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ABSTRACT
Multi-processor systems are becoming the de-facto standard
across different computing domains, ranging from high-end
multi-tenant cloud servers to low-power mobile platforms.
The denser integration of CPUs creates an opportunity for
great economic savings achieved by packing processes of
multiple tenants or by bundling all kinds of tasks at vari-
ous privilege levels to share the same platform. This level
of sharing carries with it a serious risk of leaking sensitive
information through the shared microarchitectural compo-
nents. Microarchitectural attacks initially only exploited
core-private resources, but were quickly generalized to re-
sources shared within the CPU.

We present the first fine grain side channel attack that works
across processors. The attack does not require CPU co-
location of the attacker and the victim. The novelty of
the proposed work is that, for the first time the directory
protocol of high efficiency CPU interconnects is targeted.
The directory protocol is common to all modern multi-CPU
systems. Examples include AMD’s HyperTransport, Intel’s
Quickpath, and ARM’s AMBA Coherent Interconnect. The
proposed attack does not rely on any specific characteristic
of the cache hierarchy, e.g. inclusiveness. Note that in-
clusiveness was assumed in all earlier works. Furthermore,
the viability of the proposed covert channel is demonstrated
with two new attacks: by recovering a full AES key in
OpenSSL, and a full ElGamal key in libgcrypt within the
range of seconds on a shared AMD Opteron server.
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1. MOTIVATION
Remote servers and cloud computing servers are now more
popular than ever due to scalability and low costs. High
end users now prefer to remotely access a Virtual Machine

or a server that they share with other users rather than buy-
ing and maintaining their private hardware. Security plays
a crucial role in this scenario since users do not want any-
one interfering with their applications. Modern Operating
Systems (OSs) now implement permissions and even more
advanced sandboxing techniques such as running tasks in
virtual machines that ensure isolation and avoid userspace
interference.

While sandboxing has been proven effective at the software
level, information dependent on a potential victim’s activity
can still be leaked at the lower layers of the implementation
stack, i.e. via shared hardware resources. If the leakage is
strong enough, an attacker observing the leakage might be
able to steal sensitive fine grain information such as crypto-
graphic keys. To elaborate, microarchitectural side channel
attacks take advantage of the existing hardware leakage in
modern hardware architectures. By following a fundamen-
tal computer architecture design and optimization principle,
“make the common case fast”, computer architects have cre-
ated machines where access and execution times vary de-
pending on the processed data. Microarchitectural attacks
exploit this data dependent behavior as a covert channel
from which they infer sensitive information. One of the
most popular covert channels exploited in modern proces-
sors is the cache, due to its granularity and the lack of any
access restrictions1. Although their applicability was ques-
tioned for a long time, they found an ideal scenario with
modern cloud computing and remote server technologies. In
fact, these services are designed to host more than one user
concurrently in the same server.

Microarchitectural attacks are impervious to access bound-
aries established at the software level. First starting in the
native execution case (a spy process running alongside the
victim in the same user space), researchers have shown the
effectiveness of such attacks under gradually more restric-
tive execution environments. For example, the attacks were
carried out first inside a single VM and later across VMs [39]
with tighter constrains on the attackers privileges. Not in
vain, researches have shown to even recover cryptographic
keys across VMs, demonstrating the big threat that they
can imply.

The first practical implementations of microarchitectural covert
channels were studied in 2005, taking advantage of L1 cache

1Eliminating caches slows down modern processes by up to
75 times! [17]



leakages [13, 29]. Later, more covert channels like the Branch
Prediction Unit (BPU) proved to be as dangerous as caches [11].
These earlier works focused on the native (non-virtualized)
setting. Such attacks were largely dismissed as being unre-
alistic, especially by the industry. As the logic goes, if an at-
tacker was able to smuggle a spy process into the victim’s ex-
ecution space, he had already gained access to significant re-
sources so there was no point in further carrying out a more
complicated low-level microarchitectural attack. Therefore,
the spy process was not considered to carry any significant
meaning in the real world. With the emergence of the com-
pute cloud where unknown and independent parties—the
victim and the attacker—run alongside in VMs on the same
physical machine, concerns were renewed. However, citing
the co-location problem again such concerns were dismissed
by cloud service providers. It was not until 2009 when Ris-
tenpart et al. [31] showed the possibility of co-locating two
VMs and further extracting keystrokes across VM bound-
aries in the Amazon EC2 commercial cloud. This study not
only demonstrated the grave risks posed by microarchitec-
tural side channel attacks on user’s privacy but also reignited
research in this direction.

Recent studies uncovered a variety of stronger covert chan-
nels along with attacks exploiting them. The most pop-
ular leakage is caused by the Last Level Cache (LLC), a
resource that is shared across cores and thus works across
different cores on the same processor. Attacks exploiting
the LLC have proven to recover various types of sensitive
information [36, 25, 38] ranging from cryptographic keys to
the number of items in a victim’s shopping cart. Industry
reacted by disabling features that were enabled prior to the
discovery of the LLC cache covert channel [7] and by hard-
ening cryptographic libraries [2].

More recently, researchers have also shown that there exists
hardware leakage in the memory bus channel [34]. Although
this leakage was used to achieve targeted co-location in com-
mercial clouds [33, 35], its ability to recover fine grain infor-
mation is still an open question. However, the memory bus
channel is unique in that it works across processors: it can
be used to detect co-location even on multi-CPU systems.
This is very relevant, as modern computer systems not only
have an increasing number of cores per processor, but also
come with an increasing number of processors per system.
This trend is not restricted to servers, in fact even mobile
platforms now frequently come with at least two separate
processors [16].

