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Abstract

Privacy-preserving recommender systems have been an active research topic for many years. However, until today,
it is still a challenge to design an efficient solution without involving a fully trusted third party or multiple semi-
trusted third parties. The key obstacle is the large underlying user populations (i.e. huge input size) in the systems.
In this paper, we revisit the concept of friendship-based recommender systems, proposed by Jeckmans et al. and Tang
and Wang. These solutions are very promising because recommendations are computed based on inputs from a very
small subset of the overall user population (precisely, a user’s friends and some randomly chosen strangers). We first
clarify the single prediction protocol and Top-n protocol by Tang and Wang, by correcting some flaws and improving
the efficiency of the single prediction protocol. We then design a decentralized single protocol by getting rid of the
semi-honest service provider. In order to validate the designed protocols, we crawl Twitter and construct two datasets
(FMT and 10-FMT) which are equipped with auxiliary friendship information. Based on 10-FMT and MovieLens 100k
dataset with simulated friendships, we show that even if our protocols use a very small subset of the datasets, their
accuracy can still be equal to or better than some baseline algorithm. Based on these datasets, we further demonstrate
that the outputs of our protocols leak very small amount of information of the inputs, and the leakage decreases
when the input size increases. We finally show that he single prediction protocol is quite efficient but the Top-n is not.
However, we observe that the efficiency of the Top-n protocol can be dramatically improved if we slightly relax the
desired security guarantee.

I. Introduction

Recommender system is one type of information fil-
tering systems that seek to predict the preferences that
users would give to an item (e.g. music, book, or
movie) they have not yet considered, using a model
built from the characteristics of items and/or users. It
enables users to make the most appropriate choices
from the immense variety of items that are available.
Take an online book store as an example, going through
the lengthy book catalogue not only wastes a lot of
time but also frequently overwhelms users and leads
them to make poor decisions. Without recommender
systems, the availability of choices, instead of producing
a benefit, may downgrade users’ experiences. Today,
recommender systems play an important role in every
corner of our daily life. Two representative types of rec-
ommender systems are neighborhood-based and model-
based. In a neighborhood-based recommender system, in
order to predict user u’s rating for an item i, the system
first chooses a neighborhood for user u or the item i
then computes the prediction based on data from the
neighborhood. In a model-based recommender system,
in order to predict user u’s rating for an item i, the
system first trains a model using all available data then
computes the prediction based on the model.

In practice, most existing recommender systems are
centralized in the sense that a service provider will
collect the inputs from all users and compute recom-
mendations for them. The collected data range from
explicit inputs such as ratings to implicit behavior data
such as browsing histories and locations. This makes
recommender systems a double-edged sword. On one

side users get better recommendations when they reveal
more personal data, but on the flip side they sacrifice
more privacy if they do so. For instance, Narayanan and
Shmatikov [22] presented a robust de-anonymization
attack against anonymized Netflix dataset. Weinsberg
et al. [36] showed that what has been rated by a user
can already help an attacker identify this user, namely
the breach of data privacy may lead to the breach
of anonymity. Calandrino et al. [9] proposed inference
attacks which allow an attacker with some auxiliary
information to infer a user’s transactions from temporal
changes in the public outputs of a recommender sys-
tem. More detailed discussions about privacy issues in
recommender systems can be found in [4], [17], [25].

A. Related Work

Existing privacy-protection solutions can be generally
divided into two categories. The cryptographic solutions
(e.g. [1], [10], [23], [28], [32]) often aim at securing
the procedure of underlying recommender protocols,
namely they do not consider the information leakage
in the outputs. In this category, a typical method is
to employ somewhat homomorphic encryption scheme
and let all computations be done in encrypted form.
Unfortunately, this will incur intolerable complexities
and make the solutions impractical. Even though in the
neighborhood-based systems, predictions are computed
based on a small subset of users’data, a secure solution
must compute the neighborhood privately in the first
place, and this often introduces a lot of complexity. More-
over, many solutions (e.g. [23], [32]) introduce additional
semi-trusted servers which are difficult to be instantiated



in reality. The data-obfuscation solutions (e.g. [24], [27],
[37]) rely on adding noise to the original data or com-
putation results to protect users’ inputs. These solutions
usually do not incur complicated manipulations on the
users’ inputs, so that they are much more efficient. The
drawback is that they often lack rigorous privacy guar-
antees and downgrade the recommendation accuracy to
some extent. For instance, Zhang et al. [38] showed how
to recover perturbed ratings in the solutions from [24].
With respect to privacy guarantees, an exception is the
differential privacy based approach (e.g. [3], [20], [21])
which provide mathematically sound privacy notions.
However, these solutions either require a trusted third
party (trusted curator in term of differential privacy) or
need cryptographic primitives for all users to generate
the accumulated data subjects (e.g. sums and covariance
matrix).

In order to improve the efficiency of privacy-
preserving recommender systems, one typical approach
is to design more efficient cryptographic tools. However,
even if the speedup is significant in cryptographic sense,
it often does not result in practical recommender sys-
tems. This is due to the large underlying user popu-
lations, which make model training and neighborhood
selection unrealistic even with efficient cryptographic
tools. Recently, Jeckmans et al. proposed an interesting
solution direction in [16], where they proposed the con-
cept of friendship-based recommender system and gave
solutions based on somewhat homomorphic encryption
schemes. The rationale behind their concept is the fol-
lowing.

• In order to avoid the computationally-cumbersome
neighborhood selection step in neighborhood-based
recommender systems, the solution leverages auxil-
iary social network information of the users. This
significantly reduce the amount of data used in
computing predictions.

• Trust is a very subtle issue. Friends may trust each
other in the sense that their peers will not collude
with a third party to leak their information. If a col-
lusion is discovered, then their relationship can be
broken. On the other hand, some information may
be sensitive among friends, but not with strangers.
For instance, if a user has watched a porn movie,
then disclosing this to his friends may make him
embarrassed, but disclosing it to a stranger may
not cause any harm. This motivates the adoption of
homomorphic encryption to secure the computation.

Later, Tang and Wang [29] pointed out some security
flaws in the protocol from [16] and gave improved solu-
tions. All solutions from [16], [29] rely on the hypothesis
that friends share more similar tastes than with strangers
without any validation. Moreover, some proper analysis
is missing for security and implementation results are
missing to demonstrate the efficiency.

B. Our Contribution

In this paper, we revisit the concept of friendship-
based recommender system and the protocols from [16],
[29]. Generally speaking, we validate the hypothesis
made in [16], [29] and comprehensively analyse exist-
ing and newly designed protocols. In more detail, our
contribution lies in three aspects.

• We construct and analyze two Twitter datasets (i.e.
FMT and 10-FMT) by defining friendship based
on the following activities in Twitter. Based on 10-
FMT, we experimentally validate the hypothesis
that friends are more similar in the movie rating
behaviors. Besides serving for evaluating our recom-
mender protocols, the datasets are of independent
interests for the community.

• We clarify the single prediction and Top-n protocols
from [29] and correct some flaws in their specifica-
tions. The clarified single prediction protocol is more
efficient than the original one. We further propose
a new decentralized single prediction protocol, by
getting rid of the service provider and basing its se-
curity solely on the semi-honest assumption among
friends.

• We analyze the performances of the protocols.
Firstly, we evaluate the recommendation accuracy of
our protocols and show that they can achieve better
accuracy than some baseline algorithm. Secondly,
we analyse the security of our protocols. Since the
security of protocol executions is straightforwardly
guaranteed by the underlying homomorphic en-
cryption scheme, we focus on the information leak-
age in algorithm outputs. Thirdly, regarding compu-
tational complexity, we provide both asymptotic and
implementation results for the protocols. We show
that the single prediction protocol is very efficient
while the Top-n protocol is not. We further discuss
two relaxations for the top-n protocol and show that
they are quite efficient.

C. Organization

The rest of this paper is organized as follows. In
Section II, we present preliminaries on notation and
building blocks. In Section III, we recap the rating pre-
diction algorithms from [16] and [29]. In Section IV,
we define security models. In Section V, we construct
and analyse two Tweeter datasets. In Section VI, we
clarify the single prediction and Top-n protocols from
[29]. In Section VII, we present a decentralized privacy-
preserving single prediction protocol. In Section VIII,
we analyze the accuracy properties of the protocols.
In Section IX, we analyze the security properties of
the protocols. In Section X, we analyze the complexity
properties of the protocols. In Section XI, we conclude
the paper.
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II. Preliminary
When X is a set, x $

← X means that x is chosen from
X uniformly at random, and |X| means the size of X. If
χ is a distribution, then s ← χ means that s is sampled
according to χ. We use bold letter, such as X, to denote a
vector. Given two vector X and Y, we use X ·Y to denote
their inner product. We use ‖ X ‖ to denote the Euclidean
length of X.

