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Abstract. Low-cost resource-constrained devices can allocate very lim-
ited resources for implementing security. At the same time, they still re-
quire some level of protection. In this paper, we present a lightweight mes-
sage authentication scheme based on Cyclic Redundancy Check (CRC).
The presented CRC inherits the implementation simplicity of the conven-
tional CRC checksum except that the LFSR implementing its encoding
and decoding is made re-programmable. Similarly to previously proposed
cryptographic CRCs, it detects both random and malicious errors with-
out increasing bandwidth. The main difference from previous approaches
is that we use arbitrary instead of irreducible generator polynomials. This
eliminates the need for irreducibility tests. We provide a detailed quan-
titative analysis of the achieved security as a function of message and
CRC sizes. The results show that the presented scheme is particularly
suitable for the authentication of short messages.

Keywords: Hash function; message authentication; data integrity pro-
tection; CRC; error-detection.

1 Introduction

A rapid growth of Internet-of-Things (IoT) applications that use cellular network
infrastructure is expected in the coming years. Home appliances, meters, sensors,
are vehicles will be accessible and controlled via local networks or the Internet,
opening an entirely new range of services designed to be appealing to users. The
number of wirelessly connected devices is expected to grow to 50 billions by the
year 2020 [1].

Unfortunately, new technologies are appealing to the attackers as well. At-
tacks are becoming more frequent, more sophisticated, and more widespread. In
2014, the annual cost to the global economy from cybercrimes was more than
$400 billion [2]. While it is difficult to hack into a household appliance which is
not coupled to anything but a power plug, a connected appliance becomes a tar-
get for all attackers around the globe unless appropriate security mechanisms are
implemented and utilized. Household appliances typically do not have the same
level of protection as computer systems. A compromised device can potentially
be used as an entry point for cyberattacks on other devices connected to the
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network. The first proven cyberattack involving ”smart” household appliances
has been already reported [3]. The attack surface of future IoT with billions of
connected devices will be enormous.

In addition to a larger attack surface, the return value for performing an
attack grows. The assets accessible via tomorrow’s networks are expected to be
much greater than the ones available today, increasing incentive for cyber crimi-
nals and underground economies. As processing power and connectivity become
cheaper, the cost of performing an attack drops, making it easier for adversaries
of all types to penetrate networks. Considering the possible consequences of an
attack on safety-critical applications such as automotive, industrial control, mil-
itary and health, the damage caused by an individual actor may not be limited
to a business or reputation, but could have a severe impact on public safety,
national economy, and/or national security.

Low-cost end-point IoT devices will require utmost efficiency in the use of
communication, computing, storage and energy resources. A typical IoT device is
likely to spend most of its ”life” in a sleep mode. It will get activated at periodic
intervals, transmit a small amount of data and then shut down again. To satisfy
extreme limitations of resource-constrained devices, lightweight cryptographic
methods are required. It seems also beneficial to combine coding and crypto-
graphic techniques, e.g. error detection and data integrity protection, since this
may potentially reduce bandwidth and implementation cost.

Clearly, data integrity protection can be implemented by using some n-bit
message authentication code, e.g. keyed Hash Message Authentication Code
(HMAC) [4] or Cipher Block Chaining Message Authentication Code (CBC-
MAC) [5], on the top of an error detection code, e.g. n-bit Cyclic Redundancy
Check (CRC) [6]. However, such approach expands the message by n bits and
requires a separate encoding/decoding engine which is more complex than the
CRC encoding/decoding engine. On the other hand, if we simply replace an n-
bit CRC with an n-bit HMAC or CBC-MAC, then we cannot guarantee the
detection of the same type of random errors as the CRC. For example, the de-
tection of n-bit burst errors3 cannot be guaranteed. This may have a negative
impact on the reliability of communication link. Only if we make the conven-
tional CRC cryptographically secure, we can assure a certain level of security
without sacrificing reliability.

The latter motivated the development of cryptographically secure CRC check-
sums. The core idea is to make the CRC generator polynomial variable and
secret. The CRC presented by Krawczyk [7] is based on random irreducible gen-
erator polynomials. The approach described in [8] uses a product of random
irreducible polynomials. The CRC proposed in [9] uses generator polynomials of
type (1+x)p(x), where p(x) is a random primitive polynomial. In all three cases,
testing for irreducibility or primitivity is required, which is either time or mem-
ory consuming. Selecting a random irreducible polynomial of degree n requires
either randomly selecting a polynomial of degree n (O(n) time) and running a
test for irreducibility (Ω(n3) time [10]), or randomly selecting a polynomial of

3 A burst error is an error affecting adjacent bits.
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degree n from a database of irreducible polynomials of degree n (roughly 2n/n
space).