In this work we present the first cache based cross-processor
attack by introducing a new microarchitectural covert chan-
nel.

Our Contribution
We present the exploitation of a new covert channel based on
the cache coherency protocols implemented in modern pro-
cessors and multiprocessor systems. In order to retrieve fine
grain information from this covert channel we introduce the
Invalidate and Transfer technique, which relies on shared
data between different cores in a system, irrespective of their
placement within or across processors. While previously pre-
sented cache attacks relied on the inclusiveness of the LLC,
our new spy process does not require any special charac-

teristic of the cache hierarchy. Thus it succeeds in those
processors where prior cache attacks have not been shown
to work, e.g., AMD servers with exclusive caches. Further-
more, we present the first attack that is able to retrieve fine
grain information across CPUs in multiple socket servers,
thereby we do not rely on CPU co-location to execute the
attack. We present the viability of the attack by attacking a
software OpenSSL implementation of the AES symmetric ci-
pher and a square and multiply libgcrypt implementation
of the ElGamal public key scheme.

In summary, this work

• introduces the first cross-CPU fine grain side channel
attack, i.e., we do not need CPU co-location between
attacker and victim to obtain the leakage information

• shows for the first time a directory protocol based at-
tack that does not rely in any specific characteristic of
the cache hierarchy. Therefore our attack applies on
servers that have not been shown to be vulnerable to
microarchitectural side channel attacks such as AMDs
Opteron series processors or ARM processors.

• the attack exploits data dependent timing variations
in AMD’s HyperTransport, Intel’s Quickpath and could
be applied to ARM’s AMBA Coherent Interconnect as
well.

• demonstrates the power of the new side channel by re-
covering a full AES key and a full ElGamal key within
a few of seconds.

The rest of the study is divided as follows. We first review
the related work in Section 2, we discuss the background
knowledge Section 3 and Section 4. The new attack is pre-
sented in Section 5 and in 6. The Results are presented in
Section 7, before discussing the viability in other scenarios 8.
We conclude in Section 9.

2. RELATED WORK
Microarchitectural attacks have been studied for more than
20 years Originally, covert channels like the cache were stud-
ied theoretically, as in [23, 23, 30]. Tsunoo et al. [32] were
the first ones to practically obtain leakage from a cache side
channel attack against DES in 2003. In 2004, with the pop-
ularity of the AES cipher, two new cache-based attacks were
presented. The first one was implemented by Bernstein [13]
by exploiting microarchitectural timing differences observed
for different look up table positions. At the same time, Os-
vik et al. [29] proposed two new spy processes named Evict

+ Time and Prime and Probe. While the first one modifies
the state of the cache between identical encryptions, the lat-
ter one fills the entire cache with attackers data before the
encryption and checks which parts of the cache have been
used after the encryption. All the attacks, with different
number of encryptions required, achieved the full recovery
of the AES encryption key.

The proposed attacks motivated the community to analyze
the potential threat of microarchitectural side channel at-
tacks. For instance, Bonneau and Mironov further exploited
the cache collision attacks and implement a last round side



channel attack on AES [14]. Shortly later Acıiçmez et al. ex-
ploited similar collision attacks in the first and second round
of the AES cipher [9]. Again Acıiçmez et al. implemented
the first attack against RSA, by monitoring instruction cache
accesses instead of data cache accesses [10].

Although the cache became the main targeted microarchi-
tectural side channel studied by researchers, Acıiçmez et
al. [11] also considered the Branch Prediction Unit (BPU) as
an exploitable source of leakage for non-constant execution
flow software. In particular, they recovered a full RSA key
by analyzing the outcome of vulnerable internal branches.

However, due to the raising popularity of multi-core proces-
sors and cloud computing systems, microarchitectural side
channel attacks were dismissed for a long time due to their
limited applicability. Indeed most of the previously pro-
posed attacks targeted core private resources within the same
Operating System.

It was in 2009 when Ristenpart et al. [31] proposed mech-
anisms to achieve co-location in the Amazon EC2 cloud,
bringing a whole new scenario where microarchitectural at-
tacks could realistically be applied. In the following years,
researchers started exploiting the scenario opened by [31].
Zhang et al. [37] proposed in 2011 a mechanism to detect
whether a user is co-residing with any potential attacker in
the same core, while in 2012 again Zhang et al. [39] pro-
posed the first successful fine grain side channel attack in
the cloud by recovering an ElGamal encryption key. At the
same time, Gullasch et al. [21] proposed a new attack on AES
that would later acquire the name of Flush and Reload.

However, it was in 2013 when the first cross-core side channel
attack was studied. Utilizing the same technique as in [21]
Yarom et al. [36] studied how the Flush and Reload attack
applied in the LLC can recover a full RSA key even with
VMs that are not co-located in the same core. Shortly later
Irazoqui et al. [26] presented a new attack on the AES cipher
across VMs, again using the Flush and Reload spy process.

The Flush and Reload attack was later expanded by a wide
range of attacks [12, 27, 38, 20, 19, 22], going from PaaS
cloud attacks to cache template attacks. However, this at-
tack is only applicable in the cloud if deduplication is en-
abled, restricting thereby the applicability of it. In order to
overcome this issue, Liu et al. and Irazoqui et al. [18, 25]
proposed a new attack in the LLC based on the Prime and

Probe attack that did not require deduplication, recovering
RSA and AES keys respectively. Recently, this attack has
been expanded by Inci et al. [24] by showing its applicability
in the public Amazon EC2 cloud and by Oren et al. [28] by
implementing it in javascript and showing its applicability
in web browser scenarios.

