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Abstract. The progress in communication and hardware technology increases the computational ca-
pabilities of personal devices. Aggregators, acting as third parties, are interested in learning a sta-
tistical function as the sum over a census of data. Users are reluctant to reveal their information in
cleartext, since it is treated as personal sensitive information. The paradoxical paradigm of preserving
the privacy of individual data while granting an untrusted third party to learn in cleartext a function
thereof, is partially addressed by the current privacy preserving aggregation protocols.
Current solutions are either focused on a honest-but-curious Aggregator who is trusted to follow the
rules of the protocol or they model a malicious Aggregator with trustworthy users. In this paper we are
the first to propose a protocol with fully malicious users who collude with a malicious Aggregator in
order to forge a message of a trusted user. We introduce the new cryptographic primitive of convertible
tag, that consists of a two-layer authentication tag. Users first tag their data with their secret key and
then an untrusted Converter converts the first layer tags in a second layer. The final tags allow the
Aggregator to produce a proof for the correctness of a computation over users’ data. Security and
privacy of the scheme is preserved against the Converter and the Aggregator, under the notions of
Aggregator obliviousness and Aggregate unforgeability security definitions, augmented with malicious
users. Our protocol is provably secure and experimental evaluations demonstrates its practicality.
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1 Introduction

The folklore model of Alice and Bob who want to exchange messages in a secure way, has been exten-
sively analyzed. Nowadays, with the progress of communication and computing technology, users are
able to produce big amount of data, which is shared with untrusted parties. As such, the idea of locally
holding the data is of the past. Users leverage the computational and storage capabilities in order to
store and analyze their data. Solutions tailored for this scenario propose a new model for outsourced
data computations. In the paper we are focused on secure aggregation. In a nutshell, in an aggrega-
tion protocol, untrusted parties collect individual users’ data in order to compute a function over their
cleartext data. The paradigm of data collection and analysis is motivated by a plethora or real world
scenarios:

– Smart metering data is collected by an energy supplier in order to perform energy forecasting for
cost minimizations. On the other hand users want to protect their individual privacy and apply a
privacy preserving mechanism on their data.

– In a healthcare scenario patients leave their health traces to hospitals. These traces comprise health
care sensitive data and a compromise thereof, affect negatively the patients: A hospital which acts as
a data enclave for patients data may collude with an insurance company. The latter may decline an
insurance subscription to a patience according its health care data.

In the aforementioned use cases an untrusted Aggregator computes in cleartext a function f over users’
data and forwards the result to a Data Analyzer. The paradox stems from the desire of each user to
protect its individual privacy while the Aggregator wants to learn in cleartext f over users’ data. Existing
literature is focused either on protecting individual privacy [10, 23, 26, 32] or on improving the security
model with a malicious Aggregator; who will try to convince a Data Analyzer, who acts as a honest ver-
ifier, that the result of computations comes from genuine data inputs. In [27] the authors by leveraging
the encryption scheme of Shi et al. [32] they enrich the typical data collection and analysis protocol with
a proof computed by a malicious Aggregator, which allows the Data Analyzer to verify the correctness
of computations. However the authors employ a rather weak model. During their analysis, users are



assumed as trustworthy and they do not collude with the Aggregator. However, this assumption is not re-
alistic in a real world scenario in which trustworthiness is not guaranteed. Namely, users can collude with
the Aggregator in order to change the protocol’s messages at their need. This would have devastating
consequences on users’ security. In [16] the authors propose a solution in which trustworthiness of users
is correlated with the validity of their produced data. Their solutions incorporates a blind commitment
before the collection of the data. In between the commitment and the aggregation phase users cannot
change their data. However a malicious user is able to alter its real data before the commitment phase,
thus violating the validity of data.

We propose a secure aggregation protocol in the presence of untrustworthy users. In this setting users
are allowed to collude with a malicious Aggregator, without affecting the unforgeability of the scheme.
We only require that users send correct data and not fake information. The striking attribute of our
protocol which is of independent importance is a new cryptographic primitive named convertible tag.
Users tag their data with a convertible tag using independent randomness. This allows users to collude
with a malicious Aggregator without the latter being able to forge user’s data. The tag is convertible, in
the sense that a semi-trusted third party with some auxiliary information computed by each user, can
convert it to a another tag, which is able to be aggregated with respect to the function f . Informally, the
security guarantees for convertible tags assure that any collusion of the user with a malicious Aggregator
cannot forge non-genuine data, originating from other users. Plugging convertible tags to a secure ag-
gregation protocol also assures unforgebility of data aggregation as formalized in [27] and Aggregator
obliviousness [32]. That is, a malicious Aggregator cannot convince a honest verifier for the correctness
of computation f that arises from non-genuine data inputs and moreover individual privacy of users’
inputs is preserved thanks to the obliviousness property. We summarize the contributions of this paper
as follows.

Contributions

– In the aim of assuring collusion resistant aggregation we come up with the cryptographic primitive
of convertible tag. Users can choose independently their tag keys. The tags are unified under common
randomness with the aid of a semi-honest third party, called hereafter the Converter. The convertible
tags assure obliviousness of computations against a malicious Aggregator and a semi-honest Con-
verter, without jeopardizing unforgeability.

– We extend the current security definitions of secure aggregation protocols with collusions: a) be-
tween users and Aggregator, b) between users and the Converter, c) between the Aggregator and the
Converter, in case of trustworthy users. Our protocol is provably secure under standard assumptions
in the random oracle model.

– Thanks to our construction, the protocol achieves constant time symmetric verification in a multi-user
setting.

Outline In section 2 we introduce the problem this paper addresses and we identify the lack of a
stronger security definition from existing protocols. Afterwards, in section 3 we review similar crypto-
graphic primitives with convertible tags. We continue in section 4 with the core idea of our solution. The
protocol is presented in full details in section 6. Finally, we conclude in section 9 and in appendix section
we analyze the security and the performance of the proposed scheme.

2 Problem Statement

For a secure aggregation protocol, we assume a set of n users U = {Ui}ni=1, each one producing time
series personal data inputs xi,t. Users encrypt their data with an encryption algorithm, which produces
ciphertexts ci,t. Ciphertexts are collected by an Aggregator A, whose main goal is to learn a function
f in cleartext over users’ data and forward the result to a trustworthy Data Analyzer DA, who does
not communicate with each user. We assume a malicious Aggregator who does not follow the rules of
the protocol and seeks to infer more information from the exchanged messages of the protocol. More
specifically the Aggregator will try to convince a honest verifier DA for the correctness of computations
over non-genuine data. To protect against the malicious Aggregator users further tag their data in such
a way that a proof of correct computations can be constructed by the Aggregator and will convince the
verifier.

We recall in this section the syntax of a secure aggregate protocol as described in [27].

2



2.1 Syntax

– Setup(1λ)→ (pp, skA, {ski}Ui,∈U, vk): It is a randomized algorithm run by a trusted dealer KD, which
on input of a security parameter λ outputs the public parameters pp that will be used by subsequent
algorithms, the AggregatorA’s secret key skA, the secret keys ski of users Ui and the public verification
key vk.

– EncTag(t, ski, xi,t) → (ci,t, sti,t): It is a randomized algorithm which on inputs of time interval t,
secret key ski of user Ui and data xi,t, encrypts xi,t to get a ciphertext ci,t and computes a tag sti,t
that authenticates xi,t.

– Aggregate(skA, {ci,t}Ui∈U, {sti,t}Ui∈U)→ (sumt, σt): It is a deterministic algorithm run by the Aggre-
gator A. It takes as inputs Aggregator A’s secret key skA, ciphertexts {ci,t}Ui∈U and authentication
tags {σi,t}Ui∈U, and outputs in cleartext the sum sumt of the values {xi,t}Ui∈U. Moreover, it computes
a proof σt assessing the correctness of sumt, using the authentication tags {σi,t}Ui∈U.

– Verify(vk, sumt, σt)→ {0, 1}: It is a deterministic algorithm that is executed by the Data AnalyzerDA.
It outputs 1 if Data Analyzer DA is convinced that the sum sumt =

∑
Ui∈U{xi,t}; and 0 otherwise,

with the aid of the verification key vk.

2.2 Security Model

We build upon the model as presented in [27] and we further assume that users are not trustworthy.
We only require that each user be it trustworthy or not submits real data and not fake inputs. Notably,
users can collude with the Aggregator in order to forge non-genuine tags for a legitimate user. This
has a negative result on the scheme’s security, since the security definition of aggregate unforgeability
is not assured anymore. In a nutshell, aggregate unforgeability definition follows the classical message
tag unforgeability under chosen message attack, with the difference that adversary A cannot forge an
aggregate tag with respect to the computation f . That is, if users submit tags sti,t for their private data
inputs xi,t then A can only compute a valid aggregate tag stt for the sum computation over xi,t and
nothing else. We show how the scheme in [27] does not assure aggregate unforgeability in the presence
of non-legitimate users, who collude with a malicious Aggregator A. A malicious user Um shares the
secret information a with the Aggregator. The Aggregator A then can forge another user’s tag with a as
follows: After obtaining stl,t = H(t)tkl(ga1 )

xl,t from a legitimate user Ul at time interval t, A computes
stl,t·(ga1 )v = H(t)tkl(ga1 )

xl,t+v, for a value v of its choice. Thus,A can produce a valid proof by aggregating
all tags and the forged one, for a sum that comes from non-genuine data. We also inherit the privacy
definitions of Aggregator obliviousness, which protects individual privacy. A malicious Aggregator from
the computation of the sum in cleartext over individual data inputs cannot jeopardize individual privacy.
The privacy definition is expressed as a security game .

