
Double-Authentication-Preventing Signatures from

Trapdoor Identification

Mihir Bellare1 Douglas Stebila2

February 2015

Abstract

This paper presents efficient designs and software implementations of signature schemes
that are double authentication preventing. We give a general transform for constructing these
double-authentication preventing signatures (DAPS) from trapdoor identification schemes. We
instantiate this to get specific schemes, namely GQ-DAPS (based on RSA) and CF-DAPS (using
factoring-based claw-free functions). Our implementations, using OpenSSL’s crypto library
on an Intel Core i7, show that our DAPS schemes are not only significantly more efficient
than prior DAPS schemes but competitive with in-use signature schemes that lack the double
authentication preventing property.

1 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. Email: mihir@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/~mihir/. Supported in
part by NSF grants CNS-1228890 and CNS-1526801 and a gift from Microsoft corporation.

2 Queensland University of Technology, Brisbane, Australia. Email: stebila@qut.edu.au. URL:
http://www.douglas.stebila.ca/. Supported in part by Australian Research Council (ARC) Discovery Project
grant DP130104304.

1

Contents

1 Introduction 3

2 DAPS definitions 6

3 Trapdoor identification schemes 8

4 Our general DAPS construction 10

5 Instantiation and mplementation 15

A Identification scheme extractability 21

B Mimp from one wayness 21

C From DAPS to trapdoor ID 23

D DPRFs 25

2

1 Introduction

DAPS. Double-authentication-preventing signature (DAPS) schemes were introduced by Poetter-
ing and Stebila (PS) [25]. In such a signature scheme, the message being signed is a pair m = (a, p)
consisting of an “address” a and a “payload” p. Let us say that messages (a0, p0), (a1, p1) are
colliding if a0 = a1 but p0 6= p1. The double-authentication prevention requirement is that there is
an efficient extraction algorithm that given a public key PK and valid signatures σ0, σ1 on colliding
messages (a, p0), (a, p1), respectively, returns the secret signing key SK underlying PK . Additon-
ally, the scheme must satisfy standard unforgeability under a chosen-message attack [16], but in
light of the first property we must make the restriction that the address components of all messages
signed in the attack are different.

Why DAPS? PS [25] discuss several potential applications. For completeness, let us briefly recall
one. The Snowden revelations have shown that the NSA may coerce corporations into measures that
compromise security. PS [25] consider, in this light, the subversion of certificate authorities (CAs)
and the use of DAPS as a deterrent. Thus, suppose example.com has a (legitimate) certificate
cert1 = (example.com,pk1, σ1) from a particular CA such as Comodo, where pk1 is the public key
of example.com and σ1 is the CA’s signature on the pair (example.com, pk1), computed under
the secret key SK of the CA. Big brother induces the CA to issue another certificate cert0 =
(example.com,pk0, σ0) in the name of example.com where pk0 is a public key supplied by big
brother, so that it knows the corresponding secret key sk0, and σ0 is the CA’s signature on the pair
(example.com,pk0), again computed under the secret key SK of the CA. With this rogue certificate
in hand, big brother could impersonate example.com in a TLS session with a client, compromising
security of the latter. But if the CAs signatures are produced with a DAPS, then σ1, σ2 are valid
signatures on the colliding messages (example.com,pk0), (example.com, pk1), respectively, which
means that anyone can extract the CA’s signing key SK . This would lead to public loss of reputation
and business for the CA, increasing the CA’s incentive, or giving it an argument, to not comply
with big brother’s request to create the rogue certificate.

Prior schemes. PS [25] give a factoring-based DAPS that we call PS-DAPS. Its signature
contains n+ 1 elements in the group Z∗N , where n is the length of a hash of the address and N is
the modulus in the public key. Specifically, for 80-bit security (1024-bit modulus, 160-bit hash), a
signature contains 161 group elements, for a length of 164,864 bits or about 20 Kbytes. This is a
factor 161 times longer than a 1024 bit RSA PKCS#1 signature, more than enough to preclude use
of the scheme in practice. Furthermore, signing and verifying times are significantly greater than
for signature schemes currently used for certificates such as RSA PKCS#1 (cf. Fig. 11.)

If we want DAPS to be a viable practical option, we need DAPS schemes that are competitive
with current non-DAPS schemes on all cost parameters, meaning signature size, key size, signing
time and verifying time. This is what we deliver. We will actually obtain numerous schemes via
a new and general paradigm that transforms trapdoor identification schemes into DAPS schemes.
For concreteness let us first sketch two particular DAPS schemes that we obtain in this way. Then
we will discuss the transform.

CF-DAPS and GQ-DAPS. In our CF-DAPS, the public key is a pair (f0, f1) of claw-free permu-
tations on a domain D [16], the secret key being (f−10 , f−11). To an l-bit string c = c[1] . . . c[l] we
associate the permutation fc: D → D defined for x ∈ D via fc(x) = fc[1](fc[2]](· · · (fc[l](x)) · · ·)),
and let f−1c denote its inverse. To sign message (a, p), pick a random sl-bit s —the seed length sl
is a parameter of the scheme— let Y = H2(a) ∈ D, let c = H1(Y ‖a‖p‖s) ∈ {0, 1}l, let z = f−10c (Y),
and return (z, s) as the signature, where H1, H2 are public, collision-resistant hash functions. We

3

omit describing verification here; see Fig. 10 for a full description of the scheme. Given valid sig-
natures (z0, s0), (z1, s1) on colliding messages (a, p0), (a, p1), respectively, one can compute a claw
for f0, f1 —meaning an input x ∈ D such that f0(x) = f1(x)— leading to recovery of f−10 , f−11 .
This yields double-authentication-prevention. Using a factoring-based instantiation of the claw-free
permutations from [16] and exploiting some clever computational number-theoretic tricks from [15]
we will get a scheme that is efficient on all fronts (cf. Fig. 11).

In our GQ-DAPS, the public key is (N, e,X,TK) and the secret key is (x, d) where N = pq
is an RSA modulus, e is an encryption exponent, d is the corresponding decryption exponent,
x,X ∈ Z∗N satisfy X = xe mod N , and TK = H1(x)⊕d where H1 is a public hash function. The
keys are thus as in GQ [17] except that we add d to the secret key and TK to the public key. To
sign message (a, p), pick a random sl-bit s —the seed length sl is a parameter of the scheme— let
Y = H2(a) —the commitment is not picked at random but determined uniquely by the address—
let y = Y d mod N , let c = H3(Y ‖a‖p‖s) ∈ {0, 1}l —the challenge— let z = yxc mod N and
return (z, s) as the signature, where H2, H3 are public, collision-resistant hash functions. We
omit describing verification; see Fig. 9 for a full description of the scheme. Given valid signatures
(z0, p0), (z1, p1) on colliding messages (a, p0), (a, p1), respectively, one has GQ [17] conversation
transcripts with the same commitment and different challenges —this is why we set the commitment
to a hash of the address— and can use the GQ Sigma protocol extractability property to extract x.
This is not quite enough for double-authentication-prevention because we must also extract d. It
was for this that TK was put in the public key: from x we can recover d = H1(x)⊕TK . Efficiency
is again good on all fronts (cf. Fig. 11).