In a recommender system, the item set is denoted by
I = (1, 2, · · · , b, · · · ,M), and a user x’s ratings are denoted
by a vector Rx = (rx,1, · · · , rx,b, · · · , rx,M). The rating value
is often an integer from {0, 1, 2, 3, 4, 5}. If item i has not
been rated, then rx,i is set to be 0. The ratings are often
organized in a rating matrix, as shown in Table I. The
functionality of a recommender system is to predict the
unrated rx,i values.

Item 1 · · · Item b · · · Item M
User 1 (R1) r1,1 · · · r1,b · · · r1,M
User 2 (R2) r2,1 · · · r2,b · · · r2,M
...

...
...

...
...

...
User N (RN) rN,1 · · · rN,b · · · rN,M

TABLE I: Rating Matrix

Given two rating vectors Rx and Ry from users x and
y, their Cosine similarity is computed as follows.

sim(x, y) =
Rx · Ry

‖ Rx ‖ · ‖ Ry ‖

With respect to Rx, a binary vector Qx =
(qx,1, · · · , qx,b, · · · , qx,M) is defined as follows: qx,b = 1
iff rx,b , 0 for every 1 ≤ b ≤ M. Basically, Qx indicates
which items have been rated by user x. We further use
rx to denote user x’s average rating, namely d

∑
i∈B rx,i∑
i∈B qx,i
c.

Many metrics can be used to measure the recommen-
dation quality of a recommender protocol. In this paper,
we use Mean Absolute Error (MAE), defined as follows.

MAE =
1
|Γ|

∑
r̂u,i∈Γ

|r̂u,i − ru,i|,

where Γ is the set of predicted ratings, r̂u,i is the predicted
rating and ru,i is the real rating value. Note that lower
MAE implies more accurate recommendations.

A. Somewhat Homomorphic Encryption
Since the breakthrough work of Gentry [14], many

somewhat homomorphic encryption (SWHE) schemes
have been proposed (e.g. the BV scheme [8], BGV
scheme [7], YASHE scheme [6]). A SWHE scheme can
be described by four algorithms (Keygen,Enc,Dec,Eval),
where the Eval algorithm can only be executed for a
limited number of times.
• Keygen(λ): this algorithm outputs a public/private

key pair (PK,SK).
• Enc(PK,m): this algorithm outputs a ciphertext c.

• Dec(SK, c): this algorithm outputs a plaintext m or
an error ⊥.

• Eval(op, cα, cβ): suppose cα is a ciphertext of α and
cβ is a ciphertext of β, this algorithm outputs a
ciphertext for the plaintext α op β. The operator op
is either addition + or multiplication ·.

Throughout the paper, given a public/private key pair
(PKu,SKu) for some user u, we use [m]u to denote a
ciphertext of the message m under public key PKu.
In comparison, Enc(PKu,m) represents the probabilistic
output of running Enc for the message m. When m is
a vector of messages, we use Enc(PKu,m) to denote the
vector of ciphertexts, where encryption is done for each
element independently. We use the notation

∑
1≤i≤N[mi]u

to denote the result of sequentially applying Eval(+, , ) to
the cipheretxts.

III. Tailored Prediction Algorithms

In this section, we briefly review the prediction algo-
rithms from [16], [29]. We refer to the algorithm from
[16] as the JPH algorithm, and the algorithm from [29]
as the TW algorithm.

A. JPH Prediction Algorithm

Given a user u, let his friend set be Fu. The JPH
prediction algorithm is defined as follows, where wu, f
and w f ,u are the weights that users u and f assign to
each other.

pu,b =

∑
f∈Fu

q f ,b · r f ,b · (
wu, f +w f ,u

2 )∑
f∈Fu

q f ,b · (
wu, f +w f ,u

2 )

=

∑
f∈Fu

r f ,b · (wu, f + w f ,u)∑
f∈Fu

q f ,b · (wu, f + w f ,u)
(1)

In [16], the authors only discussed the security prop-
erties of their solutions without touching upon the per-
formances. In practice, friends share similar tastes may
imply they also have rated similar items. Therefore, if
user u has not rated item b then it is very likely that
very few friends have rated the item b. If this happens,
the predicated value from Equation (1) may not be
very accurate (cold start problem). In Section VIII-C, we
validate this argument with experimental results. In fact,
this partially motivates the inclusion of strangers in TW
prediction algorithms.

B. Revised TW Prediction Algorithm

Given an active user u, when factoring in the in-
puts from randomly chosen strangers, we will use the
simple Bias From Mean (BFM) scheme for the purpose
of simplicity. It is worth stressing that there are a lot
of different choices for this task. Nevertheless, as to
the accuracy, this scheme has similar performance to
many other more sophisticated schemes, such as Slope
One and Pearson/Cosine similarity-based collaborative
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filtering schemes [19]. Let the stranger set be Tu, the
predicted value p∗u,b for item b is computed as follows.

p∗u,b = ru +
1
2

∑
t∈Tu

qt,b · (rt,b − rt)∑
t∈Tu

qt,b
(2)

Note that we put a factor 1
2 in the computation, which

means that the weight of a stranger’s contribution to
the output is set to be 1

2 . In [29], this factor is set to 1
by default and implies that a stranger’s weight to the
output is higher than that of a friend. Even though in
principle this factor can be flexibly set in the range of
[0, 1] but we argue that 1

2 is more appropriate than 1
because a friend should naturally contribute more to the
output in a friendship-based recommender system.

When factoring in the inputs from the friends, we
make two changes to Equation (1). One is to only take
into account the weight value from user u. This makes
more sense because how important a friend means to
user u is a subjective matter for u only. The other is to
compute the predication based on both u’s average rat-
ing and the weighted rating deviations from his friends.
Let the friend set be Fu, the predicted value p∗∗u,b for item
b is computed as follows.

p∗∗u,b = ru +

∑
f∈Fu

q f ,b · (r f ,b − r f ) · wu, f∑
f∈Fu

q f ,b · wu, f
(3)

In practice, the similarity between friends means that
they tend to prefer similar items. However, this does
not imply that they will assign very similar scores to
the items. For example, a user Alice may be very mean
and assign a score 3 to most of her favorite items while
her friends may be very generous and assign a score 5 to
their favorite items. Using the Equation (1), we will likely
generate a score 5 for an unrated item for Alice, who
may just rate a score 3 for the item even if she likes it.
In this regard, Equation (3) is more appropriate because
ru reflects the user’s rating style and

∑
f∈Fu q f ,b·(r f ,b−r f )·w f ,u∑

f∈Fu q f ,b·w f ,u

reflects the user’s preference based on inputs from his
friends.

Based on the inputs from the strangers and friends,
a combined predicted value pu,b for an unrated item b
can be computed as pu,b = ρ · p∗u,b + (1 − ρ) · p∗∗u,b for some
0 ≤ ρ ≤ 1. Due to the fact that cryptographic primitives
are often designed for dealing with integers, we rephrase
the formula as follows, where α, β are integers.

pu,b =
β

α + β
· p∗u,b +

α
α + β

· p∗∗u,b (4)

It is worth noting that the prediction pu,b is not determin-
istic because we assume the stranger set Tu is randomly
chosen for the computation.

C. An Additional Remark
In addition to solving the cold start problem in rec-

ommender systems, the other motivation to include the
contributions from strangers is to reduce the information

leakages of friends in the output for user u. We perform
two experiments and put the results in Fig. 1 and 2, by
following the same experiment procedure as in Section
IX-A. It shows that when the number of friends is
small, each of them may have quite big influence in the
output (particularly compared to the experiment results
in Section IX-A).

IV. SecurityModels

A. Basic Security Model

In the basic security model, we assume the service
provider is semi-honest, which means it will follow the
protocol specification and does not participate in the
protocol as a user. Moreover, a user trusts his friends
to be semi-honest. As to communication channel among
users, we assume all communications are protected with
respect to integrity and confidentiality (with forward
secrecy). In practice, any user or the service provider can
be compromised, so that it is important to investigate
the security guarantee in such situations. We refine the
security properties accordingly in Section IV-B.

Let the users be indexed by an integer x ≥ 1. We as-
sume user x has a public/private key pair (PKx,SKx) and
a rating vector Rx, the service provider has (PKs,SKs).
We further assume the social graph (denoted as SG)
among the users to be public information. We abstractly
denote the recommender protocol as RSProtocol and
let it output Prediction(Ru,R f ∀ f ∈ Fu,Rt ∀t ∈ Tu) to
user u and output nothing to others. Note that the
service provider will randomly set Tu in the execution
of RSProtocol.

