schemes that are correct on every input
with probability noticeably larger than half, and are secure under parallel repetition. We assume
the existence of one-way functions and of functions with deterministic (uniform) time complexity
2O(n) and non-deterministic circuit complexity 2Ω(n). The transformation complements previous
results showing that public-key encryption and indistinguishability obfuscation that err on a
noticeable fraction of inputs can be turned into ones that are often correct for all inputs.

The technique relies on the idea of “reverse randomization” [Naor, Crypto 1989] and on
Nisan-Wigderson style derandomization, which was previously used in cryptography to obtain
non-interactive witness-indistinguishable proofs and commitment schemes [Barak, Ong and Vad-
han, Crypto 2003].
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1 Introduction

Randomized algorithms are, by their very nature, error-prone, yet for some problems they are
significantly faster (and often simpler) than their state-of-the-art deterministic counterparts. This
gap has motivated a rich study of derandomization, where a central avenue has been the design of
pseudo-random generators [BM84, Yao82a, NW94] that could offer one universal solution for the
problem. This has led to surprising results, intertwining cryptography and complexity theory, and
culminating in a derandomization of BPP under worst-case complexity assumptions (the existence
of functions in E = Dtime(2O(n)) with worst-case circuit complexity 2Ω(n)) [NW94, IW97].

For cryptographic algorithms the picture is somewhat more subtle. Indeed, in cryptography,
randomness is almost always needed in order to guarantee any sense of security. In particular, cryp-
tographic schemes are often perfectly correct even if randomized. Yet, in some cases cryptographic
algorithm do make errors. For example, in some encryption algorithms, notably the lattice-based
ones [AD97, Reg05], most but not all ciphertexts can be decrypted correctly. Here, however, we
cannot resort to general derandomization, as a (completely) derandomized version will most likely
be totally insecure.

While for general algorithms infrequent errors are tolerable in practice, for cryptographic al-
gorithms errors can be (and have been) exploited by adversaries (see [BDL01] and a long line of
followup works). Thus, the question of eliminating errors is ever more important in the cryp-
tographic context. This question was addressed in a handful of special contexts in cryptogra-
phy. In the context of interactive proofs, [GMS87, FGM+89] show how to turn any interactive
proof into one with perfect completeness. In the context of encryption schemes, Goldreich Gold-
wasser and Halevi [GGH97] showed how to partially eliminate errors from lattice-based encryption
schemes [AD97, Reg05], and Dwork, Naor and Reingold [DNR04a] show how to partially eliminate
errors from any encryption scheme. Here, “partial” refers to the fact that they eliminate errors
from the encryption and decryption algorithms, but not the key generation algorithm. That is,
in their final immunized encryption scheme, it could still be the case that there are bad keys that
always cause decryption errors.

This work. We show how to completely immunize a large class of cryptographic algorithms into
ones that make no errors at all. Our most general result concerns cryptographic algorithms (or
protocols) that are secure under parallel repetition. We show:

Theorem 1.1 (Informal). Assume the existence of one-way functions and of functions with de-
terministic (uniform) time complexity 2O(n) and non-deterministic circuit complexity 2Ω(n). Then,
any encryption scheme, indistinguishability obfuscation scheme, and (parallel repetition secure)
multiparty computation protocol can be completely immunized against errors.

Our tools, perhaps unsurprisingly, come from the area of derandomization, in particular we
make heavy use of Nisan-Wigderson (NW) type pseudorandom generators. Such NW-generators
were previously used by Barak, Ong and Vadhan [BOV07] to remove interaction from commitment
schemes and ZAPs. We use it here for a different purpose of immunizing cryptographic algorithms
from errors to make them perfectly correct. Below, we elaborate on the similarities and differences.

2



1.1 The Basic Idea

We briefly explain the basic idea behind the transformation, focusing on the case of public-key
encryption. Imagine that we have an encryption scheme given by randomized key-generation and
encryption algorithms, and a deterministic decryption algorithm (Gen,Enc,Dec), where for any
message m ∈ {0, 1}n there is a tiny decryption error:

Pr
(rg ,re)←{0,1}poly(n)

[Decsk(Encpk(m; re)) 6= m | (pk, sk) = Gen(rg)] ≤ 2−n .