In both these schemes, the double-authentication prevention property is easy to see; indeed the
schemes were designed so that this is true. The challenge is showing unforgeability. We obtain both
the above schemes, and more, via a general transform that turns trapdoor identification schemes
into DAPS, as we now discuss.

Trapdoor identification. By an identification scheme we mean a three-move Sigma protocol in
which the prover sends a commitment computed using private randomness, the verifier sends a ran-
dom challenge, the prover returns a response computed using the prior private randomness and its
secret key, and the verifier computes a boolean decision from the conversation transcript and public
key (see Fig. 2). We call such a scheme trapdoor if the prover can pick the commitment directly
at random from the space of commitments and then compute the associated private randomness
using its secret key. Not all identification schemes have this property. For example GQ [17] does
—this requires adding d to the secret key as above— but Schnorr’s (discrete-log based) protocol [28]
doesn’t. The concept of trapdoor identification schemes is implicit in Micali and Reyzin (MR) [22],
who state a particular identification scheme —we will call it MR-ID— that has this property. Our
definition of trapdoor identification schemes names, generalizes and formalizes their idea.

DAPS from trapdoor identification. We present a way to convert any trapdoor identification
scheme into a DAPS scheme. Our DAPS sets the commitment to a hash of the address, computes
the private randomness via the trapdoor, and then follows a randomized version of the Fiat-Shamir
transform [13, 1]. Additionally the public key is enhanced so that recovery of the secret identification
key allows recovery of the full DAPS secret key. See Section 4. GQ-DAPS is obtained in this way
from the GQ identification scheme of [17]. CF-DAPS is obtained in this way from a trapdoor
identification scheme based on claw-free permutations that we will define and call CF-ID. It is
a generalization of the MR-ID of [22], the latter being the special case in which the claw-free
permutations are given by the squaring modulo a composite construction of [16]. By applying our
transform to the Fiat-Shamir [13] or Ong-Schnorr [24] identification schemes we can obtain further
DAPS, but they are less efficient than CF-DAPS and GQ-DAPS.

4

Setting the commitment to a hash of the address ensures that the conversation transcripts
corresponding to signatures of colliding messages have the same commitment, so that double-
authentication prevention of the DAPS can be shown based on the Sigma protocol extractability
property of the identification scheme. We prove unforgeability of the DAPS under the assumption
that the identification scheme is secure against multiple impersonation attempts under passive
attack, a notion we define and call mimp. This has two advantages. On the theoretical side, we can
establish mimp security under standard assumptions —one-wayness of RSA for GQ and hardness
of factoring for CF— using the reset lemma of [6]. On the practical side we get improved concrete
security compared to using the forking lemma [26, 5, 4], which means we can use smaller modulii
and thus gain efficiency. We now discuss the latter in more depth.

Tight reductions. Proofs of unforgeability of Fiat-Shamir signatures —by this we mean sig-
natures derived from identification schemes via the Fiat-Shamir transform [13]— traditionally ex-
ploited forking lemmas [26, 5, 4]. We could take the same route for DAPS. However forking lemmas,
and thus reductions based on them, are notoriously non tight, resulting in large losses in concrete
security, and thus in efficiency because one must use larger modulii. Meanwhile cryptanalysis
indicates that these losses are not real, but artifacts of the proof.

Abdalla, An, Bellare and Namprempre [1] provide an alternative approach, proving unforge-
ability of Fiat-Shamir signatures by reduction to the security of the identification scheme against
impersonation under passive attack (imp). The latter can then be established, separately, via the
reset lemma of [6]. This results in a more modular proof. But the concrete security of the reduction
is the same as with the forking lemma approach because the reset lemma too is not tight.

We take this a step further. Our metric of security of an identification scheme is security against
multiple impersonation attempts under passive attack (mimp). We are able to give a tight reduction
of the unforgeability of our DAPS to the mimp security of the underlying trapdoor identification
scheme (cf. Theorem 2). Now, rather than estimate mimp security via the reset lemma, we estimate
it cryptanalytically. Our bound corresponds to the assumption that the best mimp attack is to
guess a challenge or break the underlying algebraic problem. From this and Theorem 2, we can get
80-bit security with a 1024-bit modulus just as for standard RSA PKCS#1 signatures.

Implementation. In theoretical cryptography, “efficient” often just means “polynomial time,”
which is quite divorced from efficiency in practice. Some works measure “efficiency” by counting
modular exponentiations or hash operations. Even these estimates can, in our experience, be moot.
Implementation is key to gauge and show efficiency. We implement GQ-DAPS,CF-DAPS and the
prior PS-DAPS using OpenSSL’s BIGNUM library on an Intel Core i7 machine for both 1024-bit and
2048-bit modulii. (The latter is what commercial CA’s currently use.) Fig. 11 shows the signing
time, verifying time, signature size and key sizes for all schemes. GQ-DAPS,CF-DAPS emerge
as around 150 times faster than PS-DAPS for signing and verifying while also having signatures
about 140 times shorter. In fact the Figure shows that GQ-DAPS,CF-DAPS are close to RSA PKCS
#1v1.5 in all parameters and runtimes. This means that DAPS can replace the signatures currently
used for certificates with minimal loss in performance.

Necessity of our assumption. Trapdoor identification schemes may seem a very particular
assumption from which to obtain DAPS. However we show in Appendix C that from any DAPS
satisfying double-authentication-prevention and unforgeability, one can build a trapdoor identifi-
cation scheme that is mimp-secure and satisfies the Sigma protocol extractability property. This
shows that the assumption we make is effectively necessary for DAPS.