As a standard cryptographic practice, every security
property is modeled as a game between a challenger
C and an attacker A. In the game, the challenger C
simulates the honest participants while the attacker plays
the role of compromised or malicious participants, and
the computation is indeed done via a two-party protocol
between C and A. We abstractly represent the protocol
execution with RSProtocol(Φ; Ψ), where Φ are the inputs
from C and Ψ are the inputs from A. In the definitions,
we omit the input of public parameters for simplicity.
In order to model the fact that the attacker may have a
wide range of background information about the rating
matrices, we let the attacker define the rating matrices
Rx for all x. Before formally describing the definitions,
we point out a clear distinction between them due to the
fact that only the active user u will receive an output at
the end of protocol execution.
• In Definitions from Fig. 3, 4, 6, the attacker models

participants other than user u so that we want to
enforce the concept that the attacker learns nothing
about u’s inputs.

• In Definitions from Fig. 5 and 7, the attacker models
user u, therefore we can only guarantee that the
attacker learns the information in the output but
nothing else.
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Fig. 1: Single Friend Influence (without involving any stranger) on 10-FMT Dataset. For clearly presenting those
differences that fall out of the range [−10−5, 10−5] and keeping the histogram structure, ≈99% of the differences that
fall into range [−10−5, 10−5] have been removed.

Fig. 2: Single Friend Influence (without involving any stranger) on MovieLens 100k Dataset. For clearly presenting
those differences that fall out of the range [−10−5, 10−5] and keeping the histogram structure, ≈99% of the differences
that fall into range [−10−5, 10−5] have been removed.
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Semi-honest recommender service provider. In the view of
all users, the service provider will follow the protocol specifi-
cation but it may try to infer their private information from
any collected transaction records. The attack game is shown
in Fig. 3, and the detailed description follows.

1) (PKx,SKx) ∀x,PKs,SKs
$
← C

2) (u,Fu,Rx ∀x,SG) $
←A

3) b $
← {0, 1}; A←− SKs

4) RSProtocol(Rx,SKx ∀x(x , s), b; SKs,Rx ∀x)
5) b′ ←− A

Fig. 3: Security against Semi-honest Service Provider

1) The challenger generates key pairs (PKx,SKx) for
all x and (PKs,SKs).

2) The attacker generates the rating matrices Rx ∀x,
the social graph SG, and selects a user u and his
friend set Fu.

3) The challenger generates a random bit b and gives
SKs to A.

4) The challenger and the attacker run the RSProtocol
protocol, where the challenger simulates all users
and the attacker simulates the service provider. In
the protocol execution, if b = 0 the challenger uses
the original rating matrices Rx for all x, otherwise
it uses random matrices in the computation.

5) At the end, the attacker outputs a bit b′.

Malicious strangers. In the view of user u, the involved
strangers in the protocol execution may try to learn his
private information. We assume the strangers are malicious,
meaning that the attacker does not need to follow the protocol
specification in the game. The attack game is shown in Fig.
4, and the detailed description follows.

1) (PKx,SKx) ∀x,PKs,SKs
$
← C

2) (u,Fu,Rx ∀x,SG) $
←A

3) b $
← {0, 1}; A←− SKx ∀x < Fu(x , u ∧ x , s)

4) RSProtocol(Ru,SKu,R f ,SK f ∀ f ∈

Fu,SKs, b; SKx ∀x < Fu(x , u ∧ x , s),Rx ∀x)

5) b′ ←− A

Fig. 4: Security against all Strangers

1) The challenger generates the key pairs (PKx,SKx)
for all x, and also generates (PKs,SKs).

2) The attacker generates the rating matrices Rx for
all x, the social graph SG, and selects a user u and
his friend set Fu.

3) The challenger generates a random bit b, and gives
SKx for all x < Fu except for SKu and SKs to the
attacker.

4) The challenger and the attacker run the RSProtocol
protocol. The challenger simulates user u, users
from Fu and the service provider, and the attacker
simulates the rest. In the protocol execution, if b = 0
the challenger uses the original rating matrices Ru
and R f for all f ∈ Fu, otherwise it uses some
random matrices in the computation.

5) At the end, the attacker outputs a bit b′.

In the view of a stranger from Tu, user u may try to learn
his private information (even colluding with u’s friends in Fu)
by acting maliciously. The attack game is shown in Fig. 5,
and the detailed description follows.

1) (PKx,SKx) ∀x,PKs,SKs
$
← C

2) (u,Fu,Rx ∀x,SG) $
←A

3) b $
← {0, 1}; A←− SKu,SK f ∀ f ∈ Fu

4) RSProtocol(Rx,SKx ∀x < Fu(x ,
u), b; SKu,SK f ∀ f ∈ Fu,Rx ∀x)

5) b′ ←− A

Fig. 5: Security for any Stranger against User u

1) The challenger generates the key pairs (PKx,SKx)
for all x, and also generates (PKs,SKs).

2) The attacker generates the rating matrices Rx for
all x, the social graph SG, and selects a user u and
his friend set Fu.

3) The challenger generates a random bit b, and gives
SKu and SK f for all f ∈ Fu to the attacker.

4) The challenger and the attacker run the RSProtocol
protocol. The attacker simulates user u and users
from Fu, and the challenger simulates the rest. In
the protocol execution, the challenger first samples
the stranger set Tu, and then proceeds as follows.

• If b = 0 the challenger uses the original rating
matrices Rt for all t ∈ Tu.

• Otherwise it uses any R∗t for all t ∈ Tu such
that Prediction(Ru,R f ∀ f ∈ Fu,Rt ∀t ∈ Tu) =
Prediction(Ru,R f ∀ f ∈ Fu,R∗t ∀t ∈ Tu).

5) At the end, the attacker outputs a bit b′.

Threat from a semi-honest friend. In the view of user u,
we assume that none of his friends will collude with the
recommender service server or another party to breach his
privacy and they will follow the protocol specification. It is
reasonable to assume that the social norm deters such
colluding attacks, and the deterrence comes from the fact
that once such a collusion is known to the victim user
then the friendship may be jeopardized. The attack game
is shown in Fig. 6, and the detailed description follows.
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1) (PKx,SKx) ∀x,PKs,SKs
$
← C

2) (u,Fu, f † ∈ Fu,Rx ∀x,SG) $
←A

3) b $
← {0, 1}; A←− SK f †

4) RSProtocol(Rx,SKx ∀x(x , f †), b; SK f † ,Rx ∀x)
5) b′ ←− A

Fig. 6: Security against any Semi-honest Friend

1) The challenger generates the key pairs (PKx,SKx)
for all x, and also generates (PKs,SKs).

2) The attacker generates the rating matrices Rx for
all x, the social graph SG, and selects a user u and
his friend set Fu. The attacker also chooses f † ∈ Fu.

3) The challenger generates a random bit b, and gives
SK f † to the attacker.

4) The challenger and the attacker run the RSProtocol
protocol, where the attacker simulates user f † and
the challenger simulates the rest. In the protocol
execution, if b = 0 the challenger uses the original
rating matrices Rx for all x (x , f †), otherwise it
uses random matrices in the computation.

5) At the end, the attacker outputs a bit b′.

In the view of f † ∈ Fu, user u and u’s other friends will
follow the protocol but may try to infer f †’s input. The attack
game is shown in Fig. 7, and the detailed description
follows.

1) (PKx,SKx) ∀x,PKs,SKs
$
← C

2) (u,Fu, f † ∈ Fu,Rx ∀x,SG) $
←A

3) b $
← {0, 1}; A←− SKu,SK f ∀ f ∈ Fu( f , f †)

4) RSProtocol(R f † ,SK f † ,Rx,SKx ∀x < Fu(x ,
u), b; SKu,SK f ∀ f ∈ Fu( f , f †),Rx ∀x)

5) b′ ←− A

Fig. 7: Security for a Friend against User u and other
Friends

1) The challenger generates the key pairs (PKx,SKx)
for all x, and also generates (PKs,SKs).

2) The attacker generates the rating matrices Rx for
all x, the social graph SG, and selects a user u and
his friend set Fu. The attacker also chooses f † ∈ Fu.

3) The challenger generates a random bit b, and gives
SKu and SK f for all f ∈ Fu except for SK f † to the
attacker.

4) The challenger and the attacker run the RSProtocol
protocol. The attacker simulates user u and users
from Fu except for f †, and the challenger simulates
the rest. In the protocol execution, the challenger
first samples the stranger set Tu, and then proceeds
as follows.

• If b = 0 the challenger uses the original rating
matrices Rt for all t ∈ Tu and R f†.

• Otherwise it uses any R∗t for all t ∈ Tu and R∗f †
such that Prediction(Ru,R f∀ f ∈ Fu,Rt∀t ∈ Tu) =
Prediction(Ru,R f ∀ f ∈ Fu( f , f †),R∗f†,R

∗

t ∀t ∈
Tu).

5) At the end, the attacker outputs a bit b′.