3 Related work

Similar cryptographic primitives have been proposed in the literature for the purpose of unforgeability
with privacy. Blind signatures provide privacy by allowing the signer to sign a message blindly, without
learning what it signs [11]. Group signatures [12] provide anonymity by allowing any member of an
authorized group to sign on behalf of the group manager. Group signatures provide traceability and non-
frameability. The traceability property requires that no adversary can compute a signature that cannot
be traced to a user and non-frameability assures that a malicious group manager cannot falsely accuse
a user. With proxy signatures [5, 30] and its variations (anonymous [18], private [14, 20, 21]), signing
rights are delegated to a proxy who signs on behalf of a user. Proxy Re-Signatures (PRS) [2, 4, 29]
translate signature for one party to another one. PRS share some properties with convertible tags. We
carefully compare our new primitive with the aforementioned constructions below.

Blind signatures Chaum first introduced the notion of blind signatures. A user sends a blinded ver-
sion of its message to the signer and the latter signs without learning the underlying message. The user
then obtains the signature on the original message and sends the signature to the verifier. Apart from
confidentiality, blind signatures guarantee also anonymity and they are useful for a broad range of appli-
cations, as e-cash [7] and anonymous credentials [8]. Similarly with the convertible tags blind signatures
offer privacy on top of authentication but only for the third party who signs and not for the verifier. The
verifier in a blind signature verifies the correctness of a message in cleartext. In contrast, convertible tags
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extend this functionality with privacy, since there is not one-to-one message signature verification but
verification of the correctness of an aggregate result over data. Moreover, in a multi-user setting, convert-
ible tags, offer increased security, other than unlinkability, in case of collusions between a user and the
signer. The user can verify the well-formness of the tag. In cotrast blind signatures assume the signer as
trusted to sign correctly.

Group signatures Group signatures [6, 9] allow a member of a group to sign on behalf of a group
manager in such a way that anonymity of the sender is preserved. Moreover they guarantee traceability
of the signatures, non-frameability and coalition resistance. The model of convertible tags differ from
group signatures in the sense that groups signatures do not offer confidentiality over the entire group
messages and moreover they do not support homomoprphic operations on the signatures.

Proxy signatures In proxy signatures the signer delegates its signing rights to an authorized proxy.
The proxy can sign on behalf of the designator and the receiver of the signatures can verify the authen-
ticity of the signature as originated from the designator. In practice the secret key of the original signer
is split between the receiver and the proxy. Variations of proxy signatures as warrant-signatures [14, 20]
restrict the proxy to sign only specific parts of the messages without being able to learn the space of the
allowed messages that it can sign. Convertible tags enable a multi-user setting, in which multiple tags
from different users are converted in a single tag with common randomness.

Proxy re-signatures The primitive of proxy re-signatures allows a designator to delegate a transfor-
mation operation on its signature with the aid of proxy in order the latter to transform the original signa-
ture signed with the signature key of a different user. The proxy re-signatures primitive bears similarities
with the convertible tags primitive since in both there is a transformation mechanism by a third party,
who converts the authentication tags. However convertible tags operate in a different model: multiple
users tag their data such that the third party cannot learn the authenticated data. As such, confidential-
ity is being preserved in contrast with proxy-re signatures in which there is only authenticity guarantee.
Another major issue with proxy re-signatures is that they are not homomorphic, while convertible are
constructed not for a per message verification but for computation verification.

Conceptually, convertible tags can be viewed as a combination of blind signatures, group signatures,
and proxy (re-) signatures. They employ the privacy guarantee of confidentiality of blind signatures, the
communication model of groups signatures and the transformation property of a signature from one user
to another as with proxy (re-) signatures. However a simple assembly of the aforementioned primitives
for the construction of a convertible tag is not a trivial plug in of all those primitives, simply because in
case of collusions the security guarantees of each are not preserved. Notice that unforgeable signatures
on the tag solves the problem, but that would incur extra computational complexity to the Aggregator
for verifying each signature, and the different public keys for all users burden its storage complexity.

4 Idea and Model

4.1 Idea

The core idea of our solution for collusion resistant aggregation is a symmetric authentication mechanism
at the target group of bilinear pairings. Each user chooses uniformly at random tag keys for the authen-
tication tag, which at a first level, is named metatag. Users send their metatags to a semi-honest party,
the Converter C and their ciphertexts to the malicious Aggregator A. The protocol at this point assures
unforgeability and obliviousness against the Converter C. Along with the metatags each user transmits to
C some auxiliary information coupled with a blinded version of their secret tag key. C then couples all
this information and ends up with the final tag of each user at the second level. The coupling annihilates
the randomness per user and transforms the metatags to the final convertible tag, that is forwarded to
the malicious Aggregator A. Users upon receiving their tags from C validate its correctness. This is hap-
pening in order to ensure that in case of a collusion between a colluding user and the Converter C, the
latter cannot forward a forged tag, with the key that is used by C to couple the metatag and the auxil-
iary information. That is, a malicious user cannot extract the randomness used for the final computation
of the authentication tag in case of collusion with the malicious A, in order to forge an authentication
tag for another user. Aggregator receives all tags and ciphertexts. A then decrypts and learns the result
sumt = f =

∑n
i=1 xi,t and computes a proof of correct computations stt based on the convertible tags.

Finally, A forwards to the data analyzer DA the result sumt and the proof σt. DA verifies the cor-
rectness of computations as a honest verifier in constant time. The convertible tags assure Aggregator
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obliviousness and aggregate unforgeability. In a nutshell with Aggregator obliviousness A cannot learn
anything more than the aggregate result

∑n
i=1 xi,t. Aggregate unforgeability guarantees the correct com-

putation of sumt = f =
∑n
i=1 xi,t. Both security guarantees are enriched, in contrast with previous work

[27], with collusions between malicious users, Aggregator A and Converter C. Thus, our solution assures
:

1. Collusion resistance between a malicious user and a malicious AggregatorA, thanks to the individual
keys chosen by each user. Despite the convertible tags that in the end cancel out all the individual
keys and use a common randomness in order A to compute a proof of correctness based on the sum
computation, individual randomness chosen by each user permits collusions between a user and an
Aggregator without the latter being able to forge a tag of a legitimate user.

2. Collusion resistance between a malicious user and a semi-honest Converter C, thanks to the
convertible tag that is verified by each user after receiving their tags by the Converter. Convertible tags
allow each user to verify whether or not C tried to forge a convertible tag after colluding with another
user.

3. Collusion resistance between a malicious Aggregator A and a semi-honest Converter C. In the case of
users who do not act adversarially, meaning they have not been captured by an external adversary,
who shares secret information with a malicious Aggregator or Converter, our protocol is resilient to
collusions between a malicious Aggregator A and a semi-honest Converter C.

As we extend the model for privacy preserving and unforgeable aggregation as presented in [27] and
in section 2.1, with malicious users and extra parties (Converter) in the protocol, we also change the
model of the scheme syntactically and we describe it as follows.

4.2 Collusion Resistant Aggregation Model

– Setup(1λ) : This is a probabilistic algorithm that on input the security parameter λ it outputs the
public parameters pp and the secret key skA of the Aggregator.

– UKeygen(1λ)〈KD,U〉 : The key dealer KD runs this algorithm in order to distribute secret keys to
each user for encryption. Moreover users choose uniformly at random their tag keys.

– CKeygen(1λ)〈KD,U, C,DA〉 : This key distribution algorithm runs between the users who blind their
randomness from the UKeygen(1λ)〈KD,U〉 algorithm, send that to the Converter C, and the latter
distributes the secret authentication tag key to the data analyzer DA.

– EncTag(pp, ski, xi,t) : Each user using its secret encryption key encrypts its individual data and sends
the ciphertext ci,t to A. Moreover using its secret tag key computes a metatag mtagi,t and sends that
to the Converter C.

– Convert(pp, r,mtagi,t) : C with the key r, and the metatag mtagi,t computes the final tag sti,t for user
Ui.

– VTag(pp, ski, sti,t, xi,t) : Each user verifies the correctness of the final tag sti,t. Convertible tags pre-
vent C to forge a user’s tag using secret information from a colluding user.

– Aggregate(skA, {ci,t}, {sti,t}) : Aggregator A upon collecting the ciphertexts {ci,t} and the tags
{sti,t} decrypts with the secret key skA and learns the result sumt =

∑n
i=1 xi,t. Moreover, it com-

putes a proof of correct computation σt and finally and forwards to the data analyzer DA sumtt, σt.
– Verify(pp, vk, sumt, σt) : The data analyzer DA verifies the correctness of computation for the sumtt,

using the proof σt and the secret verification key vk and the public parameters pp.

4.3 Security and Privacy Model

In this section we analyze the collusions resiliency property for aggregation protocols. We further for-
mally define the security and the privacy properties.