Discussion, related work and open questions. As a reader may justifiably point out, various
issues must be addressed for PS’s application of DAPS to the deterrence of certificate subversion,

5

that we sketched above, to be a full solution. For example, there may be legitimate reasons for a
CA to issue a new certificate in the name of example.com (the old one may have expired or been
revoked) which at first glance is precluded by DAPS. Or, big brother might approach a different
CA. (Indeed, the DAPS idea is inherently restricted to a single CA environment.) There are various
answers to these questions which in particular are discussed to some extent by PS [25]. One might
also ask why a CA would want, or agree, to use DAPS. Recently, we have seen Internet corporations
taking steps to make subversion harder. Google’s push for end-to-end encryption following the
Snowden revelations is one instance. In another, Apple “reworked its encryption in a way that
prevents the company ... from getting access to the ... user data stored on smartphones and tablet
computers” [29]. A CA might similarly see espousing DAPS. We will not however attempt to
address application issues in full here. Our motivation for this work has been theoretical interest
(we find the primitive and problem technically intriguing) and the perspective that efficient, secure
schemes are a necessary, even if not sufficient, condition for application. Whether DAPS as a
concept has true practical utility remains to be seen, but, if it does, our schemes are better choices
than prior ones.

MR [22] present a variant of the Fiat-Shamir transform called the swap method that turns their
MR-ID scheme into a signature scheme with a tight reduction to factoring. AFLT [3] use a slight
variant of the Fiat-Shamir transform to turn lossy identification schemes into signature schemes with
a tight security reduction. ABP [2] obtain further schemes by the same method. These signature
schemes however are not DAPS. Extending these ideas to obtain DAPS with tight reductions to
standard algebraic problems is an interesting direction for future work. An anonymous reviewer
of a prior version of this paper asked whether it is possible to instantiate our generic construction
with lattice-based identification schemes from [19, 20].

Both our DAPS and that of PS [25] are proven in the random oracle model. This raises the
foundational question of what are the minimal assumptions under which DAPS can be built in the
standard model. Ordinary signatures are possible from any one-way function [27]. Is it possible
to obtain DAPS from any one-way function? Or, can one give some evidence that this will not be
true, for example by showing that DAPS implies a primitive like secret-key exchange that is not
likely to be possible based on one-way functions [18]?

The DAPS property that the secret key is recoverable from signatures of colliding messages
is conceptually similar to the recoverability of the spender’s identity from double-spending of an
e-coin in offline e-cash [10]. Whether this connection can be exploited to obtain new DAPS schemes
is an open question.

2 DAPS definitions

Signatures. In a signature scheme DS, the signer generates signing key sk and verifying key
vk via (vk, sk)←$ DS.KgH where H is the random oracle [7]. Now it can compute a signature
σ←$ DS.SigH(vk, sk,m) on any message m ∈ {0, 1}∗. A verifier can deterministically compute a
boolean v ← DS.VfH(vk,m, σ) indicating whether or not σ is a valid signature of m relative to vk.
Correctness as usual requires that DS.VfH(vk,m,DS.SigH(vk, sk,m)) = true with probability one.

The DAP property. In a DAPS [25], a message m = (a, p) is a pair consisting of an address a
and a payload p. Let us say that messages m1 = (a1, p1) and m2 = (a2, p2) are colliding if a1 = a2
but p1 6= p2. Double authentication prevention [25] requires that signatures on colliding messages

allow anyone to extract the signing key. It is captured formally by the advantage Advdap
DS (A) =

Pr[DAPADS] associated to adversary A, where game DAPADS is in Fig. 1. The adversary produces

6

Game UFADS

(vk, sk)←$ DS.KgH ; A,M ← ∅
(m,σ)←$ASign,H(vk)
Return (DS.VfH(vk,m, σ) ∧ (m 6∈M))

Game DAPADS

(vk, sk)←$ DS.KgH ; (m1,m2, σ1, σ2)←$AH(vk, sk)
v1 ← DS.VfH(vk,m1, σ1) ; v2 ← DS.VfH(vk,m2, σ2)
(a1, p1)← m1 ; (a2, p2)← m2

sk∗←$ DS.ExH(vk,m1,m2, σ1, σ2)
Return (sk∗ 6= sk) ∧ (a1 = a2) ∧ (p1 6= p2) ∧ v1 ∧ v2

Sign(m)

(a, p)← m
If a ∈ A then return ⊥
A← A ∪ {a} ; M ←M ∪ {m}
σ←$ DS.SigH(vk, sk,m)
Return σ

H(x,Rng)

If not HT[x,Rng] then HT[x,Rng]←$ Rng
Return HT[x,Rng]

Figure 1: Games defining unforgeability and extractability conditions of DAPS DS. The Sign
procedure is invoked by game UF while H is invoked by both games.

messages m1,m2 and signatures σ1, σ2, and an extraction algorithm DS.ExH associated to the
scheme then attempts to compute sk. The adversary wins if the key sk∗ produced by DS.Ex is
different from sk yet extraction should have succeeded, meaning the messages were colliding and
their signatures were valid. If G is a game, we are denoting by Pr[G] —here and in the rest of
the paper— the probability that the game returns true. The argument Rng to the random oracle
H allows the caller to specify the set from which responses are drawn in a particular scheme, for
example Z∗N . The adversary has sk as input to cover the fact that the signer is the one attempting
—due to coercion and subversion, but nonetheless— to produce signatures on colliding messages.
(And thus it does not need access to a Sign oracle.) We note that we are not saying it is hard
to produce signatures on colliding messages —it isn’t, given sk— but rather that doing so will
reveal sk. We also stress that extraction is not required just for honestly-generated signatures,
but for any, even adversarially generated signatures that are valid, again because the signer is the
adversary here.

Unforgeability. We also require unforgeability, captured formally by the advantage Advuf
DS(A)

= Pr[UFADS] associated to adversary A, where game UFADS is in Fig. 1 [25]. This is the classical
notion of [16, 7] except that addresses of the messages the signer signs must be all different, as
captured through the set A in the game. This is necessary because the double authentication
prevention requirement precludes security if the signer releases signatures of two messages with
the same address. In practice it means that the signer must maintain a log of all messages it has
signed and make sure that it does not sign two messages with the same address. A CA is likely to
maintain such a log in any case so this is unlikely to be an extra burden.

Discussion. Asking that the key sk∗ returned by the extractor DS.ExH be equal to sk may seem

7

Prover

Input: ivk, isk

(Y, y)←$ ID.Cmt(ivk)

z ← ID.Rsp(ivk, isk, c, y)

Y-
c�
z-

Verifier

Input: ivk

c←$ {0, 1}ID.cl

v ← ID.Vf(ivk, Y ‖c‖z)

Game EXAID
(ivk, isk, tk)←$ ID.Kg
(Y, c1, z1, c2, z2)←$A(ivk, isk, tk)
v1 ← ID.Vf(ivk, Y ‖c1‖z1) ; v2 ← ID.Vf(ivk, Y ‖c2‖z2)
isk∗←$ ID.Ex(ivk, Y, c1, z1, c2, z2)
Return (isk∗ 6= isk) ∧ (c1 6= c2) ∧ v1 ∧ v2

Figure 2: Functioning of an identification scheme ID and game defining its Sigma-Protocol ex-
tractability.

unnecessarily strong. It would suffice if sk∗ was “functionally equivalent” to sk, meaning allowed
computation of signatures indistinguishable from real ones. Indeed, such a property is formalized
in PS [25]. However our schemes achieve the stronger property we have defined, so we adopt it in
our definition.