In this paper, we propose cryptographically secure CRC based on arbitrary
random generator polynomials, with no requirements on irreducibility. We pro-
vide a detailed quantitative analysis of the achieved security as a function of
message and CRC sizes. To our best knowledge, no security analysis for the
general case of reducible polynomials has been made so far. This might be due
the fact that the evaluation involves estimating the maximum number of re-
ducible polynomials which can be constructed from any multiset of irreducible
polynomials of a given size, which is a non-trivial task.

The paper is organized as follows. Section 2 summarizes basic notation and
definitions used in the paper. Section 3 gives a background on CRC codes. Sec-
tion 4 describes previous work. In Section 5, we introduce two new families of
cryptographically secure CRC hash functions. Section 6 analyses error-detecting
capabilities of hash families. In Section 7, we present the security analysis of hash
families. Section 8 shows experimental results. Section 9 concludes the paper.

2 Preliminaries

In this section we describe properties of hash functions which are required for
the proof of the main result.

Throughout the paper, we associate each binary string L ∈ {0, 1}l represent-
ing an l-bit message with a polynomial L(x) over the Galois Field of the order
2, GF (2), so that the coefficients of L(x) correspond to the bits of L. We use
deg(L(x)) to denote the degree of the polynomial L(x).

Definition 1. [7] A family of hash functions H is ⊕-linear if, for all messages
L1 and L2 and for all h ∈ H, we have

h(L1 ⊕ L2) = h(L1)⊕ h(L2),

where ”⊕ ” is the bitwise exclusive-OR (XOR).

Definition 2. [7] A family of hash functions H is ε-balanced if, for any
non-zero l-bit message L and for any l-bit string a,

∀h ∈ H,Pr[h(L) = a] ≤ ε,

where the probability is taken over h chosen uniformly at random from the family
H.

Definition 3. [7] A family of hash functions is ε-opt-secure if, for any mes-
sage L, no adversary can generate another message L′ with a valid authentica-
tion tag with probability larger than ε when the tag is computed as h(L′) for a
randomly chosen h.
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Theorem 1. [7] A necessary and sufficient condition for a family H of hash
functions to be ε-opt-secure is that

∀L1 6= L2,∀a ∈ {0, 1}l,∀h ∈ H,Pr[h(L1)⊕ h(L2) = a] ≤ ε.

Theorem 2. [7] If H is ⊕-linear, then H is ε-opt-secure if and only if H is
ε-balanced.

3 Cyclic Redundancy Check

A Cyclic Redundancy Check (CRC) is widely used for protecting data com-
munication or storage against random errors [6]. Many wireless communication
standards use CRC. For example, IEEE 802.15.4 standard uses 16-bit CRC [11],
LTE uses 24-bit CRC [12], and GSM uses 40-bit CRC [13].

To perform n-bit CRC encoding, a message polynomial, L(x), is multiplied
by xn and then divided modulo a generator polynomial g(x) of degree n. The
coefficients of the resulting polynomial

r(x) = L(x) · xn mod g(x)

represent the check bits of the CRC. These check bits are added to L(x) · xn to
get the resulting CRC codeword L(x) · xn + r(x).

The CRC decoding is usually done by dividing the received message polyno-
mial modulo the generator polynomial g(x) and comparing the coefficients of the
resulting remainder to the received CRC check bits. A disagreement indicates
an error. It is well-known that if an irreducible generator polynomial of degree
n is used as a generator polynomial, then the resulting CRC detects all burst
errors of length n or less [14].

The CRC encoding and decoding can be efficiently implemented using a
Linear Feedback Shift Register (LFSR) [15] having g(x) as its connection poly-
nomial. There are many efficient techniques for speeding up the computation of
CRC [16].

Traditional CRCs are good at detecting random errors. However, they are not
suitable for detecting malicious errors. An adversary who knows the generator
polynomial g(x) may simply substitute the original message L(x) by another
message L′(x), encode L′(x) as usual into the codeword L′(x) · xn + r(x), where
r(x) = L′(x)·xn mod g(x), and then submit the resulting codeword. The receiver
will not be able to distinguish the codeword L′(x) ·xn + r(x) from the codeword
received from a legitimate sender.

4 Related Work

Message Authentication Codes (MACs) have also been thoroughly investigated
in the past, see Simmons for an excellent survey [17]. A message authentication
algorithm accepts as input a secret key and a message to be authenticated and
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outputs an authentication tag. The tag protects both, message data integrity
and message authenticity. It allows legitimate users, who possess the secret key,
to detect any changes in the message content.