Can we deterministically choose “good randomness” (rg, re) that leads to correct decryption? This
question indeed seems analogous to the question of derandomizing BPP. There, the problem can
be solved using Nisan-Wigderson type pseudo-random generators [NW94]. Such generators can
produce a poly(n)-long pseudo-random string using a short random seed of length d(n) = O(log n).
They are designed to fool distinguishers of some prescribed polynomial size t(n), and may run in
time 2O(d) � t. Derandomization of the BPP algorithm is then simply done by enumerating over
all 2d = nO(1) seeds and taking the majority.

We can try to use NW-type generators to solve our problem in a similar way. However, the
resulting scheme wouldn’t be secure – indeed, it will be deterministic, which means it cannot be
semantically secure [GM84]. To get around this, we use the idea of reverse randomization from
[Lau83, Nao91, DN07, DNR04b]. For each possible seed i ∈ {0, 1}d for the NW-generator NWPRG,
we derive corresponding randomness

(rie, r
i
g) = NWPRG(i)⊕ (BMYPRG(sie),BMYPRG(sig)) .

Here BMYPRG is a Blum-Micali-Yao (a.k.a cryptographic) pseudo-random generator [BM82,

Yao82b], and the seeds (sig, s
i
e) ∈ {0, 1}n

Ω(1)
are chosen independently for every i, with the sole

restriction that their image is sparse enough (say, has size at most 2n/2). Encryption and decryption
for any given message are now done in parallel with respect to all 2d copies of the original scheme,
where the final result of decryption is defined to be the majority of the 2d decrypted messages.

Security is now guaranteed by the BMY-type generators and the fact that public-key encryption
can be securely performed in parallel. Crucially, the pseudo-randomness of BMY strings is guaran-
teed despite the fact that their image forms a sparse set; in particular, when shifted at random this
set will completely evade the (tiny) set of “bad randomness” (that lead to decryption errors). In the
above construction, the image is not shifted truly at random, but rather by an NW-pseudo-random
string, and we would like to argue that this suffices to get the desired correctness.

To argue that NW-pseudo-randomness is enough, we need to show that with high-probability
over the choice of the NW string, the shifted image of the BMY generator still evades “bad random-
ness”. This may not be efficiently testable deterministically, but can be tested non-deterministically,
by guessing the seeds for the BMY generator that would lead to bad randomness. We thus rely
on NW generators that fool non-deterministic circuits. Such pseudo-random generators are known
under the worst case assumption that there exist functions in E with non-deterministic circuit
complexity 2Ω(n) [SU01].

Relation to [BOV07]. Barak, Ong, and Vadhan were the first to demonstrate how NW-type
derandomization can be useful in cryptography. They showed how NW generators can be used to
derandomize Naor’s commitments [Nao91] and Dwork and Naor’s ZAPs [DN07]. In the applications
they examined, “reverse randomization” is already encapsulated in the constructions of ZAPs and
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commitments that they start from, and they show that “the random shift” can be derandomized,
using the fact that ZAPs and commitments are secure under parallel repetition.

There, they were not interested in the correctness of a specific computation per se, but rather
in the existence of an “incorrect object”, namely an accepting proof for a false statement in ZAPs,
or a commitment with inconsistent openings. (The above intuition captures this more general type
of correctness.) Another difference is that in the applications they consider, it is in fact enough
to use hitting set generators (against co-non-determinism) rather than pseudorandom generators.
Intuitively, the reason is that in these applications there is one-sided error. For example, in a
ZAP system, one already assumes that true statements are always accepted by the verifier, so
when derandomizing they only need to recognize false statements. This is analogous to having
an encryption system that is always correct on encryptions of zero, but may make mistakes on
encryptions of one.

Organization. Below, we formulate the above transformation for a general class of cryptographic
schemes in protocols. Section 2 gives a minimal model for schemes and protocols that we will use
to describe the transformation. Section 3 presents the transformation itself. In Section 4, we briefly
discuss several examples of interest where the transformation can be applied.

2 Cryptographic Schemes and Protocols

We consider a simple model of cryptographic schemes and protocols that will allow to describe the
transformation generally. In Section 4, we give several examples of schemes and protocols and how
they fit into the framework.