The DAP game chooses the keys vk, sk honestly. Allowing these to be adversarially chosen would
result in a stronger requirement, also formalized in PS [25]. Our view is that our requirement
is reasonable because the coercion happens after the CA and its keys are established. If the
choice of keys is considered a potential source of vulnerability, one might generate them via secure
computation between a few different parties.

3 Trapdoor identification schemes

We define a sub-class of identification schemes that we call trapdoor. Later we will show how any
such scheme can be transformed into a DAPS. The trapdoor property was first recognized in [22]
for specific example schemes. We name, generalize and formalize it here.

Identification. An identification (ID) scheme ID operates as depicted in Fig. 2. First, via
(isk, ivk, tk)←$ ID.Kg, the prover generates a private identification key isk, public verification key
ivk and auxiliary information tk. Via (Y, y)←$ ID.Cmt(ivk) it generates commitment Y and cor-
responding private state y. The verifier sends a random challenge of length ID.cl. The prover’s
response z and the verifier’s boolean decision v are deterministically computed. An example is
the GQ scheme of Fig. 9. We require the obvious correctness condition. We also require the
Sigma Protocol [11] extractability condition, which says there is an algorithm ID.Ex such that
if Y1‖c1‖z1, Y2‖c2‖z2 are accepting transcripts under ivk with Y1 = Y2 but c1 6= c2 then ID.Ex
given ivk and the transcripts returns isk. Formally we measure extractability via the advantage
Advex

ID(A) = Pr[EXAID] associated to an adversary A where the game is in Fig. 12.
The auxiliary information tk is not used in a basic ID scheme. We use it when we say what

it means for the scheme to be trapdoor. Namely there is an algorithm ID.Cmt−1 that produces y
from Y with the aid of the trapdoor tk. Formally, the outputs of the following two processes are
identically distributed. Both processes generate (isk, ivk, tk)←$ ID.Kg. The first process then lets
(Y, y)←$ ID.Cmt(ivk). The second process picks Y ←$ ID.CmtSp(ivk) and lets y←$ ID.Cmt−1(ivk,
tk, Y). Both processes return (isk, ivk, tk, Y, y). Here ID.CmtSp(ivk) is a space of commitments

8

Game mIMPPID
(ivk, isk, tk)←$ ID.Kg ; i← 0
d←$ PTr,Ch,Dec(ivk)
Return win

Tr()

(Y, y)←$ ID.Cmt(ivk) ; c←$ {0, 1}ID.cl

z ← ID.Rsp(ivk, isk, c, y)
Return Y ‖c‖z

Ch(Y)

i← i+ 1 ; U ← U ∪ {i} ; c←$ {0, 1}ID.cl

TT[i]← Y ‖c ; Return (i, c)

Dec(j, z)

If (j 6∈ U) then return ⊥
U ← U \ {j} ; TT[j]← TT[j]‖z
DT[j]← ID.Vf(ivk,TT[j])
win← win ∨DT[j] ; Return DT[j]

Figure 3: Game defining security of identification scheme ID against multi-impersonation under
passive attack.

associated to ID. We let ID.tl denote the length of tk.

mimp security of ID schemes. The first proofs of unforgeability of Fiat-Shamir signatures
—by this we mean signatures derived from ID schemes via the Fiat-Shamir transform [13]— are
due to Pointcheval and Stern [26] and used their forking lemma. More general versions of the
forking lemma followed [5, 4]. OO [23] and AABN [1] provide an alternative and more modular
approach, the latter proving unforgeability assuming security of the identification scheme against
impersonation under passive attack (imp). The latter can then be established, separately, via the
reset lemma of [6]. We will extend this approach. We will define and use a new property of the
ID scheme that we call security against multiple impersonations under passive attack (mimp). The
gains —compared to using the forking lemma— are a simpler and more modular proof and better
concrete security.

Recall that security of an identification scheme ID under impersonation [12, 6] considers an
adversary who, given ivk but not isk, first attacks the honest, isk-using prover and then, using
the information it gathers, attempts to impersonate the real prover by successfully identifying
itself to the verifier. In this impersonation attempt, the adversary, in the role of malicious prover,
submits a commitment Y of its choice, receives an honest verifier challenge c, submits a response
z of its choice, and wins if ID.Vf(ivk, Y ‖cz) = true. A hierarchy of possible first-phase attacks is
defined in [6], but we will require security only against the weakest, namely passive attacks, where
the adversary is just an eavesdropper and gets honestly-generated protocol transcripts. (Stronger
active and even concurrent attacks are relevant in other contexts [6].)

However, this classic notion of security [13, 12, 6] allows only one impersonation attempt.
Our mimp notion allows multiple attempts. The formalization considers game mIMPPID of Fig. 3
associated to identification scheme ID and mimp adversary P. The transcript oracle Tr returns
upon each invocation a transcript of an interaction between the honest prover and verifier, allowing
P to mount its passive attack. Adversary P can mount an impersonation attempt through its Ch
and Dec oracles, winning if any attempt is successful. The integer i denotes a session id, unique
for each impersonation attempt. We let Advmimp

ID (P) = Pr[mIMPPID].
We show in Theorem 3 that mimp security is implied by standard single-impersonation security

under passive attack (imp) with a loss in the advantage of a factor equal to the number of imper-
sonation attempts. Together with Theorem 4 this implies mimp security can be established under
standard assumptions, for example one-wayness of RSA for GQ-ID. This means that in assuming
mimp we are not incurring extra assumptions. But these reductions, like that of the forking lemma,
are not tight. And cryptanalysis indicates that these factors are not real, but artifacts of the proofs.
But our reduction of Theorem 2 to mimp security is tight. To avoid artificial inflation of security

9

DS.KgH

(ivk, isk, tk)←$ ID.Kg
TK ← tk⊕H(isk, {0, 1}ID.tl)
vk ← (ivk,TK) ; sk ← (isk, tk)
Return (vk, sk)

DS.ExH(vk,m1,m2, σ1, σ2)

(ivk,TK)← vk
For i = 1, 2 do

(ai, pi)← mi ; (zi, si)← σi
Yi ← H(ai, ID.CmtSp(ivk))
ci ← H(Yi‖ai‖pi‖si, {0, 1}ID.cl)

isk∗ ← ID.Ex(ivk, Y1‖c1‖z1, Y2‖c2‖z2)
tk∗ ← H(isk∗, {0, 1}ID.tl)⊕TK
Return (isk∗, tk∗)