3. BACKGROUND
In this section we discuss the strengths and weaknesses of
current microarchitectural attacks and discuss why the most
powerful one, based on LLC leakage, has not yet been ex-
ploited on AMD CPUs.

3.1 Microarchitectural Covert Channels

In the last 10 years many studies have identified and ex-
ploited different microarchitectural attacks under very dif-
ferent scenarios. Since the chronological order of these stud-
ies has already been discussed in section 2, this section aims
at describing the different covert channels already exploited
and their applicability.

• L1 Cache: The L1 cache was one of the first microar-
chitectural covert channels that was exploited. It is
usually divided into a separate data cache and an in-
struction cache, each usually several kB (often 32 or
64kB) in size. One of the advantages of the L1 cache
is that the attacker can isolate his data-related attacks
from the instructions and vice versa. Furthermore, an
attacker can monitor the entire L1 cache with a reason-
able timing resolution due to its small size. However,
distinguishing accesses from the L1 and L2 became a
difficult task in modern processors, since they only dif-
fer in a few cycles. Furthermore, the L1 (and usually
L2) caches are a core-private resource, and therefore
are only exploitable when victim and attacker are co-
located in the same core. As modern processors in-
corporate more and more cores in their systems, the
applicability of L1 cache attacks reduces drastically.

• BPU: The BPU is another microarchitectural com-
ponent that has been proved to leak information. In
order to gather this information, the attacker needs
to know whether the executed branch has been mis-
predicted or not. Thus, having knowledge about how
the BPU predicts the branches and about the size of
the BTB is crucial to run this kind of attacks. Unfor-
tunately, this information is not released anymore in
modern processors. Furthermore, the time difference
between a well predicted and a mispredicted branch
is not bigger than a few cycles in modern processors.
Moreover, the BPU is a core-private resource like the
L1 cache, and therefore can only be exploitable in the
case of core co-residency.

• LLC: The LLC is a recently discovered covert channel
that provides many advantages over the previous ones.
First, it is a shared resource between cores, and there-
fore core co-residency is not needed anymore. Second,
LLC side channel attacks distinguish between accesses
from the LLC and accesses from the memory. In con-
trast to the previous side channel attacks, distinguish-
ing LLC from memory accesses can be done with a low
error rate, since usually they differ in a few tens of cy-
cles. However, these attacks have thus far only been
applied to processors where the LLC is inclusive, i.e.,
for caches where data in the L1 cache is also present
in the LLC.

• Memory Bus: The memory bus is a covert chan-
nel that was discovered in [34] and was later exploited
by Varadarajan et al. [33] and Zhang et al. [35] to
establish a covert channel in commercial clouds. The
method exploits the atomic instruction handling of the
CPU and locks the memory bus. Using this lock to
send and receive signals, it is possible to send mes-
sages covertly, breaking the sandboxing techniques in
commercial clouds even across CPUs. Although the



covert channel is strong enough to detect co-location,
it does not give fine grain information as the previous
channels described.

3.2 Why Nobody Attacks AMD Processors
Over the last few years, many cross-core side channel attacks
have been introduced to target Intel processors. But none
have considered attacking other kinds of servers. Indeed, the
utilized covert channels make use of specific characteristics
that Intel processors feature. For example, the proposed
LLC attacks take advantage of the inclusive cache design
in Intel processors. Furthermore, they also rely on the fact
that the LLC is shared across cores. Therefore these attacks
succeed only when the victim and the attacker are co-located
on the same CPU.

These characteristics are not observed in other CPUs, e.g.
AMD or ARM. This work focuses on AMD, but the same
technique should also succeed in ARM processors, as dis-
cussed in Section 8.2. In this sense, AMD servers present
two main complications that prevents application of existing
side channel attacks:

• AMD tends to have more cores per CPU in high end
servers compared to Intel. Indeed, high end AMD
servers commonly incorporate 48-cores. The large num-
ber of cores reduces the chance of being co-located, i.e.
sharing the core with a potential victim. This fact re-
duces the applicability of core-private covert channels
such as L1-Cache and BPU based attacks.

• LLCs in AMD are usually exclusive or non-inclusive.
The former does not allocate a memory block in dif-
ferent level caches at the same time. That is, data
is present in only one level of the cache hierarchy.
Non-inclusive caches show neither inclusive or exclu-
sive behavior. This means that any memory access
will fetch the memory block to the upper level caches
first. However, the data can be evicted in the outer
or inner caches independently. Hence, accesses to L1
cache cannot be detected by monitoring the LLC, as
it is possible on Intel machines.

Hence, to perform a side channel attack on AMD proces-
sors, both of these challenges need to be overcome. Here we
present a covert channel that is immune to both complica-
tions. The proposed attack is the first side channel attack
that works across CPUs that feature non-inclusive or exclu-
sive caches.