Honest Executions: Let λ be a security parameter and let m = m(λ), n = n(λ), ` = `(λ). An
honest execution of an m-party scheme (or protocol) Π involves interaction between m PPT parties
with inputs (x1, . . . , xm) ∈ {0, 1}n×m and randomness (r1, . . . , rm) ∈ {0, 1}`×m, at the end of which
they each produce outputs (y1, . . . , ym) ∈ {0, 1}n×m. Abstracting out, we will think of Π as a
single process that runs in some fixed polynomial time and denote it by y ← Π(1λ, x, r), where
x = (x1, . . . , xm), y = (y1, . . . , ym), and r = (r1, . . . , rm).

Definition 2.1 ((1− α)-correctness). Let f : {0, 1}n×m → {0, 1}n×m be a function computable by
circuits of size poly(λ). Π computes f (1− α)-correctly if for any λ and any x ∈ {0, 1}n×m,

Pr
r←{0,1}`×m

[
y 6= f(x)

∣∣∣ y ← Π(1λ, x, r)
]
≤ α(λ) .

Repeated Executions: For a function k = k(λ), inputs x = (x1, . . . , xm) ∈ {0, 1}n×m and ran-
domness r = (rij)i∈[m],j∈[k], and ri,j ∈ {0, 1}`, the repeated execution Π⊗k(1

λ, x, r) consists of

executing Π(1λ, x, r1), . . . ,Π(1λ, x, rk), where rj = (r1j , . . . , rmj), in parallel and obtaining corre-
sponding outputs y = (yij)i∈[m],j∈[k].

Executions in Presence of Adversaries: We consider a simple model of executions in the
presence of an adversary. Such an execution is modeled as a non-uniform family Π∗ of poly(λ)
size and denoted by y∗ ← Π∗(1λ, r), where y∗ represents some arbitrary adversarial view, and r
represents randomness for honest parties.
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3 Removing Errors

In this section, we define the basic tools required for the main transformation and present the
transformation itself.

3.1 NW and BMY PRGs

We define NW-type PRGs [NW94] and BMY-type PRGs [BM82, Yao82b].

Definition 3.1 (Nondeterministic Circuits). A nondeterministic boolean circuit C(x,w) takes x
as a primary input and w as a witness. We define C(x) := 1 if and only if there exists w such that
C(x,w) = 1.

Definition 3.2 (NW-Type PRGs against Nondeterministic Circuits). NWPRG : {0, 1}d(n) →
{0, 1}n is an NW-generator against non-deterministic circuits of size t(n) if it is computable in
time 2O(d(n)) and any non-deterministic circuit C of size at most t(n) distinguishes U ← {0, 1}n
from NWPRG(n), where s← {0, 1}d(n), with advantage at most 1/t(n).

We shall rely on the following theorem by Shaltiel and Umans regarding the existence NW-type
PRGs as above assuming worst-case hardness for non-deterministic circuits.

Theorem 3.3 ([SU01]). Assume there exists a function in E = Dtime(2O(n)) with nondeterminis-
tic circuit complexity 2Ω(n). Then, for any polynomial t(·), there exists an NW-generator NWPRG :
{0, 1}d(n) → {0, 1}n against non-deterministic circuits of size t(n), where d(n) = O(log n).

We remark that the above worst-case assumption can be seen as a natural generalization of the
assumption that EXP 6⊆ NP. We also note that there is a universal candidate for the corresponding
PRG, by instantiating the the hard function with any E-complete language under linear reductions.
See further discussion in [BOV07].

We now define BMY-type (a.k.a cryptographic) PRGs.

Definition 3.4 (BMY-Type PRGs). A function BMYPRG : {0, 1}d(n) → {0, 1}n is a BMY-
generator if it is computable in time poly(d(n)) and any nO(1)-size non-uniform family distinguishes
U ← {0, 1}n from BMYPRG(n), where s← {0, 1}d(n), with advantage at most n−ω(1).

Theorem 3.5. [HILL99] BMY-type pseudo-random generators can be constructed from any one-
way function.

3.2 The Transformation

We now describe a transformation from any (1 − α)-correct scheme Π for a function f into a
perfectly correct one. For a simpler exposition, we restrict attention to the case that the error α is
tiny. We later explain how this restriction can be removed.