DS.SigH(vk, sk,m)

(a, p)← m ; s←$ {0, 1}sl
(ivk,TK)← vk ; (isk, tk)← sk
Y ← H(a, ID.CmtSp(ivk))
y←$ ID.Cmt−1(ivk, tk, Y)
c← H(Y ‖a‖p‖s, {0, 1}ID.cl)
z ← ID.Rsp(ivk, isk, c, y)
σ ← (z, s) ; Return σ

DS.VfH(vk,m, σ)

(ivk,TK)← vk ; (a, p)← m ; (z, s)← σ
Y ← H(a, ID.CmtSp(ivk))
c← H(Y ‖a‖p‖s, {0, 1}ID.cl)
Return ID.Vf(ivk, Y ‖c‖z)

Figure 4: Our construction of a DAPS DS = Tid2Daps[ID, sl] from a trapdoor identification
scheme ID and a seed length sl ∈ N.

parameters, and corresponding loss in efficiency, when we instantiate and implement our schemes
in Section 5, we pick parameters based on direct, cryptanalytic estimates of mimp security rather
than on the bounds from Appendix B. This shows the benefit of mimp as a starting point.

4 Our general DAPS construction

We show how any trapdoor identification scheme can be transformed into a DAPS. We prove both
that our DAPS is double authentication preventing and unforgeable. In the next section we will
instantiate this general construction to get specific, efficient DAPS.

The construction. Let ID be a trapdoor identification scheme. Our Tid2Daps —trapdoor
identification to DAPS— transform associates to it and a seed length sl ∈ N a DAPS DS =
Tid2Daps[ID, sl]. The algorithms of DS are defined in Fig. 4. Recall that in the Fiat-Shamir
transform [13], the signer picks (Y, y)←$ ID.Cmt(ivk) as per the ID scheme and commits to these
values by hashing Y with the message to create a challenge. We instead specify the commitment
Y as a hash of the message address. This is done so that messages with the same address result
in transcripts with the same commitment, putting us in a position to use the extractability of ID
to achieve double authentication prevention. However, doing this means that it is not clear how in
general to obtain y. This is where the trapdoor property comes in, allowing our signer to obtain it
as y ← ID.Cmt−1(ivk, tk, Y). We then proceed as in Fiat-Shamir, except that we need a randomized
version of the transform as specified in [1]. The randomization is captured by the seed s whose
length sl was a parameter of our transform. The introduction of the trapdoor tk however creates
a new difficulty, namely that extraction under the ID scheme will only recover isk and to achieve
double authentication prevention we must recover the entire secret key sk = (isk, tk). We resolve
this by putting in the verification key a particular encryption, denoted TK , of tk, under isk.

DAP-security of our construction. The following confirms that double authentication pre-
vention is achieved. This is relatively straightforward given the construction; the bigger challenge
will be showing unforgeability. The number of (distinct) queries q of the adversary to H(·, {0, 1}ID.cl),
referred to below, is, formally, the number of queries made to this oracle in the execution of the
game DAPADS, so that queries made not directly by A but by game procedures are also counted.

10

As a result it will always be the case that q ≥ 2.

Theorem 1 Let DAPS DS = Tid2Daps[ID, sl] be obtained from trapdoor identification scheme ID
and seed length sl as above. Let A be an adversary making q ≥ 2 distinct H(·, {0, 1}ID.cl) queries.

Then we can construct an adversary A′ such that Advdap
DS (A) ≤ Advex

ID(A′)+q(q−1)/2ID.cl+1. The
running time of A′ is about the same as that of A.

Proof of of Theorem 1: Consider the DAPADS game of Fig. 1. Within this, consider the
execution of the algorithm DS.ExH of Fig. 4 on vk,m1,m2, σ2, σ2 where (m1,m2, σ1, σ2)←$AH(vk,
sk). Let Y1‖c1‖z1, Y2‖c2‖z2 be the transcripts computed within. Assume σ1, σ2 are valid signatures
of m1,m2, respectively, relative to vk = (ivk,TK). As per the verification algorithm DS.VfH of
Fig. 4 this means that the transcripts Y1‖c1‖z1, Y2‖c2‖z2 are valid under the ID scheme, meaning
ID.Vf(ivk, Y1‖c1‖z1) = ID.Vf(ivk, Y2‖c2‖z2) = true. If the messages m1 = (a1, p1) and m2 = (a2, p2)
output by A are colliding then we also have Y1 = Y2. This is because verification ensures that
Y1 = H(a1, ID.CmtSp(ivk)) and Y2 = H(a2, ID.CmtSp(ivk)). So if c1 6= c2 then the extraction
property of ID ensures that isk∗ = isk. (We assume for simplicity the Sigma-protocol extraction
always succeeds since this is true for the ones we use, else a Advex

ID(Aid) term as defined iabove
must be added to the bound for an adversary Aid that we would construct here.) If so, we also

have tk∗ = tk, so that the full secret key sk = (isk, tk) is recovered. So Advdap
DS (A) is at most the

probability that the challenges are equal even though the payloads are not. But the challenges are
outputs of H(·, {0, 1}ID.cl), to which the game makes at most q queries. So the chance that these
challenges collide is at most q(q − 1)/2ID.cl+1.

Unforgeability of our construction. The following shows that the unforgeability of our
DAPS tightly reduces to the mimp security of the underlying ID scheme. As before, the number
of queries by A to some oracle includes the number made in the game, and similarly the running
time of an adversary is the total execution time of the game, the time used by oracles included.

Theorem 2 Let DAPS DS = Tid2Daps[ID, sl] be obtained from trapdoor identification scheme ID
and seed length sl as above. Let A be a uf-adversary against DS. Suppose the number of queries that
A makes to its H(·, {0, 1}ID.tl), H(·, ID.CmtSp(ivk)), H(·, {0, 1}ID.cl), Sign oracles are, respectively,
q1, q2, q3, qs, where ivk is as in game UFADS. Then from A we can construct mimp adversaries P1,P2
such that

Advuf
DS(A)

≤ Advmimp
ID (P1) + Advmimp

ID (P2) +
qs(2q3 + qs − 1)

2sl+1
. (1)

Adversaries P1,P2 make q2 + qs + 1 queries to Tr. Adversary P1 makes q3 queries to Ch and one
query to Dec. Adversary P2 makes q1 queries to Ch and Dec. The running time of adversaries
P1,P2 is that of A plus some small overhead. In the case of P2 the overhead amounts to q1
executions of the ID protocol.

