
Amplifying Side Channels Through Performance
Degradation

Thomas Allan∗, Billy Bob Brumley†, Katrina Falkner∗, Joop van de Pol‡, Yuval Yarom§
∗ The University of Adelaide

Email: tom.allan@student.adelaide.edu.au, katrina.falkner@adelaide.edu.au
† Tampere University of Technology

Email: billy.brumley@tut.fi
‡ University of Bristol

Email: joop.vandepol@bristol.ac.uk
§ The University of Adelaide and NICTA

Email: yval@cs.adelaide.edu.au

Abstract—Interference between processes executing on shared
hardware can be used to mount performance-degradation attacks.
However, in most cases, such attacks offer little benefit for the
adversary. In this paper, we show that performance-degradation
attacks can be used to amplify side-channel leaks, enabling
the adversary to increase both the amount and the quality of
information captured.

We describe a new microarchitectural performance-
degradation attack that can slow victims down by a factor of
over 150. We identify a new information leak in the OpenSSL
implementation of the ECDSA digital signature algorithm. We
show how to use the performance-degradation attack to amplify
a side-channel enough to enable exploiting the new information
leak. Using the combined attack, an adversary can break a private
key of the secp256k1 curve, used in the Bitcoin protocol, after
observing only 6 signatures. This result is over four times better
than any previously described attack.

I. INTRODUCTION

Executing multiple clients’ workloads on a single hardware
platform can help achieve high resource utilisation. A conse-
quence of this resource sharing is that workloads of different
clients can interfere with each other due to shared-resource
contention [51, 52].

Malicious clients can exploit this interference to
mount performance-degradation attacks against co-resident
clients [13, 17, 34, 41]. Fortunately, such attacks tend to
suffer from two main limitations on their usability. First,
the attacks target resources that are broadly used by a large
variety of workloads. Thus, the attacks do not target a specific
client, affecting instead all of the co-resident workloads. The
broad-spectrum nature of the attacks exposes them and may
facilitate detection and identification of the adversary.

The second limitation of performance-degradation attacks
is that, in most cases, the attacker does not gain any direct
benefit from the attack. The main benefit an attacker gets
from mounting a performance-degradation attack is harming
the victim. An exception is the attack of Varadarajan et al.
[47], in which the attack frees resources for the attacker’s use
by forcing the victim to wait on other resources.

In this paper, we present a new microarchitectural
performance-degradation attack that overcomes these limita-

tions. Rather than generating contention on a shared microar-
chitectural component, our attack targets specific code paths
within the victim. Consequently, workloads that do not take
the attacked code path are not affected by the attack.

The attack exploits a property of the Intel x86 and x86-
64 architectures, which allows processes to manipulate the
caching status of read-only memory. When the victim and the
attacker have shared access to the victim’s code — e.g. in
shared library scenarios — the attacker can repeatedly evict
the shared code from the cache, forcing the victim to wait
while the processor retrieves the shared code from memory.

We focus on two different choices of code paths to attack.
The first is attacking the main loop of a program. We demon-
strate that using this technique an attacker can slow programs
down by a factor of over 150, with a mean slow-down factor
of 18 over the integer SPEC 2006 [18] benchmarks and 15
over the floating-point benchmarks.

A second choice of code path is inner loops in crypto-
graphic primitives. We show that this kind of attack can be used
to amplify the side-channel signal of the affected primitive,
increasing the vulnerability of the affected primitive to side-
channel attacks.

As an example, we analyse the FLUSH+RELOAD at-
tack [15, 54]. We demonstrate that the attack has a maximum
resolution which depends on the number of memory locations
it attempts to probe. We further show a relationship between
the resolution of events in the victim and the likelihood of the
attacker missing an event.

To demonstrate the channel amplification, we improve the
attack of van de Pol et al. [46] on the OpenSSL implementation
of ECDSA with the secp256k1 curve. In a nutshell, van de
Pol et al. [46] trace the use of point addition and point doubling
used throughout the scalar multiplication of ECDSA signature
generation. From this sequence, it infers information on the
ephemeral key used for the signature. The long term private
key is then recovered from the information collected from
multiple signatures by using a lattice attack.

We observe that tracing point inversions can increase the
amount of information collected on each nonce, potentially
reducing the number of signatures required for breaking the

mailto:tom.allan@student.adelaide.edu.au
mailto:katrina.falkner@adelaide.edu.au
mailto:billy.brumley@tut.fi
mailto:joop.vandepol@bristol.ac.uk
mailto:yval@cs.adelaide.edu.au

key. However, tracing point inversion introduces two problems:
(1) due to the high resolution required, there is a high proba-
bility of missing point inversions; (2) adding the trace for point
inversion increases the number of memory locations we trace,
limiting the applicability of the attack.

To overcome these limitations, we apply our performance-
degradation attack against the scalar multiplication code. Our
attack slows elliptic group operations by a factor of over
40, and the scalar multiplication by a factor of 32, allowing
a virtually error-free trace of the operations. By using this
technique, we can break the private key of the secp256k1
curve used in Bitcoin after observing as few as 6 signatures.

The contributions of this paper are:

• We develop a new microarchitectural performance-
degradation attack and demonstrate that it is about 8
times more potent than previously disclosed attacks. (Sec-
tion IV)

• We analyse the probability of a FLUSH+RELOAD attack
missing a monitored event based on the rate of the events.
(Section V)

• We identify point inversions as a new source of leaked
information in the implementation of ECDSA over prime
fields in OpenSSL and show how to exploit this informa-
tion. (Section VI)

• We use our performance-degradation attack to amplify the
side channel and capture error-free traces of the scalar
multiplication. (Section VII)

II. BACKGROUND

A. The Memory Hierarchy

The cache is part of the memory hierarchy that exploits
the spatial and temporal locality of memory access to bridge
the performance gap between the fast processor and the slower
memory. Modern processors feature a hierarchy of caches, with
higher-level caches, which are closer to the processor core,
being smaller but faster than lower-level caches, which are
closer to the main memory. In recent Intel architecture, there
are, typically, three levels of cache. Each core has two levels
of caches, called the L1 and L2 caches. The cores share access
to a larger Last-Level Cache (LLC).

To exploit spatial locality, caches are organised in fixed-
size lines, which are the units of allocation and transfer of
data in the memory hierarchy. When the processor needs to
access a memory address, it first checks if the line containing
the address is cached in the top-level L1 cache. In a cache
hit, the data is served from a copy of the data in the cache.
Otherwise, in a cache miss, the processor repeats the search
for the line in the next lower level in the memory hierarchy.
When the line is found, the processor stores its contents in
the cache, reducing the time required for accessing it in the
near future. See [39, Ch. 8] for a good overview of caching in
computer architecture.

Modern caches are typically set associative. A set asso-
ciative cache is divided into multiple sets, each consisting of
multiple ways. Each memory line is mapped to a single cache
set. The memory line can only be cached in the set it is mapped
to, but can be cached in any of the ways of the set. Typically,
the set a memory line maps to is determined by a sequence

of bits in the physical address of the memory line. However,
the LLC in modern Intel processor uses a more complex hash
function to determine the mapping [20, 30, 55].

Several cache optimisations result in memory lines being
brought to the cache without the code accessing data in these
lines. In the Intel architecture, the spatial prefetcher pairs
consecutive memory lines and attempts to fetch the pair of a
missed line [21]. Another optimisation is to detect sequences of
accesses to consecutive memory addresses and prefetch mem-
ory lines that the processor anticipates may be required [21]. A
third optimisation is speculative execution, where the processor
attempts to follow both paths of a conditional branch before
the branch condition is evaluated [45], bringing the code of
both paths into the cache.

When multiple programs share the same cache, one pro-
gram’s use of the cache may evict another program’s data from
the cache, which due to the timing difference between cache
hits and cache misses may create noticeable timing variations
in the sharing programs. These timing variations have been
used to mount side-channel attacks [1, 5, 28, 38, 40, 42, 56].

B. The FLUSH+RELOAD Attack

FLUSH+RELOAD [54] is a cache-based side-channel attack
technique. Unlike other techniques, which infer the memory
lines the victim accesses based on activity in cache sets,
FLUSH+RELOAD positively identifies access to memory lines,
giving it high accuracy, high signal to noise ratio and high reso-
lution. The attack has been used in various settings, including
between non-trusting processes, between isolated containers
and across virtual machines and has been shown to be effective
against multiple algorithms [3, 14, 22, 23, 46, 53, 57].