Collusions and Trust model In contrast with previous model and solution [27], our scheme fulfills
its security guarantees under weakened assumptions. More specifically, collusions in between users and
malicious parties are supported without jeopardizing security definitions for unforgeability. Users U =
{U}ni=1 in the scheme are unauthenticated and can act maliciously. Collusions can happen between a
malicious user Um and a colluding Aggregator A or a malicious Converter C. Users share any secret
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User CollA,C CollA,Um CollC,Um
Trustworthy 3 3 3
Malicious 7 3 3

Table 1: Collusion model for Aggregate unforgeability.

information they know with the colluding members with the goal to forge other users’ tag. Users are
only trusted to submit correct data be it malicious or untrustworthy. Collusions between C and A are
also possible in case of trustworthy users (cf. table 1). We also assume the data analyzer DA to be a
trustworthy party, which does not communicate with the users. We thus, omit it from the security model.
We first describe the oracles an adversary A has access to when collusions between U , C and A are
possible:

– OCollA,Um (uid = i ∈ U) : On input a user identifier uid this oracle transmits to an adversary who
impersonates a malicious AggregatorA the user’s secret information (ekuid, tkuid, ruid, w) after running
the UKeygen(1λ) and CKeygen(1λ) algorithms.

– OCollC,Um (uid = i ∈ U) On input user identifier uid this oracle runs the UKeygen(1λ) and
CKeygen(1λ) algorithms and forwards to a malicious Converter C the user’s secret information
(ekuid, tkuid, ruid, w).

– OCollA,C (uid = i ∈ U) In case of of trustworthy users this oracle returns the secret key of C to an
adversary A.

Collusion Resistant Aggregate Unforgeability The security of the scheme is modeled under the col-
lusion resistant aggregate unforgeability (CR − AU) security definition. An adversary A is able to obtain
valid authentication tags for values of its choice by corrupting users. A also learns valid encryptions of
its choice, and learns the final result over plaintext values

∑n
i=1 xi,t. In the end we claim that an aggre-

gation scheme is secure if a malicious Aggregator A cannot forge an aggregate tag for a time interval t∗

such that for the underlying plaintexts it holds that
∑n
i=1 xi,t∗ 6=

∑n
i=1 xi,t for a set of users Ui ∈ S that

did not collude with the Aggregator or the Converter. We follow the security syntax as in [27] and we
differentiate between:

– Type-I forgeries, in which A tries to forge for a time interval t∗ in which she has not seen any tags
from the users.

– Type-II forgeries for a time interval t, in which A has received valid tags for the users but sumt
∗ 6=∑

xi,t.

However, in our model we allow a malicious Aggregator or Converter to collude with a user, in pursuance
of forging another user’s tag and convince the honest data analyzer DA for the correctness of computa-
tions given erroneous data inputs. An adversary during the CR − AU game has access to the following
oracles:

– OSetup(): This oracle when queried responds with the public parameters of the scheme pp and the
secret key of the Aggregator skA.

– OCollA,Um (uid = i ∈ U) : On input a user identifier uid, this oracle when is queried by a malicious
Aggregator A replies with the secret key of a user skuid.

– OCollC,Um (uid = i ∈ U) : Upon receiving a user identifier uid the OCollC,Um oracle responds to a
malicious Converter C with the secret key of a user skuid.

– OCorrA() : This oracles responds with the secret decryption key skA of the Aggregator.
– OCorrC () : This oracles responds with the secret key of the Converter C.
– OCorrDA() : This oracles responds with the secret verification key vk of the data analyzer DA.
– OEncTag

A (t, uid, xi,t) : This is an oracle that replies with the encryption of the value xi,t using the secret
key of the user i after calling the OCollA,Um (t, uid = i ∈ U) or OCollA,C (t, uid = i ∈ U) oracle.

– OMtag
A (mtagi,t) : The OMtag oracle on input a metatag mtagi,t) it converts it to the tag sti,t after

corrupting Converter’s secret key with the OCorrC oracle.
– OAggregate

A ({ci,t}ni=1) : This oracle simulates the behavior of the Aggregator A and when invoked with
inputs the ciphertexts {ci,t}ni=1, it gives as a response the sum

∑n
i=1 xi,t, after calling the OCorrA

oracle, in order to obtain the secret decryption key of the Aggregator skA.
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– OVerify
A (t, σt, sumt) : Upon receiving a tuple, containing a time interval t, a proof σt and and a result

sumt, the OVerify
A oracle invokes the OCorrDA oracle and replies with 1 ⇐⇒ sumt =

∑n
i=1 xi,t , or ⊥

otherwise.

We model the security definition of CR − AU, with two games: GameCR−AU−I and GameCR−AU−II re-
spectively.

In GameCR−AU−I users act maliciously and collusions between a user and a mali-
cious Aggregator A or a C are allowed. During the learning phase of the game (cf. al-
gorithm 1), A interacts with OSetup(),OCollA,Um (uid = i ∈ U),OCollC,Um (uid = i ∈
U),OEncTag

A (t, uid, xi,t),OMtag
A (mtagi,t),O

Verify
A (t, σt, sumt) oracles, in order to get the public parameters

pp, the secret tag key of the user, allow the Converter to collude with a malicious user, the ciphertexts,
the tags and the metatags of a user, respectively. Finally through OVerify

A (t, σt, sumt) A has access to the
verification oracle. Note, that this oracle during the game makes sense since, our scheme operates in a
symmetric setting, thus A cannot publicly verify. Finally A outputs a forgery for a time interval t∗. The
forgery is successful if Verify(pp, vk, sum∗t , st∗t ) = 1 for a time interval t∗ in which A did not query the
OEncTag (Type-I forgery), or for t∗ in which A called OEncTag (Type-II forgery) and none of users Ui ∈ S
collude with the Aggregator or the Converter.

Algorithm 1: Learning phase of the CR− AU− I game
(pp, skA)← OSetup(1

λ);
// A executes the following a polynomial number of times
OCollA,Um (uid = i ∈ U);
OCollC,Um (uid = i ∈ U);
// A is allowed to call OEncTag for all users Ui
(ci,t, sti,t)← OEncTag(t, uidi, xi,t);
OMtag
A (mtagi,t);
OVerify
A (t, σt, sumt);

Algorithm 2: Challenge phase of the CR− AU− I game
(t∗, sumt∗ , σt∗)← A

Definition 1. (CR− AU− I) An aggregetion scheme is CR− AU− I secure if any probabilistic polynomial
time adversary A has negligible probability ε(λ) on the winning probabilities Pr[ACR−AU−I(λ)]) of the game
as describe in algorithms 1, 2: Pr[ACR−AU−I(λ)] ≤ ε(λ).

In GameCR−AU−II users are assumed as trustworthy and collusions between C and A can occur.
During the security game though, in the learning phase (cf. algorithm 3) A does not have access to the
OCollA,Um (uid = i ∈ U) and OCollC,Um (uid = i ∈ U) oracles during which users share their secret keys
with A and C. However, A has access to OCollA,C (uid = i ∈ U) oracle since Aggregator and Converter can
collude. Similarly with GameCR−AU−I A succeeds if it outputs during the challenge phase (cf. algorithm
4) either a Type-I or Type-II forgery.

Correspondingly for a scheme with trustworthy users we define:

Definition 2. (CR−AU−II) An aggregetion scheme is CR−AU−II secure if any probabilistic polynomial
time adversary A has negligible probability ε(λ) on the winning probabilities Pr[ACR−AU−II(λ)]) of the
game as describe in algorithms 3, 4: Pr[ACR−AU−II(λ)] ≤ ε(λ).

Aggregator Obliviousness The privacy guarantees of the scheme assure Aggregator obliviousness (AO)
as has been first modeled by Shi et al. [32] and followed in subsequent work [23, 26, 27]. In a nutshell,
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Algorithm 3: Learning phase of the CR− AU− II game
(pp, skA)← OSetup(1

λ);
// A executes the following a polynomial number of times
// A is allowed to call OEncTag for all users Ui
(ci,t, sti,t)← OEncTag(t, uidi, xi,t);
OCollA,C (uid = i ∈ U);
OMtag
A (mtagi,t);
OVerify
A (t, σt, sumt);

Algorithm 4: Challenge phase of the CR− AU− II game
(t∗, sumt∗ , σt∗)← A

a malicious Aggregator A or Converter C cannot compromise individual privacy. A is allowed to learn in
cleartext the sum over users’ data inputs. The privacy definition has been augmented in order to capture
the extra functionality of unforgeability. As such, an adversary A is able to observe apart from cipher-
texts, metatags and the final convertible tag. Notice that all protocols so far are collusion resistant for
privacy, since the sharing of the secret key of a user cannot compromise others’ privacy by an adversarial
Aggregator. We clarify that the collusion resistance property makes sense to the unforgeability security
property of the protocol.

We are focused on AO since the Aggregator learns most of the information during the protocol exe-
cution. It is the party, which in contrast with the security definition of CR−AU− I and CR−AU− II, has
access to all collusion oracles OCollA,Um (uid = i ∈ U),OCollC,Um (uid = i ∈ U),OCollA,C (uid = i ∈ U) during
the learning phase of the game in algorithm 5. At the challenge phase (cf. algorithm 6), A chooses a
subset of users S∗ that have not been corrupted and issues two time series data X 0

t∗ = (Ui, t∗, x0i,t∗)Ui∈S∗
and X 1

t∗ = (Ui, t∗, x1i,t∗)Ui∈S∗ , such that
∑
x0i,t∗ =

∑
Ui∈S∗ x

1
i,t∗ for a time interval t∗ and sends them to

the OAO(X 0
t∗ ,X 1

t∗) oracle.
OAO(X 0

t∗ ,X 1
t∗) upon receiving the time series data flips a random coin b $←{0, 1} and replies to A with

the ciphertexts {cbi,t}Ui∈S∗ the metatags {mtagbi,t}Ui∈S∗ and the tags {stbi,t}Ui∈S∗ . A can adaptively call the
OVerify
A (t, σt, sumt) oracle after the challenge.