Proof of of Theorem 2: We assume that A avoids certain pointless behavior that would only
cause it to lose. Thus, we assume that, in the messages it queries to Sign, the addresses are all
different. Also we assume it did not query to Sign the message m in the forgery (m,σ) that it
eventually outputs. The two together mean that the sets A,M in game UFADS, and the code and
checks associated with them, are redundant and can be removed. We will work with this simplified
form of the game.

11

Game G0/ G1

(ivk, isk, tk)←$ ID.Kg
TK ← tk⊕H(isk, {0, 1}ID.tl)
vk ← (ivk,TK) ; sk ← (isk, tk)
(m,σ)←$ASign,H(vk)
Return DS.VfH(vk,m, σ)

H(x,Rng)

If not HT[x,Rng] then
HT[x,Rng]←$ Rng

Return HT[x,Rng]

Sign(m)

(a, p)← m ; s←$ {0, 1}sl
(ivk,TK)← vk ; (isk, tk)← sk
Y ← H(a, ID.CmtSp(ivk))
y←$ ID.Cmt−1(ivk, tk, Y)
If (not HT[Y ‖a‖p‖s, {0, 1}ID.cl]) then

HT[Y ‖a‖p‖s, {0, 1}ID.cl]←$ {0, 1}ID.cl

Else
bad← true ;
HT[Y ‖a‖p‖s, {0, 1}ID.cl]←$ {0, 1}ID.cl

c← HT[Y ‖a‖p‖s, {0, 1}ID.cl]
z ← ID.Rsp(ivk, isk, c, y)
σ ← (z, s) ; Return σ

Game G2 /G3

(ivk, isk, tk)←$ ID.Kg
TK ←$ {0, 1}ID.tl

vk ← (ivk,TK) ; sk ← (isk, tk)
(m,σ)←$ASign,H(vk)
Return DS.VfH(vk,m, σ)

H(x,Rng)

If not HT[x,Rng] then
HT[x,Rng]←$ Rng
If ((Rng = {0, 1}ID.tl) ∧ (x = isk)) then
bad← true ; HT[x,Rng]← TK⊕tk

Return HT[x,Rng]

Sign(m)

(a, p)← m ; s←$ {0, 1}sl
(ivk,TK)← vk ; (isk, tk)← sk
Y ← H(a, ID.CmtSp(ivk))
y←$ ID.Cmt−1(ivk, tk, Y)
c←$ {0, 1}ID.cl

HT[Y ‖a‖p‖s, {0, 1}ID.cl]← c
z ← ID.Rsp(ivk, isk, c, y)
σ ← (z, s) ; Return σ

Figure 5: Games for proof of Theorem 2. Games G1,G2 include the boxed code and games G0,G3

do not.

When procedure Sign is replying to signing query m = (a, p), it first computes Y and picks s. We
would like that, at this point, it can define the table entry HT[Y ‖a‖p‖s, {0, 1}ID.cl] without caring
whether it was already defined. (This is to allow an eventual impersonation adversary to program
this RO response with a challenge emanating from a transcript obtained from the transcript oracle.)
In general, of course, this would be wrong, but intuitively the random choice of s means it is usually
right. (This indeed is why we have the seed in the scheme.) To show this formally we consider
the games G0,G1 of Fig. 5. Game G0 excludes the boxed code, so that its Sign procedure defines
HT[Y ‖a‖p‖s, {0, 1}ID.cl] only when this entry was not already defined, but game G1 includes the
boxed code, so that Sign defines this entry always, as we would like. But these games are identical-
until-bad [8], meaning differ only in code that follows the setting of the boolean flag bad to true.
So we have

Advuf
DS(A) = Pr[G0] = Pr[G1] + Pr[G0]− Pr[G1]

≤ Pr[G1] + Pr[G0 sets bad] , (2)

where the inequality is by the Fundamental Lemma of Game Playing of [8]. The random choice of
s made by procedure Sign ensures

Pr[G0 sets bad] ≤
qs−1∑
i=0

q3 + i

2sl
=
qs(2q3 + qs − 1)

2sl+1
. (3)

12

Game G4

(ivk, isk, tk)←$ ID.Kg
TK ←$ {0, 1}ID.tl

vk ← (ivk,TK)
For i = 1, . . . , q2 + qs + 1 do

(Yi, yi)←$ ID.Cmt(ivk)
ci←$ {0, 1}ID.cl

zi ← ID.Rsp(ivk, isk, ci, yi)
i2 ← 0
(m,σ)←$ASign,H(vk)
(a, p)← m ; (z, s)← σ
Y ← H(a, ID.CmtSp(ivk))
c← H(Y ‖a‖p‖s, {0, 1}ID.cl)
Return ID.Vf(ivk, Y ‖c‖z)
Game G5

(ivk, isk, tk)←$ ID.Kg
TK ←$ {0, 1}ID.tl

vk ← (ivk,TK)
For i = 1, . . . , q2 + qs + 1 do

(Yi, yi)←$ ID.Cmt(ivk)
ci←$ {0, 1}ID.cl

zi ← ID.Rsp(ivk, isk, ci, yi)
i2 ← 0 ; T ← ∅
(m,σ)←$ASign,H(vk)
Return (isk ∈ T)

Sign(m) // G4,G5

(a, p)← m ; s←$ {0, 1}sl
Y ← H(a, ID.CmtSp(ivk))
i← Ind2(a)
HT[Y ‖a‖p‖s, {0, 1}ID.cl]← ci
σ ← (zi, s) ; Return σ

H(x,Rng) // G4

If (not HT[x,Rng]) then
If ((Rng = {0, 1}ID.tl) ∨ (Rng = {0, 1}ID.cl)) then

HT[x,Rng]←$ Rng
If (Rng = ID.CmtSp(ivk)) then
i2 ← i2 + 1 ; HT[x,Rng]← Yi2 ; Ind2(x)← i2

Return HT[x,Rng]

H(x,Rng) // G5

If (not HT[x,Rng]) then
If (Rng = {0, 1}ID.tl) then
T ← T ∪ {x} ; HT[x,Rng]←$ Rng

If (Rng = {0, 1}ID.cl) then
HT[x,Rng]←$ Rng

If (Rng = ID.CmtSp(ivk)) then
i2 ← i2 + 1 ; HT[x,Rng]← Yi2 ; Ind2(x)← i2

Return HT[x,Rng]

Figure 6: More games for the proof of Theorem 2.