Security of several types of MACs, including HMAC [18], CBC-MAC [5] and
XOR-MAC [19], have been quantitative analyzed.

Unconditionally secure message authentication codes were introduced by
Gilbert et al. [20] and their theoretical basis was developed by Simmons [21].

Carter and Wegman [22] were first to show that hash functions can be
combined with one-time pads to construct strong authentication algorithms.
Their approach was further developed by Brassared [23], Desmedt [24] and
Krawczyk [7].

Stinson [25] has introduced the notion of ”almost strongly universal hash fam-
ilies” which helped to considerably reduce the key size of unconditionally secure
MACs. For more details on universal hashing, see his fundamental paper [26].
Black et al. have shown that universal hash families can be applied to construct
efficient computationally secure MACs, e.g. UMAC [27]. Computationally secure
MACs are used in 3G wireless communication.

Various techniques for cryptographic checksums and MACs based on stream
ciphers have been proposed, including Lai et. al. [28], Taylor [29], Johansson [30]
and [31]. In these techniques, a new hash function from a hash family is produced
for every message by using the pseudo-random generator of a stream cipher. In
the scheme presented in this paper, as well as in the method of Krawczyk [7],
the same hash function can be re-used for multiple messages. Only the random
pad which is used for the encryption of the hash values needs to be updated for
each message.

Rabin [32] was first to use CRCs in the cryptographic context for the fin-
gerprinting of information. However, in his scheme the modular division by the
generator polynomial is applied directly to a message, without shifting the mes-
sage n bit positions left first. As a result, Rabin’s scheme is non-secure for mes-
sage authentication even if the fingerprint is encrypted using a perfect one-time
pad [7]. For example, if some of the least significant bits of the message together
with the corresponding bits of the encrypted authentication tag are flipped, the
change will not go undetected by the fingerprint.

Krawczyk [7] has proved that the inclusion of the n-bit shift into Rabin’s
scheme [32] makes the scheme secure for message authentication provided that
tag is encrypted using a one-time pad. He has shown that the probability of
breaking the resulting an authentication scheme is ε ≤ l+n

2n−1 , where n is CRC
length and l is message length.

In [8] Krawczyk’s approach has been extended to the case when a product of
k irreducible polynomials is used to generate the CRC. The collision probability

of such an authentication scheme is ε ≤ (l+n)k

2n−k .

In [9] generator polynomials of type (1 + x)p(x), where p(x) is a primitive
polynomial, are used to generate the CRC. Such CRCs are able to detect all
double-bit errors in a message, which is of importance for systems using Turbo
codes, including LTE. The collision probability in this case is ε ≤ l+n−1

2n−2 .
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Apart from CRC, other error detecting/correcting codes have also been pro-
posed for message authentication. MACs based on BCH and Reed-Solomon
error-correcting codes have been presented in [33]. Approximate MACs, intended
to tolerate a small number of errors in a message, have been introduced in [34]
and [35].

5 Two families of cryptographically secure CRC hash
functions

In this section, we define two new families of cryptographically secure CRC-based
hash functions.

Definition 4 (Family HRl,n). For any message L of binary length l and for
each polynomial g(x) of degree n over GF (2), a hash function hg(L) is defined
as the 0/1 coefficients of the polynomial

hg(L) = L(x) · xn mod g(x).

The HRl,n family consists of the set of all hash functions hg(L).

Since each polynomial of degree n over GF (2) defines one member of the
family HRl,n and there are 2n polynomials of degree n over GF (2), the size of
the family HRl,n is 2n.

The can be used for
To authenticate a message L using the hash function family HRl,n, a sender

computes the authentication tag t as described next, appends t to L, and trans-
mits the message and the appended tag. A receiver authenticates a received mes-
sage L′(x) (potentially different from L(x)) by re-computing the tag for L′(x)
and comparing the received and the re-computed tags. A disagreement implies
an error.

An authentication tag t is computed as

t = hg(L)⊕ s,

where the selection of the generator polynomial g(x) for the hash function hg(L)
and the pad s is made pseudo-randomly from the set of all possible polynomials
of degree n over GF (2) and the set of all binary n-tuples, respectively, based
on a shared secret known to sender and receiver. The shared secret can be
established, for example, by public key techniques or symmetric techniques using
the traditional methods [36].

The addition of the random pad s is required to prevent the injection of all-0
messages by an attacker. Without s, CRC of an all-0 message is 0 independently
of g(x). The reader familiar with e.g. the UIA2 MAC of the 3G standard will
recognize this type of construction. In that case, s is generated by the SNOW3G
stream cipher [37].