At the end of the game A outputs its guess b∗, and A wins the game ⇐⇒ b∗ = b.

Definition 3 (Aggregator Obliviousness). Let Pr[AAO] denote the probability that Aggregator A outputs
b∗ = b. Then an aggregation protocol is said to ensure Aggregator obliviousness if for any polynomially
bounded Aggregator A the probability Pr[AAO] 6 1

2 + ε(λ), where ε is a negligible function and λ is the
security parameter.

5 Preliminaries

In this section we explain the basic building blocks and computation assumptions that are used in our
proofs.

5.1 Bilinear maps

Let G1,G2,GT be cyclic groups of large prime order p and g1, g2 generators of G1,G2 accordingly. We
say that e is a bilinear map, if the following properties are satisfied:

1. bilinearity: e(ga1 , g
b
2) = e(g1, g2)

ab, where g1, g2 ∈ G1 ×G2 and a, b ∈ Zp.
2. Computability: there exists an efficient algorithm that computes e(ga1 , g

b
2) where g1, g2 ∈ G1×G2 and

a, b ∈ Zp.
3. Non-degeneracy: e(g1, g2) 6= 1.

8



Algorithm 5: Learning phase of the Aggregator obliviousness game
(pp, skA, vk)← OSetup(1

λ);
OCollA,Um (uid = i ∈ U);
OCollA,C (uid = i ∈ U);
// A executes the following a polynomial number of times
// A is allowed to call OEncTag for all users Ui
(ci,t, sti,t)← OEncTag(t, uidi, xi,t);
OMtag
A (mtagi,t);
OVerify
A (t, σt, sumt);

Algorithm 6: Challenge phase of the Aggregator obliviousness game
A → t∗, S∗;
A → X 0

t∗ ,X 1
t∗ ;

(cbi,t∗ , st
b
i,t∗)Ui∈S∗ ← OAO(X 0

t∗ ,X 1
t∗);

A → b∗ ;

5.2 Computational Assumptions

Definition 4. (Bilinear Computational Diffie-Hellman (BCDH) Assumption)
Let e(G1 × G2) → GT be a bilinear pairing, g a generator of G1 and g2 a generator of G2 and p the

order of G1,G2 and GT . Given U = (g, ga, gb, gc) ∈ G1 and V = (g2, g
a
2 , g

b
2) ∈ G2 for random a, b, c ∈ Zp

we say that BCDH holds if the probabilities of a probabilistic polynomial time adversary A to compute
W = e(g1, g2)

abc are negligible on input the security parameter λ: Pr[W ← A(U, V )].

Definition 5. (eXternal Diffie-Hellman (XDH) Assumption)
Let e(G1×G2)→ GT be a bilinear pairing, g a generator of G1 and g2 a generator of G2 and p the order

of G1,G2 and GT . We say that XDH holds if the probabilities of a probabilistic polynomial time adversary
A solve DDH and DL in G1 are negligible on input the security parameter λ.

Definition 6. (Fixed Argument Pairing Inversion I (FAPI− I) Assumption) [19]
Let e(G1 × G2) → GT be a bilinear pairing, d1 ∈ G1, d2 ∈ G2 and e(d1, d2) = z ∈ GT We say that

FAPI− I holds if the probabilities of a probabilistic polynomial time adversary A Pr[d2 ← A(d1, z)] are
negligible on input the security parameter λ.

6 Protocol

In order to guarantee AO our protocol employs Shi et al. scheme [32]. For completeness we briefly
describe their encryption scheme.

6.1 Shi-Chan-Rieffel-Chow-Song Scheme

– Setup(1λ): On input the security parameter λ this probabilistic algorithm outputs a cryptographic
secure hash function H : {0, 1}∗ → G1, for a group G1 of large prime order p. Through a secure
channel the trusted key dealer KD distributes to each user a secret encryption key eki ∈ Zp, which is
chosen uniformly at random. KD also forwards to the A the secret decryption key skA =

∑n
i=1 eki.

– Encrypt(eki, xi,t): To encrypt data value xi,t at time interval t with secret key eki, user Ui computes
the ciphertext ci,t = H(t)ekig

xi,t
1 ∈ G1.

– Aggregate({ci,t}Ui∈U, {sti,t}Ui∈U, skA): Upon receiving all the ciphertexts {ci,t}ni=1, the Aggregator
computes: Vt = (

∏n
i=1 ci,t)H(t)−skA = H(t)

∑n
i=1 ekig

∑n
i=1 xi,t

1 H(t)−
∑n
i=1 eki = g

∑n
i=1 xi,t

1 ∈ G1. A then
learns the sum sumt =

∑n
i=1 xi,t ∈ Zp by computing the discrete logarithm of Vt on the base g1. The

sum computation is correct as long as
∑n
i=1 xi,t < p.

9



6.2 Zero-Knowledge Proofs

Definition 7. During an interactive protocol 〈P (x), V (x)〉 between a probabilistic polynomial time prover
P and a probabilistic polynomial time verifier V , the latter outputs accept as long as it accepts as correct
the claim of the prover that x ∈ L, for input x and a language L. The interactive protocol is a zero knowledge
proof system if the following properties are met:

– Completeness: For a honest prover P and V , who interact a common input x, then if the statement
x is correct the verifier V is convinced with high probability:

∀x ∈ L,Pr[〈P (x), V (x)〉 = accept] ≥ 1− neg(λ)

– Soundness: For any cheating prover P ∗, the probability of a honest V to accept as correct a statement
x which does not belong in L is negligible:

∀P ∗,∀x /∈ L,Pr[〈P ∗(x), V (x)〉 = accept] ≤ 1− neg(λ)

– Zero-knowledge: The view of a cheating verifier V ∗ during the interactive protocol with the prover
P does not reveal any further information. This is modeled with a simulator S, who produces indis-
tinguishable transcripts of the protocol by interacting with V ∗:

∀V ∗∃S : ∀x ∈ L,VIEWP,V ∗(x) ≈ S(x)

.

In figure 1, we show how to construct a non-interactive zero knowledge proof for pedersen style
commitments hagb mod p, h = H(t), a, b ← Zq , with the Fiat-Shamir heuristic [17], for a hash function
H : {0, 1}∗ → Zp, which is modeled as a random oracle in the zero-knowledge proof in control of the
simulator.

P(c = hagb, h, g) V(c = hagb, h, g)

r1, r2 ←$Zq
y = hr1gr2

d = H(y)

y, w1 = ad+ r1, w2 = ad+ r2

d = H(y)

cdy
?
= hw1gw2

Fig. 1: ZKP{(a, b)|c = hagb = mtag1i,t}

Completeness follows by inspection. A honest verifier V validates cdy = cH(h,g,y,c)y =
[hrigxi,t ]tkiH(h,g,y,c)y = haH(h,g,y,c)gbH(h,g,y,c)y = haH(h,g,y,c)gbH(h,g,y,c)hr1gr2 =
haH(h,g,y,c)+r1gbH(h,g,y,c)+r2 = hw1gw2 .

Soundness. We assume a malicious Prover P ∗ who convinces with non-negligible probability for
some malformed mtag1i,t. That is, P ∗ can convince a honest V for the same commit value c but on
different values. This implies that given (y, d, w1, w2), (y, d

′, w′1, w
′
2) ⇒ hw1gw2 = ycd, hw

′
1gw

′
2 = ycd

′
.

Thus, is true hw1gw2 = hw
′
1gw

′
2yd−d

′
. We conclude a =

w1−w′1
d−d′ , b =

w2−w′2
d−d′ . We can extract the discrete

logs of ha and gb which contradicts the DL assumption.
Zero Knowledge. We assume that in the real world both the verifier and the prover can learn the

evaluation of H(x) by querying the oracle. We use a simulator S who controls the random oracle H in
the ideal world. S uses a lookup table to repsond with the same value on equivalent inputs. Since S does
not communicate with the prover it simulates the transcripts of the interaction as follows: S chooses
d,w1, w2

$← Zp, sets y = hw1gw2

cd
and H(y) = d.
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6.3 Collusion resistant aggregation I (CRA-I)

In order to communicate the ideas of the protocol in a clear way we first define a protocol that is collusion
resistant between colluding users and a malicious Aggregator A.

– SetupI(1λ) : On input the security parameter λ this probabilistic algorithm defines a cryptographic
secure hash function H : {0, 1}∗ → G1, a bilinear pairing e : G1 × G2 → GT of prime order p with
generator g. Finally it outputs the public parameters pp = (H, e, g, g2). It also calls the Setup(1λ)
algorithm of the Shi et al. scheme and outputs the secret key of the Aggregator skA

– UKeygenI(1λ)〈KD,U〉 : Each user independently chooses uniformly random tag keys tki and ri.
Through a secure channel each Ui forwards ri to the key dealer KD, who computes

∑n
i=1 ri.