FLUSH+RELOAD relies on memory sharing between the
victim and the adversary. Such sharing could be achieved via
the use of shared libraries or using page de-duplication [2,
48]. To identify victim access to a shared memory line, the
adversary flushes or evicts the memory line from the cache,
waits a bit and then measures the time it takes to reload the
memory line. If the victim accesses the line during the wait,
the line will be cached and the reload will retrieve it from the
cache. Otherwise, the line will not be cached and reloading
will have to retrieve it from the main memory. As retrieving
the line from the memory takes longer than accessing a cached
copy, the adversary can distinguish between the two options
and identify whether the victim has accessed the line during
the wait.

The FLUSH+RELOAD attack needs processor support for
evicting memory lines from the cache. So far, all published
reports of the attack use the clflush instructions of the x86
and x86-64 instruction sets. In those instruction sets, clflush
is an unpriviliged instruction, which every process can use.

Gruss et al. [14] suggest a variant of FLUSH+RELOAD,
called EVICT+RELOAD, which does not require a specific
instruction for evicting the memory line. Instead, they evict
the victim memory line by accessing a number of memory
lines that map to the same cache set as the victim line.
Evicting the victim memory line using this technique takes
significantly longer than using the clflush instruction. (325
cycles compared with 41 for clflush.) Furthermore, the
eviction may fail, resulting in a false positive.

2

Both FLUSH+RELOAD and EVICT+RELOAD need to evict
the victim cache line from all of the caches that the victim
uses. When the victim and the adversary do not execute on
the same core, they do not share the L1 and L2 caches. In
this case, the attack relies on the inclusion property of the
LLC. The contents of an inclusive cache is a superset of the
contents of all higher level caches. To maintain the inclusion
property, when a memory line is evicted from the LLC, the
processor also evicts it from all of the L1 and L2 caches above
it. All of the published attacks run on Intel processors, which
use inclusive LLCs. Yarom and Falkner [54] report that the
FLUSH+RELOAD attack does not work on AMD processors
due to their non-inclusive LLCs.

C. Related Work

Several works have investigated performance-degradation
attacks by co-located adversaries. Grunwald and Ghiasi [13]
implement two attacks against Intel HyperThreading (HT),
a Simultaneous Multithreading (SMT) technique. The first
attack uses denormalised floating point numbers [12], which
flush the instruction pipeline of the Pentium 4 processor used.
The second attack uses self-modifying code, which results in
flushing both the pipeline and the processor’s trace cache.
To test the attack, they use a compute-bound victim which
repeatedly calculates the MD5 hash. The victim is slowed by
about 120% with the first attack and by a factor of 20 with
the second.

Heat stroke [17] is a performance-degradation attack that
exploits the thermal management of the processor chip. Certain
components of the chip tend to overheat when experiencing
high utilisation, forcing the processor to reduce the utilisation
of the hot components until they cool down. The authors
use a simulated multi-threaded processor to test the attack.
The adversary generates many register accesses causing over-
heating in the shared register file. The processor responds to
overheating by slowing access to the register file. The attack
achieves a mean slow down by a factor of 8 over the SPEC
2000 benchmark suite.

Matthews et al. [29] compare the performance isolation
properties of virtualisation. They implement multiple adver-
saries, each attempting to monopolise a system resource. The
main finding is that OS-level virtualisation (e.g. Solaris con-
tainers) provides less isolation than system-level hypervisors
such as VMware or Xen. In particular, it performs poorly
under memory or process number pressure. Other than that,
all systems at most experience minor interference.

Moscibroda and Mutlu [34] note that the scheduling policy
of memory banks favours requests for the currently open
DRAM row. Consequently, an adversary that issues many
requests to the same row can cause memory-access delays for
programs that access the same DRAM bank. These delays can
slow the victim down by a factor of 2.9 for one adversary and
up to a factor of 4 for multiple adversaries. The suggested fix
is to change the DRAM scheduling algorithm.

Woo and Lee [50] investigate attacks against a shared
LLC. The attacks aim to evict entries from the LLC and rely
on the LLC inclusiveness to also evict data from the victim
L1. Two forms of attack are suggested and are tested using
a simulator—no tests on an real processor are performed.

Attacks using load instructions slow victims down by 50% on
average, with a maximum slowdown of 100%. (The amount
of degradation is estimated from the graphs provided due to
the absence of exact figures.) The second form of attack uses
atomic instructions which lock access to the bus. The mean
slowdown with this attack is by a factor of 5, with a maximum
slowdown factor of 10.

Another LLC monopolising attack is suggested by Weng
et al. [49] which demonstrate a significant performance drop
in co-resident VMs. The paper does not present exact figures,
but judging from the supplied graphs, the performance seems
to drop by about 30%. As a countermeasure, Weng et al. [49]
suggest not scheduling non-trusting VMs concurrently on the
same processor package.

Cardenas and Boppana [7] also use an adversary that tries
to monopolise the LLC. The attack reduces the performance
of the victim by 50% with a single attacking thread and up to
75% with multiple threads. Based on the observation that the
adversary also suffers LLC misses, the paper suggests using the
performance management unit (PMU) to identify the adversary
and eventually mitigate the attack. We note that because our
adversary does not suffer cache misses, this mitigation does
not apply to our attack.

Richter et al. [41] investigate multiple techniques for de-
grading the performance of a shared PCI bus. They show that
when I/O virtualisation is used, a malicious VM cause cause
a drop of 27% in TCP throughput. With multiple attackers the
drop reaches 35%.

Swiper [8] generates adversarial I/O workload to slow a
target application down, achieving a reduction of up to 31%
in the throughput of Web and media servers.

In all the systems described above, the only motivation for
adversarial behaviour is the damage it causes to the victim.
Performance degradation attacks are, therefore, a form of van-
dalism, whose only benefit is harming the victim. Varadarajan
et al. [47] is the only prior work to offer direct benefits to
the adversary. The resource freeing attack suggested uses a
performance-degradation attack to slow a victim down. The
adversary can then benefit from the victim slow down by
using resources that the victim would otherwise use. The paper
demonstrates how increasing the load on the victim gives the
adversary a 60% performance boost.

III. THREAT MODEL

In the attack scenario, the adversary executes code concur-
rently with victim code on the same hardware. This scenario
is common in multi-user operating systems and in virtualised
environments. The operating system or the hypervisor prevent
the adversary from accessing the victim’s data.

We assume that the system supports a form of read-only
sharing between the adversary and the victim. This sharing
could be based on file mapping, e.g. shared libraries, or it can
be based on coalescing identical contents through memory de-
duplication. Memory de-duplication is known to be vulnerable
to side-channel attacks [44], and is one of the requirements for
the FLUSH+RELOAD attack [54]. We show that it also enables
performance-degradation attacks. Like the FLUSH+RELOAD

3

attack, we also assume a shared inclusive LLC and require an
efficient method of evicting memory lines from the cache.

IV. A PERFORMANCE DEGRADATION ATTACK

The performance-degradation attack we describe is based
on the observation that programs tend to spend a significant
part of their execution within a small “hot” section of the pro-
gram code. Under normal execution, the frequently executed
code is in the processor cache, hence access to it is fast.

If the memory that contains the hot code is shared between
the adversary and the victim, the adversary can evict memory
lines that contain that code from the last-level cache. This
forces the victim to wait until the processor loads the code
from the memory, introducing delays to the victim’s process.
Repeatedly evicting the hot code would negate the performance
benefits of the cache, slowing the victim down.

The amount of slowdown depends primarily on the differ-
ence between the latencies of the cache and the memory. We
measure the time it takes to load data from the L1 cache and
from memory on an HP Elite 8300 running CentOS 6.5. (Intel
i5-3470 processor, running at 3.2 GHz, with 8 GiB of DDR3-
1600 CL-11 memory.) Figure 1 shows the distribution over
100,000 measurements.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 100 200 300

P
e
rc

e
n
t

Measured Load Time (cycles)

From Memory
From L1 Cache

Fig. 1. Distribution of L1 cache and memory access times.

As we can see, virtually all loads from the L1 cache take 48
cycles. Over 98% of the loads from the memory take between
280 and 290 cycles, with the rest spread over the interval 250–
1200 cycles.

In addition to data access latency, the measurements in-
clude the overhead of the measurement code. Due to optimisa-
tions, such as instruction pipelining and reordering, parallel use
of multiple functional units and data prefetching, we cannot
measure this overhead. Given that the L1 cache latency is 4
cycles [21], we can conclude that the memory latency is around
240 cycles.