We also consider separately a special case of the Definition 4 when the genera-
tor polynomial has a non-zero constant term. This case is particularly interesting
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because, as we show in the next section, CRCs based on such polynomials detect
the same type of burst errors as CRCs based on irreducible polynomials.

Definition 5 (Family HRC l,n). For any binary message L of length l and for
each polynomial q(x) of degree n over GF (2) with a non-zero constant term, a
hash function hq(L) is defined as the 0/1 coefficients of the polynomial

hq(L) = L(x) · xn mod q(x).

The HRC l,n family consists of the set of all hash functions hq(L).

Since each polynomial of degree n over GF (2) with a non-zero constant term
defines one member of the family HRC l,n and there are 2n−1 polynomials of
degree n over GF (2) which have a non-zero constant term, the size of the family
HRC l,n is 2n−1.

Similarly to the family HRl,n, the authentication tag for the family HRC l,n

is computed as
t = hq(L)⊕ s,

where s is a pseudo-random pad of length n.
The computation of CRCs defined above is based on the same operation of

polynomial modular division as the traditional CRCs except that, in our case, the
generator polynomial is changed periodically to appear random to an adversary.
In general, it is sufficient to update the generator polynomial at the beginning
of each session and keep it fixed for all messages. The pad s, however, has to be
changed for each message.

The implementation of CRC encoding and decoding in hardware is very sim-
ple and efficient. The operation of polynomial modular division in GF (2) can be
realized using an n-bit LFSR with taps defined by the generator polynomial of
degree n. Since the same operation is used for traditional CRCs, there are many
references regarding the implementation, e.g. [6,38,39]. A difference is that in the
traditional CRC the generator polynomial is fixed and the LFSR implementing
the encoding/decoding usually has the taps hardwired into the circuit. A crypto-
graphic CRC requires an LFSR with re-programmable connections. Techniques
for implementing such LFSRs are known because non-cryptographic CRC im-
plementations which need to support different CRC standards with different
generator polynomials also use re-programmable LFSRs [40].

It is important to point out that restricting arbitrary polynomials to arbitrary
polynomials with non-zero constant terms does not complicate the implementa-
tion of CRC in any way. The only difference is that, for polynomials with non-zero
constant terms, the LFSR connection corresponding to the constant-one term of
the polynomial should be made fixed rather than programmable.

6 Analysis of Error-Detecting Capabilities

It is well-known that a CRC based on an irreducible generator polynomial of
degree n detect all burst errors on length n or less [14]. Next, we show that



8

a cryptographically secure CRC based on an arbitrary generator polynomial of
degree n with a non-zero constant term detects the same type of errors.

Theorem 3. A CRC based on an arbitrary generator polynomial of degree n > 1
with a non-zero constant term detects the same type of burst errors as a CRC
based on an irreducible generator polynomial of degree n.

Proof: Let L be an l-bit message and let the CRC check bits be computed
according to the Definition 5 using the generator polynomial q(x) of degree n.
Any k-bit burst error e, 0 < k ≤ n, can be described by a polynomial of type

e(x) = xj · f(x) (1)

where

f(x) = xk−i−1 + xk−i−2 + . . .+ x+ 1,

for i ∈ {0, 1, . . . , k − 1} and j ∈ {0, 1, . . . , l + i}.
The error e is not detected by the CRC if and only if e(x) is evenly divisible

by the generator polynomial q(x). Since q(x) has a non-zero constant term and
the polynomial xj in (1) does not have a non-zero constant term (except for the
case j = 0), q(x) cannot evenly divide xj . So, e(x) is evenly divisible by q(x) if
and only if f(x) is evenly divisible by q(x). However, this is not possible since
the degree of f(x) is at least by 1 smaller than the degree of q(x), n. Therefore,
a CRC based on a generator polynomial of degree n with a non-zero constant
term detects all burst errors on length n or less.

2

Theorem 3 shows that, from the point of view of correcting random burst
errors, no advantages are lost if an irreducible polynomial is replaced by an
arbitrary polynomial with a non-zero constant term.

7 Security Analysis

In this section, we analyze the security of the new families of hash functions. We
assume a typical setting in which the sender and the receiver transmit messages
over an unsecure channel where messages can be maliciously modified [36]. The
sender and the receiver share a secret key which is unknown to the adversary.