4. CACHE COHERENCE PROTOCOLS
In order to ensure coherence between different copies of the
same data, systems implement cache coherence protocols.
In the multiprocessor setting, the coherency between shared
blocks that are cached in different processors (and therefore
in different caches) also needs to be maintained. The system
has to ensure that each processor accesses the most recent
value of a shared block, regardless of where that memory
block is cached. The two main categories of cache coher-
ence protocols are snooping based protocols and directory
based protocols. While snooping based protocols follow a

decentralized approach, they usually require a centralized
data bus that connects all caches. This results in exces-
sive bandwidth need for systems with an increasing number
of cores. Directory-based protocols, however, enable point-
to-point connections between cores and directories, hence
follow an approach that scales much better with an increas-
ing number of cores in the system. We put our focus in the
latter one, since it is the prevailing choice in current multi-
processor systems. The directory keeps track of the state of
each of the cached memory blocks. Thus, upon a memory
block access request, the directory will decide the state that
the memory block has to be turned into, both in the request-
ing node and the sharing nodes that have a cached copy of
the requested memory block. We analyze the simplest cache
coherence protocol, with only 3 states, since the attack that
is implemented in this study relies on read-only data. Thus,
the additional states applied in more complicated coherency
protocols do not affect the flow of our attack.

We introduce the terms home node for the node where the
memory block resides, local node for the node requesting
access to the memory block, and owner node referring a
node that has a valid copy of the memory block cached. This
leads to various communication messages that are summa-
rized as follows:

• The memory block cached in one or more nodes can
be in either uncached state, exclusive/modified or
shared.

• Upon a read hit, the local node’s cache services the
data. In this case, the memory block maintains its
state.

• Upon a read miss, the local node contacts the home
node to retrieve the memory block. The directory
knows the state of the memory block in other nodes,
so its state will be changed accordingly. If the block
is in exclusive state, it goes to shared. If the block
is in shared state, it maintains it. In both cases the
local node then becomes an owner and holds a copy
of the shared memory block.

• Upon a write hit, the local node sets the memory
block to exclusive. The local node communicates the
nodes that have a cached copy of the memory block to
invalidate or to update it.

• Upon a write miss, again the the home node will service
the memory block. The directory knows the nodes
that have a cached copy of the memory block, and
therefore sends them either an update or an invalidate
message. The local node then becomes an owner of
the exclusive memory block.

In practice, most cache coherency protocols have additional
states that the memory block can acquire. The most stud-
ied one is the MESI protocol, where the exclusive state is
divided into the exclusive and modified states. Indeed, a
memory block is exclusive when a single node has a clean
state of the memory block cached. However, when a cached
memory block is modified, it acquires the modified state



since it is not consistent with the value stored in the mem-
ory. A write back operation would set the memory block
back to the exclusive state.

The protocols implemented in modern processors are vari-
ants of the MESI protocol, mainly adding additional states.
For instance, the Intel i7 processor uses a MESIF protocol,
which adds the additional forward state. This state will des-
ignate the sharing processor that should reply to a request of
a shared memory block, without involving a memory access
operation. The AMD Opteron utilizes the MOESI protocol
with the additional owned state. This state indicates that
the memory block is owned by the corresponding cache and
is out-of-date with the memory value. However, contrary
to the MESI protocol where a transition from modified to
shared involves a write back operation, the node holding
the owned state memory block can service it to the sharing
nodes without writing it back to memory. Note that both
the MESIF and MOESI protocol involve a cache memory
block forwarding operation. Both the owned and the for-

ward state suggest that a cache rather than a DRAM will
satisfy the reading request. If the access time from cache
differs from regular DRAM access times, this behavior be-
comes an exploitable covert channel.

4.1 AMD HyperTransport Technology
Cache coherency plays a key role in multi-core servers where
a memory block might reside in many core-private caches in
the same state or in a modified state. In multiple socket
servers, this coherency does not only have to be maintained
within a processor, but also across CPUs. Thus, complex
technologies are implemented to ensure the coherency in
the system. These technologies center around the cache di-
rectory protocols explained in section 3. The HyperTrans-
port technology implemented by AMD processors serves as
a good example. To save space here we only focus on the
features relevant to the new proposed covert channel. A
detailed explanation can be found in [15, 3].

The HyperTransport technology reserves a portion of the
LLC to act as directory cache in the directory based proto-
col. This directory cache keeps track of the cached memory
blocks present in the system. Once the directory is full, one
of the previous entries will be replaced to make room for a
new cached memory block. The directory always knows the
state of any cached memory block, i.e., if a cache line exists
in any of the caches, it must also have an entry in the di-
rectory. Any memory request will go first through the home
node’s directory. The directory knows the processors that
have the requested memory block cached, if any. The home
node initiates in parallel both a DRAM access and a probe
filter. The probe filter is the action of checking in the di-
rectory which processor has a copy of the requested memory
block. If any node holds a cached copy of the memory block,
a directed probe against it is initiated, i.e., the memory block
will directly be fast forwarded from the cached data to the
requesting processor. A directed probe message does not
trigger a DRAM access. Instead, communications between
nodes are facilitated via HyperTransport links, which can
run as fast as 3 GHz. Figure 1 shows a diagram of how the
HyperTransport links directly connect the different CPUs to
each other avoiding memory node accesses. Although many
execution patterns can arise from this protocol, we will only

Figure 1: DRAM accesses vs Directed probes thanks
to the HyperTransport Links

explain those relevant to the attack, i.e. events triggered
over over read-only blocks which we will elaborate on later.
We assume that we have processors A and B, refereed to as
Pa and Pb, that share a memory block:

• If Pa and Pb have the same memory block cached, upon
a modification made by Pa, HyperTransport will notify
Pb that Pa has the latest version of the memory block.
Thus, Pa will have to update its version of the block to
convert the shared block into a owned block. Upon a
new request made by Pb, HyperTransport will transfer
the updated memory block cached in Pa.