– CKeygenI(1λ)〈KD,U〉 : The key dealer chooses uniformly at random a key r ∈ Zp and a random
generator w ∈ G2. It distributes through a secure channel r to the Converter C. It also sends to the
DA the secret verification key vk = (w, r,

∑n
i=1 ri) . Moreover it forwards w to each user. Then the

key dealer KD goes off-line.
– EncTagI(pp, ski, xi,t) : This deterministic algorithm takes as input the secret key of each user ski =

(ri,w, tki, eki) and the private values xi,t and outputs the metatag:

mtagi,t = (mtag1i,t,mtag2i,t) = ([H(t)rigxi,t ]tki , w
1
tki )

Moreover, users encrypt their data with the encryption key eki, with the encryption scheme of Shi et
al. [32] as already presented in 6.1. Finally, Ui forwards ci,t to the Aggregator A and the metatag
mtagi,t to the Converter.

– ConvertI(pp, r,mtagi,t) : The Converter runs this algorithm in order to “unify" all the tags under the
same key. It allows the homomorphic operations on the tags. The algorithm takes as input the public
parameters pp, the key r, and metatag mtagi,t and outputs the tag sti,t as follows:

sti,t = e(mtag1i,t,mtag2i,t)
r = e([H(t)rigxi,t ]tki , w

1
tki )r =

e(H(t)ri tki , w
1
tk i)re(gxi,ttki , w

1
tki )r = e(H(t)ri , w)re(gxi,t , w)r

– AggregateI(skA, {ci,t}, {sti,t}) : The AggregatorA after collecting all the ciphertexts ci,t for the users
U decrypts with the secret key skA and learns the sum

∑n
i= xi,t. For the decryption algorithm A uses

the decryption algorithm as in Shi et al. scheme [32]. Moreover, A computes a proof of correct
computation by aggregating the tags sti,t as follows:

σt =

n∏
i=1

sti,t =
n∏
i=1

e(mtag1i,t,mtag2i,t)
r =

n∏
i=1

e(H(t)ri , w)re(gxi,t , w)r =

n∏
i=1

e(H(t)ri , w)r
n∏
i=1

e(gxi,t , w)r = e(H(t), w)r
∑n
i=1 rie(g, w)r

∑n
i=1 xi,t

Finally A returns to the honest verifier the result sumt =
∑n
i= xi,t and the proof σt =

e(H(t), w)r
∑n
i=1 rie(g, w)r

∑n
i=1 xi,t

– VerifyI(pp, vk, sumt, σt) : The data analyzer DA, who acts as honest verifier verifies the correctness
of the sum computation by employing its verification key vk = (vk1 = w, vk2 = r, vk3 =

∑n
i=1ri). DA

verifies by checking if the following equation holds:

e(H(t), vk1)
vk2vk3e(g, vk1)

vk2sumt
?
= σt

Thanks to the bilinearity of the pairings the correctness of the verification procedure is assured.
Indeed:

e(H(t), vk1)
vk2vk3e(g, vk1)

vk2sumt =

e(H(t), w)r
∑n
i=1 rie(g, w)r

∑n
i=1 xi,t = σt
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6.4 Collusion resistant aggregation II (CRA-II)

We now present an extension of the previous scheme in order mitigate collusions between users and a
malicious A and between users and malicious C, meaning that a user can collude at the same time with
A and C. First we define a simple attack on the previous scheme:
Attack on CRA-I scheme A colluding user Uc shares with the Converter his secret tag key tki and the
shared common key between all users w. C can forge a valid tag tagi,t for a trustworthy user Ui as follows:
tag′i,t = tagi,t · e(gx

′
i,t , w) = e(H(t)ri , w)re(gxi,t+x

′
i,t , w)r, which is a valid forge for the value xi,t + x′i,t.

The core idea to mitigate these type of attacks is to enforce the Converter C to re-randomize the
metatag mtagi,t = [H(t)rigxi,t ]tki with the randomness r, such that C replies to Ui with the final tag
sti,t = e(H(t)ri , w)re(gxi,t , w)r along with the randomized metatag mtagi,t = [H(t)rigxi,t ]rtki . Finally
the user recomputes the final tag from the randomized metatag and validates whether the final tag has
been forged. As such, in case of collusions between a malicious user and a malicious C, the latter can
forge the final tag, but the user can detect it, thanks to the unforgeability of the metatag mtagi,t. Notice
that this mitigation assumes honest behavior of the users. Due to this malicious users without colluding
with the Converter C can malform metatags in order to enforce Converter C to reply with wr. This secret
information allows the Aggregator to collude with a user in order to forge a tag of a benign user and
finally to authenticate the sum over non-genuine data. We circumvent this with a zero-knowledge proof
that assures the valid form of a metatag. Thus users can behave arbitrary without affecting the security
of the scheme. We describe the entire protocol for collusion resistant aggregation against C and A:

– SetupII(1λ) : This algorithm calls the SetupI(1λ) algorithm and outputs the public parameters pp =
(H, e, g, g2) and the secret key of the Aggregator skA

– UKeygenII(1λ)〈KD,U〉 : UKeygenII(1λ) invokes the UKeygenI(1λ) algorithm during which each
user independently chooses uniformly random tag keys tki and ri. Moreover users transmit ri,
through a secure channel to the key dealer who computes

∑n
i=1 ri.

– CKeygenII(1λ)〈KD,U, C,DA〉 : This algorithm calls the CKeygenI(1λ)〈KD,U, C,DA〉, in which the
key dealer outputs the secret verification key vk = (w, r,

∑n
i=1 ri), chooses uniformly at random a key

r ∈ Zp and a random generator w ∈ G2. It distributes through a secure channel r to the Converter C.
It also sends w to each user, and forwards to the DA the secret verification key vk = (w, r,

∑n
i=1 ri) .

Finally the key dealer KD goes off-line.
– EncTagII(pp, ski, xi,t) : EncTagII(pp, ski, xi,t) calls EncTagI(pp, ski, xi,t) and operates similarly. It

outputs for each user Ui the ciphertext ci,t and the metatag :

mtagi,t = (mtag1i,t,mtag2i,t) = ([H(t)rigxi,t ]tki , w
1
tki )

which is forwarded to the Converter C.
– ConvertII(pp, r,mtagi,t) : Upon receiving the metatag mtagi,t = (mtag1i,t,mtag2i,t) =

([H(t)rigxi,t ]tki , w
1
tki ), C acts a verifier and user Ui as a prover and proves to C in zero knowledge:

ZKP{a = ritki, b = xi,ttki|c = [H(t)rigxi,t ]tki = mtag1i,t} 1

If the proof fails the protocol aborts. Otherwise C uses its secret key r to compute the final tag as
follows:

st1i,t = e(mtag1i,t,mtag2i,t)
r = e([H(t)rigxi,t ]tki , w

1
tki )r =

e(H(t)ri·tki , w
1
tk i)re(gx·tki , w

1
tki )r = e(H(t)ri , w)re(gxi,t , w)r

st2i,t = (mtag1i,t)
r = [H(t)rigxi,t ]rtki

Finally C sends to Ui the final tag sti,t = (st1i,t, st
2
i,t).

1 gray background denotes the different crypto machinery needed to prevent collusions
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– VTagII(pp, ski, sti,t, xi,t) : Each user verifies the correctness of the final tag as follows:

e(st2i,t, w)
1
tki

?
= st1i,t

The correctness of the equation holds since:

e(st2i,t, w)
1
tki = e([H(t)rigxi,t ]rtki , w)

1
tki =

e(H(t)rigxi,t , w)
rtki
tki = e(H(t)rigxi,t , w)r = st1i,t

At this point if the equation is not true the user Ui halts the execution of the protocol and it infers that
C forged the tag sti,t. Otherwise it continues by sending the final tag sti,t = st1i,t to the Aggregator A.

– AggregateII(skA, {ci,t}, {sti,t}) : This algorithm calls AggregateI(skA, {ci,t}, {sti,t}), which consec-
utively decrypts with the secret key skA and A learns sumt =

∑n
i=1 xi,t. Moreover, it computes a

proof of correct computation σt and finally and forwards the result sumt =
∑n
i= xi,t and the proof

σt =
∏n
i=1 sti,t = e(H(t), w)r

∑n
i=1 rie(g, w)r

∑n
i=1 xi,t to the data analyzer DA.

– VerifyII(pp, vk, sumt, σt) : The VerifyII(pp, vk, sumt, σt) algorithm invokes VerifyI(pp, vk, sumt, σt)
and verifies the correctness of the sum computation by checking :

e(H(t), vk1)
vk2vk3e(g, vk1)

vk2sumt
?
= σt

7 Cost Analysis

Participant Computation Communication

User 4 EXP ∈ G1 + 1 EXP ∈ G2 + 1 INV ∈ Zp + 1 EXP ∈ GT + 1PAIR 2l + lT
Converter 3 EXP ∈ G1 + 1PAIR+1 EXP ∈ GT l + lT
Aggregator (n− 1)MUL ∈ GT l + lT
Data Analyzer 1HASH ∈ G1 + 2 EXP ∈ GT + 2MUL ∈ Zp + 2PAIR -

Table 2: Performance of tag computation and metatag computation, proof construction and verification operations.
l denotes the bit-size of the prime number p and lT the bit-size of elements in GT .

