
Weak Ideal Functionalities for Designing Random Oracles with

Applications to Fugue

Shai Halevi William E. Hall Charanjit S. Jutla Arnab Roy∗

IBM T.J. Watson Research Center

Abstract

We define ideal functionalities that are weaker than ideal functionalities traditionally used
in realizing variable input length (VIL) random oracles (RO) in the indifferentiability or
universal-Composability (UC) model. We also show realization of VIL-RO using these weaker
ideal functionalities, with applications to proving Fugue and CubeHash hash functions to be
VIL-RO. We argue that components of Fugue realize this weaker ideal functionality using tech-
niques employed in proving resistance of Fugue to differential collision-attacks. This should
be contrasted with other hash functions that are proven VIL-RO assuming the components
are extremely ideal, e.g. random permutations.

1 Introduction

Fugue is a variable input length (VIL) hash function which maps arbitrary length input messages
to a fixed length output, e.g. 256-bit [7]. As opposed to traditional designs Fugue has “light-
weight” input rounds, which cannot be claimed to be random permutations or ideal ciphers. This
approach was first embodied in the hash function Grindahl.

The main idea behind this design approach is that hash functions (as opposed to block ci-
phers) do not have an inversion oracle; or in other words, in the security definition of a hash
function the adversary does not have access to an inversion oracle, and hence it can potentially
be securely realized by fixed input length (FIL) components that themselves do not give adver-
sarial access to any inversion oracles. If one tries to build hash functions using FIL components
which are required to be secure with adversarial access to inversion oracles, one may not get an
optimal speed/security trade-off. Fugue capitalizes on this observation, along with many other
such practical issues regarding full security of a hash function, and focuses instead on proving
the full (VIL) hash function to be resistant to known cryptanalytic techniques like differential
attacks, and linear cryptanalysis. For collision resistance, Fugue is actually proven to be resistant

∗Now at Fujitsu Labs of America.

1

to differential attacks under very reasonable assumptions (rather than very ideal assumptions
about FIL components).

In this paper, we formalize this intuition, and show that one can build variable input length
(VIL) hash functions, which are indifferentiable [8] from VIL Random Oracles (VIL-RO), from
ideal functionalities that do not have inversion oracles. Currently, this ideal functionality is
itself a VIL functionality, but in a forthcoming work, we will show how to do this with a FIL
ideal functionality. Normally, this would not be a difficult task as traditionally these FIL ideal
functionalities are assumed to be ideal to the extreme (e.g. a random permutation on 128 bits,
or a random oracle on 128-bits, or an ideal cipher on 128 bits). But, we want to make these
component ideal functionalities as weak as possible, so that one can actually argue that Fugue’s
(or some other hash function’s) components actually realize these ideal properties. Thus, we
will also argue that given the concrete proofs of security already given for Fugue (e.g. collision
resistance to differential attacks), one can say with high confidence that Fugue’s components
realize the component idealized functionality.

So, coming back to the formalization, one may wonder that since it is obvious that from a
VIL collision resistant functionality and a FIL-RO one can realize a VIL-RO, then what is new to
prove here. As mentioned earlier, we would like not to assume something strong like a FIL-RO.
Given the focus of Fugue to avoid un-necessarily trying to defend against internal properties that
are not needed in the full realization of a secure VIL-RO, one needs to take a different approach
to proving Fugue to be VIL-RO. For example, no adversary has access to the final transformation
by itself; the only access it has is via the input rounds, i.e. the only input that can be supplied
to the final transformation is what the adversary can produce from the input rounds. To capture
this intuition, we do not define two different ideal functionalities, but just one ideal functionality
with its public interface having two functions one for the input rounds, and one for the final
transformation. But, they have a shared storage.

The next step is to let the two functions not necessarily split into just input rounds and final
transformation, but the final transformation may be required to have a few input rounds as well
(unless the input itself is tiny).

So, the overall approach in the rest of the paper is going to be as follows.

1. First an ideal functionality I is defined.

2. Next, in the I-hybrid model a real-world realization called Hash of VIL-RO is given, i.e.
Hash employing I is shown indifferentiable [6] from VIL-RO.

3. A functionality Fugue-I is defined which has the same interface as I but which is imple-
mented using Fugue’s components, e.g. Fugue’s input round R and final transformation G.
It is shown that Hash using Fugue-I is exactly the same as actual full Fugue.

4. It is argued using already known proofs about Fugue’s collision resistance (and partial
collision resistance) that it is extremely realistic to assume that Fugue-I realizes I. This
is to be contrasted with the approach most hash function designs take where they assume

2

that their component realizes a strong ideal functionality such as ideal cipher or random
permutation based only on heuristic bounds/analysis of differential attacks.