• Similarly, upon a cache miss in Pa, the home node
will send a probe message to the processors that have
a copy of the same shared memory block, if any. If,
for instance, Pb has it, a directed probe message is
initiated so that the node can service the cached data
through the hypertransport links. Therefore, Hyper-
Transport reduces the latency of retrieving a memory
block from the DRAM by also checking whether some-
one else maintains a cached copy of the same memory
block. Note that this process does not involve a write-
back operation.

• When a new entry has to be placed in the directory
of Pa, and the directory is full, one of the previously
allocated entries has to be evicted to make room for the
new entry. This is referred as a downgrade probe. In
this case, if the cache line is dirty a writeback is forced,
and an invalidate message is sent to all the processors
(Pb) that maintain a cached copy of the same memory
block.

In short, HyperTransport reduces latencies that were ob-
served in previously implemented cache coherency protocols
by issuing directed probes to the nodes that have a copy of
the requested memory block cached. The HyperTransport
links ensure a fast transfer to the requesting node. In fact,
the introduction of HyperTransport links greatly improved
the performance and thus viability of multi-CPU systems.
Earlier multi-CPU systems relied on broadcast or directory
protocols, where a request of a exclusive cached memory
block in an adjacent processor would imply a writeback op-
eration to retrieve the up-to-date memory block from the
DRAM.
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Figure 2: Comparison of a directed probe access across processors: probe satisfied from CPU 1’s cache
directly via HTLink (a) vs. probe satisfied by CPU 1 via a slow DRAM access (b).

4.2 Intel QuickPath Interconnect Technology
In order to maintain cache coherency across multiple CPUs
Intel implements a similar technique to AMD’s HyperTrans-
port called Intel QuickPath Interconnect (QPI) [1, 5]. In-
deed, the later one was designed five years latter than the
first one to compete with the existing technology in AMD
processors. Similar to HyperTransport, QPI connects one
or more processors through high speed point-to-point links
as fast as 3.2GHz. Each processor has a memory controller
on the same die to make to improve the performance. As
we have already seen with AMD, among other advantages,
this interface efficiently manages the cache coherence in the
system in multiple processor servers by transferring shared
memory blocks through the QPI high speed links. In con-
sequence, the proposed mechanisms that we later explain in
this paper are also applicable in servers featuring multi-CPU
Intel processors.

5. A NEW CROSS-CPU COVERT CHANNEL
In this section we present a new covert channel based on
cache coherency technologies implemented in modern pro-
cessors. In particular, we focus on AMD processors, which
have exclusive caches that in principle are invulnerable to
cache side channel attacks although the results can be read-
ily applied to multi-CPU Intel processors as well. In sum-
mary,

• We present the first cross-CPU side channel attack,
i.e., we show that core co-location is not needed in
multi-CPU servers to obtain fine grain information.

• We present a new covert channel that utilizes directory
based cache coherency protocols to extract sensitive
information.

• We show that the new covert channel succeeds in those
processors where cache attacks have not been shown to
be possible before, e.g. AMDs exclusive caches.

• We demonstrate the feasibility of our new side channel
technique by mounting an attack on a T-table based
AES and a square and multiply implementation of El-
Gamal schemes.

5.1 Invalidate + Transfer attack
We propose a new spy process that takes advantage of leak-
ages observed in the cache coherency protocol with memory
blocks shared between many processors/cores. The spy pro-
cess does not rely on specific characteristics of the cache
hierarchy, like inclusiveness. In fact, the spy process works
even across co-resident CPUs that do not share the same
cache hierarchy. From now on, we assume that the victim
and attacker share the same memory block and that they are
located in different CPUs or in different cache hierarchies in
the same server.

The spy process is executed in three main steps, which are:

• Invalidate step: In this step, the attacker invalidates
a memory block that is in his own cache hierarchy.
If the invalidation is performed in a shared memory
block cached in another cache processors cache hierar-
chy, the HyperTransport will send an invalidate mes-
sage to them. Therefore, after the invalidation step,
the memory block will be invalidated in all the caches
that have the same memory block, and this will be un-
cached from them. This invalidation can be achieved
by specialized instructions like clflush if they are sup-
ported by the targeted processors, or by priming the
set where the memory block resides in the cache direc-
tory.

• Wait step: In this step, the attacker waits for a cer-
tain period of time to let the victim do some compu-
tation. The victim might or might not use the invali-
dated memory block in this step.

• Transfer step: In the last step, the attacker requests
access to the shared memory block that was invali-
dated. If any processor in the system has cached this
memory block, the entry in the directory would have
been updated and therefore a direct probe request
will be sent to the processor. If the memory block
was not been used, the home directory will request a
DRAM access to the memory block.

The system experiences a lower latency when a direct probe
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is issued, mainly because the memory block is issued from
another processors cache hierarchy. This is graphically ob-
served in Figure 2. Figure 2(a) shows a request serviced
by the HyperTransport link from a CPU that has the same
memory block cached. In contrast, Figure 2(b) represents a
request serviced by a DRAM access. This introduces a new
leakage if the attacker is able to measure and distinguish
the time that both actions take. This is the covert chan-
nel that will be exploited in this work. We use the RDTSC

function which accesses the time stamp counter to measure
the request time. In case the RDTSC function is not avail-
able from user mode, one can also create a parallel thread
incrementing a shared variable that acts as a counter. We
also utilize the mfence instruction to ensure that all memory
load/store operations have finished before reading the time
stamp counter.