To measure the effects of the attack, we test it with the
SPEC CPU 2006 [18] benchmark suite. To generate a baseline
performance measurement, we pin the SPEC benchmarks to
one core and run them on an otherwise idle machine. The mea-
surements follow the SPEC reporting guidelines. In particular,
we use the SPEC ref workload, and for each benchmark we
use the median time of three runs.

We then measure the performance of the benchmark under
the attack. We measure under two scenarios—with a single

attacking thread and with three attacking threads running in
parallel. To avoid affecting the SPEC benchmark through
time sharing, we pin the SPEC benchmarks and the attacking
threads, each to a separate core. As in the baseline case, the
machine is otherwise idle.

To apply the attack, we need to identify the hot sections of
each of the SPEC benchmarks. One possible way of doing that
is to read and understand the code of each benchmark and use
that understanding to identify frequently used code sections.
However, due to the size of the code base, such an approach
would require significant effort and is prone to errors due to
limited understanding of the code [43].

Instead, we use automatic tools for analysing the SPEC
benchmarks. We build the SPEC benchmarks with instrumen-
tation for collecting code-coverage information. We then use
the program gcov to find out which source lines are the most
frequently executed. Our attack targets this code.

Because the instrumentation skews the performance of the
program, we do not use the instrumented binary for the perfor-
mance testing. Instead, we build optimised SPEC benchmarks
with debugging symbols and use the these debugging symbols
to find the memory addresses corresponding to the lines
identified through code coverage. The result of this process
is a list of candidate memory lines for the attack. We note
that debugging symbols are not loaded into memory when the
program executes and do not affect its performance.

Usually, to achieve an efficient attack, we cannot use all the
candidate memory lines. The reason being that evicting a line
from the cache takes time. If we try to evict too many memory
lines, we reduce the frequency of evicting each of the lines.
Hence lines stay longer in the cache, allowing the victim to
benefit from faster access to them. With cache eviction taking
around 70 cycles and memory access around 240, we should be
able to evict 3 lines from memory before the first is reloaded.
Hence, in our settings, evicting more than three cache lines in
a single attacking thread reduces the efficiency of the attack.

To implement an efficient attack we, therefore, need to
select a small number of the candidate memory lines identified
above. A naı̈ve approach is to pick memory lines corre-
sponding to the most frequently accessed source lines. Such
an approach, however, does not guarantee the most efficient
attack. There are several scenarios in which attacking less
frequently used memory lines may result in a more efficient
attack.

One such scenario occurs when the most commonly used
source line is replicated in the binary. Replication can occur
through compiler optimisations, such as loop unrolling or
inlining, or when the line is in a C++ template that the code
instantiates multiple times. When the line is replicated, gcov
reports the cumulative number of uses of the line, across all
of the replicas. However, none of the replicas is used as often
as reported and attacking any replica would not achieve the
most effective attack.

Another possible scenario occurs when a memory line
contains function calls. Each time the source line is executed,
the memory line is accessed twice—once before the call and
once on return. Hence, targeting the memory line would be
twice as effective as the gcov output indicates.

4

TABLE I. SPEC CPU 2006 RUNNING TIMES (SECONDS)

Baseline One attacker Three attackers
perlbench 396 3,052 20,922
bzip2 443 1,651 9,538
gcc 312 660 1,369
mcf 286 1,145 2,928
gobmk 446 970 2,180
hmmer 432 514 62,507
sjeng 513 2,048 4,288
libquantum 587 5,492 25,395
h264ref 523 7,381 15,482
omnetpp 290 723 2,935
astar 375 3,364 9,792
xalancbmk 219 602 1,990
SpecINT Mean 387 1,574 6,841
bwaves 756 8,004 46,993
gamess 689 12,493 16,367
milc 405 1,846 10,737
zeusmp 387 426 823
gromacs 375 1,050 5,390
cactusADM 660 817 6,408
leslie3d 628 1,426 13,695
namd 397 414 405
dealII 317 2,761 6,723
soplex 320 2,403 3,829
povray 163 1,439 6,759
calculix 780 18,558 121,759
GemsFDTD 674 1,740 4,859
tonto 465 739 2,956
lbm 370 1,506 8,868
wrf 586 752 2,473
sphinx3 591 11,640 20,225
SpecFP Mean 469 1,989 6,885

As we can see, in both cases, the reason for the behaviour
is the gap between the high-level source code and the low-
level machine code that implements it. Tools that can trace the
sequence of memory accesses by a program, such as Cage [27],
can possibly provide a better indication of which memory lines
to attack. However, due to processor optimisations such as
out-of-order execution, prediction based on accurate memory
access traces may still be inaccurate.

Instead of attempting to accurately predict the best memory
lines to use for the attack, we test the efficiency of the attack
with several different selections of candidate memory lines.
The results we report are for the selection that produced the
most effective attack. We acknowledge that other selections
may produce more effective attacks. Hence the results below
may understate the strength of the attack.

Table I summarises the results of the tests. It shows the
running times of each of the SPEC benchmarks, as well as the
geometric mean for the integer (SPEC INT) and the floating
point (SPEC FP) benchmarks. These results are visualised in
Figure 2 and Figure 3.

As the results show, a single attacking thread reduces the
mean execution speed to about a quarter of the normal speed,
whereas 3 threads have a mean slowdown by a factor of 15–
18. However, there is a large variance in the effectiveness of
the attack. The effective slowdown with one attacker ranges
from 4% (namd) to 2,279% (calculix). For three attackers
the range is even bigger. namd is hardly affected whereas
calculix is over a 150 times slower under the attack.

The attack is less effective on namd and zeusmp because
both benchmarks do not have a tight internal loop. Instead,
the internal loops in these benchmarks span a relatively large
amount of code. For example, the main loop in namd contains

x0

x20

x40

x60

x80

x100

x120

x140

x160

p
e
rlb

e
n
ch

b
zip

2

g
cc

m
cf

g
o
b
m

k

h
m

m
e
r

sje
n
g

lib
q
u
a
n
tu

m
h
2
6
4
re

f
o
m

n
e
tp

p
a
sta

r

xa
la

n
cb

m
k

M
e
a
n

S
lo

w
d
o
w

n

Three attackers
One attacker

Fig. 2. SPEC CPU2006 Integer Results.

x0

x20

x40

x60

x80

x100

x120

x140

x160
b
w

a
ve

s
g
a
m

e
ss

m
ilc

ze
u
sm

p
g
ro

m
a
cs

ca
ctu

sA
D

M
le

slie
3
d

n
a
m

d
d
e
a
lII

so
p
le

x
p
o
vra

y
ca

lcu
lix

G
e
m

sF
D

T
D

to
n
to

lb
m

w
rf

sp
h
in

x3
M

e
a
n

S
lo

w
d
o
w

n

Three attackers
One attacker

Fig. 3. SPEC CPU2006 Floating Point Results.

256 lines of C++ code, which span over 93 memory lines. The
attack only evicts a small fraction of this code, so the overall
performance hit is very small.

Considering that memory accesses are 60 times slower
than cache accesses, the results for hmmer and calculix are
surprising. The observed slowdowns by factors of 145 and 156,
respectively, are much larger than would be expected from
the cache vs. memory speed difference. We speculate that the
reason for this slowdown is the interaction of instruction fetch-
ing with the cache. Under normal circumstances the processor
fetches instructions in batches of up to five instructions. While
each of these fetches takes four cycles, they execute in parallel,
achieving a rate of one batch per cycle [10]. If the attack is
very efficient, the targeted cache line could be evicted after
fetching only one batch, potentially reducing the performance
by a factor of 240.

Unlike previous microarchitectural performance-
degradation attacks, which affect all of the programs
that use a microarchitectural component, our attack is very
specific. It only targets programs that use specific code
segments. The rest of this paper describes how we exploit
this property of the attack.

5

V. LIMITATIONS OF THE FLUSH+RELOAD ATTACK

The main claim of this paper is that slowing down victims
can allow the adversary to improve side-channel attacks. To
better understand why this is true, we first study the FLUSH+
RELOAD attack to see what limits its accuracy and resolution.
Our focus is on asynchronous attacks, i.e. on attacks in which
the adversary executes concurrently with the victim.

Adversary

Victim

Victim

Adversary

(B)

(A)

Access Something else

Victim

Flush Wait Reload

Adversary

Fig. 4. Timing of FLUSH+RELOAD. (A) No Victim Access (B) With Victim
Access

Typically, the adversary divides time into fixed length slots.
At the start of a time slot, the monitored memory line is flushed
from the cache hierarchy. The adversary, then, waits to allows
the victim time to access the memory line. At the end of the
slot, the adversary reloads the memory line, measuring the
time to load it. If the victim accesses the memory line during
the wait, the line will be available in the cache and the reload
operation will take a short time. If, on the other hand, the
victim has not accessed the memory line, the line will need to
be brought from memory and the reload will take significantly
longer. Figure 4 (A) and (B) show the timing of the attack
phases without and with victim access.