Ingredients. In the following, let λ be a security parameter, let m = m(λ), n = n(λ), ` = `(λ) be
polynomials, and α = α(λ) ≤ 2−(λ+n)m−2. We rely on the following:

• A (1 − α)-correct scheme Π computing f : {0, 1}n×m → {0, 1}n×m where each party uses
randomness of length `.
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• A BMY-type pseudo-random generator BMYPRG : {0, 1}λ → {0, 1}`.

• An NW-type pseudo-random generator NWPRG : {0, 1}d → {0, 1}`×m against nondetermin-
istic circuits of size t = t(λ), where t and d depend on m,n, `,Π, f,BMYPRG, 8 ≤ t = λO(1),
and d(λ) = O(log λ), and will be specified later on. We shall denote k = 2d.

The New Scheme:

Given security parameter 1λ and input x ∈ {0, 1}n×m:

1. Randomness Generation: Each party i ∈ [m]

• samples k BMY strings (rBMY
i1 , . . . , rBMY

ik ), where rBMY
ij = BMYPRG(sij) and sij ←

{0, 1}λ.

• computes (all) k NW strings (rNW1 , . . . , rNWk ), where rNWj = NWPRG(j),

and derives (rNWi1 , . . . , rNWik ), where rij is the ith `-bit block of rNWj .

• compute ri1, . . . , rik where rij = rBMY
ij ⊕ rNWij .

2. Emulating the Parallel Scheme:

• the parties emulate the repeated scheme Π⊗k(1
λ, x, r), with randomness r = (rij)i∈[m],j∈[k].

• each party i obtains outputs (yi1, . . . , yik) and outputs yi = majority(yi1, . . . , yik).

Correctness. We now turn to show that the new scheme is perfectly correct.

Proposition 3.1. The new scheme is perfectly-correct.

Proof. We first claim that, if we sample rNW truly at random from {0, 1}`×m, then except with
probability 1/4, there exist no s1, . . . , sm ∈ {0, 1}λ and x ∈ {0, 1}n×m such that f(x) 6= Π(1λ, x, r)
for r = rNW ⊕ rBMY and rBMY = (BMYPRG(s1), . . . ,BMYPRG(sm)). Indeed, in this case for any
fixed s1, . . . , sm and fixed x, the string r is truly random and the scheme is guaranteed to error
with probability at most α ≤ 2−(λ+n)m−2. The claim thus follows by taking a union bound over all
2mλ tuples s1, . . . , sm and 2nm inputs x.

We now claim that the same holds, except with probability 1
4 + 1

t ≤
3
8 , when rNW = NWPRG(j)

for j ← {0, 1}d, namely rNW is pseudo-random and not truly random. This will conclude the proof
since it means that the majority of the k = 2d parallel executions of Π will always be correct.

To prove this claim, let us assume towards contradiction that it does not hold. We con-
struct a non-deterministic distinguisher that breaks NWPRG. The distinguisher, given rNW, non-
deterministically guesses s1, . . . , sm and x, computes rBMY = (BMYPRG(s1), . . . ,BMYPRG(sm)),
r = rNW⊕rBMY, and checks whether f(x) 6= Π(1λ, x, r). Recall that when rNW is truly random such
a witness s1, . . . , sm, x exists with probability at most 1/4, whereas, by our assumption towards
contradiction, when rNW is pseudo-random such a witness exists with probability at least 1

t + 1
4 .

The size of the above distinguisher is some fixed polynomial t′(λ) that depends only on m,n, `
and the time required to compute Π, f,BMYPRG. Thus in the construction we choose t > t′ (and
d is chosen accordingly), meaning that the constructed distinguisher indeed breaks NWPRG.
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Security. We now observe that the new scheme is as secure as the k-fold repeated scheme when
using true randomness. Examples are given in the next section.

Concretely, we consider two distributions on randomness rb = (rbij)i∈[m],j∈[k],b∈{0,1} for the par-
ties in Π⊗k:

1. r0
ij is sampled truly at random (and independently) from {0, 1}`.

2. r1
ij is computed as in the above scheme; namely rij = rBMY

ij ⊕rNWij , where rBMY
i,j = BMYPRG(sij)

for sij ← {0, 1}λ and rNWij is a fixed string (we don’t care how it’s computed for this part).

Proposition 3.2. For any non-uniform adversarial execution Π∗⊗k of size λO(1)

Π∗⊗k(1
λ, r0) ≈c Π∗⊗k(1

λ, r1) .