B. Worst-case Security Model

In the basic security model, the security definitions
leverage on the assumption that friends and the service
provider are semi-honest. Next, we relax this assumption
and allow friends to be compromised.

For the active user u, the worst-case scenario is that all
other parties collude and act maliciously. We can define
the security property as shown in Fig. 8. This can be
regarded as a combined version of the games in Fig. 3,
4, 6, by assuming a malicious attacker.

1) (PKx,SKx) ∀x,PKs,SKs
$
← C

2) (u,Fu,Rx ∀x,SG) $
←A

3) b $
← {0, 1}; A←− SKx ∀x(x , u)

4) RSProtocol(Ru,SKu, b; SKx ∀x(x , u),Rx ∀x)
5) b′ ←− A

Fig. 8: Worst-case Security for User u

1) The challenger generates the key pairs (PKx,SKx)
for all x, and also generates (PKs,SKs).

2) The attacker generates the rating matrices Rx for
all x, the social graph SG, and selects a user u and
his friend set Fu.

3) The challenger generates a random bit b, and gives
SKx for all x except for SKu to the attacker.

4) The challenger and the attacker run the RSProtocol
protocol, where the challenger simulates user u
and the attacker simulates the rest. In the protocol
execution, if b = 0 the challenger uses the original
rating matrix Ru, otherwise it uses some random
matrix in the computation.

5) At the end, the attacker outputs a bit b′.

In the view of a stranger t† ∈ Tu, the worst-case
scenario is user u colludes with all other users, but not
the service provider (otherwise it is impossible to get
privacy anymore). The attack game is shown in Fig. 9,
and it is an enhanced version of the attack game in Fig.
5 in the malicious model.
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1) (PKx,SKx) ∀x,PKs,SKs
$
← C

2) (u,Fu, t†,Rx ∀x,SG) $
←A

3) b $
← {0, 1}; A←− SKx ∀x(x , t†, x , s)

4) RSProtocol(Rt† ,SKt† ,SKs, b; SKx ∀x(x , t†, x ,
s),Rx ∀x)

5) b′ ←− A

Fig. 9: Worst-case Security for any Stranger

1) The challenger generates the key pairs (PKx,SKx)
for all x, and also generates (PKs,SKs).

2) The attacker generates the rating matrices Rx for
all x, the social graph SG, and selects a user u and
his friend set Fu. The attacker also chooses t† < Fu
and t† , u.

3) The challenger generates a random bit b, and gives
SKx for all x except for SKs and SKt† to the attacker.

4) The challenger and the attacker run the RSProtocol
protocol. The challenger simulates the service
provider and user t†, and the challenger simulates
the rest. In the protocol execution, the challenger
first samples the stranger set Tu which should
include t†, and then proceeds as follows.

• If b = 0 the challenger uses the original rating
matrix Rt† .

• Otherwise it uses any R∗t† such that
Prediction(Ru,R f ∀ f ∈ Fu,Rt ∀t ∈ Tu) =
Prediction(Ru,R f ∀ f ∈ Fu,Rt ∀t ∈ Tu(t , t†),R∗t† ).

5) At the end, the attacker outputs a bit b′.

In the view of a friend f † ∈ Fu, the reasonable worst-
case scenario is user u colludes with all other users, but
not the service provider (otherwise it is impossible to get
privacy anymore). The attack game is shown in Fig. 10,
and it is an enhanced version of the attack game in Fig.
7 in the malicious model.

1) (PKx,SKx) ∀x,PKs,SKs
$
← C

2) (u,Fu, f † ∈ Fu,Rx ∀x,SG) $
←A

3) b $
← {0, 1}; A←− SKx ∀x(x , f †, x , s)

4) RSProtocol(R f † ,SK f † ,SKs, b; SKx ∀x(x , f †, x ,
s),Rx ∀x)

5) b′ ←− A

Fig. 10: Worst-case Security for any Friend

1) The challenger generates the key pairs (PKx,SKx)
for all x, and also generates (PKs,SKs).

2) The attacker generates the rating matrices Rx for
all x, the social graph SG, and selects a user u and
his friend set Fu. The attacker also chooses f † ∈ Fu.

3) The challenger generates a random bit b, and gives
SKx for all x except for SKs and SK f † to the attacker.

4) The challenger and the attacker run the RSProtocol
protocol. The challenger simulates the service
provider and user f †, and the challenger simulates
the rest. In the protocol execution, the challenger
first samples the stranger set Tu.
• If b = 0 the challenger uses the original rating

matrix R f † .
• Otherwise it uses any R∗f † such that

Prediction(Ru,R f ∀ f ∈ Fu,Rt ∀t ∈ Tu) =
Prediction(Ru,R f ∀ f ∈ Fu( f , f †),R∗f † ,Rt ∀t ∈
Tu).

5) At the end, the attacker outputs a bit b′.

V. Construction and Analysis of Twitter Datasets
In this section, we construct two new datasets based

on the MovieTweetings dataset [11] (abbreviated as MT
dataset), which does not contain any friendship infor-
mation. Based on the “following” activities in Twitter, we
naturally introduce the concept of friendship as follows:
if a user x follows user y then we say user x regards user
y as a friend. Note that friendship is not guaranteed to
be bi-directional, namely users x and y may not consider
each other as friends at the same time.

A. Dataset Construction
MovieTweetings consists of ratings on movies that are

extracted from tweets [11]. Such tweets originate from
the social rating widget available in IMDb apps. To
construct our new datasets, we use a snapshot of the
MT dataset which contains 359908 ratings, 35456 users
and 20156 items. Note that in this dataset each user has
at least 1 rating. Since the MT dataset does not contain
friendship information, we crawled the followees of each
user ID recorded in it to create two new datasets with
friendship information.
• In the FMT dataset, each user has at least 1 friend

and each friend has at least 1 rating.
• In the 10-FMT dataset, each user has at least 10

friends and each friend has at least 10 ratings.
The specification for both datasets is in [34]. It is worth

stressing that, in the new datasets, we only collect the
Twitter users who have explicitly posted their movie
ratings. In another word, the friend list of a user may
be incomplete. The rating scale is regularized to [0,5].
We summarize some basic information of these datasets
in the following table.

B. Hypothesis Validation
In order to test the folklore that friends share more

similarities than strangers, we compute the Cosine sim-
ilarities between users in the 10-FMT dataset and plot
them in Fig. 11. Based on the fact that most I dots are
distributed above � dots, we can conclude that friends
typically share more similarities than strangers.
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Fig. 11: Cosine Similarity of 10-FMT Dataset

MT FMT 10-FMT
Ratings Num 359908 211954 20316
Users Num 35456 17268 508
Items Num 20156 15682 3481
Matrix Density 0.050% 0.078% 1.15%
Min Ratings/User 1 1 10
Ave. Ratings/User 10 12 39
Max Ratings/User 856 856 448
Min Friends/User – 1 10
Ave. Friends/User – 6 26
Max Friends/User – 282 109

C. Social Graph Characteristics
We summarize some simple facts of the 10-FMT

dataset in Table II. Note that, besides friends, we also
count the number of friends of friends (FoFs), which are
used in designing the decentralized protocol in Section
VII.

Min Avg Max
Friend Friend Friend

Num Num Num
Friends 10 27 109

FoFs 10 203 329

TABLE II: Basic Facts

We then map the 10-FMT dataset into a directed graph
in Fig. 12. In the graph, a node represents a user. If there
is an arrow from user x to user y, then user x regards
user y as a friend. It is clear that almost all users are
connected in the social graph.

VI. Centralized Friendship-based Protocols

In this section, we first describe our centralized set-
ting for recommender systems. Then, we describe two
privacy-preserving protocols based on those from [29].

A. The Centralized Setting

A recommender system often has a large population of
users, who may not know each other. Therefore, a com-
mon recommender service provider is always required to
provide the communication platform for users to jointly
run the recommender protocols. This leads us to assume
a centralized setting for protocol design. We generally
assume that there is a recommender service provider,
which will maintain the social graph and mediate the
executions of recommender protocols among users. The
system structure is shown in Fig. 13.
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Fig. 12: Social Graph of 10-FMT Dataset

Fig. 13: System Structure in the View of User u

With respect to the tailored recommender algorithms
in Section III, the global system parameters should be
established in advance. Such parameters should include
α, β which determine how a predicted rating value for
user u is generated based on the inputs of friends
and strangers, and they should also include the size of
stranger set Tu. In the initialization phase, user u gener-
ates his public/private key pair (PKu,SKu) for a SWHE
scheme and sends PKu to the server. We require that the
SWHE scheme allows to encrypt negative integers. In
addition, user u maintains a rating vector Ru, his social
graph, and assigns a weight wu, f to each of his friend

f ∈ Fu. All other users perform the same operations in
this phase.