We perform a theoretical evaluation of the scheme with respect to the cardinality of operations that
have to be performed by each party during the protocol execution for collusion resistant unforgeability.
The results are depicted in table 2. Notice that we omit from the analysis the computational costs for
encryption per user and decryption time for the Aggregator, since our goal is to show the extra cost
for collusion resistant unforgeability. That is the costs to compute tags and metatags, convert them,
per user verify them, aggregate them at the Aggregator’s side and compute/verify the proof of correct
computation.

At each time interval for the computation of the metatag mtagi,t = [H(t)rigxi,t ]r, w
1
tki , Ui is com-

mitted to two exponentiations in G1 and one exponentiation in G2. Afterwards, in order to validate
the final tag, users check if the following equation holds: e(st2i,t, w)

1
tki

?
= st2i,t, by performing one expo-

nentiation in GT and one bilinear pairing operation. Moreover for the zero knowledge proof its user
computes 2 exponentiations in G1. The Converter, in order to convert the metatag mtagi,t to the fi-
nal tag = sti,t = e(H(t)ri , w)re(gxi,t , w)r, is committed to one bilinear pairing computation and one
exponentiation in GT . For the verification of the zero-knowledge proof the Converter performs 3 expo-
nentiations in G1. The Aggregator computes the proof with n−1 multiplications in GT : σt =

∏n
i=1 sti,t =

e(H(t), w)r
∑n
i=1 rie(g, w)r

∑n
i=1 xi,t and the data analyzer verifies with two multiplications in GT , two ex-

ponentiations in GT and two bilinear pairing evaluations: e(H(t), vk1)
vk2vk3e(g, vk1)

vk2sumt
?
= σt. Notice,

that the protocol achieves constant verification time, which does not dependent on the number of users
that participate in the protocol with their values.

We also performed a real world prototype implementation for the verification process on a ma-
chine running Ubuntu 14.04 with kernel version 3.19.0-29. The machine has 8MB RAM memory and
is equipped with an INTEL Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz processor with 4 cores. For our
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prototype implementation we used python version 3 and charm cryptographic framework[1]. Charm
supports an abstract layer for basic cryptographic primitives and its core system for the mathematical
operations is implemented in ANSI C, yielding substantial efficiency results. Since out protocol is based
on bilinear pairings we run our benchmarks with different implemented elliptic curves (cf. table 3). We
measured the exact time of computing the metatags, the final tag and the verification of the final tag from
the user side. Secondly, we measured the computational overhead at the converter side for transforming
the metatags of each user. Finally, the time for verification is computed, for different curve types. The
implementation results are obtained on average after running them for 1000 times. We observed that for
the computation and verification of each tag, user computations yield a cost of microseconds (≈ 3ms on
average for all different type of curves) . The cost for the Converter to convert each tag remains small
compared with the computation of each tag, thanks to the simplicity of the Convert operations. The exact
computational cost for verifying is also significantly low and it is constant, independent on the number
of the users.

Table 3: Benchmark results

Operation
Curve Type

MNT159 MNT201 MNT224

User : Tag 78ms 102ms 111ms
Converter : Convert 57ms 97ms 110ms

DA : Verify 80ms 103ms 112ms

8 Security Analysis

In this section we give evidence for the security of the scheme, following the security definitions in section
4.3. We start our analysis with privacy and we prove the Aggregator unforgeability privacy property. Notice
that be it CRA-I or CRA-II the privacy guarantee is not affected as with the encryption scheme of Shi et
al. [32] in case of corrupted users, thanks to the trusted key dealer that distributes individual secret keys
to each user. As such, we assume a trusted key distribution phase before the key dealer KD goes off-line.

8.1 Aggregator Obliviousness

Theorem 1. The CRA-I and CRA-II schemes provide Aggregator Obliviousness under the DDH assumption
in G1 in the random oracle mode.

Proof. We assume an adversary A who breaks with non-negligible probability the AO privacy definition
for Aggregator obliviousness. We will show in our proof how a probabilistic polynomial time adversary
B invokes A as a subroutine in order to break the Aggregator obliviousness definition as defined in the
scheme of Shi et al. [32]. We will refer to this scheme as private streaming aggregation (PSA). Adversary
B has access toOPSA

Setup,OPSA
Corrupt,OPSA

Encrypt, andOPSA
AO oracles with the challenger, when she tries to break AO

in PSA. The OPSA
Setup oracle gives the public parameters and the secret keys to the users and the Aggregator.

The OPSA
Corrupt oracle on input a user id uid returns the secret encryption key ski of a corrupted user. The

OPSA
Encrypt oracle on input a data input xi,t returns the encryption ci,t under the encryption algorithm of

[32]. The OPSA
AO oracle during the challenge phase with B flips a random coin b

$←{0, 1} and responds
with the encryption of the time series X bt = {xi,t}.

Algorithm B simulates as a challenger the oracles A has access to during the Learning phase as
follows:

– OSetup(1
λ): Whenever A calls the OSetup(1

λ) oracle, B calls the OPSA
Setup oracle, which responds to B

with a hash function H : {0, 1}∗ → G1, a generator g of the group G1 of safe prime order p, and
the Aggregator’s secret key skA =

∑n
i=1 eki. Moreover, B chooses the parameters of a bilinear pairing

bp = (e, g1, g2,G1,G2,GT ). Uniformly at random it selects secret keys r, {ri}ni=1 ∈ Zp, w ∈ G2. Finally
B replies to A with H, g, bp, skA.
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– OCollA,Um (uid = i ∈ U): When A invokes this oracle then B calls the OPSA
Corrupt oracle and transmits to

A the secret encryption key ekc of a corrupted user Uc ∈ S and its secret tag key ri, w.
– OCollA,C (uid = i ∈ U): The collusion between the Converter and A are simulated by the OCollA,C (uid =
i ∈ U) oracle. B replies on these calls with the secret key r.

– OEncTag(t,uid,xi,t): Upon call on the OEncTag(t,uid,xi,t) oracle, B invokes the OPSA
Encrypt with input

(t, uid, xi,t), which in turns reply to B with the encryption ci,t = H(t)ekigxi,t of xi,t. B also com-

putes mtagi,t = crii,t, w
1
ri = (H(t)ekigxi,t)

ri , w
1
ri . Notice that mtagi,t is indistinguishable from the real

one if we interchange the randomness and set ri = eki and tki = ri, for uniformly random keys eki, ri.
B. Finally B replies to A with (ci,t,mtagi, t).

– OMtag
A (mtagi,t): A calls this oracle in order to learn the final tag of each user sti,t. B computes the

final tag as sti,t = e(mtag1i,t,mtag2i,t) = e((H(t)ekigxi,t)
ri , w

1
ri )r = e(H(t)eki , w)re(gxi,t , w)r. Under the

verification key vk = (w, r, skA) the aggregation of the tags
∏

sti,t can be correctly verified, upon
calling the OVerify

A (t, σt, sumt) oracle.
– OVerify

A (t, σt, sumt) : A can query this oracle to learn the result of verification. We assume a honest
verifier and this oracle makes sense, since we are in a symmetric verifications setting with a secret key.
B returns the result of the verification since it knows the secret verification key vk = (vk1, vk2, vk3) =
(w, r, skA, ):

e(H(t), vk1)
vk2,vk3e(g, vk1)

vk2sumt
?
= σt

When the learning phase is over, thenA during the Challenge phase, chooses a set of users ∈ S∗, that
have not been corrupted during the Learning phase and chooses two time series X ∗0 = (Ui, t∗, x0i,t∗)Ui∈S∗
and X ∗1 = (Ui, t∗, x1i,t∗)Ui∈S∗ such that

∑
x0i,t∗ =

∑
x1i,t∗ for a time interval t∗ in which A did not query

neither the OEncTag nor the OMtag oracle and sends them to OAO(X 0
t∗ ,X 1

t∗) oracle.
To simulateOAO(X 0

t∗ ,X 1
t∗) B queries theOPSA

AO oracle with input X 0
t∗ ,X 1

t∗ , which in turns flips a random
coin b $←{0, 1} and responds to B with the ciphertexts {cbi,t∗}Ui∈S∗ . B also computes the final tags:

stbi,t∗ = e(crii,t∗ = (H(t∗)ekigx
b
i,t∗ )ri , w

1
ri )r (1)

= e(H(t∗)eki , w)re(gx
b
i,t∗ , wr) (2)

Finally B forwards {cbi,t∗ , stbi,t∗} to A. The tag stbi,t∗ simulates perfectly the final tag of a user and the
aggregation of the tags for the computation of the final proof σt correctly verifies the sum under the
secret verification key vk = (vk1, vk2, vk3) = (w, r, skA):

n∏
i=1

stbi,t∗ =
n∏
i=1

e(H(t∗)eki , w)re(gx
b
i,t∗ , wr) (3)

= σt = e(H(t), vk1)
vk2,vk3e(g, vk1)

vk2sumt (4)

If A has non-negligible advantage ε to correctly guess the bit b∗ for the bit b, then B will break the AO
game in the PSA scheme with non-negligible advantage ε. This contradicts the DDH assumption since
the security of PSA is reduced to the DDH assumption. As such our scheme assures AO in the random
oracle model under the XDH assumption, which assumes the intractability of DDH in G1.