The timing distributions of both the DRAM access and the
directed transfer access are shown in Figure 3, where 10,000
points of each distribution were taken in a 48-core 4 CPU
AMD Opteron 6168. The x-axis represents the hardware
cycles, while the y-axis represents the density function. The
measurements are taken across processors. The blue dis-
tribution represents a directed probe access, i.e., a co-
resident CPU has the memory block cached, whereas the
red distribution represents a DRAM access, i.e., the memory
block is not cached anywhere. It can be observed that the
distributions differ in about 50 cycles, fine grain enough to
be able to distinguish them. However, the variance in both
distributions is very similar, in contrast to LLC covert chan-
nels. Nevertheless, we obtain a covert channel that works
across CPUs and that does not rely on the inclusiveness
property of the cache.
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We also tested the viability of the covert channel in a dual
socket Intel Xeon E5-2609. Intel utilizes a similar technique
to the HyperTransport technology called Intel Quick Path

Interconnect. The results for the Intel processor are shown
in Figure 4, again with processes running in different CPUs.
It can be observed that the distributions are even more dis-
tinguishable in this case.

6. EXPLOITING THE NEW COVERT CHAN-
NEL

In the previous section, we presented the viability of the
covert channel. Here we demonstrate how one might exploit
the covert channel to extract fine grain information. More
concretely, we present two attacks:

• a symmetric cryptography algorithm, i.e. table based
OpenSSL implementation of AES, and

• a public key algorithm, i.e. a square-and-multiply based
libgcrypt implementation of the ElGamal scheme.

6.1 Attacking Table based AES
We test the granularity of the new covert channel by mount-
ing an attack in a software implementation of AES, as in [26].
We use the C OpenSSL reference implementation, which
uses 4 different T-tables along 10 rounds for AES-128. The
first 9 rounds is composed of 4 main operations: AddRound-

Key,Subbbytes,ShiftRows,Mixcolumns. The last round exe-
cutes the same operations except the Mixcolumns operation.
Thus, as in [26], we mount a last round attack, i.e., we as-
sume that the ciphertext is known to the attacker.

In the attack, we monitor a memory block belonging to each



one of the T-tables. Each memory block contains 16 T-
Table positions and it has a certain probability, 8% in our
particular case, of not being used in any of the 10 rounds of
an encryption. Thus, applying our Invalidate + Transfer

attack and recording the ciphertext output, we can know
when the monitored memory block has not been used. For
this purpose we invalidate the memory block before the
encryption and try to probe it after the encryption. In a
noise free scenario, the monitored memory block will not be
used for 240 ciphertext outputs with 8% probability, and it
will not be used for the remaining 16 ciphertext with 0%
probability (because they directly map through the key to
the monitored T-table memory block). Although microar-
chitectural attacks suffer from different microarchitectural
sources of noise, we expect that the Invalidate + Trans-

fer can still distinguish both distributions.

Once we know the ciphertext values belonging to both dis-
tributions, we can apply the equation:

Ki = T [Sj ]⊕ Ci

to recover the key. Since the last round of AES involves
only a Table look up and a XOR operation, knowing the
ciphertext and the T-table block position used is enough to
obtain the key byte candidate that was used during the last
AES round. Since a cache line holds 16 T-table values, we
XOR each of the obtained ciphertext values with all the 16
possible T-table values that they could map to. Clearly, the
key candidate will be a common factor in the computations
with the exception of the observed noise which is eliminated
via averaging. As the AES key schedule is revertible, know-
ing one of the round keys is equivalent to knowing the full
encryption key.

6.2 Attacking Square and Multiply ElGamal
Decryption

We test the viability of the new side channel technique with
an attack on a square and multiply libgcrypt implemen-
tation of the public key ElGamal algorithm, as in [39]. An
ElGamal encryption involves a cyclic group of order p and
a generator g of that cyclic group. Then Alice chooses a
number a ∈ Z∗

p and computes her public key as the 3-tuple
(p, g, ga) and keeps a as her secret key.

To encrypt a message m, Bob first chooses a number b ∈ Z∗
p

and calculates y1 = gb and y2 = ((ga)b) ∗m and sends both
to Alice. In order to decrypt the message, Alice utilizes
her secret key a to compute ((y1)−a) ∗ y2. Note that, if a
malicious user recovers the secret key a he can decrypt any
message sent to Alice.

Our target will be the y−a
1 that uses the square and multiply

technique as the modular exponentiation method. It bases
its procedure in two operations: a square operation followed
by a modulo reduction and a multiplication operation fol-
lowed by a modulo reduction. The algorithm starts with the
intermediate state S = b being b the base that is going to
be powered, and then examines the secret exponent a from
the most significant to the least significant bit. If the bit
is a 0, the intermediate state is squared and reduced with
the modulus. If in the contrary the exponent bit is a 1, the
intermediate state is first squared, then it is multiplied with

the base b and then reduced with the modulus. Algorithm
1 shows the entire procedure.