The length of the time slot determines the granularity of
the attack. The adversary cannot distinguish between multiple
victim accesses to the probed memory line if they all occur
within the same time slot. Consequently, a shorter time slot
allows for a higher attack resolution. However, because the
flush and reload operations are not instantaneous, they pose
a lower bound on the length of the slot. This lower bound
may be more significant when the adversary needs to monitor
multiple lines, in which case the slot cannot be shorter than
the time required for flushing and reloading all of the probed
memory lines.

Another factor that limits the slot size is the probability of
missing a victim access due to overlap. In an asynchronous
attack, the victim operates independently of the adversary. As
such, victim access to a memory location can occur at the same
time the adversary reloads the location to test if it is cached,
depicted in Figure 5 (A). In such a case, the victim access will
not trigger a cache fill. Instead, the victim will use the cached
data from the reload phase. Consequently, the adversary will
miss the access.

A similar scenario occurs when the reload operation par-
tially overlaps the victim access. In this case, depicted in
Figure 5 (B), the reload phase starts while the victim is
waiting for the data. The reload benefits from the victim access
and terminates faster than if the data has to be loaded from
memory. However, the timing may still be longer than a load
from the cache. Whether the adversary recognises a partial
overlap as a read from the cache or from memory depends on

Victim

Adversary

Adversary

Victim
(A)

(B)

Access Something else

Victim

Flush Wait Reload

Adversary

Fig. 5. Overlap in FLUSH+RELOAD. (A) Total overlap (B) Partial overlap

the time difference between the start of the victim access and
the start of the adversary reload.

As we can see, there is a short overlap period that starts
a bit before the adversary probe and ends when the adversary
evicts the monitored line from the cache. Victim accesses to the
monitored cache line during the overlap period are missed by
the adversary. Because the victim access time is independent
of the adversary probe, we can expect that the probability of
a miss would be the ratio between the length of the overlap
period and the interval between adversary probes.

To validate this expectation we measure the miss rate
with different slot sizes. We run an adversary program that
monitors a memory line at a fixed rate. In parallel, we run
a victim program that accesses the monitored memory line
10,000 times, and count how many of these 10,000 accesses
our adversary misses. Table II summarises the results.

 0

 100

 200

 300

 400

 500

 600

 700

 0 10000 20000 30000 40000 50000 60000 70000

E
s
ti
m

a
te

d
 O

v
e
rl
a
p
 P

e
ri
o
d

Wait interval (cycles)

Fig. 6. Estimated length of the overlap period

We can now multiply the miss rate by the length of the slot
to estimate the length of the overlap period. Figure 6 shows the
estimated overlap period for each slot length. We can see that
with a few outliers, due to noise, the estimated period is fairly
stable. The average estimated period is 530 cycles. Figure 7
shows the overlap probability for each slot length along with
the calculated value (530/slot).

A further aspect that affects the attack accuracy is oper-
ating system activity. The operating system may suspend the
adversary execution to handle some system activity, such as a
network or a timer interrupt. If the interruption is short enough
to be wholly contained within a time slot, it will not affect the
attack. If, however, the adversary is interrupted for a longer
period, the adversary loses the ability to distinguish between
and to order multiple events occuring during the interruption.

6

TABLE II. NUMBER OF MISSED ACCESSES FOR SLOT LENGTH (CYCLES)

Slot Missed Slot Missed Slot Missed Slot Missed Slot Missed
1,000 5,286 7,000 807 13,000 379 19,000 281 45,000 102
2,000 2,637 8,000 660 14,000 376 20,000 241 50,000 98
3,000 1,864 9,000 607 15,000 364 25,000 226 55,000 84
4,000 1,364 10,000 531 16,000 338 30,000 150 60,000 79
5,000 1,079 11,000 589 17,000 296 35,000 155 65,000 93
6,000 913 12,000 431 18,000 209 40,000 150 70,000 93

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 10000 20000 30000 40000 50000 60000 70000

O
v
e
rl
a
p
 P

ro
b
a
b
ili

ty

Slot Length (cycles)

Measured

Fig. 7. Slot length and overlap probability

In our experience, shorter interruptions of about 5,000
cycles are quite common, occuring, on average, about 1,000
times per second. Longer interruptions of about 30,000 cycles
or 9µs occur at a rate of 50 per second. Significantly longer
interruptions are possible when the operating system suspends
the adversary in order to time-share the processor.

In summary, to achieve a high attack resolution, the adver-
sary needs to use a short time slot. However, the length of the
probe and the number of required probes present a lower limit
on the slot length and, consequently, an upper limit on the
attack resolution. Furthermore, the higher the attack resolution
is the higher the probability of an error due to missing a victim
access or being interrupted by the operating system is.

Several methods to overcome the large miss probability
with short time slots have been suggested. Yarom and Falkner
[54] monitor lines that are accessed in a loop. Their attack
cannot distinguish between multiple consecutive accesses to
the same line, but it can distinguish between periods of access
and periods of no access to the line. Benger et al. [3] and
van de Pol et al. [46] monitor memory lines that contain a call
instruction. Such lines are accessed twice, once before the call
and once upon return. Depending on the execution time of the
called function, this approach can ensure that at most one of
the two accesses is missed.

While these techniques can reduce or eliminate the proba-
bility of missing a victim access, they are not always applica-
ble. In such scenarios, slowing the victim down can increase
the interval between victim accesses and allow reducing the
miss probability by using longer time slots. We describe such
a scenario in the following sections.

VI. ATTACKING OPENSSL

A. ECDSA

The ElGamal Signature Scheme [9] is the basis of the US
1994 NIST standard, Digital Signature Algorithm (DSA). The
ECDSA is the adaptation of one step of the algorithm from
the multiplicative group of a finite field to the group of points
on an elliptic curve. The main benefit of using this group as
opposed to the multiplicative group of a finite field is that
smaller parameters can be used to achieve the same security
level [25, 31] due to the fact that the current best known
algorithms to solve the discrete logarithm problem in the finite
field are sub-exponential and those used to solve the ECDLP
are exponential — see Galbraith and Gaudry [11] and Koblitz
and Menezes [26, Sec. 2-3] for an overview of recent ECDLP
developments.

Parameters: An elliptic curve E defined over a finite field
Fq; a point G ∈ E of a large prime order n (generator of
the group of points of order n). Parameters chosen as such are
generally believed to offer a security level of

√
n given current

knowledge and technologies. Parameters are recommended to
be generated following the Digital Signature Standard [37].
The field size q is usually taken to be a large odd prime or a
power of 2. The implementation of OpenSSL uses both prime
fields and q = 2m; the results in this paper relate to the former
case.

Public-Private Key pairs: The private key is an integer
d, 1 < d < n − 1 and the public key is the point Q = dG.
Calculating the private key from the public key requires solving
the ECDLP, which is known to be hard in practice for correctly
chosen parameters.

Signing: Suppose Bob, with private-public key pair
{dB , QB}, wishes to send a signed message m to Alice. He
follows the following steps:

1) Using an approved hash algorithm, compute e =
Hash(m), take ē to be the leftmost ` bits of e (where
` = min(log2(q), bitlength of the hash)).

2) Randomly select k ←R Zn.
3) Compute the point (x, y) = kG ∈ E.
4) Take r = x mod n; if r = 0 then return to Step 2.
5) Compute s = k−1(ē+ rdB) mod n; if s = 0 then return

to Step 2.
6) Bob sends (m, r, s) to Alice.

Verifying: The message m is not necessarily encrypted, the
contents may not be secret, but a valid signature gives Alice
strong evidence that the message was indeed sent by Bob. She
verifies that the message came from Bob by:

1) Checking that all received parameters are correct, that
r, s ∈ Zn and that Bob’s public key is valid, that is QB 6=

7

O and QB ∈ E is of order n.
2) Using the same hash function and method as above,

compute ē.
3) Compute s̄ = s−1 mod n.
4) Find the point (x, y) = ēs̄G+ rs̄QB .
5) Verify that r = x mod n otherwise reject the signature.

Step 2 of the signing algorithm is of vital importance —
inappropriate reuse of the random integer led to the highly
publicised breaking of Sony PS3 implementation of ECDSA1.
Knowledge of the random value k, a.k.a. the ephemeral key
or the nonce, leads to knowledge of the secret key. All values
(m, r, s) can be observed by an eavesdropper, ē can be found
from m, r−1 mod n can be easily computed from n and r,
and if k is discovered then an adversary can find Bob’s secret
key through the simple calculation

dB = (sk − ē)r−1.