B. Centralized Single Prediction Protocol

When user u wants to test whether the predicted rating
for an unrated item b is above a certain threshold τ (an
integer) in his mind, he initiates the protocol in Fig. 14.
Referring to the prediction algorithm from Section III-B,
in stage 1 the service provider collects the inputs from
the strangers in encrypted form according to Equation
(2), while in stage 2 the service provider collects the
inputs from the friends in encrypted form according to
Equation (3). In stage 3, user u learns whether the pre-
diction is above a threshold while the service provider
learns nothing. In more detail, the protocol runs in three
stages.

1) In the first stage, the participants interact as fol-
lows.

a) User u generates a binary vector Ib, which
only has 1 for the b-th element, and sends the
ciphertext [Ib]u = Enc(PKu, Ib) to the server.
Let’s assume [Ib]u = ([I(1)

b ]u, · · · , [I
(M)
b ]u).

b) The server first sends PKu to some randomly
chosen strangers, and see whether they want
to participate in the computation.
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User u RS Server Friends Fu, Strangers Tu

(PKu,SKu) PKu
wu, f : ∀ f ∈ Fu α, β

Stage 1
∀t ∈ Tu

Rt,Qt
[Ib]u

[Ib ]u
−−−→

PKu
−−−→

[Ib ]u
−−−→

[2 · qt,b]u
[qt,b · (Rt · Ib − rt)]u

[qt,b ·(Rt ·Ib−rt )]u , [2·qt,b]u
←−−−−−−−−−−−−−−−−−−−

Stage 2
∀ f ∈ Fu

PKu,R f ,Q f
[wu, f ]u

[wu, f ]u
−−−−−→

[wu, f ]u , [Ib]u
−−−−−−−−−−→

[q f ,b]u
[q f ,b · (R f · Ib − r f ) · wu, f ]u

[q f ,b ·(R f ·Ib−r f )·wu, f ]u
←−−−−−−−−−−−−−−−−−

[q f ,b]u
←−−−−−

Stage 3
pu,b

[nT]u =
∑

t∈Tu [qt,b · (Rt · Ib − rt)]u
[dT]u =

∑
t∈Tu [2 · qt,b]u

[nF]u =
∑

f∈Fu [q f ,b · (R f · Ib − r f ) · wu, f ]u

[dF]u =
∑

f∈Fu Eval(·, [q f ,b]u, [wu, f ]u)

[X]u = [β · nT · dF + α · nF · dT]u

[Y]u = [(α + β) · dT · dF]u
COM([X]u ,[Y]u ,τ−ru)
←−−−−−−−−−−−−−−−

pu,b = X
Y

?
≥ τ − ru

Fig. 14: Single Prediction Protocol

c) After the server has successfully found a vi-
able stranger set Tu, it forwards [Ib]u to every
user in Tu.

d) With PKu and (Rt,Qt), every user t from Tu
can compute the following based on the ho-
momorphic properties.

[2 · qt,b]u =
∑

1≤i≤M

Eval(·,Enc(PKu, 2 · qt,i), [I
(i)
b ]u)

[Rt · Ib]u =
∑

1≤i≤M

Eval(·,Enc(PKu, rt,i), [I
(i)
b ]u)

[qt,b · (Rt · Ib − rt)]u

=Eval(·, [qt,b]u,Eval(+, [Rt · Ib]u,Enc(PKu,−rt)))

2) In the second stage, the participants interact as
follows.

a) For every friend f ∈ Fu, user u sends the
encrypted weight [wu, f ]u = Enc(PKu,wu, f ) to
the server.

b) The server sends [wu, f ]u and [Ib]u to user f .
c) With PKu, [Ib]u, [wu, f ]u and (R f ,Q f ), user f can

compute the following.

[q f ,b]u =
∑

1≤i≤M

Eval(·,Enc(PKu, q f ,i), [I
(i)
b ]u)

[R f · Ib]u =
∑

1≤i≤M

Eval(·,Enc(PKu, r f ,i), [I
(i)
b ]u)

[q f ,b · (R f · Ib − r f ) · wu, f ]u =Eval(·,Eval(·, [q f ,b]u, [wu, f ]u),

Eval(+, [R f · Ib]u,Enc(PKu,−r f )))

3) In the third stage, user u and the server interact as
follows.

a) The server first computes [nT]u, [dT]u, [nF]u,
[dF]u as shown in Fig. 14, and then computes
[X]u, [Y]u as follows.

temp1 = Eval(·,Eval(·, [nT]u, [dF]u),Enc(PKu, β))

temp2 = Eval(·,Eval(·, [nF]u, [dT]u),Enc(PKu, α))

[X]u = Eval(+, temp1, temp2)

[Y]u = Eval(·,Eval(·, [dF]u, [dT]u),Enc(PKu, α+β))

Referring to Equations (2) and (3), we have
p∗u,b = ru + nT

dT
and p∗∗u,b = ru + nF

dF
. The ultimate

prediction pu,b can be denoted as follows.

pu,b =
β

α + β
· p∗u,b +

α
α + β

· p∗∗u,b

= ru +
β · nT · dF + α · nF · dT

(α + β) · dT · dF

= ru +
X
Y

b) User u runs a comparison protocol COM with
the server to learn whether X

Y ≥ τ − ru. Since

11



X,Y, τ − ru are integers, COM is indeed an
encrypted integer comparison protocol: where
user u holds the private key sku and τ, the
server holds [X]u, [Y]u, and the protocol out-
puts a bit to user u indicating whether X ≥
(τ − ru) · Y.

Compared to the protocol from [29], we have made
the following changes: (1) given the fact that the service
provider is semi-trusted, the strangers do not need to
validate PKu any more; (2) the strangers are chosen from
the whole population while they are chosen from FoFs
in [29]; (3) In Stage 1 and Stage 2, we simplify the
computation of [qt,b·(Rt·Ib−rt)]u and [q f ,b·(R f ·Ib−r f )·wu, f ]u;
(4) In stage 3, we do not require user u to send [ru]u to the
server anymore, and this reduces the complexity from
both sides; (5) we correct two errors in the computation
of [X]u and [dF]u in Fig. 3 from [29]. Note also that the
prediction formula is also different from that in [29].

C. Centralized Top-n Protocol

When the active user u wants to figure out Top-n
unrated items, he initiates the protocol in Fig. 15. This
protocol shares the same design philosophy as that of
single prediction protocol. The usage of matrix MX in
the random permutation of Stage 3 guarantees that the
rated items will all appear in the end of the list after
ranking. As a result, the rated items will not appear
in the recommended Top-n items. In more detail, the
protocol runs in three stages.

1) In the first stage, the participants interact as fol-
lows.

a) The server sends PKu to some randomly cho-
sen strangers and see whether they want to
participate in the computation. Suppose that
the server has successfully found Tu.

b) With PKu and (Rt,Qt), user t ∈ Tu can compute
[qt,b · (rt,b − rt)]u = Enc(PKu, qt,b · (rt,b − rt)) and
[2 · qt,b]u = Enc(PKu, 2 · qt,b) for every 1 ≤ b ≤
M. All encrypted values are sent back to the
server.

2) In the second stage, the participants interact as
follows.

a) To every friend f ∈ Fu, user u sends the
encrypted weight [wu, f ]u = Enc(PKu,wu, f ).

b) With PKu, [wu, f ]u and (R f ,Q f ), user f can
compute [q f ,b]u and

[q f ,b · (r f ,b − r f ) · wu, f ]u

=Eval(·,Enc(PKu, q f ,b · (r f ,b − r f )), [wu, f ]u)

for every 1 ≤ b ≤ M. All encrypted values are
sent back to the server.

3) In the third stage, user u and the server interact as
follows.

a) User u generates two matrices MX,MY as fol-
lows: (1) generate a M×M identity matrix; (2)

randomly permute the columns to obtain MY;
(3) to obtain MX, for every b, if item b has
been rated then replace the element 1 in b-th
column with 0.

1 0 · · · 0
0 1 · · · 0
· · · · · · · · · · · ·

0 0 · · · 1

→MY =


0 1 · · · 0
0 0 · · · 1
· · · · · · · · · · · ·

1 0 · · · 0


→MX =


0 1 · · · 0
0 0 · · · 0
· · · · · · · · · · · ·

1 0 · · · 0


User u encrypts the matrices (element by

element) and sends [MX]u, [MY]u to the server,
which then proceeds as follows.
i) The server first computes [nT,b]u, [dT,b]u,

[nF,b]u, [dF,b]u, [Xb]u, [Yb]u for every 1 ≤
b ≤ M as shown in Fig. 15, in the same
way as in the previous protocol in Fig.
14. Referring to Formula (4), we see that
ru appears in pu,b for every b. For simplic-
ity, we ignore this term when comparing the
predictions for different unrated items. With
this simplification, the prediction pu,b can
be denoted as follows.

pu,b =
β

α + β
·

nT,b

dT,b
+

α
α + β

·
nF,b

dF,b

=
β · nT,b · dF,b + α · nF,b · dT,b

(α + β) · dT,b · dF,b

=
Xb

Yb

ii) The server permutes the ciphertexts
vector (([X1]u, [Y1]u), ([X2]u, [Y2]u), · · · ,
([XM]u, [YM]u)) in an oblivious manner as
follows.