8.2 Aggregate unforgeability

Theorem 2. An adversary A who colludes with a user Uc in the CRA-I scheme has negligible probability on
forging a Type-I CR− AU− I forgery, under the BCDH assumption in the random oracle mode.

We prove theorem 2 in three steps. First we prove the security of a base scheme (BaseLine) without
any collusions in between a user and any other party. To model this scheme, an adversary A plays the
game as described in algorithms 1 and 2 without access to the corruption oracles OCorrA ,OCorrC and
OCorrDA . For the sake of clarity we call the security definition of aggregate unforgeability in the BaseLine
scheme as BAU and the corresponding game GameBAU. Then we show that a Type-I forgery in the CRA-I
can be transformed to a Type-I forgery in the BaseLine scheme and finally that a Type-I forgery in the
CRA-II scheme can be transformed to a Type-I forgery in the BaseLine scheme, as well.
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Lemma 1. The baseline scheme guarantees aggregate unforgeability for Type-I forgeries under the BCDH
assumption in the random oracle model.

Proof. We will show how an adversary B injects the challenge of the BCDH assumption into the game
that adversary A plays. During the setup phase B receives the challenge (g, g2, g

a, gb, gc, ga2 , g
b
2) from

OBCDH
Setup oracle and is asked to output e(g, g2)abc. B simulates the Challenger when A plays the GameBAU

game as follows:
B first chooses uniformly at random secret keys w, r, {ri, eki, tki}ni=1

Learning phase

– OSetup: Whenever A calls this oracle, B returns the public parameters pp = (H, e, g, g2) for a hash
function H : {0, 1}∗ → G1, bilinear pairing e, generators g, g2 for G1,G2 and the secret key of the
Aggregator skA =

∑n
i=1 eki. B also sets as the secret verification key vk = (ga2 , r, g

b
∑n
i=1 ri) and does

not share this information.
– A can query the random oracle H for a time interval t. In order to respond to the queries B constructs

a list HL〈t : vt, coin(t), H(t)〉 and responds to A as follows:
• If H has been queried before at the time interval t, B fetches the tuple HL(t) and replies to A with
H(t).

• If t is fresh then B selects uniformly at random φt ∈ Zp and flips a random coin(t). With probabil-
ity p coin(t) = 0 and B appends to HL(t) = gφt . Otherwise with probability 1− p when coin(t) = 1
then B sets HL(t) = gcφt . Finally B sends HL(t) to A.
• Whenever A calls the OEncTag(t,uid,xi,t) oracle, B constructs a tuple ET〈t, uidi, xi,t, sti,t〉. We differ-

entiate three cases:
1. If at time interval t, OEncTag(t,uid,xi,t) has not been queried before, then B calls the simulated

random oracle for time interval t and gets the response H(t). If coin(t) = 1 then B halts
the simulation. Otherwise it computes the ciphertext with the secret encryption key eki as
ci,t = H(t)ekigxi,t = gφtekigxi,t . Finally B computes the metatag mtagi,t = [H(t)rigxi,t ]tki , w

1
tki

and forwards ci,t,mtagi,t toA. It also updates ET list with the tuple: 〈t, uidi, xi,t, sti,t〉 and sets
Σt = Σt + xi,t.

2. If there exists uid in the list ET for time interval t, then B fetches this tuple and forwards
ci,t, sti,t to A.

3. Else B fetches the corresponding tuple from the HL list. If coin(t) = 1 then B halts the
simulation. Otherwise it computes the ciphertext with the secret encryption key eki as ci,t =
H(t)ekigxi,t = gφtekigxi,t . Finally B computes the metatag mtagi,t = [H(t)rigxi,t ]tki , w

1
tki and

forwards ci,t,mtagi,t to A. It also updates ET list with the tuple: 〈t, uidi, xi,t, sti,t〉 and sets
Σt = Σt + xi,t.

– When A calls the OMtag
A (mtagi,t) oracle, B calls the simulated random oracle to get H(t). If coin(t) =

0 then B halts, otherwise it forwards to A sti,t = e(H(t)ri , w)re(gxi,t , w)r.

Challenge phase At the challenge phase A outputs a forgery sumt
∗, σt

∗ for a time interval t∗. B fetches
the tuple HL(t

∗) and:

– If coin(t∗) = 0, then it aborts.
– Otherwise it solves the BCDH assumption by computing:

I =
(σt
∗)

e(g, vk1)vk2sumt
∗ =

e(H(t∗), vk1)
vk2vk3e(g, vk1)

vk2sumt
∗

e(g, vk1)vk2sumt
∗

= e(H(t∗), vk1)
vk2vk3 = e(gcφt∗ , ga2 )

rb
∑n
i=1 ri

Finally it outputs I
1

φt∗r
∑n
i=1

ri = e(g, g2)
abc, which is the solution to the BCDH problem.

The probabilities of B to not abort are p2(1 − p)qh for qh queries to the random oracle. So assuming
A forges a Type-I forgery with some non-negligible probability ε′(λ), then Pr[BBCDH] = p2(1− p)qhε′(λ).
As such we ended up in a contradiction assuming the hardness of the BCDH assumption and Pr[ABAU] =
ε(λ) for some negligible function ε on input of the security parameter λ.
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Lemma 2. Let A be a probabilistic polynomial time adversary who colludes with a user Uc in the CRA-I
scheme and outputs a Type-I forgery with non-negligible probability. Then, there is an adversary B that
outputs a Type-I forgery for the BaseLine scheme with non-negligible probability.

Proof. B calls the OSetup
CRA−I oracle which returns the public parameters pp = (H, e, g, g2) and the secret

key of the Aggregator skA. B relays this information toA. WheneverA calls theOEncTag
A (t, uid, xi,t) oracle,

then B in turn forwards the query to the OEncTag
A (t, uid, xi,t) oracle of the CRA-I game, which replies with

ci,t = H(t)ekigxi,t ,mtagi,t = [H(t)rigxi,t ]tki , w
1
tki . Similarly B relays the queries to the OMtag

A (mtagi,t)
and forwards the response = sti,t = e(H(t)ri , w)re(gxi,t , w)r back to A. B responds to the queries for
the OCollA,Um (t, uid = i ∈ U) oracle, with (ri, eki, tki, w). Note that for trustworthy users, A only learns
H(t)ekigxi,t , [H(t)rigxi,t ]tki , w

1
tki , e(H(t)ri , w)re(gxi,t , w)r by knowing w. Thus the secret value xi,t and

the secret keys of the user are computationally hidden. At this point the view of A is consistent with the
real protocol and thus does not abort the game. Eventually A outputs a forgery σt∗. B also outputs σt∗

as a valid forgery.

Lemma 3. Let C be a probabilistic polynomial time adversary who colludes with a user Uc in the CRA-II
scheme and outputs a Type-I forgery with non-negligible probability. Then, there is an adversary B that
outputs a Type-I forgery for the BaseLine scheme with non-negligible probability.

Proof. The proof proceeds accordingly with the previous proof for lemma 2. B relays queries to O∗CRA−II
oracles, coming from C. When C corrupts a user Ui ∈ S then B forwards to C the secret keys (ri, eki, tki, w).
Finally the view of adversary C is identical with the real game without being able to distinguish since
H(t)ekigxi,t , [H(t)rigxi,t ]tki , w

1
tki , e(H(t)ri , w)re(gxi,t , w)r computationally hide the secret value xi,t and

(ri, eki, tki, ) keys from uncorrupted users by an adversary C knowing the secret secret key r and secret
keys of corrupted users.

With lemmas 1, 2, 3 we conclude the proof of theorem 2.

Theorem 3. An adversary A has negligible probability on forging a Type-I CR−AU− II forgery, under the
BCDH assumption in the random oracle mode.

Notice the a CR−AU−II forgery entails collusions between a Converter and an Aggregator, by revealing
r to the latter. Thus the proofs proceeds as with lemma 1, with the difference that A during the learning
phase calls the OCorrC oracle and B forwards to A the secret key r.

Proof. B first chooses uniformly at random secret keys w, r, {ri, eki, tki}ni=1

Learning phase

– OSetup: Whenever A calls this oracle, B returns the public parameters pp = (H, e, g, g2) for a hash
function H : {0, 1}∗ → G1, bilinear pairing e, generators g, g2 for G1,G2 and the secret key of the
Aggregator skA =

∑n
i=1 eki. B also sets as the secret verification key vk = (ga2 , r, g

b
∑n
i=1 ri) and does

not share this information.
– A can query the random oracle H for a time interval t. In order to respond to the queries B constructs

a list HL〈t : vt, coin(t), H(t)〉 and responds to A as follows:
• If H has been queried before at the time interval t, B fetches the tuple HL(t) and replies to A with
H(t).

• If t is fresh then B selects uniformly at random φt ∈ Zp and flips a random coin(t). With probabil-
ity p coin(t) = 0 and B appends to HL(t) = gφt . Otherwise with probability 1− p when coin(t) = 1
then B sets HL(t) = gcφt . Finally B sends HL(t) to A.
• Whenever A calls the OEncTag(t,uid,xi,t) oracle, B constructs a tuple ET〈t, uidi, xi,t, sti,t〉. We differ-

entiate three cases:
1. If at time interval t, OEncTag(t,uid,xi,t) has not been queried before, then B calls the simulated

random oracle for time interval t and gets the response H(t). If coin(t) = 1 then B halts
the simulation. Otherwise it computes the ciphertext with the secret encryption key eki as
ci,t = H(t)ekigxi,t = gφtekigxi,t . Finally B computes the metatag mtagi,t = [H(t)rigxi,t ]tki , w

1
tki

and forwards ci,t,mtagi,t toA. It also updates ET list with the tuple: 〈t, uidi, xi,t, sti,t〉 and sets
Σt = Σt + xi,t.
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2. If there exists uid in the list ET for time interval t, then B fetches this tuple and forwards
ci,t, sti,t to A.