7.1 Quantifying collision probability

It is assumed that an adversary breaks the authentication if, after observing
the message L and the tag t, he/she can find L′ and t′ such that L′ 6= L and
t′ = h(L′) ⊕ s. It is also assumed that the adversary knows the family of hash
functions, but not the particular polynomial g(x) and the pad s which are used
to generate the authentication tag t.
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In order to quantify the probability that an adversary can succeed to break
the authentication based on the hash functions family HRl,n, we first introduce
some definitions.

Let P be a multiset of irreducible polynomials over GF (2). In a multiset, the
same element may repeat more than once. By mult(p) we denote the number of
occurrences of a polynomial p in P . By size(P ) we denote be the sum of degrees
of all elements of P . For example, for P = {x, x, x+ 1, x2 + x+ 1}, size(P ) = 5.

Let N(n;P ) denote the number of distinct polynomials of degree n which can
be constructed from the elements of P . N(0;P ) is defined to be 1 for any P . Since
each polynomial has a unique factorization into irreducible polynomials, N(n;P )
can be computed by counting the number of distinct combinations of elements
of P whose degrees sum up to n. We return to this problem in Section 7.2.

For a given n, let Pmax be a multiset of irreducible polynomials such that

N(n;Pmax) ≥ N(n;P )

for any other multiset P with size(P ) = size(Pmax).

The following Theorem quantifies the probability that an adversary can suc-
ceed to break the authentication based on the hash functions family HRl,n.

Theorem 4. For any values of n and l, the family of hash functions HRl,n is
ε1-opt-secure for

ε1 ≤
N(n;Pmax)

2n
, (2)

where size(Pmax) = n+ l.

Proof: A family of hash functions is ε-opt-secure if it is ⊕-linear and ε-balanced.
The family of hash functions HRl,n is ⊕-linear because for all messages L1 and
L2 and for all hg ∈ HRl,n, we have hg(L1 ⊕ L2) = hg(L1)⊕ h(L2).

To show that the family HRl,n is also ε-balanced, we observe that, on one
hand, for any polynomial g(x) of degree n over GF(2), any non-zero message L of
length l and any string a of length n, hg(L) = a if and only if L(x)·xn mod g(x) =
a(x). On the other hand, L(x) · xn mod g(x) = a(x) if and only if g(x) divides
L(x) · xn − a(x).

Let f(x) = L(x) · xn − a(x). Obviously, f(x) is a non-zero polynomial of
degree less than or equal to l + n, and g(x) is a polynomial of degree n which
divides f(x). On one hand, there are at most N(n;Pmax) hash functions in the
family HRl,n that map L into a, because N(n;Pmax) is the maximum number of
distinct polynomials of degree n which can be constructed from the irreducible
factors of any polynomial of degree n+ l. On the other hand, the family HRl,n

consists of 2n elements (the number of polynomials of degree n over GF(2)).
Therefore

Pr[hg(L) = a] ≤ N(n;Pmax)

2n
.

2
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In a similar way we can quantify the probability that an adversary can suc-
ceed to break the authentication based on the hash functions family HRC l,n.

Let P ∗ be a multiset of irreducible polynomials with a non-zero constant term
over GF (2). For a given n, let P ∗max be a multiset of irreducible polynomials with
a non-zero constant term such that

N(n;P ∗max) ≥ N(n;P ∗)

for any other multiset P ∗ with size(P ∗) = size(P ∗max).

Theorem 5. For any values of n and l, the family of hash functions HRC l,n is
ε2-opt-secure for

ε2 ≤
N(n;P ∗max)

2n−1
, (3)

where size(P ∗max) = n+ l.

Proof: Similar to the proof of Theorem 4.
In the following sections, we show how to computeN(n;Pmax) andN(n;P ∗max).

7.2 Number of polynomials which can be constructed from a given
set of irreducible polynomials

Let Ii be the number of distinct irreducible polynomials of degree i over GF (2).
It is well-known how to compute Ii [41].

Let pi,j be jth irreducible polynomial of degree i, for all j ∈ {1, 2, ...., Ii}.
Note that for our purpose we only need to enumerate all irreducible polynomials
of a given degree. The order in which they are assigned the index j does not
matter. So, whether we assign p1,1 = x and p1,2 = x + 1 or vice versa does not
change the presented results.

As we mentioned in the previous section, for a given n and a given multiset
of irreducible polynomials P , the number of distinct polynomials of degree n
which can be constructed from the elements of P , N(n;P ), can be computed by
counting the number of distinct combinations of elements of P whose degrees
sum up to n.