([U1]u, [U2]u, · · · , [UM]u)

=[MX]u · ([X1]u, [X2]u, · · · , [XM]u)T

([V1]u, [V2]u, · · · , [VM]u)

=[MY]u · ([Y1]u, [Y2]u, · · · , [YM]u)T

The multiplication between the ciphertext
matrix and ciphertext vector is done in the
standard way, except that the multiplica-
tion between two elements is done with
Eval(·, , ) and the addition is done with
Eval(+, , ). Suppose item b has been rated
before and ([Xb]u, [Yb]u) is permuted to
([Ui]u, [Vi]u), then Ui = 0 since the element
1 in b-th column has been set to 0.

b) Based on some RANK protocol, the server
sorts Ui

Vi
(1 ≤ i ≤ |B)| in the encrypted form.

One straightforward way of constructing the
RANK protocol is to combine an encrypted
integer comparison protocol COM and any
standard sorting algorithm. The COM protocol
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User u RS Server Friends Fu, Strangers Tu

(PKu,SKu) PKu
wu, f : ∀ f ∈ Fu α, β

Stage 1
∀t ∈ Tu
∀b ∈ B

Rt,Qt
PKu
−−−→

[2 · qt,b]u
[qt,b · (rt,b − rt)]u

[qt,b ·(rt,b−rt )]u , [2·qt,b]u
←−−−−−−−−−−−−−−−−−−

Stage 2
∀ f ∈ Fu
∀b ∈ B

PKu,R f ,Q f
[wu, f ]u

[wu, f ]u
−−−−−→

[wu, f ]u
−−−−−→

[q f ,b]u
[q f ,b · (r f ,b − r f ) · wu, f ]u

[q f ,b ·(r f ,b−r f )·wu, f ]u
←−−−−−−−−−−−−−−−−

[q f ,b ]u
←−−−−−

Stage 3

MX ,My
[MX ]u , [My ]u
−−−−−−−−−−−→

∀b ∈ B :

[nT,b]u =
∑

t∈Tu [qt,b · (rt,b − rt)]u

[dT,b]u =
∑

t∈Tu [2 · qt,b]u

[nF,b]u =
∑

f∈Fu [q f ,b · (r f ,b − r f ) · wu, f ]u

[dF,b]u =
∑

f∈Fu Eval(·, [q f ,b]u, [wu, f ]u)

[Xb]u = [β · nT,b · dF,b + α · nF,b · dT,b]u

[Yb]u = [(α + β) · dT,b · dF,b]u

[MX]u · ([X1]u, [X2]u, · · · , [XM]u)T

[MY]u · ([Y1]u, [Y2]u, · · · , [YM]u)T

RANK
−−−−→

”Top-n” items
←−−−−−−−−−−−−−−

Top-n items

Fig. 15: Top-n Protocol

has slightly different semantics from that in
the previous protocol in Section VI-B: user u
has the private key and the service provider
has two encrypted integers, at the end of the
protocol the service provider learns the result.

c) After the ranking, the server sends the ”Top-
n” indexes (e.g. the permuted Top-n indexes)
to user u, who can then recover the real Top-
n indexes based on the permutation he has
done.

Compared to the protocol from [29], we have made
the following changes: (1) given the fact that the service
provider is semi-trusted, the strangers does not need to
validate PKu any more; (2) the strangers are chosen from
the whole population while they are chosen from FoFs
in [29]; (3) we correct two errors in the computation of
[Xb]u and [dF,b]u in Fig. 4 from [29].

VII. Decentralized Friendship-based Protocol

In reality, semi-honest service provider is often viewed
as a security weakness in protocol design. This motivates
us to investigate privacy-preserving protocols in fully
decentralized setting. Next, we first describe the setting
and then present a decentralized single prediction proto-
col. Since we can extend the protocol to a Top-n variant

in the same way as we have done in the centralized
setting, we skip the details here.

A. The Decentralized Setting

For simplicity, we assume that users are uniquely iden-
tified in the recommender system, and they share their
social graph with their friends. In the initialization phase,
user u generates his public/private key pair (PKu,SKu)
for a SWHE scheme. For the purpose of enabling strangers
to validate his public key, user u asks his friends to certify
his public key and makes the certification information public
as well. In addition, user u maintains a rating vector Ru,
his social graph, and assigns a weight wu, f to each of
his friend f ∈ Fu. All other users perform the same
operations in this phase.

Before going ahead, we want to point out that we
choose a FoF as stranger in the following solution for
the simplicity of description. In the view of user u, the
topology is shown in Fig. 16. Due to the small world
phenomenon, the population of FoFs can already be very
large (see [2] and Section V-C).
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Fig. 16: Decentralized System Structure

B. Decentralized Single Prediction Protocol

Next, we describe a protocol for user u to check
whether pu,i ≥ τ according to Formula (4) in Section III. It
can be regarded as a decentralized version of the single
prediction protocol from Section VI-B.

1) Based on the social graph (particularly his friend
set Fu), user u chooses a stranger set Tu, consisting
of his FoFs. He also chooses t∗ ∈ Tu. We further
require that the every f ∈ Fu should have at least
one friend in Tu.

2) User u generates a binary vector Ib, which only
has 1 for the b-th element, and broadcasts [Ib]u =
Enc(PKu, Ib) = ([I(1)

b ]u, · · · , [I
(M)
b ]u) to his friends. He

also sends Enc(PKu,wu, f ) to every user f ∈ Fu.
3) With PKu, [Ib]u, [wu, f ]u and (R f ,Q f ), user f can

compute the [q f ,b]u and [q f ,b · (R f · Ib − r f ) · wu, f ]u
in exactly the same way as in Section VI-B. User f
then sends [q f ,b]u and [q f ,b · (R f · Ib − r f ) · wu, f ]u to
one of his friends in Tu. He also forwards [Ib]u and
PKu to the chosen friend.

4) For any t ∈ Tu, he should receive [Ib]u and PKu
from at least one of his friend in Fu. If not, he can
ask for such information from his friend. Then, he
does the following.

a) Validate PKu.
b) With PKu and (Rt,Qt), every user t from Tu

can compute [qt,b]u and [qt,b · (Rt · Ib − rt)]u in
exactly the same way as in Section VI-B.

c) Suppose that user t has received [q f ,b]u and
[q f ,b·(R f ·Ib−r f )·wu, f ]u for f ∈ F−u where F−u ⊆ Fu.
He computes

∑
f∈F−u [q f ,b]u and

∑
f∈F−u [q f ,b · (R f ·

Ib − r f ) · wu, f ]u.
d) User t sends [qt,b]u, [qt,b·(Rt·Ib−rt)]u,

∑
f∈F−u [q f ,b]u

and
∑

f∈F−u [q f ,b · (R f · Ib − r f ) · wu, f ]u to user t∗.

5) User t∗ receives [qt,b]u, [qt,b · (Rt ·Ib−rt)]u,
∑

f∈F−u [q f ,b]u
and

∑
f∈F−u [q f ,b · (R f · Ib − r f ) · wu, f ]u from t ∈ Tu. He

then does the following.
a) Compute [nT]u, [dT]u, [nF]u, [dF]u and [X]u, [Y]u

in exactly the same way as in Section VI-B.
b) Run a comparison protocol COM with user u

for the latter to learn whether X
Y ≥ τ − ru.

C. Comparison to Centralized Protocol

In contrast to the centralized protocol from Section
VI-B, the task of the semi-honest service provider is
distributed to the “strangers”, namely FoFs of user u.
The overall computational complexity stays the same.
The reason we have chosen the strangers to handle most
of the computations is to reduce the complexity of the
friends. In reality, the number of friends will be very
limited, while the number of FoFs is much larger so that
the chance a FoF is chosen is quite low.

If we assume trust can propagate through a chain of
friends, then the strangers can be chosen more freely in
the above solution. In comparison to the protocol from
Section VI-B, this solution has the following advantages.
• The users do not need to semi-trust the service

provider any more.
• User u can select the users (his friends and FoFs) to

compute recommendations for himself. In order to
do this, user u needs to maintain a social graph (at
least his friends and FoFs).

However, it also has the following disadvantages.
• User u’s FoFs need to perform more computations.

Basically, the workload of the service provider has
been shifted to them. This may become a heavy
burden for the users.