5. Finally, assuming the previous point, it follows from the UC Composition Theorem [5], or
the composition theorem based on indifferentiability ([8]), that Fugue realizes VIL-RO.

1.1 Alternative Approach using One-way Functions

The above formulation of a weak ideal functionality implicitly assumes that there are no pre-image
attacks, because it requires that the final transformation be fed with states which are produced by
the input stage acting on some adversarially chosen message. If pre-image attacks were possible,
then an adversary can always come up with an input message to achieve the required intermediate
state, and hence it may not be possible to realize such an ideal functionality. Of course, pre-image
attacks are usually not possible to achieve (and in fact most broken hash functions still tend to
resist pre-image attacks), and that is usually the weak assumption that most hash functions make.

However, it may be interesting to base the security of a hash function on an even weaker
assumption, which is the one-way function assumption. One-way function assumption is weaker
than the pre-image assumption in that in the former the adversary must find an inverse on a
random hash value (to be precise, in case of one-way permutations; but for treatment in this
paper we will work with this definition even for one-way functions), as opposed to in the latter
where an adversary may just need to show an inverse on some distribution of the hash value.

However, there are two difficulties here. First is a formulation problem, as it is difficult to
define a stand alone ideal functionality for one-way functions. Thus, as before we must define
a novel composite functionality. Second is a design in-efficiency, as this composite functionality
would require a stronger ideal functionality for the final transformation part, i.e. that the final
transformation be a random permutation by itself (i.e. without stealing some input rounds as is
done in the case of Fugue, where one could do this as it came with a proof of improbability of
obtaining partial collisions – in other words, even though Fugue’s final transformation is not an
ideal random permutation, it can still be proven secure in the model described in the Introduction).

This approach is described in detail in Section 6, and maybe applicable to designs such as
CubeHash [2].

1.2 Related Work

. This work in this exact form was first submitted to the NIST SHA-3 website in 2010. Since
that time, there have been other works, in particular due to Andreeva et al [1] and Bhattacharyya
and Mandal [4], showing that Fugue can be seen as a variant sponge design [3]. However, these
works [1, 4] continue to assume that the components have strong ideal functionalities.

3

2 Ideal Functionality I for Fugue-like designs

.

The ideal functionality I has two public functions: I-prefix and I-final. It also has two
tables pstore and cstore. The store pstore has entries of the kind 〈m, |m|, t〉, where t is
supposedly a 960-bit internal state, and m is supposedly a prefix of a message. The store cstore
has entries of the kind 〈t,prefix-len,m, r〉, where as before t is a 960-bit internal state supposedly
obtained by running the input rounds on a prefix of a message of prefix length “prefix-len”, and
when this state is continued on with a suffix m, the final 256-bit returned is supposedly r.

Some of the arguments to I-prefix and I-final are optional, and when not supplied are
represented by ’*’.

Here is the definition of I-prefix. It takes two arguments, (i) a message m of arbitrary length
(in words) but say, bounded by 2128, and (ii) a value t-fake for the intermediate state, say 960-bits.

On input m and t-fake, I-prefix computes and returns the following:

• If m is in pstore, then return the intermediate state associated with m. Else,

– If t-fake is already the intermediate state of some entry in pstore, then return ⊥.
Else,

– if t-fake is not supplied, let t be a random 960-bit value, otherwise let t be t-fake. If t
is already the intermediate state of some entry in pstore, then abort, and return ⊥.
Else, insert entry 〈m, |m|, t〉 in pstore. Return t.

Here is the definition of I-final. It takes four arguments, (i) a message m of length 8 or fewer
words, purportedly the suffix of the actual full message, (ii) a prefix-len, supposedly the length of
the prefix of the actual full message, (iii) a 960-bit intermediate state t, and (iv) a 256-bit value
r-fake.

Here is how I-final computes. There are two main cases: if the prefix-len is zero and if the
prefix-len is not zero. So, lets first see how I-final computes if prefix-len is zero.

• If |m| ≥ 8, return ⊥. Else,

– If 〈0, 0,m, r〉 is in cstore for some value r, then return r. Else,

– Set r to a random 256-bit value. Insert 〈0, 0,m, r〉 in cstore. Return r.

Now, let’s see how I-final computes if prefix-len is not-zero.

• If |m| 6= 8, return ⊥. Else,

– If 〈p, |p|, t〉 is in pstore for some message p, then

∗ if 〈t,prefix-len,m, r〉 is in cstore for some r, then return r, else

∗ choose a 256-bit r at random, insert 〈t,prefix-len,m, r〉 in cstore, and return r.