Now we need to bound Pr[G1]. We start by considering whether the ciphertext TK ← tk⊕
H(isk, {0, 1}ID.tl) helps A over and above access to Sign. Consider the games G2,G3 of Fig. 5.
They pick TK directly at random rather than as prescribed in the scheme. However, via the boxed
code that it contains, game G2 compensates, replying to H(·, {0, 1}ID.tl) queries in such a way that
TK = tk⊕H(isk, {0, 1}ID.tl). Thus G2 is equivalent to G1. Game G3 omits the boxed code, but the
games are identical-until-bad. So we have

Pr[G1] = Pr[G2] = Pr[G3] + Pr[G2]− Pr[G3]

≤ Pr[G3] + Pr[G3 sets bad] , (4)

where again the inequality is by the Fundamental Lemma of Game Playing of [8]. Now we have
two tasks, namely to bound Pr[G3] and to bound Pr[G3 sets bad]. The first corresponds to showing
that A cannot forge if the ciphertext TK is random, and the second corresponds to showing that
changing the ciphertext to random makes little difference. Both bounds will reply on the assumed
mimp security of ID.

To bound Pr[G3], consider game G4 of Fig. 6. Towards using mimp, this game refrains from using
isk directly in procedure Sign. Instead, it begins by generating conversation transcripts Yi‖ci‖zi
and has Sign use these. To make this possible, H(·, ID.CmtSp(ivk)) values are set to the transcript
commitments. Then Sign retrieves the corresponding commitment Y , sets HT[Y ‖a‖p‖s, {0, 1}ID.cl]
to the challenge from the same transcript, and puts the corresponding response in the signature.

13

Adversary PTr,Ch,Dec
1 (ivk)

TK ←$ {0, 1}ID.tl

vk ← (ivk,TK)
For i = 1, . . . , q2 + qs + 1 do

(Yi, ci, zi)←$ Tr()
i2 ← 0
(m,σ)←$ASign,H(vk)
(a, p)← m ; (z, s)← σ
Y ← H(a, ID.CmtSp(ivk))
c← H(Y ‖a‖p‖s, {0, 1}ID.cl)
i← Ind3(Y ‖c)
d← Dec(i, z)

Adversary PTr,Ch,Dec
2 (ivk)

TK ←$ {0, 1}ID.tl

vk ← (ivk,TK)
For i = 1, . . . , q2 + qs + 1 do

(Yi, ci, zi)←$ Tr()
i2 ← 0 ; T ← ∅
(m,σ)←$ASign,H(vk)
For all x ∈ T do

(Y, y)←$ ID.Cmt(ivk)
(i, c)←$ Ch(Y)
z ← ID.Rsp(ivk, x, c, y)
d← Dec(i, z)

Sign(m) // P1,P2

(a, p)← m ; s←$ {0, 1}sl
Y ← H(a, ID.CmtSp(ivk))
i← Ind2(a)
HT[Y ‖a‖p‖s, {0, 1}ID.cl]← ci
σ ← (zi, s) ; Return σ

H(x,Rng) // P1

If (not HT[x,Rng]) then
If (Rng = {0, 1}ID.tl) then

HT[x,Rng]←$ Rng
If (Rng = {0, 1}ID.cl) then
Y ‖a‖p‖s← x ; (i, c)←$ Ch(Y)
Ind3(Y ‖c)← i ; HT[x,Rng]← c

If (Rng = ID.CmtSp(ivk)) then
i2 ← i2 + 1 ; HT[x,Rng]← Yi2 ; Ind2(x)← i2

Return HT[x,Rng]

H(x,Rng) // P2

If (not HT[x,Rng]) then
If (Rng = {0, 1}ID.tl) then
T ← T ∪ {x} ; HT[x,Rng]←$ Rng

If (Rng = {0, 1}ID.cl) then
HT[x,Rng]←$ Rng

If (Rng = ID.CmtSp(ivk)) then
i2 ← i2 + 1 ; HT[x,Rng]← Yi2 ; Ind2(x)← i2

Return HT[x,Rng]

Figure 7: Adversaries for proof of Theorem 2.

Since the signatures are correctly distributed we have

Pr[G3] = Pr[G4] . (5)

We build mimp adversary P1 so that

Pr[G4] ≤ Advmimp
ID (P1) . (6)

Game G4 was crafted exactly to make the construction of adversary P1 quite direct. The construc-
tion is described in detail in Fig. 7. Adversary P1 has access to oracles Tr,Ch,Dec as per game
mIMPP1

ID in which it is executing. It runs A, simulating answers to A’s queries to Sign and H as
shown. It obtains conversation transcripts using its Tr oracle to play the role of the ones generated
in G4. Using these, Sign can be simulated as per game G4. Oracle H(·,Rng) is simulated as in
G4 when Rng = {0, 1}ID.tl or Rng = ID.CmtSp(ivk). When a query x is made to H(·, {0, 1}ID.cl),
adversary P1 parses x as Y ‖a‖p‖s, sends Y to its challenge oracle Ch to get back a challenge, and
returns this challenge as the response to the oracle query. Finally when A produces a forgery, the
session id corresponding to the commitment and challenge in the forgery is retrieved via Ind3. Now
this session is completed by querying the response in the forged signature to the decision oracle
Dec. We need to show that the impersonation is successful as long as the forgery was valid. A
somewhat delicate point is that we use the fact that the message m in the forgery was not a Sign
query. This is what ensures that a session corresponding to the forgery conversation exists.

To bound Pr[G3 sets bad], consider game G5 of Fig. 6. It answers Sign queries just like G4, and
the only modification in answering H queries is to keep track of queries to H(·, {0, 1}ID.tl) in the set

14

Game OWARSA
(N, p, q, e, d)←$ RSA
x←$ Z∗N ; X ← xe mod N
x′←$A(N, e,X)
Return (x′ = x)

Game CFACFTDF

(f0, f1, f
−1
0 , f−11 , D)←$ CFTDF

(x0, x1)←$A(f0, f1, D)
y0 ← f0(x0); y1 ← f1(x1)
Return (y0 = y1)

Game FACAMOD

(N, p, q)←$ MOD
r←$A(N)
Return (r ∈ {p, q})

Figure 8: Games defining one-wayness of RSA generator RSA, claw-freeness of claw-free TDF
generator CFTDF and factoring security of modulus generator MOD.

T . The game ignores the forgery, returning true if isk was queried to H(·, {0, 1}ID.tl). We have

Pr[G3 sets bad] = Pr[G5] . (7)

We build P2 so that

Pr[G5] ≤ Advmimp
ID (P2) . (8)

The idea is simple, namely that if the adversary queries isk to H(·, {0, 1}ID.tl) then we can obtain
isk by watching the oracle queries of A, and this will allow us to break the mimp security of ID. The
difficulty is that, to run A, one first has to simulate answers to Sign queries using transcripts, and
it is to enable this that we moved to G5. Again the game was crafted to make the construction of
adversary P2, described in detail Fig. 7, quite direct. The simulation of the Sign oracle is as before.
The simulation of H is more direct, following game G5 rather than invoking the Ch oracle. When
A returns its forgery, the set T contains candidates for the identification secret key isk. Adversary
P2 now makes an impersonation attempt for each x ∈ T in which it runs the prover using x as the
identification key. In the case x = isk, the impersonation succeeds.