• Users need to put more trust on their friends and
FoFs, particularly on the user t∗. The users cannot
leverage the service provider to blend their inputs
anymore, and the trust has been shifted to user
user t∗. In theory, this can be avoided by a secure
multi-party computation protocol, but this will sig-
nificantly increase the complexity.

Clearly, from the efficiency perspective, the centralized
solution from Section VI-B is more realistic in practice. In
order to reduce the trust on the service provider, we can
(at least) add two layers of validations on its behaviors.
One is that, before participating in the protocol execu-
tion, a stranger can ask the service provider to provide
a chain of friends so that he can validate the public key
PKu. The other is that user u can ask the service provider
to prove that it has performed the required operations
honestly.

VIII. Accuracy Properties of the Proposed Protocols

In this section, we investigate the recommendation ac-
curacy of the prediction algorithms from Section III, with
respect to both centralized and decentralized settings
where strangers are chosen differently therein. Because
the 10-FMT dataset may be biased due to the fact that
most of users don’t post their movie ratings to Twitter,
we also use MovieLens 100k dataset [26] with simulated
friendships. Interestingly, the results align well in both
datasets. In the experiments, we randomly split each
data set into training set (80%) and testing set (20%).
Note that in order to test all the users each time, instead
of randomly splitting the original data sets in form of

14



triplets (user id, item id, rating), we randomly split
each user’s rating history into training set (80%) and
testing set (20%). In each test, a user’s friends are
randomly selected from his friend-set, the strangers are
also randomly chosen. The MAE values summarized
in the following tables are the mean value of their
corresponding 5-fold cross validation.

A. Accuracy in Centralized Setting

With respect to the 10-FMT dataset, the MAE of the
revised TW algorithm from Section III-B is summarized
in Table III. Due to the fact that a user has limited num-
ber of friends in the 10-FMT dataset, we only compute
MAE up to 50 friends. The column denotes the possible
values of α

α+β and the row denotes the possible values of
(|Fu|, |Tu|), where strangers are randomly sampled. Lower
MAE implies more accurate recommendations.

0.5 0.6 0.7 0.8 0.9 1.0
(10, 10) 0.6178 0.6197 0.6192 0.6299 0.6362 0.6388
(20, 10) 0.6140 0.6168 0.6156 0.6204 0.6208 0.6291
(30, 10) 0.6076 0.6090 0.6094 0.6169 0.6234 0.6371
(40, 10) 0.6073 0.6066 0.6104 0.6150 0.6215 0.6300
(50, 10) 0.6066 0.6053 0.6095 0.6138 0.6199 0.6289

TABLE III: MAE on 10-FMT

With respect to the MovieLens 100k dataset, we define
friends and strangers as follows. Given a user u, we first
calculate the Cosine similarities with all other users and
generate a neighborhood for user u. Then, we choose a
certain number of users from the top-K f most similar
neighbors as the friends (In this paper, K f = 250.), and
randomly choose a certain number of users from the rest
as strangers. The MAE of the revised TW algorithm from
Section III-B is summarized in Table IV. According to the
accuracy results by Lemire and Maclachlan (in Table 1
of [19] where the values are MAE divided by 4), their
smallest MAE is 0.752 = 0.188× 4. We can get similar or
lower MAE when |Fu| ≥ 70 by adjusting α

α+β .

0.5 0.6 0.7 0.8 0.9 1.0
(10, 10) 0.8195 0.8112 0.8074 0.8104 0.8157 0.8290
(20, 10) 0.8115 0.8002 0.7964 0.7937 0.8028 0.8086
(30, 10) 0.8046 0.7932 0.7866 0.7822 0.7874 0.7952
(40, 10) 0.8000 0.7852 0.7779 0.7739 0.7770 0.7834
(50, 10) 0.7943 0.7800 0.7693 0.7666 0.7658 0.7728
(60, 10) 0.7913 0.7757 0.7640 0.7593 0.7601 0.7636
(70, 10) 0.7888 0.7715 0.7601 0.7536 0.7530 0.7572
(80, 10) 0.7856 0.7682 0.7561 0.7482 0.7470 0.7484
(90, 10) 0.7830 0.7665 0.7527 0.7445 0.7424 0.7428
(100, 10) 0.7815 0.7626 0.7492 0.7398 0.7371 0.7386

TABLE IV: MAE on MovieLens 100k

From the numbers in Table III and Table IV, there is a
general trend that MAE decreases when friends number
increases. We plot some columns of both tables for a
better illustration, shown in Fig 17.

When the numbers of friends and strangers are fixed,
the contribution factor α

α+β also plays a role in deter-
mining recommendation accuracy. We plot some rows
of both tables for a better illustration, shown in Fig 18.
The MAE decreases when α

α+β increases (i.e. friends has
more contribution) on the MovieLens 100k dataset, while
the MAE slightly increases when α

α+β grows higher than
0.6 on the 10-FMT dataset.

B. Accuracy in Decentralized Setting

For the decentralized setting, we compute the MAE
on both datasets and present them in Table V and Table
VI respectively. The MAE values are very close to those
in Table III and Table IV, so that we can conclude that
the recommendation accuracy is similar in both settings.
It implies that sampling strangers from FoFs does not
bring much accuracy gain with respect to both datasets.

0.5 0.6 0.7 0.8 0.9 1.0
(10, 10) 0.6209 0.6168 0.6234 0.6289 0.6309 0.6465
(20, 10) 0.6135 0.6147 0.6164 0.6179 0.6275 0.6367
(30, 10) 0.6133 0.6085 0.6132 0.6188 0.6248 0.6309
(40, 10) 0.6124 0.6116 0.6110 0.6167 0.6233 0.6297
(50, 10) 0.6104 0.6084 0.6104 0.6147 0.6214 0.6301

TABLE V: MAE on 10-FMT

0.5 0.6 0.7 0.8 0.9 1.0
(10, 10) 0.8181 0.8138 0.8132 0.8158 0.8188 0.8265
(20, 10) 0.8082 0.8034 0.7978 0.7994 0.8012 0.8123
(30, 10) 0.8026 0.7922 0.7879 0.7855 0.7885 0.7961
(40, 10) 0.7953 0.7862 0.7778 0.7763 0.7786 0.7826
(50, 10) 0.7917 0.7801 0.7726 0.7686 0.7688 0.7731
(60, 10) 0.7862 0.7747 0.7638 0.7625 0.7620 0.7664
(70, 10) 0.7854 0.7698 0.7604 0.7565 0.7532 0.7565
(80, 10) 0.7799 0.7663 0.7578 0.7502 0.7488 0.7489
(90, 10) 0.7781 0.7647 0.7524 0.7447 0.7407 0.7430
(100, 10) 0.7758 0.7603 0.7497 0.7406 0.7379 0.7377

TABLE VI: MAE on MovieLens 100k

C. Accuracy of JPH Prediction Algorithm

Since strangers are not considered in the JPH pre-
diction algorithm from Section III-A, we compute the
MAEs by only considering friends. For comparison, we
assume all the friends are rational, and let

wu, f +w f ,u

2 equal
to the Cosine similarity between user u and friend f .
With respect to the 10-FMT and MovieLens 100k dataset,
the MAE results are summarized in Table VII and VIII
respectively. Clearly, their accuracy is much worse than
our protocols which is mainly due to two reasons.
• JPH employs a very naive neighborhood-based

method which can not capture users’ rating pref-
erence. For example, some users prefer to give high
ratings while some others lean to give low ratings.

• In reality, the data sets are very sparse and imbal-
anced. It may arise more serious cold-start prob-
lem to collaborative filtering techniques, including
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Fig. 17: MAE evaluation with different friends number.

Fig. 18: MAE evaluation with different α
α+β .

neighborhood-based method, if only using friends’
rating information for predication.

This validates our argument in Section III-A.

Friends
Num

10 20 30 40 50

MAE 2.5961 2.2464 2.0690 1.9677 1.9072

TABLE VII: MAE of JPH on 10-FMT

Friends
Num

20 40 60 80 100

MAE 1.9021 1.49451 1.2978 1.1825 1.1018

TABLE VIII: MAE of JPH on MoiveLens 100k

IX. Security Analysis of the Proposed Protocols

In the basic security model, the service provider is
assumed to be semi-honest, which means it will follow
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the protocol specification and does not participate in the
protocol as a user. Moreover, a user trusts his friends
to be semi-honest. As to communication channel among
users, it is assumed that all communications are pro-
tected with respect to integrity and confidentiality (with
forward secrecy). In the worst-case security model, it is
assumed that some friends can be compromised.

The protocols from Section VI and VII are secure in
both models based on the facts that all computations
are done in the encrypted form under user u’s public
key and the comparison protocol is secure. It is worth
noting that in these protocols the server does not need
to generate any key pair for the SWHE scheme. As a
result, the protocols are immune to key recovery attacks,
in contrast to the JPH offline protocol [16], [29]. We skip
the straightforward security reduction in this paper.