Algorithm 1 Square and Multiply modular exponentiation

Input: Ciphertext c ∈ ZN , Exponent a
Output: cd mod N
ab = bitwise(a) . Convert exponent a to bit string
S = cj = len(a) . Exponentiation Step
while j > 0 do

S = S2 mod N
if ej == 1 then

S = S ∗ c mod N
end if
j = j − 1

end while
return S

As it can be observed the algorithm does not implement
a constant execution flow, i.e., the functions that will be
used directly depend on the bit exponent. If the square and
multiply pattern is known, the complete key can be eas-
ily computed by converting them into ones and zeros. In-
deed, our Invalidate + Transfer spy process can recover
this information, since functions are stored as shared mem-
ory blocks in cryptographic libraries. Thus, we mount an
attack with the Invalidate + Transfer to monitor when
the square and multiplication functions are utilized.

7. EXPERIMENT SETUP AND RESULTS
In this section we present the test setup in which we imple-
mented and executed the Invalidate+Transfer spy process
together with the results obtained for the AES and ElGamal
attacks.

7.1 Experiment Setup
In order to prove the viability of our attack, we performed
our experiments on a 48-core machine featuring four 12-
core AMD Opteron 6168 CPUs. This is an university server
which has not been isolated for our experiments, i.e., other
users are utilizing it at the same time. Thus, the environ-
ment is a realistic scenario in which non desired applications
are running concurrently with our attack.

The machine runs at 1.9GHz, featuring 3.2GHz HyperTrans-
port links. The server has 4 AMD Opteron 6168 CPUs, with
12 cores each. Each core features a private 64KB 2-way
L1 data cache, a private 64KB L1 instruction cache and a
16-way 512KB L2 cache. Two 6MB 96-way associative L3
caches—each one shared across 6 cores—complete the cache
hierarchy. The L1 and L2 caches are core-private resources,
whereas the L3 cache is shared between 6 cores. Both the
L2 and L3 caches are exclusive, i.e., data can be allocated
in exactly one cache level at a time. This is different to
the inclusive LLC where most of the cache spy processes in
literature have been executed.

The attacks were implemented in a RedHat enterprise server
running the linux 2.6.23 kernel. The attacks do not require
root access to succeed, in fact, we did not have sudo rights
on this server. Since ASLR was enabled, the targeted func-
tions addresses were retrieved by calculating the offset with
respect to the starting point of the library. All the experi-
ments were performed across CPUs, i.e., attacker and victim



Ciphertext value
0 50 100 150 200 250

M
is

s 
co

un
te

r 
va

lu
e 

no
rm

al
iz

ed
 w

ith
 m

ax
im

um

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: Miss counter values for each ciphertext
value, normalized to the average

do not reside in the same CPU and do not share any LLC.
To ensure this, we utilized the taskset command to assign
the CPU affinity to our processes.

Our targets were the AES C reference implementation of
OpenSSL and the ElGamal square and multiply implemen-
tation of libgcrypt 1.5.2. The libraries are compiled as shared,
i.e., all users in the OS will use the same shared symbols.
In the case of AES we assume we are synchronized with
the AES server, i.e., the attacker sends plaintext and re-
ceives the corresponding ciphertexts. As for the ElGamal
case, we assume we are not synchronized with the server.
Instead, the attacker process simply monitors the function
until valid patterns are observed, which are then used for
key extraction.

7.2 AES Results
As explained in Section 6, in order to recover the full key we
need to target a single memory block from the four T-tables.
However, in the case that a T-table memory block starts
in the middle of a cache line, monitoring only 2 memory
blocks is enough to recover the full key. In fact, there exists
a memory block that contains both the last 8 values of T0
and the first 8 values of T1. Similarly there exists a memory
block that contains the last 8 values of T2 and the first 8
values of T3. Since this is the case for our target library, we
only monitor those two memory blocks to recover the entire
AES key.

We store both the transfer timing and the ciphertext ob-
tained by our encryption server. In order to analyze the
results, we implement a miss counter approach: we count
the number of times that each ciphertext value sees a miss,
i.e. that the monitored cache line was not loaded for that
ciphertext value. An example of one of the runs for cipher-
text number 0 is shown in Figure 5. The 8 ciphertext values
that obtain the lowest scores are the ones are the ones corre-
sponding to the cache line, thereby revealing the key value.

In order to obtain the key, we iterate over all possible key
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byte values and compute the last round of AES only for the
monitored T-table values, and then group the miss counter
values of the resulting ciphertexts in one set. We group in
another set the miss counter of the remaining 248 ciphertext
values. Clearly, for the correct key, the distance between
the two sets will be maximum. An example of the output of
this step is shown in Figure 6, where the y-axis represents
the miss counter ratio (i.e., ratio of the miss counter value
in both sets) and the x-axis represents the key byte guess
value. It can be observed that the ratio of the correct key
byte (180) is much higher than the ratio of the other guesses.

Finally we calculate the number of encryptions needed to
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decryption stages are clearly visible when the square
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recover the full AES key. This is shown in Figure 7, where
the y-axis again represents the ratios and the x-axis repre-
sents the number of encryptions. As it can be observed, the
correct key is not distinguishable before 10,000 traces, but
from 20,000 observations, the correct key is clearly distin-
guishable from the rest. We conclude that the new method
succeeds in recovering the correct key from 20,000 encryp-
tions.