As an example, consider a multiset P with contains five copies of the poly-
nomial p1,1 = x, five copies of the polynomial p1,2 = x+ 1 and two copies of the
polynomial p2,1 = x2+x+1. Let n = 5. Then, the following set of 12 polynomials
can be constructed from the elements of P :

x5, x4(x+ 1), x3(x+ 1)2, x2(x+ 1)3, x(x+ 1)4, (x+ 1)5

x3(x2 + x+ 1), x2(x+ 1)(x2 + x+ 1), x(x+ 1)2(x2 + x+ 1), (x+ 1)3(x2 + x+ 1)
x(x2 + x+ 1)2, (x+ 1)(x2 + x+ 1)2.

So, N(5;P ) = 12.
Next, we show that N(n;P ) can be computed using a recurrence relation

given by the following Lemma. Let deg(p) denote the degree of a polynomial
p. It is obvious that elements p with mult(p) > b n

deg(p)c do not contribute to

the new polynomials of degree n. For this reason the index m in the Lemma is
limited by b n

deg(p)c.
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Lemma 1. For any multiset of irreducible polynomials P , any irreducible poly-
nomial p 6∈ P of degree deg(p) ≤ n, and any m such that 1 ≤ m ≤ b n

deg(p)c, it

holds that

N(n;P ∪ {pm}) =

m∑
i=0

N(n− i · deg(p);P ),

where {pm} denotes a multiset containing m elements p.

Proof: By induction on m.
1. Base case: m = 1. We need to prove that

N(n;P ∪ {p}) = N(n;P ) +N(n− deg(p);P ).

By subtracting N(n;P ) from both sides we get

N(n;P ∪ {p})−N(n;P ) = N(n− deg(p);P ).

The left-hand side is the difference between the number of distinct polynomials
of degree n which can be constructed from the elements of P ∪ {p} and the
number of distinct polynomials of degree n which can be constructed from the
elements of P . This difference is equal to the number of distinct polynomials of
degree n which contain p as a factor with the multiplicity exactly one. Removing
factor p from each of such polynomials yield all possible distinct polynomials of
degree n − deg(p) which can be constructed from the elements of P , i.e. the
right-hand side N(n− deg(p);P ).
2. Inductive step: Assume the statement holds for m. Next we prove that it
holds for m+ 1, i.e. that

N(n;P ∪ {pm+1}) =

m+1∑
i=0

N(n− i · deg(p);P )

= N(n;P ∪ {pm}) +N(n− (m+ 1) · deg(p);P )

where 1 ≤ m+ 1 ≤ b n
deg(p)c.

By subtracting N(n;P ∪ {pm}) from both sides we get

N(n;P ∪ {pm+1})−N(n;P ∪ {pm}) = N(n− (m+ 1) · deg(p);P ).

The left-hand side is the difference between the number of distinct polynomials
of degree n which can be constructed from the elements of P ∪ {pm+1} and the
number of distinct polynomials of degree n which can be constructed from the
elements of P ∪ {pm}. The former accounts for factorizations which contain p
with multiplicity from 0 to mult(p)+1. The latter accounts for all factorizations
which contain p with multiplicity from 0 to mult(p). Therefore, the difference
is equal to the number of distinct polynomials of degree n which contain p as a
factor with the multiplicity exactly mult(p) + 1. Removing the factor p with the
multiplicity mult(p) + 1 from each of such polynomials yield all possible distinct
polynomials of degree n− (mult(p) + 1) · deg(p) which can be constructed from
the elements of P , i.e. the right-hand side N(n− (mult(p) + 1) · deg(p);P ).



12

2

Next, we derive a general formula for N(n;P ). In the derivations below we
denote by Pd a multiset of irreducible polynomials in which the maximum degree
of elements is d. To unify the notation, we allow multiplicity of elements of
P to be 0. In this way, any Pd can be uniquely represented by the vector of
multiplicities of its elements

(m1,1, . . . ,m1,I1 ,m2,1, . . . ,m2,I2 , . . . ,md,1, . . . ,md,Id),

where mi,j = mult(pi,j) for all i ∈ {1, 2, . . . , d} and j ∈ {1, 2, ...., Ii}.
There are two irreducible polynomials of degree 1. It is easy to see that

N(n;P1) =

{
min(m1,1, n) +min(m1,2, n)− n+ 1, if m1,1 +m1,2 ≥ n
0, otherwise

There is only one irreducible polynomial of degree 2. From Lemma 1, we can
conclude that

N(n;P2) = N(n;P1)+N(n−2;P1)+N(n−4;P1)+. . .+N(n−2·min(m2,1, b
n

2
c);P1)

or

N(n;P2) =

min(m2,1,bn2 c)∑
i2,1=0

N(n− 2i2,1;P1)

It is straightforward to extend the derivations above to the following result.