Next, we experimentally study the information leak-
ages from recommendation outputs. We take the central-
ized protocols (where strangers are involved in the com-
putation) as an example, and leave out the decentralized
protocol which has similar results.

A. Inference from Outputs
In the security models [30], the potential information

leakages from the output of a recommender system is
not considered. Intuitively, this kind of leakage depends
on the global parameters α, β and the sizes of Fu and Tu.
If α

α+β gets larger or the size of Tu gets smaller, then the
inputs from friends contribute more to the final output
of user u. This will in turn make inference attacks easier
against the friends but harder against the strangers. In
the protocol design, we explicitly prevent user u from
communicating with the strangers, therefore, user u will
not trivially know whether a specific user t has been
involved in the computation. The strangers are indepen-
dently chosen in different protocol executions and the
same stranger is unlikely to be involved in more than
one executions, so that it is difficult for an attacker to
leverage the accumulated information. Furthermore, we
note the fact that there are many users in recommender
systems but only 6 possible rating values for any item.
This means that many users would give the same rating
value rt,b for the item b. With respect to the single
prediction protocol, even if rt,b is leaked, user u will not
be able to link it to user t.

With respect the revised TW algorithm from Section
III-B, a friend f ’s contribution to pu,b is protected by
the inputs from users in Fu\ f and the strangers in Tu.
Similarly, a stranger t’s contribution to pu,b is protected
by the inputs from users in Fu and strangers in Tu\t. We
perform some experiments to show how a single friend
or stranger influences the predicted rating values. We
use the both the 10-FMT and MovieLens 100k datasets,
and set α

α+β = 0.8. For illustration purpose, we only
consider two settings, namely (|Fu|, |Tu|) = (10, 10) and
(|Fu|, |Tu|) = (30, 10).

Take the setting (|Fu|, |Tu|) = (10, 10) as an example,
we perform the following experiment to test a friend’s

influence. In the experiment, we run 5-fold cross valida-
tion 50 times. In each 5-fold cross validation, we fix the
friends of all users in the dataset by randomly selecting
11 friends for each user at the beginning, say each user
has a fixed friend list L. Then for each user in the test
set, the following procedure is carried out.

1) Randomly choose 10 strangers.
2) Randomly exclude 1 friend f0 from the list L.

Compute the predicted ratings of user u in the test
set. Let the prediction vector be denoted as P0.

3) Randomly exclude 1 friend f1 ( f0 , f1) from the list
L. Compute the predicted ratings of user u in the
test set. Let the prediction vector be denoted as P1.

4) Compute the prediction difference vector as P0−P1.
Experiments for testing a stranger’s influence and for the
(|Fu|, |Tu|) = (30, 10) setting can be designed in a similar
manner. After obtaining all prediction difference vectors
P0 − P1 in the experiments, we plot the frequency of all
difference values in Fig. 19 for the 10-FMT dataset and in
Fig. 20 for the MovieLens 100k dataset. From the figures,
it is obvious that an individual’s influence to the output
is quite small. In particular, a friend’s influence becomes
smaller when the friend set becomes larger. Another
observation is that a stranger’s influence is much smaller
than a friend, but it stays almost the same when the
friend set becomes larger.

X. Computational Complexity Analysis

In this section, we investigate the computational com-
plexities of the protocols from Section VI-B and VI-C.
Since it is easy to infer the complexity of the decen-
tralized protocol from the centralized one, we skip the
details.

A. Asymptotic Analysis

With respect to the computational complexity of the
proposed protocols, we first count the number of dif-
ferent computations required. For the single prediction
protocol from Section VI-B, the numbers of SWHE-
related operations are listed in Table IX. In addition,
there is one comparison COM.

Enc Eval(+, , ) Eval(·, , )
Friend 2M + 1 2M − 1 2M + 2
Stranger 2M + 1 2M − 1 2M + 1
Server 4 2|Tu|+2|Fu| −3 |Fu| + 6
User u M + |Fu| 0 0

TABLE IX: Complexity of Single Prediction Protocol

For the Top-n protocol from Section VI-C, the numbers
of SWHE-related operations are listed in Table X. In
addition, if we instantiate the RANK protocol with the
well-known Heapsort algorithm, user u and the service
provider needs to perform a COM protocol O(M log M)
times.
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Fig. 19: Single Friend (Stranger) Influence on 10-FMT Dataset. Statistically, ≥87% and ≥91% differences fall into
range [−10−5, 10−5] w.r.t single friend influence testing and single stranger influence testing respectively. For clearly
presenting those differences that fall out of range [−10−5, 10−5] and keeping the histogram structure, ≈98% of the
differences that fall into range [−10−5, 10−5] have been removed.

Fig. 20: Single Firend (Stranger) Influence on MovieLens 100k Dataset. Statistically, ≥89% and ≥81% differences fall
into range [−10−5, 10−5] w.r.t single friend influence testing and single stranger influence testing respectively. For
clearly presenting those differences that fall out of range [−10−5, 10−5] and keeping the histogram structure, ≈98%
of the differences that fall into range [−10−5, 10−5] are removed.
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Enc Eval(+, , ) Eval(·, , )
Friend 2M 0 M
Stranger 2M 0 0
Server 3 2(|Tu|+ |Fu|+M)M−5M (2M+6+|Fu|)M
User u 2M2 + |Fu| 0 0

TABLE X: Complexity of Top-n Protocol

B. Implementation Results
We instantiate a COM protocol based on that of Veu-

gen [31] and evaluate its performance. In addition to the
SWHE scheme based on YASHE [6], the protocol also
relies Goldwasser-Micali scheme [15]. In both schemes,
we set the bit-length of the prime number to be 512.
We implement the Goldwasser-Micali scheme, which has
the timing cost for Enc (1.5 µs), Dec (4.5 µs), based
on an Intel(R) Core(TM) i7-5600U CPU 2.60GHz. In
executing the COM protocol, the computation time for
the client and the server is roughly 0.45 ms and 2.82
ms respectively. We adopt the MovieLens 100k dataset
where M = 1682 and set (|Fu|, |Tu|) = (70, 10). We use the
Microsoft SEAL library [12] based on YASHE scheme.
The timing information of the SEAL lib is Enc (42 ms),
Dec (41 ms), Eval(·, , ) (305 ms), Eval(+, , ) (85 µs). The
timing information of our protocols is shown in Table
XI, and the source code is in [33].

Friend Stranger Server User u
Single 1.12 1.00 0.72 74.17
Top-n 141.22 140.55 1726446 236424

TABLE XI: Timing Numbers (Seconds)

Regardless the resource-constrained testing environ-
ment, it is clear that the Top-n protocol is very inefficient.
The complexity mainly comes from the fact that we
want to restrict user u to only learn the Top-n recom-
mendations and prevent the server from learning any
information. As such, there are two possible directions
to relax the security guarantee and get better efficiency.
• One is to let user u learn more information (denoted

as Relax-1 in Table XII). Referring to the protocol
specification in Section VI-C, in stage 3, user u does
not need to generate MX,MY and the server does
not need to compute ([U1]u, [U2]u, · · · , [UM]u) and
([V1]u, [V2]u, · · · , [VM]u). There is no need to perform
the ranking, the server just sends [Xb]u, [Yb]u for
every 1 ≤ b ≤ M to user u, who can decrypt these
ciphertexts and obtain the Top-n recommendations.

• The other is to let the server learn how many items
user u has rated (denoted as Relax-2 in Table XII). In
addition, we need to assume that the strangers will
not collude with the server. Referring to the protocol
specification in Section VI-C, in stage 1 and 2, user
u generates a random permutation for the items in
the item set and share the permutation information
with the friends and strangers. In stage 3, user u
does not need to generate MX,MY and the server
does not need to compute ([U1]u, [U2]u, · · · , [UM]u)

and ([V1]u, [V2]u, · · · , [VM]u). In stage 3, user u tells
the server which items has been rated (the indices
of these items have been permuted), and they inter-
actively perform the ranking for the unrated items
in the encrypted form as before.

Friend Stranger Server User u
Relax-1 141.22 140.55 1562 141.58
Relax-2 141.22 140.55 1610 10.46

TABLE XII: Timing Numbers (Seconds)

XI. Conclusion
In the paper, we have refined the protocols from

[29] and proposed a new decentralized single prediction
protocol. We have also provided detailed analysis to
recommendation accuracy, inference attacks, and compu-
tational complexities. The idea of introducing randomly
selected strangers to prevent information leakages from
the output share some similarity with the differential
privacy based approach [21], [35] and the differential
identifiability approach [18]. A more rigorous compar-
ison remains as an interesting future work, particularly
in the line of the works from [5], [13]. With respect
to accuracy analysis, it is an interesting future work to
perform a study on an unbiased real-world dataset.
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