Proof. Follows directly from the security of the BMY PRG and a standard hybrid argument.

Removing the Assumption Regarding Tiny Error. Above we assumed that α(λ) ≤ 2−(λ+n)m−2.
We can start from any α ≤ 1

2 − η, for η = λ−O(1), perform k′ = O((λ + n)mη−2) repetitions to
reduce the error, and then apply the above transformation.

The amount of randomness `(λ), and the execution time, grow proportionally, but are still
polynomial in λ. Also, the same security guarantee as above holds, except that we should consider
the k × k′-fold repetition of Π, rather than the k fold one. This is sufficient as long as the original
scheme was secure (in some sense) for any polynomial number of repetitions.

4 Examples of Interest

We briefly mention three examples of interest and how they fit into the above framework.

Public-Key Encryption. Public-key encryption can be modeled as a three-party scheme con-
sisting of a generator, an encryptor, and a decryptor. The generator has no input, and uses its
randomness r1 to generate pk and sk, which are sent to the encryptor and decryptor, respectively.
The encryptor has as input a message m, and uses its randomness r2 in order to generate an en-
cryption Encpk(m; r1), which is sent to the decryptor. The decryptor has no input nor randomness,
it uses the secret key to decrypt and outputs the decrypted message. (In this case the function
computed by Π is f(⊥,m,⊥) = (⊥,⊥,m).)

In the repeated scheme Π⊗k, k independent encryptions Encpk(m; r0
11), . . . ,Encpk(m; r0

1k) are
generated. For any two messagesm,m′ ∈ {0, 1}n, we can consider adversarial executions Πm

⊗k(1
λ, r0)

and Πm′
⊗k(1

λ, r0), which output as the adversarial view the corresponding encryptions. By the se-
mantic security of the encryption scheme (plus a standard hybrid argument) and Proposition 3.2, we
deduce that the corrected scheme (using r1 generated as in the transformation) is also semantically
secure:

Πm
⊗k(1

λ, r1) ≈c Πm
⊗k(1

λ, r0) ≈c Πm′
⊗k(1

λ, r0) ≈c Πm′
⊗k(1

λ, r1) .

We note that in [DN07], Dwork, Naor, and Reingold show how public-key encryption where
decryption errors may even occur for a large fraction of messages, can be transformed into ones that
only have a tiny decryption error over the randomness of the scheme. Applying our transformation,
we can further turn such schemes into perfectly correct ones.
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Indistinguishability Obfuscation. Indistinguishability obfuscation [BGI+12] can be modeled
as a two-party scheme consisting of an obfuscator and an evaluator. The obfuscator has as input a
circuit C, and uses its randomness r1 in order to create an obfuscation O(C), which is sent to the
evaluator. The evaluator has an input x for the circuit, and no randomness, it computes O(C)(x)
and outputs the result. (In this case the function computed by Π is f(C, x) = (⊥, C(x)).)

In the repeated scheme Π⊗k, k independent obfuscations O(C; r0
11), . . . ,O(C; r0

1k) are generated.
For any two circuits C,C ′ ∈ {0, 1}n that compute the same function, we can consider adversarial
executions ΠC

⊗k(1
λ, r0) and ΠC′

⊗k(1
λ, r0), which output as the adversarial view the corresponding

obfuscations. As in the case of encryption, by the security of the obfuscation scheme (plus a
standard hybrid argument) and Proposition 3.2, we deduce that the corrected scheme (using r1

generated as in the transformation) is also secure.
We note that in [BV16], Bitansky and Vaikuntanathan show how indistinguishability obfus-

cation [BGI+12] where the obfuscated circuit may error on a large fraction of inputs, can be
transformed into one that only has a tiny error over the randomness of the obfuscator. Applying
our transformation, we can further turn such schemes into perfectly correct ones. We now briefly
explain how this is captured in the above framework.

MPC. The framework also naturally capture an MPC protocol for computing an m-party f .
If the repeated protocol Π⊗k is secure against static attacks so is the corrected protocol. Here
we’ll consider an adversarial execution ΠA⊗k that outputs the view of A and the outputs of honest
parties. If A has a simulator when the honest parties use randomness generated as r0, then the
same simulator works for the corrected scheme (where r1 is used).
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