Theorem 6. For d = 1

N(n;P1) =

{
min(m1,1, n) +min(m1,2, n)− n+ 1, if m1,1 +m1,2 ≥ n
0, otherwise

and for d > 1

N(n;Pd) =

Ad,1∑
id,1=0

Ad,2∑
id,2=0

. . .

Ad,Id∑
id,Id=0

. . .

A2,1∑
i2,1=0

N(n−
d∑

h=2

Ih∑
j=1

ih,j ;P1) (4)

where
Ad,1 = min(bnd c,md,1)

Ad,2 = min(bn−d·id,1d c,md,2)
. . .

Ad,Id = min(b

n−d

Id−1∑
j=1

id,j

d c,md,Id)

. . .

A2,1 = min(bn−S(d:3)2 c,m2,1);
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where S(d : i) =

d∑
r=i

r · Ir∑
j=1

ir,j

.

All the results derived above also apply to the case of P ∗ being a multiset of
irreducible polynomials with non-zero constant term except that, in Theorem 6,
N(n;P ∗1 ) reduces to

N(n;P ∗1 ) =

{
1, if m1,2 ≥ n
0, otherwise.

7.3 Computing maximum N(n;P )

Theorem 6 shows us how to compute N(n;P ) for a given n and P . However,
we do not know how to select a multiset of irreducible polynomials P which
maximizes N(n;P ) for a given n and size(P ), i.e. how to get Pmax. In this
section we derive some properties of Pmax which help us to compute it.

Property 1. For any n > 0, there exist Pmax such that an irreducible polynomial
pi with deg(pi) = i is contained in Pmax only if each irreducible polynomial pj
with deg(pj) = j, 1 ≤ j < i, is contained in Pmax at least once.

Proof: Suppose that pi ∈ Pmax and pj 6∈ Pmax fore some j < i. Then we can
replace Pmax by P ′ such that

P ′ = (Pmax − {pi}mult(pi)) ∪ {pj}mult(pi) ∪ {pi−j}mult(pi)

where pi−j is any irreducible polynomial of degree i− j. Obviously, size(P ′) =
size(Pmax). Furthermore, for any polynomial of degree n constructed from the
elements of Pmax which contains pki as a factor, we can replace pki by pkj · pki−j ,
for any 1 ≤ k ≤ mult(pi). Since pkj 6∈ Pmax, this implies that N(n;P ′) ≥
N(n;Pmax).

2

For Pmax satisfying the condition of Property 1, we can derive a rough upper
bound on the maximum degree of polynomials contained in Pmax by computing
the smallest integer d satisfying

size(Pmax) ≤ I1 + 2I2 + 3I3 + . . .+ dId. (5)

We can reduce the search space for Pmax by first deriving an upper bound
on d using (5) and then removing from the consideration multisets P in which
do not satisfying the condition of Property 1. We also can take into account that
the order of elements of the same degree in a multiset does not matter.

Property 2. For any two multisets P and P ′ with size(P ) = size(P ′) which
are equivalent up to a permutation of elements of the same degree, N(n;P ) =
N(n;P ′).
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As an example, suppose that n = 2 and size(P ) = 4. From 4 ≤ 2 + 2 · 1 we
get d = 2. There are four possible candidates into Pmax defined by the following
vectors of multiplicities (m1,1,m1,2,m2,1):

(2, 2, 0), (2, 0, 1), (0, 2, 1), (1, 1, 1).

Recall that elements p with mult(p) > b n
deg(p)c do not contribute to new con-

structions of polynomials of degree n, therefore vectors (4,0,0), (0,4,0), (3,1,0),
(1,3,0), and (0,0,2) are not included in the list.

By applying Properties 1 and 2, we can reduce the set of candidates into
Pmax to two:

(2, 2, 0), (1, 1, 1).

Now by using Theorem 6 we can compute N(2;P1) = 3 for P1 = {p1,1, p1,1, p1,2,
p1,2} and N(2;P2) = 2 for P2 = {p1,1, p1,2, p2,1}. We can see that Pmax = P1.

Finally, in order to compute N(n;P ) for large n and size(P ), Lemma 1 can
be used to decompose the problem into two smaller sub-problems. The decom-
position can be recursively applied until the problem size is sufficiently reduced.