Our attack targets Step 3 of the OpenSSL implementation
of ECDSA.

B. ECC in OpenSSL

For ECDSA signing, the performance-critical component
is scalar multiplication (Step 3) that, for an `-bit integer k
computes

kP =

`−1∑
i=0

ki2
iP

where ki denotes bit i of k. Two key avenues for improving
the performance of this operation are using a low-weight
representation for the scalar, coupled with a scalar multipli-
cation algorithm that interleaves elliptic curve additions and
doublings, both with a goal of reducing the number of group
operations. What follows is a description of how OpenSSL
carries out this computation.

Scalar representation: The fact that group element inver-
sion is cheap for elliptic curves makes signed representations
for scalars a viable option: “subtraction of points on an
elliptic curve is just as efficient as addition” [16, p. 98].
Generally, signed representations reduce the amount of needed
precomputation by a factor of 2. A popular choice for ECC
is Non-Adjacent Form (NAF) that, with a window width w
represents k using digit set {0,±1,±3, . . . ,±(2w−1 − 1)}
with the property that all non-zero digits are separated by at
least w − 1 zeros, leading to lower average weight than other
representations (e.g. binary). The modified version mNAFw

is otherwise the same but allows the most significant digit
to violate the non-adjacent property if doing so decreases the
length but keeps the same weight [33, Sec. 4.1]. It does so
by applying the map 10w−1δ 7→ 010w−2δ̂ if δ < 0 where
δ̂ = δ+ 2w−1. Figure 8 illustrates the mNAFw algorithm. See
function bn_compute_wNAF in crypto/bn/bn_intern.c for
OpenSSL’s implementation of this procedure. Lastly, it is
worth noting that the most significant digit in NAF and
mNAFw for k ≥ 1 is guaranteed to be positive.

1http://arstechnica.com/gaming/2010/12/
ps3-hacked-through-poor-implementation-of-cryptography/

Input: Integer k ≥ 1, width w
Output: mNAFw(k)
i← 0
while k ≥ 1 do

if k is odd then ki ← k mods 2w, k ← k − ki else
ki ← 0 k ← k/2, i← i+ 1

end
if ki−1 = 1 and ki−1−w < 0 then

ki−1−w ← ki−1−w + 2w−1

ki−1 ← 0, ki−2 ← 1, i← i− 1
end
return (ki−1, . . . , k0)

Fig. 8. Generating modified Non-Adjacent Form for scalars. Here mods takes
residues from −(2w−1 − 1) to 2w−1 − 1.

Input: Integer k ≥ 1, P ∈ E(Fq), width w
Output: kP
(k`−1 . . . k0)← mNAFw(k)
Precompute jP for all odd 0 < j < 2w−1

Q← k`−1P
for i← `− 2 to 0 do

Q← 2Q
if ki 6= 0 then Q← Q+ kiP

end
return Q

Fig. 9. Left-to-right double-and-add scalar multiplication with mNAFw

signed representation

Scalar multiplication: In the absence of any curve-
specific routines, for curves over Fp OpenSSL imple-
ments interleaved scalar multiplication by Möller [32, Sec.
3.2] — see scalar multiplication function ec_wNAF_mul
in crypto/ec/ec_mult.c for OpenSSL’s implementation.
While there are many paths through the code depending on
inputs [4, Sec. 2.2], this work assumes the case of a single
scalar input where no a priori precomputation structure is
available. For this case, the function execution simplifies to
a textbook left-to-right, double-and-add scalar multiplication
routine — see e.g. Hankerson et al. [16, p. 100]. Figure 9
illustrates the algorithm that will perform ` point doublings
and a number of point additions equaling the number of
non-zero digits (minus the first point addition and plus the
2w−2 − 1 point additions for ad hoc precomputation). Since
point Q accumulates the partial scalar multiple, Q is termed
the accumulator.

C. Attacking ECDSA

As mentioned, an attacker who knows the ephemeral key
k used for a single signature (m, r, s) can obtain the secret
key dB from a simple calculation. It turns out that knowing a
few bits of the nonces for sufficiently many signatures allows
an attacker to obtain the secret key as well. One option is to
embed the information for various signatures into a lattice such
that the solution to a geometric lattice problem corresponds to
the secret key [19, 35, 36].

But how does the attacker obtain any information on the
ephemeral keys? As these keys are only used during the

8

http://arstechnica.com/gaming/2010/12/ps3-hacked-through-poor-implementation-of-cryptography/
http://arstechnica.com/gaming/2010/12/ps3-hacked-through-poor-implementation-of-cryptography/

computation, a natural approach is to obtain this information
through a side-channel attack. Unfortunately, using the side-
channel described above to attack the wNAF implementation
of the scalar multiplication does not directly reveal a fixed
number of bits of every ephemeral key. This is due to the fact
that the side-channel only reveals when the relevant operations
take place, but in the case of an addition it does not show which
value is being added. Previous works obtain information on the
ephemeral key k from the double and add chains in different
ways.

L1 dcache targeting fixed lower bits: Brumley and Hakala
[5] use the fact that the number of doubles after the last ad-
dition in the trace reveals an equal number of least significant
bits of k: “From the side channel perspective, consecutive
doublings allow inference of zero coefficients, and more than
w point doublings reveals non-trivial zero coefficients” [5, Sec.
3.2]. They target signatures and traces that indicate a minimum
of six zeros in the LSBs, in total requiring 2600 signatures
and corresponding traces to recover the private key for curve
secp160r1 with a lattice attack [5, Sec. 6].

LLC targeting variable lower bits: The numerous draw-
backs of the previous attack include (1) discarding on average
1−2−6 percent of the traces; (2) limiting to SMT architectures
like Intel’s HT; (3) rather noisy traces from the L1 data
cache. Benger et al. [3] tackle all of these issues, while at the
same time targeting the substantially larger and relevant curve
secp256k1: “Prior work fixes a minimum value of [LSBs] and
utilizes this single value in all equations . . . If we do this we
would need to throw away [the majority] of the executions
obtained. By maintaining full generality . . . we are able to
utilize all information at our disposal” [3, Sec. 4]. As each trace
reveals a different number of LSBs of the ephemeral key, they
adjust the lattice problem accordingly and recover the private
key with as little as 200 signatures and corresponding traces.
However, to recover the private key with probability greater
than 0.5, they require approximately 300 signatures.

LLC targeting full traces: Subsequently, van de Pol et al.
[46] show how to use roughly half of the double and add chain
for group orders of a special form, i.e., q = 2n + ε where
|ε| < 2p for p � n. It relies on the fact that the positions
of adds in the chain reveal the positions of non-zero wNAF
digits in the representation of k. Two adds are separated by
at least w doubles, and every additional double reveals that
the corresponding bits of k are repeating. However, a single
bit of information is lost for every pair of consecutive non-
zero wNAF digits, because these repeating bits of k are either
zero or one depending on whether the second wNAF digit was
positive or negative. Note that this method requires perfect
traces, because each double is required to determine the bit
position of the various additions. Therefore, whenever a double
is missed, the whole trace preceding the missed double will
produce inaccurate information.

D. Point Inversion: A New Leak

An implementation of scalar multiplication in Figure 9
requires accompanying control logic — in particular, to handle
negative ki digits. We observe the following trends in open
source elliptic curve libraries for inverting points.

Invert on-the-fly: While the cost of elliptic curve point
inversion can vary depending on the coordinate system
choice, for many systems Fp curves require only a finite
field negation, i.e. flipping the sign of the y-coordinate.
In these cases, since point inversion is so light many im-
plementations opt for on-the-fly inversion. That is, when
ki < 0 compute Q := Q + −(kiP) inverting kiP to
a temporary variable immediately preceding the point addi-
tion function call. For example, this is the approach taken
by Bitcoin’s libsecp256k12. Scalar multiplication function
secp256k1_ecmult in src/ecmult_impl.h calls macro
ECMULT_TABLE_GET_GE which, in the case of a negative digit,
calls secp256k1_ge_neg in src/group_impl.h to negate
the point operand. The advantage to this approach is that it
requires marginal additional storage overhead, and the disad-
vantage is that the algorithm will eventually end up inverting
the same point more than once — duplicating a previously
computed value.