7.3 ElGamal Results
Next we present the results obtained when the attack aims
at recovering an ElGamal decryption key. We target a 2048
bit ElGamal key. Remember that, unlike in the case of AES,
this attack does not need synchronization with the server,
i.e., the server runs continuous decryptions while the at-
tacker continuously monitors the vulnerable function. Since
the modular exponentiation creates a very specific pattern
with respect to both the square and multiply functions, we
can easily know when the exponentiation occurred in the
time. We only monitor a single function, i.e., the square
function. In order to avoid speculative execution, we do not
monitor the main function address but the following one.
This is sufficient to correctly recover a very high percentage
of the ElGamal decryption key bits. For our experiments,
we take the time that the invalidate operation takes into
account, and a minimum waiting period of 500 cycles be-
tween the invalidate and the transfer operation is suffi-
cient to recover the key patterns. Figure 8 presents a trace
where 4 different decryptions are caught. A 0 in the y-axis
means that the square function is being utilized, while a
1 the square function is not utilized, while the x-axis rep-
resents the time slot number. The decryption stages are
clearly observable when the square function gets a 0 value.

Please recall that the execution flow caused by a 0 bit in
the exponent is square+reduction, while the pattern caused

Table 1: Summary of error results in the RSA key
recovery attack.

Traces analysed 20
Maximum error observed 3.47%
Minimum error observed 1.9%
Average error 2.58%
Traces needed to recover full key 5

by a 1 bit in the exponent is square+reduction+multiply+

reduction. Since we only monitor the square operation, we
reconstruct the patterns by checking the distance between
two square operations. Clearly, the distance between the two
square operations in a 00 trace will be smaller than the dis-
tance between the two square operations in a 10 trace, since
the latter one takes an additional multiplication function.
With our waiting period threshold, we observe that the dis-
tance between two square operations without the multiplica-
tion function varies from 2 to 4 Invalidate+Transfer steps,
while the distance between two square operations varies from
6 to 8 Invalidate+Transfer steps. If the distance between
two square operations is lower than 2, we consider it part
of the same square operation. An example of such a trace
is shown in Figure 9. In the figure, S refers to a square
operation, R refers to a modulo reduction operation and M
refers to a multiply operation. The x-axis represents the
time slot, while the y axis represents whether the square
function was utilized. The 0 value means that the square
function was utilized, whereas the 1 value means that the
square function was not utilized. The pattern obtained is
SRMRSRSRMRSRSRMRSRSRMRSRMRSRSRMRS
RMRSRSRMRSRS, which can be translated into the key
bit string 101010110101010.

However, due to microarchitectural sources of noise (context
switches, interrupts, etc) the recovered key has still some er-
rors. In order to evaluate the error percentage obtained, we
compare the obtained bit string with the real key. Any in-
sertion, removal or wrong guessed bit is considered a single
error. Table 1 summarizes the results. We evaluate 20 dif-
ferent key traces obtained with the Invalidate+Transfer

spy process. On average, they key patterns have an error
percentage of 2.58%. The minimum observed error percent-
age was 1.9% and the maximum was 3.47%. Thus, since the
errors are very likely to occur at different points in order to
decide the correct pattern we analyse more than one trace.
On average, 5 traces are needed to recover the key correctly.

8. VIABILITY OF THE COVERT CHANNEL
IN OTHER SCENARIOS

We demonstrated the covert channel in a shared server set-
ting. However, there are other scenarios where the proposed
covert channel exists and can be exploited as shown earlier.

8.1 Cloud Computing Scenario
The Platform as a Service cloud computing model is becom-
ing increasingly popular with well known examples like Ap-
prenda, VMware/EMC co-owned Pivotal, Red Hat Open-
shift, Salesforce Heroku, and AWS Elastic Beanstalk. The
PaaS provider delivers software and hardware tools for use
in application development. The applications that belong
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Figure 9: Trace observed by the Invalidate+Transfer, converted into square and multiply functions. The
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to different users, are executed within the same OS. Thus,
both attacker and victim share parts of the memory space as
demonstrated in [38]. This scenario is essentially the same
scenario used in the attack proposed in this paper. There-
fore, the proposed Invalidate + Transer should also be
applicable in PaaS clouds. IaaS clouds provide each user
with a dedicated OS where applications can be executed. In
this particular case, the Invalidate + Transer would work
when the hypervisor implements deduplication techniques,
i.e., if memory pages are shared across VMs.

8.2 Mobile Devices
ARM devices implement a technique called AMBA Cache
Coherent Interconnect that facilitates fast interprocessor con-
nections very similar to the HyperTransport protocol ex-
ploited in this paper. This technology helps to maintain
cache coherency across ARM CPUs using a snoop filter

protocol supported by a cache directory architecture [8, 4,
6]. Thus, upon a shared memory read miss, the snoop fil-

ter checks whether the same memory block is cached in an
adjacent processor. If successful, a direct cache-to-cache link
will be established, thereby eliminating the need for a slow
DRAM access.

9. CONCLUSION
We presented a new covert channel exploiting cache coher-
ence protocols which recovers information leakage caused by
the data access time difference. The new attack exploits the
fact that data cached anywhere in the multiprocessor system
has lower access times than memory accesses facilitated by
fast interconnects such as AMD HyperTransport and Intel
QuickPath. The attack thus can retrieve fine-grain informa-
tion even when victim and attacker are located in different
processors on the same system. Even further, the new covert
channel does not rely on specific properties of cache hier-
archies like inclusiveness. This was a common assumption
in previous attacks. The coherence protocol ensures that
the data is found independently of where in the cache it is
stored. Thus, the new attack can be applied in processors
where cache attacks have not been demonstrated before such
as in AMD processors. We proved the viability of the new
attack by recovering a full AES key and a full ElGamal key
across co-located AMD CPUs.
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