8 Experimental results

Using the approach described above, we computed N(n;Pmax) and N(n; P ∗max)
for CRC lengths n = 16, 32, 48 and 64 bits and message lengths l = 16, 32, 64, 128
and 256 bits. The resulting upper bounds ε1 and ε2 on collision probabilities,
computed using equations (2) and (3), are shown in Table 1 in the logarithmic
form − log2(εi). The 7th column shows the upper bound ε3 on collision proba-
bility of the cryptographically secure CRC of Krawczyk [7]. Columns 4, 6 and

8 show the fraction − log2(εi)
n reflecting the efficiency of εi with respect to the

optimum collision probability 1/2n, for i ∈ {1, 2, 3}.
We can see from the table that the case of polynomials with a non-zero

constant terms (column 5) has a smaller collision probability compared to the
case of arbitrary polynomials (column 3). For example, for n = 32 and m = 256,
ε2 = 1/29.65 while ε1 = 1/28.96, so ε2 < ε1. Since the former case is also preferable
from the point of view of correcting random burst errors (see Theorem 3), the
family HRC l,n seems more useful than the family HRl,n.

We can also see that the presented method is particularly suitable for the au-
thentication of short messages. As the message size grows, its the collision prob-
ability grows much sharper compared to the collision probability of Krawczyk’s
CRC [7]. Short messages (a few bytes to a few tens of bytes) are expected to
be dominant in IoT applications. Since the presented method provides some
level of protection almost for free, it method might be quite useful for low-cost
resource-constrained IoT devices which can allocate very limited resources for
implementing security.

In the current standard message formats, two separate fields are used for the
protection against random and malicious errors. These fields may be located on
different layers, e.g. CRC can be at the media access control layer while message
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CRC Message Collision probability for different generator polynomials
length length Arbitrary With non-0 const. Irreducible [7]

n, bits l, bits − log2(ε1) − log2(ε1)

n
− log2(ε2) − log2(ε2)

n
− log2(ε3) − log2(ε3)

n

16 16 7.91 0.49 8.54 0.53 10.00 0.63
16 32 6.06 0.38 6.66 0.42 9.42 0.59
16 64 4.62 0.29 4.83 0.30 8.68 0.54
16 128 3.08 0.19 3.55 0.22 7.83 0.49
16 256 2.20 0.14 2.58 0.16 6.91 0.43

32 16 22.06 0.69 22.66 0.71 25.42 0.79
32 32 18.16 0.57 18.82 0.59 25.00 0.78
32 64 14.53 0.45 15.33 0.48 24.42 0.76
32 128 11.46 0.36 12.23 0.38 23.68 0.74
32 256 8.96 0.28 9.65 0.30 22.83 0.71

48 16 36.95 0.77 37.45 0.78 41.00 0.85
48 32 31.90 0.66 32.74 0.68 40.68 0.85
48 64 26.70 0.56 27.56 0.57 40.19 0.84
48 128 21.97 0.46 22.87 0.48 39.54 0.82
48 256 17.84 0.37 18.71 0.39 38.75 0.81

64 16 52.28 0.82 52.83 0.83 56.68 0.89
64 32 46.53 0.73 47.33 0.74 56.42 0.88
64 64 39.82 0.62 40.77 0.64 56.00 0.88
64 128 33.65 0.53 34.62 0.54 55.42 0.87
64 256 27.95 0.44 28.98 0.45 54.68 0.85

Table 1. Comparison of collision probabilities for three types of CRC generator poly-
nomials: (1) an arbitrary polynomial (column 3), (2) a polynomial with a non-zero
constant term (column 5), (3) an irreducible polynomial (column 7).
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authentication code can be at the application layer. A good strategy might be
to combine these two fields into one at the media access control layer and use
the presented method for the protection against both types of errors.

9 Conclusion

In this paper, we introduced two new families of cryptographically secure hash
functions based on CRCs. Similarly to previously proposed cryptographically
secure CRC-based hash families, the presented ones enable combining the detec-
tion of random and malicious errors without increasing bandwidth. They detect
the same type of burst errors as cryptographically non-secure CRCs based on
irreducible generator polynomials. They retain most of the encoding and decod-
ing implementation simplicity of cryptographically non-secure CRCs except that
the LFSR implementing the division modulo generator polynomial needs to have
programmable feedback connections.

The main advantage of the proposed CRCs is that the irreducibility testing,
which is either time or memory consuming, can be omitted. It takes only O(n)
time to generate a random polynomial of degree n. In contract, its takes Ω(n3)
time to generate a random irreducible polynomial of degree n.

However, using arbitrary polynomials as generator polynomials for the CRC
gives an adversary a higher chance of braking authentication. We provide a
detailed quantitative analysis of the achieved security as a function of message
and CRC sizes and show that the presented authentication scheme might be
useful for low-cost resource-constrained devices.
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