Precompute inversions: As written, the precomputation
table in Figure 9 requires storing 2w−2 points. Another strategy
is to double the size of the table and additionally store the in-
verses of the required points. Then for negative digits, compute
Q := Q+(k̂i)P where k̂i is the table index for −ki. Normally
this will be handled in the NAF coding itself by yielding
e.g. indices (0, 1, 2, 3) corresponding to digits (1, 3,−3,−1).
For example, this is the approach taken by NSS3 — see
scalar multiplication function ec_GFp_pt_mul_jm_wNAF in
lib/freebl/ecl/ecp_jm.c. The advantage of this approach
is that each point is only inverted a single time, and the dis-
advantage is that the required storage for the precomputation
table doubles.

Invert the accumulator: Similar to the invert on-the-fly
approach but without requiring a temporary point, another
strategy is to track the sign of the accumulator in a variable and
invert the accumulator as needed preceding point additions.
That is, if the sign of the accumulator matches the sign of
the digit ki 6= 0, compute Q := Q + |ki|P ; otherwise Q :=
−Q+|ki|P , inverting the accumulator before the point addition
function call. Finally, after all digits are processed set Q :=
−Q if the accumulator is in the inverted state. For example, this
is the approach taken by OpenSSL — see scalar multiplication
function ec_wNAF_mul in crypto/ec/ec_mult.c that calls
EC_POINT_invert if precisely one of the following statements
is true:

• the current (non-zero) digit is negative (variable is_neg);
• the accumulator is inverted (variable r_is_inverted).

While all of the above approaches have potential side-
channel issues, we focus on the last approach since OpenSSL
implements it. From the side-channel perspective, if we capture
the sequence of elliptic curve point doublings, additions, and
inversions for a particular k we can recover the signs of all non-
zero ki digits as follows. Denote the n inversions by I1 . . . In
for n > 1. Note that n is always even since the accumulator
(Q) always starts and ends in the non-inverted state, and (for
completeness) that if n = 0 then all digits are positive. The
accumulator toggles to the inverted state at I1, then back to
the non-inverted state at I2, and so on — i.e. the accumulator

2https://github.com/bitcoin/secp256k1
3https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS

9

https://github.com/bitcoin/secp256k1
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS

enters the inverted state at Ij for odd j and non-inverted state
for even j. Hence:

1) All the additions before I1 correspond to positive digits.
2) For odd j, all the additions between Ij and Ij+1 corre-

spond to negative digits. This is due to the fact that the
sign of the accumulator agrees with the sign of the current
digit for such additions.

3) Similarly for even j, all the additions between Ij and Ij+1

correspond to positive digits.

E. Exploiting the new leak

The improved side-channel described in this work allows us
to determine whether the wNAF digits are positive or negative.
This immediately gives one extra bit of information for each
pair of consecutive adds in the top half of the double and
add chain. Using the notation of van de Pol et al. [46], if
there are two consecutive adds at positions m and m + l for
p < m < n− l we can write

k = a · 2m+l+1 + b · 2m+w + c,

where 0 ≤ a < 2n−m−l, 2m−1 < c < 2m+w − 2m−1, and
b = 2l−w if the second wNAF digit is positive or b = 2l−w−1
if it is negative.

Now, if we define t = (r/s) · 2n−m−l−1 mod q and u =
(b + 1/2) · 2n+w−l−1 − (h/s) · 2n−m−l−1 mod q, it follows
that |dB · t − u|q < q/2l−w+2, where |.|q is reduction mod q
into the range [−q/2, q/2). Writing z = l−w + 1, each such
triple (u, t, z) provides z bits of information about the secret
key dB , but conversely increases the dimension of the closest
vector problem in the lattice by one. To balance the hardness
of the lattice problem with the information provided by the
triples, we only used the 75 triples with the highest z-values
which results in a lattice dimension of 76. Table I shows the
result of this attack for a varying number of signatures σ. It
was implemented using the fplll library4 and executed on a
single core of an Intel E5620 processor. Thus, given six error-
free traces on different signatures allows an attacker to obtain
the secret key in more than half the cases.

TABLE III. ATTACK RESULTS FOR A GIVEN NUMBER OF SIGNATURES
σ

σ Time (s) Prob
4 15.08 0.005
5 13.94 0.165
6 12.51 0.545
7 11.50 0.735
8 9.69 0.840

VII. AMPLIFICATION ATTACK

In the previous section, we identified a new leak in the
OpenSSL implementation of ECDSA and analysed the leak
under the assumption that the adversary can obtain a perfect
trace of the victim’s operations. In this section, we investigate
the practical issues of obtaining perfect traces. We first look at
why error-free traces are required for the attack. We proceed
with describing how past research used the FLUSH+RELOAD
attack to achieve a high probability of obtaining perfect traces.
We then explain why these techniques are not sufficient when

4http://perso.ens-lyon.fr/damien.stehle

we want to capture inversions. We show that amplification
allows us to overcome the limitations and demonstrate how
to use it to obtain perfect traces.

A. The need for perfect traces

Suppose that the adversary manages to obtain an almost-
perfect trace. That is, she knows the sequence of operations
taken by the victim with the exception of a single error that
causes it to either miss a double operation or add a spurious
one. When inferring the positions of the non-zero wNAF
digits, the error will propagate through the representation of
the scalar, changing the position of all digits to the left of
the error, which are the positions we use for the lattice attack.
Consequently, the lattice attack will receive an erroneous input
and will fail to find the key. Similarly, if the trace misses an
inversion or contains a spurious one, the signs of any digit
above the error locations are incorrect.

Even if the adversary knows or suspects that an error has
occurred, correcting the error poses problems. If, for example,
the adversary notes that the time between two operations in
the trace is longer than expected, the adversary can suspect an
error. However, because the victim may have been suspended
while the processor executed some system function, the adver-
sary cannot be certain that an error occurred.

The adversary could try to use known properties of perfect
traces to identify and possibly correct errors in captured traces.
However, there is very little information that the adversary
can use. In particular, the adversary does not know for certain
the number and position of point addition operations. She can
detect, but not correct, errors like: (1) the number of point
inversions must be even; (2) at least w point doublings must
separate point additions. Finally, even though all the scalars
used in the multiplication have the same bit length (due to a
timing attack [6] resulting in CVE-2011-1945), the length of
the wNAF representation may vary. For example, we look at
the numbers 228 and 229. The binary representations of these
is 11100100 and 11100101, i.e. both are 8 bit numbers. The
4-NAF representation of 228 is 1, 0, 0, 0, 0, 0,−7, 0, 0. That is,
228 = 1 ·28−7 ·22. The representation of 229 is 7, 0, 0, 0, 0, 5
— 229 = 7 · 25 + 5. Hence, while the bit length of both
numbers is 8, the length of their 4-NAF representations are 9
and 6. Consequently, the number of double operations in the
trace is not fixed.

As we can see, the effects of errors in the trace are not
localised, errors are hard to detect, and are almost impossible
to correct. Combined with the sensitivity of the lattice attack
to errors, every small error in the captured trace significantly
reduces the probability of attack success. In particular, unless
the adversary can get enough error free traces, she will not be
able to apply the attack.

B. Obtaining perfect traces

van de Pol et al. [46] attack the same implementation that
we target. Unlike us, they do not try to trace the accumulator
inversions, focusing instead on add and double operations.
van de Pol et al. [46] divide time into slots of 1,200 cycles
and probe memory lines within the functions that implement
the group add and group double operations. As Section V

10

http://perso.ens-lyon.fr/damien.stehle

demonstrates, with slots of 1,200 cycles the expected miss rate
is around 44%.

To reduce the miss probability, van de Pol et al. [46]
choose memory lines that contain a call to a field multiplication
operation. As discussed above, the victim accesses memory
lines that contain a call twice; once when executing the call
and once when the call returns. Because these two accesses are
related, their times are not independent and the probability of
missing each is not independent of each other. Consequently,
van de Pol et al. [46] manages to reduce the number of
capture errors to 1 in 1,000 group operations. With around 300
operations in trace, the probability of capturing an error-free
trace is 58%.

For our attack, we need to further trace accumulator
inversions along with group addition and double. While the
group inversion code contains a call instruction, we cannot
probe the memory line that contains it. The reason is that due to
speculative execution, all of the code up to the call instruction
is prefetched into the cache, even if the execution does not
take the path. As a result, monitoring these memory lines
would result in a large number of false positives. Therefore, we
have to monitor memory lines that follow the call to the field
negation, which do not contain additional call instructions.