– Else, insert 〈t,prefix-len,m, r-fake〉 in cstore.

4

3 Realizing VIL-RO using I

For any message P of arbitrary bit length, let Hash(P) be computed as follows. First let, m be
defined by first extending P with zero bits to a word boundary, and then appending it with two
words of length of P in bits. Next,

• If |m| < 8, return I-final(m,0,*,*). Else,

• letm = m′||m′′, where |m′′| == 8. Let t= I-prefix(m′, *). If t 6= ⊥, return I-final(m′′, |m′|, t, ∗),
else return ⊥.

The ideal functionality VIL-RO is straightforward. It has a public interface with one function
RO(m), for any message m of arbitrary length. VIL-RO has a store, in which it keeps pairs of
the kind 〈m, r〉, where m are arbitrary length messages and r are 256-bit values. On any query
RO(m), it first checks if m is already in its store, and if so, it just returns the associated r.
Otherwise, it generates a fresh random 256-bit value r, inserts 〈m, r〉 in the store and returns r.

Theorem 3.1 The function Hash above using ideal functionality I is indifferentiable from VIL-

RO.

Proof : We will show that there exists a simulator S, such that no adversary making q calls
can distinguish between HashI and S[VIL-RO], with probability greater than 2−960 · q2. The
simulator S is actually a dummy, and just passes the values directly to VIL-RO.

If the adversary calls the two scenarios with a message P of length less than 6 words, then Hash
calls I-final(m, 0, ∗, ∗), where m is P appended with two words of count. Note that I-final
returns a fresh random value (unless m was called before). Similarly, in this case, S just passes
through the input and output, and the returned value is random.

If the adversary calls the two scenarios with a message P of length greater than or equal to
6, note that the padding scheme of Hash would result in a m of length 8 or greater. In this case
m = m′||m′′. First, I-prefix is called with m′ and *, which results in 〈m′, |m′|, t〉 value being
stored in pstore, where t is a random 960-bit value. There is a probability of q2 · 2−960, that ⊥
was returned, as when the random t collides with an earlier t. If ⊥ is not returned, then I-final
is called with m′′ and t, which then returns a 256-bit random value r. Thus, the only discrepancy
comes from t colliding. �

4 Defining functionality Fugue-I using Fugue’s components

First, let’s define Fugue-I-prefix, which takes two arguments m and t-fake. Set the initial 960-bit
state to the IV prescribed by Fugue. Iterate Fugue’s input round R on m, word by word. Return
the resulting 960-bit internal state. The argument t-fake is ignored.

5

Now, let’s see how Fugue-I-final is defined, which takes four arguments: m, prefix-len, 960-bit
s, and 256-bit r-fake. Again, r-fake is ignored.

• If prefix-len is zero, and |m| ≥ 8, then return ⊥.
If prefix-len is zero, and |m| < 8, then set s to the prescribed Fugue IV. Iterate Fugue’s
input round R on state s with input m, and then apply the final Fugue transformation G

to the resulting state, and return the 256-bit output.

• Else, (i.e. if prefix-len is not zero) if |m| 6= 8, return ⊥. Otherwise, set state to s, and
iterate Fugue’s input round R on input m (word by word), followed by the final Fugue
transformation G, and return the final 256 bits.

It is easy to see that Hash defined in the previous section when using Fugue-I computes exactly
the same function as Fugue-256. Note that Fugue-I itself does not perform any padding. The
padding is done by function Hash. Thus, a more precise description above would be to say that
F-256 is used in the above formalization of both Fugue-I-final and Fugue-I-prefix.

5 Arguing Fugue-I is indifferentiable from I

In the indifferentiability paradigm [8], an adversary (or Environment) is given access to two
public functionalities, an ideal public functionality, say I, and a real-world public functionality,
say Fugue-I . The ideal functionality I is indifferentiable from Fugue-I if there is a simulator S

such that any adversary A cannot differentiate between Fugue-I and S[I] (i.e. S sits between
adversary and I). We will conjecture that it takes time close to 2128 Fugue-256 evaluations to
differentiate between the two with high probability.

The simulator S works as follows. It saves the history of all the calls the adversary makes. On
calls of the kind I-prefix (and Fugue-I-prefix), the simulator actually calls real Fugue, and
whatever real Fugue returns, it passes that as t-fake. Thus, the behavior will be same on both
sides unless real Fugue returns a collision with a previous intermediate state. Next, on calls to
I-final (and Fugue-I-final), if the Simulator determines that the call is with a state s which
was not legitimate, i.e. not returned earlier by some call to I-prefix, it calls real Fugue with
that internal state and message to get a 256-bit value, and it then passes that as r-fake. Thus
again, the simulation is perfect.