3. Else B fetches the corresponding tuple from the HL list. If coin(t) = 1 then B halts the
simulation. Otherwise it computes the ciphertext with the secret encryption key eki as ci,t =
H(t)ekigxi,t = gφtekigxi,t . Finally B computes the metatag mtagi,t = [H(t)rigxi,t ]tki , w

1
tki and

forwards ci,t,mtagi,t to A. It also updates ET list with the tuple: 〈t, uidi, xi,t, sti,t〉 and sets
Σt = Σt + xi,t.

– B forwards to A the secret key r while invoking the OCorrC oracle.
– When A calls the OMtag

A (mtagi,t) oracle, B calls the simulated random oracle to get H(t). If coin(t) =
0 then B halts, otherwise it forwards to A sti,t = e(H(t)ri , w)re(gxi,t , w)r.

Challenge phase At the challenge phase A outputs a forgery sumt
∗, σt

∗ for a time interval t∗. B fetches
the tuple HL(t

∗) and:

– If coin(t∗) = 0, then it aborts.
– Otherwise it solves the BCDH assumption by computing:

I =
(σt
∗)

e(g, vk1)vk2sumt
∗ =

e(H(t∗), vk1)
vk2vk3e(g, vk1)

vk2sumt
∗

e(g, vk1)vk2sumt
∗

= e(H(t∗), vk1)
vk2vk3 = e(gcφt∗ , ga2 )

rb
∑n
i=1 ri

Finally it outputs I
1

φt∗r
∑n
i=1

ri = e(g, g2)
abc, which is the solution to the BCDH problem.

Similarly with Lemma 1 the probabilities of B to not abort are p2(1 − p)qh for qh queries to the
random oracle. A outputs a Type-I CR−AU−II forgery with some non-negligible probability ε′(λ), then
Pr[BBCDH] = p2(1− p)qhε′(λ), which is a contradiction assuming the hardness of BCDH assumption and
concludes the proof.

Theorem 4. An adversary A who colludes with a user Uc in the CRA-II scheme has negligible probability
on forging a Type-II CR− AU− I, II forgery, under the DFAPI− I assumption in the standard model.

For the proof of the theorem 4 we first introduce the following assumption:

Definition 8. (Dual Fixed Argument Pairing Inversion I (DFAPI− I) Assumption)
Let e(G1 × G2) → GT be a bilinear pairing, c1, d1 ∈ G1, c2, d2 ∈ G2 and e(c1, c2) = z1 ∈ GT ,

e(d1, d2) = z2 ∈ GT . We say that FAPI− I holds if the probabilities of a probabilistic polynomial time
adversary A Pr[d2 ← A(d1, z1 · z2)] are negligible on input the security parameter λ.

For the proof of the aforementioned assumption we will show how a probabilistic polynomial time adver-
sary A who has non-negligible probabilities on the DFAPI− I assumption, can be used by a probabilistic
polynomial time adversary B to break the FAPI− I assumption with non negligible probabilities. We de-
note by OFAPI−I the oracle of the FAPI− I assumption, which outputs the challenge to an adversary and
by ODFAPI−I the oracle of the DFAPI− I assumption.

Proof. B queries the OFAPI−I oracle and gets back (e, d1, z = e(d1, d2)). When A asks the ODFAPI−I for the
public parameters of the scheme then B computes y = e(r1, r2)e(d1, d2) by choosing r1 ∈ G1, r2 ∈ G2

and forwards it to A. Assuming A breaks the DFAPI− I assumption with non-negligible probability ε by
outputting d2, then B outputs d2 as a solution to FAPI− I with equivalent non-negligible probability ε.

Proof. We show the interaction of A with the oracles, who eventually in order to provide a valid forgery
has to solve the DFAPI− I assumption with non-negligible probability.

– flag = 0.
– OSetup: Whenever A calls this oracle, it receives the public parameters pp = (H, e, g, g2) for a hash

function H : {0, 1}∗ → G1, bilinear pairing e, generators g, g2 for G1,G2 and the secret key of the
Aggregator skA =

∑n
i=1 eki. This oracle also sets as the secret verification key vk = (ga2 , r, g

b
∑n
i=1 ri)

and does not share this information.
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Protocol Obliviousness Verifiability Collusions

Shi et al. [32] 3 7 3
Joye et al. [23] 3 7 3
Erkin et al. [15] 3 7 3
Li et al. [28] 3 7 3
Jawurek et al. [22] 3 3 7
Kursawe et al. [25] 3 7 3
Barthe et al. [3] 3 3 -
Leontiadis et al. [26] 3 7 3
Leontiadis et al. [27] 3 3 7
Jung et al. [24] 7 7 7
Melis et al. [31] 3 7 7
This work 3 3 3

Table 4: Security comparison of existing protocols.

– OCorrC : This oracle forwards to A the secret key r while invoking the OCorrC oracle and sets flag = 1,
to indicate a CR− AU− II forgery.

– OCollA,Um (uid = i ∈ U): If flag == 0 then OCollA,Um (uid = i ∈ U)transmits the secret keys
eki, tki, ri, w. Otherwise it returns null to A.

– OEncTag
A (t, uid, xi,t): A receives the ciphertext with the secret encryption key eki as ci,t = H(t)ekigxi,t

and the metatag mtagi,t = [H(t)rigxi,t ]tki , w
1
tki .

– OMtag
A (mtagi,t): When A calls the OMtag

A (mtagi,t) oracle, it gets sti,t = e(H(t)ri , w)re(gxi,t , w)r.

EventuallyA outputs a forgery for a time interval t, sti,t for a sumt = s. In case of a CR−AU−I forgery
then flag = 0 and A learns eki, tki, ri, w for some users. In order the forgery to be valid and be accepted
by the OVerify(t, σt, sumt) oracle it ought to have the following form: sti,t = e(H(t)

∑
ri , w)re(gs, w)r =

e(H(t)
∑

ri , w)re(gs, wr) for s = sumt. As such, in order A to compute sti,t needs to extract r which is
coupled with each tag

∏
sti,t = e(H(t)

∑
ri , w)re(gxi,t , w)r, which is an instance of a FAPI− I assumption

with c1 = H(t)
∑

ri , c2 = wr, d1 = gs, d2 = wr and its hardness is proved in theorem 8.
Similarly, in case the forgery is of type CR− AU− II then flag = 1 and A knows r, s and H(t) from

sti,t. In order the forgery to be valid A needs to extract w from sti,t = e(H(t)
∑

ri , w)re(gs, w)r. From the
bilinearity the equation can be expanded as sti,t = e(H(t)

∑
ri , w)re(grs, w). The latter is an instance of a

FAPI− I assumption with c1 = H(t)
∑

ri , c2 = wr, d1 = grs, d2 = w.

8.3 Comparison

We present a detailed comparison with respect to the security model and the collusion resistant property
of existing protocols in table 4. Protocols which assure Aggregator obliviousness (AO) protect individ-
ual privacy from semi-honest Aggregators. Interestingly, a recent published paper [24], necessitates the
appropriate and rigorous security analysis that should be conducted for secure aggregation protocols.
As already mentioned in [13] there are two flaws in [24]. By exploiting the underlying mathematical
structure of the encryption algorithms a passive adversary can fully recover the plaintext values from
the ciphertext of a user. Moreover collusions, which are allowed as stated in the trust model of the pa-
per, permit users to annihilate the randomness used to evaluate multiplications over plaintexts. Apart
from this flawed protocol, to the best of our knowledge all the existing protocols guarantee AO in case
of collusions, simply because each user does not share the encryption key with any other party in the
protocol, thus the Aggregator cannot distinguish individual ciphertexts. Verifiability allows a party in
the protocol to verify the correctness of the results performed by a malicious Aggregator. The protocol
in [27] achieves public verifiability with the assumption of trustworthy users. As we showed in section
2.2, this protocol is insecure with respect to unforgeability as long as a malicious user colludes with a
malicious Aggregator. Verifiability is also achieved in Barthe et al. [3] but in a different context. The
authors presented a tool-assisted verifiable computations framework for program code verification for
differential private computations. Thus, the notion of collusions cannot be used in program verification
code for comparison with our work.
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9 Conclusion

We addressed the problem of collusion resistant aggregation. Under this scenario users can collude with a
malicious Aggregator, without the latter being able to forge other users’ data. For our solution we initiate
the study of convertible tag. Users first compute an authentication tag over their personal data and they
forward this information along with some auxiliary data, which comprises a blinded version of their key,
to an untrusted Converter. Finally the Converter transforms the tags, in order to allow an Aggregator to
compute a proof of correct computations over user’s data. We augment the current privacy definitions of
Aggregate unforgeability with collusions between a user, the Aggregator and the Converter. Our protocol
is provably secure and achieves constant time verification in the symmetric setting.
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