In our environment (OpenSSL 1.0.2a running on an HP
Elite 8300 running CentOS 6.5 64 bit), add operations take on
average 3,223 cycles and double operations take 3,427 cycles.
As Benger et al. [3] discuss, the maximum slot length we can
use is about half the length of the operations, or 1,600 cycles.
With these time slots, the probability of missing the victim
access to the memory line in the inversion code is about 33%.
With such an error probability, and an expected number of
25 inversions in each scalar multiplication, the probability of
capturing a perfect trace is less than 1/25,000, which is way
too low for a practical attack.

One possibility of reducing the miss probability when
tracing accumulator inversions is to monitor two memory lines
within the code. The scalar multiplication code in OpenSSL
invokes the generic elliptic curve point inversion function
EC_POINT_invert. The function invokes the curve-specific
point inversion function, which in the case of the secp256k1
curve is ec_GFp_simple_invert. Said function invokes field
subtraction (BN_usub) to negate the y component of the
point. By probing the memory lines following the return of
BN_usub and the return of ec_GFp_simple_invert we get
the same effect as probing a memory line that contains a call
instruction, with the adversary missing at most one of these
accesses.

While this approach guarantees that the adversary does
not miss accumulator inversions, it requires the adversary to
monitor four memory lines: one in each of the double and add
functions and two in the inversion functions. Each probe takes
about 450 cycles, so probing four memory lines takes 1,800
cycles. When we set the slot size to 1,800 cycles, the traces
loses accuracy because we can no longer determine the order
of some of the operations in the sequence.

Increasing the slot length would allow us to consistently
trace all accumulator inversions, however the speed of calculat-
ing the group addition and doubling limits the maximum slot

length. To increase the limit, we can try slowing the group
operations down.

C. A performance-degradation attack against OpenSSL

We use our performance-degradation attack to slow the
group operations down. We target the bn_mul_mont function,
which implements the field multiplication and square. We use
one attacking thread and check the effect of repeatedly evicting
one or two memory lines in the main loop of the function.
Table IV summarises the run time of the add and the double
operations under the attack. As we can see, repeatedly evicting
one memory line in the field multiplication reduces the speed
of the add group operation by a factor of 9. The double
operation is slowed down by a factor of over 7. When we evict
two memory lines, the group operations are slowed down by
a factor of 47 and 36.

TABLE IV. secp256k1 GROUP OPERATION TIMES (CYCLES)

Add Double
No attack 3,223 3,427

Evicting one line 29,605 25,264
Evicting two lines 152,409 125,660

With group operations taking over 100,000 cycles, we can
safely increase the slot size and monitor the four memory lines
required for obtaining the trace. We set the slot size to 17,000
cycles and captured 1,000 traces. Comparing the traces to the
ground truth we find that only five of them show errors. Hence,
our attack captures error-free traces almost every time. We can
now use these traces with the lattice attack of Section VI, to
break the long-term ECDSA key of the victim after observing
as few as six signatures.

Table V compares the results of this work with previous
cache-based attacks on OpenSSL ECDSA. As we can see,
the attack requires less than a quarter of the previous best
attack. About half of this improvement is due to exploiting
the leak of point inversion and the other half comes from the
increased accuracy of observing the side-channel. Employing
the performance-degradation attack to amplify the side-channel
underpins both these improvements.

TABLE V. OPENSSL ECC CACHE-TIMING ATTACK RESULTS
COMPARED

Perfect Signa-
Curve Source traces tures
secp160r1 Brumley and Hakala [5] - 2600
secp256k1 Benger et al. [3] - 300
secp256k1 van de Pol et al. [46] 13 25
secp256k1 this work 6 6

VIII. CONCLUSION

Typical performance-degradation attacks usually do not
provide any direct benefit to the attacker. Their main benefit
is derived indirectly, through the damage they cause to the
victim. In this paper we demonstrate that these attacks can offer
tangible benefits to the attacker—it can be used to amplify a
side-channel, allowing the attacker to receive more information
through the channel than was otherwise possible.

To demonstrate side-channel amplification, we first iden-
tify a new microarchitectural attack vector, which is over

11

8 times more potent than previously published attacks. We
further identify a new information leak in the OpenSSL
implementation of the ECDSA signature scheme. Lastly, we
show how using the new performance-degradation attack to
amplify a cache side channel allows the attacker to exploit the
information leak. Our combined attack allows the adversary to
completely cryptanalyse the secp256k1 elliptic curve used in
Bitcoin after observing the side channel over only 6 signatures,
less than a quarter of any prior result.

Disabling cross-domain memory sharing and disabling
the clflush instructions are two suggested countermeasures
for the FLUSH+RELOAD attack and for the Rowhammer at-
tack [24]. These countermeasures also affect our performance-
degradation attack. Instead of using the clflush instruction,
the victim line can be evicted by creating a contention on the
cache set it is stored in. Using this technique will also obviate
the need for memory sharing. Further work is required to
determine the effectiveness of this technique for performance
degradation and whether it can be used for side channel
amplification.

ACKNOWLEDGEMENTS

We would like to thank Dr Naomi Benger for the useful
discussions, advice and support. We would also like to thank
Camilla Beck and Diclehan Erdal for performing some of the
experiments for this work.

NICTA is funded by the Australian Government through
the Department of Communications and the Australian Re-
search Council through the ICT Centre of Excellence Program.

Parts of this research was performed under contract to the
Defence Science and Technology Group, Maritime Division,
Australia.

This research was supported in part by COST Action
IC1306.

The second author was supported in part by TEKES grant
4681/31/2014 INKA EAKR Hardware Rooted Security.

The fourth author was supported in part by EPSRC via
grant EP/I03126X.

REFERENCES

[1] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher.
New results on instruction cache attacks. In CHES, Santa
Barbara, CA, US, 2010.

[2] Andrea Arcangeli, Izik Eidus, and Chris Wright. Increas-
ing memory density by using KSM. In 2009 Ottawa
Linux Symp., pages 19–28, Montreal, Quebec, Canada,
Jul 2009.

[3] Naomi Benger, Joop van de Pol, Nigel P. Smart, and
Yuval Yarom. “ooh aah, just a little bit”: A small amount
of side channel can go a long way. In CHES, volume 8731
of LNCS, pages 75–92, Busan, KR, September 2014.

[4] Billy Bob Brumley. Faster software for fast endomor-
phisms. In 6th COSADE, pages 127–140, Berlin, DE,
Apr 2015.

[5] Billy Bob Brumley and Risto M. Hakala. Cache-timing
template attacks. In 15th ASIACRYPT, pages 667–684,
Tokyo, JP, Dec 2009.

[6] Billy Bob Brumley and Nicola Tuveri. Remote timing
attacks are still practical. In 16th ESORICS, Leuven, BE,
2011.

[7] Carlos Cardenas and Rajendra V Boppana. Detection and
mitigation of performance attacks in multi-tenant cloud
computing. In 1st International IBM Cloud Academy
Conference, Research Triangle Park, NC, US, 2012.

[8] Ron C. Chiang, Sundaresan Rajasekaran, Nan Zhang, and
H. Howie Huang. Swiper: Exploiting virtual machine
vulnerability in third-party clouds with competition for
I/O resources. Trans. Parall. & Distr. Syst., 26(6):1732–
1742, Jun 2015.

[9] Taher ElGamal. A public key cryptosystem and a signa-
ture scheme based on discrete logarithms. In Advances
in Cryptology, Santa Barbara, CA, US, 1985.

[10] Agner Fog. The microarchitecture of Intel, AMD and
VIA CPUs: An optimization guide for assembly pro-
grammers and compiler makers. http://www.agner.org/
optimize/microarchitecture.pdf, Aug 2014.

[11] Steven D. Galbraith and Pierrick Gaudry. Recent progress
on the elliptic curve discrete logarithm problem. IACR
Cryptology ePrint Archive, Report 2015/1022, Oct 2015.

[12] David Goldberg. What every computer scientist should
know about floating-point arithmetic. Comput. Surveys,
23(1):6–48, Mar 1991.

[13] Dirk Grunwald and Soraya Ghiasi. Microarchitectural
denial of service: Insuring microarchitectural fairness. In
35th MICRO, pages 409–418, Istanbul, TR, Nov 2002.

[14] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache template attacks: Automating attacks on inclusive
last-level caches. In 24th USENIX Security, Washington,
DC, US, 2015.

[15] David Gullasch, Endre Bangerter, and Stephan Krenn.
Cache games – bringing access-based cache attacks on
AES to practice. In S&P, pages 490–505, Oakland, CA,
US, 2011.

[16] Darrel Hankerson, Alfred Menezes, and Scott Vanstone.
Guide to elliptic curve cryptography. Springer Profes-
sional Computing. 2004.