Thus, there are are two ways that the adversary may notice a difference

• when the functionalities return ⊥,

• when I returns random and independent values.

When for “syntactic” reasons the functionalities return ⊥, the simulation is perfect, so the only
difference could be when in I-prefix the functionality I determines that t-fake is already the
intermediate state of some entry in pstore, and it returns ⊥. This can happen if the Simulator

6

S called real Fugue, and it returned a collision (i.e. same intermediate internal state) for two
different messages. However, in the Fugue document [7] it is proven that internal collisions are
improbable to achieve with differential attacks (i.e. prob < 2−128), and hence it is a reasonable

assumption, that no internal collisions can be obtained by adversary in time less than 2128.

As for returning random and independent values, the only places that I returns random 256-bit
values are when

• prefix-len not zero, and |m| == 8, and 〈p, |p|, t〉 is in pstore for some message prefix p and
the supplied internal state t,

• prefix-len is zero, and |m| < 8.

For the second case, the claim is that the outputs for messages of length less than 8, and
starting from the Fugue IV, are random and (jointly) independent of all other outputs. For there
to be any dependence, these short messages either have to obtain a collision or a partial collision
after one round of G1. However, it is shown that both these cases are improbable with differential
attacks, and hence it is reasonable to assume that final round stage G2 outputs are random and
independent.

For the first case, since we already assumed there are no internal collisions, the further claim
is that if Fugue actually returned an internal state t on some prefix message p starting from a
valid Fugue IV, then for all m of length 8 extending this message p (and state) the returned value
is random and independent.

Now, if we have two prefixes (of messages) p1 and p2 with resulting internal states t1 and
t2, (D = t1 ⊕ t2 6= 0), then the Fugue document proves that even partial collisions within the
final round G1 are improbable, and hence it is reasonable to assume that final round G2 leads
to random and independent behavior. Note here that the adversary must know a message prefix
p1 which starting from the Fugue IV leads to an intermediate state t1, and similarly for p2 and
t2. One way to achieve this is to launch a forward differential attack, but such attacks are shown
improbable. The other possibility is to do a pre-image attack, but that is usually considered to
be even more difficult, and is usually taken as a weak assumption.

If p1 and state t is itself extended by two different m1 and m2, then this case is similar to
starting from initial IV, hence again it is reasonable to assume that the output values are random
and independent.

6 Composite Functionality VIL-CROW with FIL-RP yields VIL-

RO

In this section, we define a composite functionality using a variable input length function modeling
collision resistant one-way functions (VIL-CROW), and a fixed input length random permutation
(FIL-RP). We then show that VIL-RO (section 3) can be realized using this composite function-
ality.

7

Before we get into formalizing this, we remark that the indifferentiability result of Bertoni et
al [3] about Sponge constructions claims that if all input rounds are random permutations, and
the final round is a random permutation, and the input rounds do not yield internal collisions
then one can realize a VIL-RO from these functionalities.

The claim here is stronger, as it requires the input round (though admittedly as a monolithic
variable input length entity) to be just collision resistant and one-way. These are much easier to
attain (or even prove under reasonable assumptions) than proving each input round to be random
(which can come at the cost of relinquishing efficiency).

The random Oracle (RO) ideal functionality keeps a store T , as described in section 3.

A collision-resistant compression function (VIL-CR) ideal functionality keeps a store T as well,
which is a table of entries, each a pair consisting of arbitrary length messages and (say) a 1024-bit
intermediate state. On any input m of arbitrary length, it first checks to see if 〈m, s〉 is in T , and
if so it returns s. Otherwise, it calls the adversary with the input m, who returns a value s-fake.
If s-fake is equal to any other s (i.e. second component of any entry) in T , the functionality picks
a random value s′, stores 〈m, s′〉 in T and returns s′. Otherwise, it stores 〈m, s-fake〉 in T and
returns s-fake.

The one-way function ideal functionality is tricky, as the usually understood definition is that
on a randomly chosen output value, no adversary can come up with an input which would yield
that value. Defining ideal functionality with this ”randomly chosen” notion requires a composite
functionality.

As a warm-up exercise, we first define the following ideal functionality called (VIL-OW-FIL-
RO) where it displays two functions in its interface. The first function is called ”Generate Ran-
dom”, and the second is called ”Generate Oneway”. The functionality maintains two stores: R

and T .

• On the first function (Generate Random) invocation, on input m of length only 1024 bit or
less, it behaves like a FIL-RO, that is returns a random value s of 1024-bits on new inputs,
and saves 〈m, s〉 in R, .