[17] Jahangir Hasan, Ankit Jalote, T. N. Vijaykumar, and
Carla E. Brodley. Heat stroke: Power-density-based
denial of service in SMT. In 11th HPCA, pages 166–
177, San Francisco, CA, US, Feb 2005.

[18] J.L. Henning. SPEC CPU2006 benchmark descriptions.
Comp. Arch. News, 34(4), Sep 2006.

[19] Nick Howgrave-Graham and Nigel P. Smart. Lattice
attacks on digital signature schemes. DCC, 23(3):283–
290, Aug 2001.

[20] Mehmet Sinan İnci, Berk Gülmezoğlu, Gorka Irazoqui,
Thomas Eisenbarth, and Berk Sunar. Seriously, get off
my cloud! Cross-VM RSA key recovery in a public
cloud. Sep 2015.

[21] Intel 64 & IA-32 AORM. Intel 64 and IA-32 Architec-
tures Optimization Reference Manual. Intel Corporation,
Apr 2012.

[22] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth,
and Berk Sunar. Wait a minute! a fast, cross-VM attack
on AES. In RAID, pages 299–319, Gothenburg, Sweden,
Sep 2014.

[23] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth,
and Berk Sunar. Lucky 13 strikes back. In ASIACCS,
pages 85–96, Singapore, Apr 2015.

12

http://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/microarchitecture.pdf

[24] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,
Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai,
and Onur Mutlu. Flipping bits in memory without access-
ing them: An experimental study of DRAM disturbance
errors. In 41st ISCA, pages 361–372, Jun 2014.

[25] Neal Koblitz. Elliptic curve cryptosystems. Mathematics
Comput., 48(177):203–209, Jan 1987.

[26] Neal Koblitz and Alfred Menezes. A riddle wrapped
in an enigma. IACR Cryptology ePrint Archive, Report
2015/1018, Nov 2015.

[27] Sarah Laing, Michael E. Locasto, and John Aycock. An
experience report on extracting and viewing memory
events via Wireshark. In 8th WOOT, San Diego, CA,
US, Aug 2014.

[28] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B Lee. Last-level cache side-channel attacks are
practical. In S&P, pages 605–622, San Jose, CA, US,
May 2015.

[29] Jeanna Neefe Matthews, Wenjin Hu, Madhujith Ha-
puarachchi, Todd Deshane, Demetrius Dimatos, Gary
Hamilton, Michael McCabe, and James Owens. Quanti-
fying the performance isolation of virtualization systems.
In WS Experimental Comp. Sci., San Diego, CA, US, Jun
2007.

[30] Clémentine Maurice, Nicolas Le Scouarnec, Christoph
Neumann, Olivier Heen, and Aurélien Francillon. Re-
verse engineering Intel last-level cache complex address-
ing using performance counters. In RAID, Kyoto, Japan,
Nov 2015.

[31] Victor S. Miller. Use of elliptic curves in cryptography.
In CRYPTO’85, pages 417–426, Santa Barbara, CA, US,
Aug 1985.

[32] Bodo Möller. Algorithms for multi-exponentiation. In
SAC, pages 165–180, Toronto, ON, CA, Aug 2001.

[33] Bodo Möller. Improved techniques for fast exponentia-
tion. In Inform. Security & Cryptology, pages 298–302,
Seoul, KR, Nov 2002.

[34] Thomas Moscibroda and Onur Mutlu. Memory perfor-
mance attacks: Denial of memory service in multi-core
systems. In 16th USENIX Security, Boston, MA, US,
2007.

[35] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity
of the digital signature algorithm with partially known
nonces. J. Cryptology, 15(2):151–176, Jun 2002.

[36] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity
of the elliptic curve digital signature algorithm with
partially known nonces. DCC, 30(2):201–217, Sep 2003.

[37] NIST FIPS PUB 186-4. Digital Signature Standard
(DSS). NIST, 2013.

[38] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache at-
tacks and countermeasures: the case of AES. http://www.
cs.tau.ac.il/∼tromer/papers/cache.pdf, Nov 2005.

[39] Daniel Page. Practical Introduction to Computer Ar-
chitecture. Texts in Computer Science. 2009. URL
http://dx.doi.org/10.1007/978-1-84882-256-6.

[40] Colin Percival. Cache missing for fun and profit. In
BSDCan 2005, Ottawa, CA, 2005.

[41] Andre Richter, Christian Herber, Holm Rauchfuss,
Thomas Wild, and Andreas Herkersdorf. Performance
isolation exposure in virtualized platforms with PCI
passthrough I/O sharing. In Architecture of Computing
Systems, pages 171–182. 2014.

[42] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and
Stefan Savage. Hey, you, get off of my cloud: Exploring
information leakage in third-party compute clouds. In
16th CCS, pages 199–212, Chicago, IL, US, 2009.

[43] Vineet Sinha, David Karger, and Rob Miller. Relo: Help-
ing users manage context during interactive exploratory
visualization of large codebases. In OOPSLA Workshop
on Eclipse Technology eXchange (ETX), pages 21–25,
San Diego, CA, US, Oct 2005.

[44] Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, and Cyrille
Artho. Memory deduplication as a threat to the guest OS.
In 4th European Workshop on System Security, Salzburg,
AT, 2011.

[45] Augustus K. Uht and Vijay Sindagi. Disjoint eager
execution: An optimal form of speculative execution. In
28th MICRO, pages 313–325, Nov 1995.

[46] Joop van de Pol, Nigel P. Smart, and Yuval Yarom. Just
a little bit more. In 2015 CT-RSA, pages 3–21, San
Francisco, CA, USA, Apr 2015.

[47] Venkatanathan Varadarajan, Thawan Kooburat, Ben-
jamin Farley, Thomas Ristenpart, and Michael M Swift.
Resource-freeing attacks: improve your cloud perfor-
mance (at your neighbor’s expense). In 19th CCS,
Raleigh, NC, US, 2012.

[48] Carl A. Waldspurger. Memory resource management in
VMware ESX server. In 5th OSDI, Boston, MA, US,
2002.

[49] Chuliang Weng, Jianfeng Zhan, and Yuan Luo. TSAC:
Enforcing isolation of virtual machines in clouds. Trans.
Computers, 64(5):1470–1482, May 2015.

[50] Dong Hyuk Woo and Hsien-Hsin S. Lee. Analyz-
ing performance vulnerability due to resource denial of
service attack on chip multiprocessors. In WS Chip
Multiprocessor Memory Syst. & Interconnects, Phoenix,
AZ, US, 2007.

[51] Carole-Jean Wu and Margaret Martonosi. Characteriza-
tion and dynamic mitigation of intra-application cache
interference. In Int. Symp. Performance Analysis Syst. &
Softw., ISPASS ’11, Austin, TX, US, 2011.

[52] Tianni Xu, Xiufeng Sui, Zhicheng Yao, Jiuyue Ma, Bao
Yungang, and Lixin Zhang. Rethinking virtual machine
interference in the era of cloud applications. In 15th
HPCC, pages 190–197, Zhangjiajie, Hunan, China, Nov
2013.

[53] Yuval Yarom and Naomi Benger. Recovering OpenSSL
ECDSA nonces using the FLUSH+RELOAD cache side-
channel attack. IACR Cryptology ePrint Archive, Report
2014/140, Feb 2014.

[54] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: a
high resolution, low noise, L3 cache side-channel attack.
In 23rd USENIX Security, pages 719–732, San Diego,
CA, US, 2014.

[55] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and
Gernot Heiser. Mapping the Intel last-level cache. IACR
Cryptology ePrint Archive, Report 2015/905, Sep 2015.

[56] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas
Ristenpart. Cross-VM side channels and their use to
extract private keys. In 19th CCS, pages 305–316,
Raleigh, NC, US, 2012.

[57] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas
Ristenpart. Cross-Tenant side-channel attacks in PaaS
clouds. In 21st CCS, Scottsdale, AZ, US, 2014.

13

http://www.cs.tau.ac.il/~tromer/papers/cache.pdf
http://www.cs.tau.ac.il/~tromer/papers/cache.pdf
http://dx.doi.org/10.1007/978-1-84882-256-6

	Introduction
	Background
	The Memory Hierarchy
	The Flush+Reload Attack
	Related Work

	Threat Model
	A Performance Degradation Attack
	Limitations of the Flush+Reload Attack
	Attacking OpenSSL
	ECDSA
	ECC in OpenSSL
	Attacking ECDSA
	Point Inversion: A New Leak
	Exploiting the new leak

	Amplification Attack
	The need for perfect traces
	Obtaining perfect traces
	A performance-degradation attack against OpenSSL

	Conclusion