• On the second function (Generate Oneway) invocation, on input m of variable input length,
it calls the adversary and let’s the adversary decide the output as long as it is not in table
R. To be more precise, on input m, the functionality first checks to see if m is in store
T , and if so returns the associated value. Otherwise, it calls the adversary with m who
returns a 1024-bit value s-fake. If s-fake is the second component of any entry in R, then
the functionality sets a temporary variable s to a new random 1024-bit value (i.e. ignore
s-fake), otherwise s is set to s-fake. Next, it records 〈m, s〉 in T , and returns s.

Thus, the first function is just a FIL-RO, and the second is linked with the first, and thats how
it models a one-way function. Essentially, in the oneway function security game, the adversary is
given a random value and is asked to invert it. Since that random value must have come from
some random oracle, we built it into the functionality.

8

Now we are ready to define the ideal functionality VIL-CROW-FIL-RP. This has three func-
tions called invert-final, input-sponge, and finalize. It also has three tables, S, R, and O.

• Invert-final: on the first type of input x of length only 1024-bit or less it behaves like a
FIL-RO but this time generates 1024 bit random value s (s for internal state) and saves it
as R[x] = s, as well as O[s] =x...this models the inversion function of the final round random
permutation.

• finalize: a finalize function takes 1024-bit input s (s for internal state), and ignores the input
if s was not set as internal state before, i.e. it is not in table S. Else, if O[s] is defined it
outputs that, else it picks a new 1024-bit random value x and outputs that. It saves O[s] =
x, as well as R[x] =s.

• input-sponge: on the third type of input m of variable input length, it calls the adversary
and lets it decide a 1024-bit value s-fake (for internal state), as long as it is not already in S
or in R. If it is not (i.e. not in either of S or R), it saves S[m]=s-fake, otherwise it sets S[m]
to a random new value. It then outputs S[m]. This makes it model both collision resistance
and oneway-ness.

Now, it is easy to see that this is a random oracle when calls are made as follows: With input
P, call input-sponge which returns, say s. Then call finalize with s, and get back r.

It is easy to see that this is a VIL-RO: On the first call adversary gets to set s, but it can
never be set to something it set before as internal state (collision resistance) nor to some value
one obtained by calling invert-final (onewayness). Now, before it calls finalize on s, an adversary
can make several invert-final queries, but those will be random and unrelated to s with high
probability. When the finalize call is made on s, it will not be in S or R with high probability,
and hence a random value will be output.

Finally, for a real-world hash function, say CubeHash, one needs to show that one can define a
real-world functionality with the above interface such that it is indifferentiable from the above ideal
functionality VIL-CROW-FIL-RP. If one can make such a claim, then the hash function defined
using this real world functionality is indifferentiable from VIL-RO. Thus, it entails showing that
the final round of the real-world design is a random permutation (from the ideal definition of
invert-final and finalize), and the input rounds are collision resistant and one-way (from the ideal
definition of input-sponge).

References

[1] Elena Andreeva, Bart Mennink, Bart Preneel, The parazoa family: generalizing the sponge
hash functions. Int. J. Inf. Sec., volume 11, number 3, pages 149–165, year 2012.

[2] D. Bernstein, CubeHash: a simple hash function. http://cubehash.cr.yp.to

9

[3] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, On the Indifferentiability of the
Sponge Construction. Proc. Eurocrypt 2008.

[4] Bhattacharyya, R., Mandal, A.: On the indifferentiability of Fugue and Luffa. In 9th ACNS,
vol. 6715, pp. 479-497. Jun 7-10, 2011.

[5] R. Cannetti, Universally Composable Security: A new Paradigm for Cryptographic Proto-
cols, Proc. FOCS 2001.

[6] J. Coron, Y. Dodis, C. Malinaud and P. Puniya. Merkle-Damgard revisited: How to construct
a hash function. Advances in Cryptography, Crypto 2005, LNCS 3621.

[7] Shai Halevi, Eric W. Hall, Charanjit S. Jutla, The Hash Function “Fugue”, IACR Cryptology
ePrint Archive 2014: 423 (2014).
http://domino.research.ibm.com/comm/research projects.nsf/pages/fugue.index.html

[8] U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on reduc-
tion, and applications to the random oracle methodology. Theory of Cryptography, TCC
2004, LNCS 2951.

10

	Introduction
	Alternative Approach using One-way Functions
	Related Work

	Ideal Functionality I for Fugue-like designs
	Realizing VIL-RO using I
	Defining functionality Fugue-I using Fugue's components
	Arguing Fugue-I is indifferentiable from I
	Composite Functionality VIL-CROW with FIL-RP yields VIL-RO