Necessity of trapdoor ID schemes for DAPS. Trapdoor identification may seem a very
particular assumption as a starting point for DAPS. However in Appendix C we show that from
any DAPS satisfying double-authentication-prevention and unforgeability we can build a simple
trapdoor identification scheme satisfying mimp-security and Sigma-protocol extractability. These
being exactly the assumptions for our transform, it shows that these sufficient assumptions are in
fact also necessary. The link between trapdoor identification and DAPS is thus quite strong.

5 Instantiation and mplementation

We instantiate our general transform of Section 4 to obtain GQ-DAPS and CF-DAPS. We then
make parameter choices and discuss our implementation and performance results.

GQ-DAPS. An RSA generator with modulus length k is an algorithm RSA that returns a tuple
(N, p, q, e, d) where p, q are distinct, odd primes, N = pq is the modulus, in the range 2k−1 <
N < 2k, encryption and decryption exponents e, d are in Z∗ϕ(N) and ed ≡ 1 (mod ϕ(N)). The
assumption is one-wayness, formalized by defining the ow-advantage of an adversary A against
RSA by Advow

RSA(A) = Pr[OWA
RSA] where the game is in Fig. 8.

Fig. 9 shows the GQ-ID associated to RSA and a challenge length l < k. The commitment
space is Z∗N . We claim that this scheme is trapdoor. The GQ-ID.Cmt−1 algorithm, on input
((N, e,X), d, Y), returns y ← Y d mod N . This means we can apply our transform. The resulting
GQ-DAPS is shown at the bottom of Fig. 9. It is parameterized by RSA (and thus k), the challenge
length l < k and a seed length sl. By egcd we denote the extended gcd algorithm that given
relatively-prime inputs e, c returns a, b such that ae+ bc = 1.

15

GQ-ID.Kg

(N, p, q, e, d)←$ RSA
x←$ Z∗N
X ← xe mod N
Return
((N, e,X), x, d)

Prover

Input: (N, e,X), x

y←$ Z∗N
Y ← ye mod N

z ← yxc mod N

Y-
c�
z-

Verifier

Input: (N, e,X)

c←$ {0, 1}l

v ← (ze ≡ Y Xc (mod N))

GQ-DAPS.KgH

((N, e,X), x, d)←$ GQ-ID.Kg
TK ← d⊕H(x, {0, 1}k)
Return ((N, e,X,TK), (x, d))

GQ-DAPS.ExH((N, e,X,TK),m1,m2, σ1, σ2)

For i = 1, 2 do
(ai, pi)← mi ; (zi, si)← σi
Yi ← H(ai,Z∗N)
ci ← H(Yi‖ai‖pi‖si, {0, 1}l)

z ← z1z
−1
2 mod N

c← c1 − c2 ; (a, b)← egcd(e, c)
x← Xazb mod N
d← H(x, {0, 1}k)⊕TK
Return (x, d)

GQ-DAPS.SigH((N, e,X,TK), (x, d),m)

(a, p)← m ; s←$ {0, 1}sl
Y ← H(a,Z∗N)
y←$ Y d mod N
c← H(Y ‖a‖p‖s, {0, 1}l)
z ← yxc mod N
σ ← (z, s) ; Return σ

GQ-DAPS.VfH((N, e,X,TK),m, σ)

(a, p)← m ; (z, s)← σ
Y ← H(a,Z∗N)
c← H(Y ‖a‖p‖s, {0, 1}l)
Return (ze ≡ Y Xc (mod N))

Figure 9: Top: Identification scheme GQ-ID associated to RSA generator RSA with modulus length
k, and challenge length l. Bottom: GQ-DAPS = Tid2Daps[GQ-ID, sl] derived via our transform.

To estimate security for a given modulus length k we use Theorem 2 and estimate that a time
t mimp adversary P making qc queries to Ch,Dec has advantage

Advmimp
ID (P) ≤ qc

2l
+ Advow

RSA(A) (9)

where A is the best known time t adversary against the one-wayness of RSA. We can estimate
Advow

RSA(A) under the assumption that the NFS is the best factoring method. Then taking into
account Equation (1), our implementation uses a 1024-bit modulus, a 160-bit hash and a seed
length of 160 for the usual expected 80 bits of security. Since CA’s now use 2048-bit modulii, we
also implement the scheme with a 2048-bit modulus and 256-bit hashes and seeds. See below and
Fig. 11 for implementation and performance information.

CF-DAPS. A claw-free TDF generator [16] is an algorithm CFTDF that returns a tuple (f0, f1,
f−10 , f−11 , D) consisting of (descriptions of) a finite set D, permutations f0, f1: D → D, and their
respective inverses f−10 , f−11 : D → D. The assumption is claw-freeness, formalized by defining the
cf-advantage of an adversary A against CFTDF by Advcf

CFTDF(A) = Pr[CFACFTDF] where the game
is in Fig. 8.

A modulus generator with security parameter k is an algorithm MOD that returns a tuple
(N, p, q) where p, q are primes satisfying p ≡ 3 (mod 8) and q ≡ 7 (mod 8) and N = pq is the
modulus, in the range 2k−1 < N < 2k. The assumption is hardness of factoring, formalized by
defining the factoring-advantage of an adversary A against MOD by Advfac

MOD(A) = Pr[FACAMOD]
where the game is in Fig. 8.

We associate to a modulus generator MOD the particular claw-free TDF generator CFTDF[MOD]
that runs MOD to get (N, p, q) and then returns (f0, f1, f

−1
0 , f−11 , D) defined as follows. The domain

is D = {z2 mod N : z ∈ Z∗N}. For x ∈ D let f0(x) = x2 mod N and f1(x) = 4x2 mod N . Note

16

that, since p ≡ 3 (mod 8) and q ≡ 7 (mod 8), we have that neither ±2 is a quadratic residue mod
N . For y ∈ D the inverses are defined as f−10 (y) =

√
y mod N and f−11 (y) =

√
4−1y mod N

where
√
z denotes the square root of z that is itself a quadratic residue mod N . Note that we

cannot efficiently check membership in D given N .
For a binary string c = c[1] . . . c[n] ∈ {0, 1}n, let fc f

−1
c : D → D be defined for x, y ∈ D by

fc(x) = fc[1](· · · (fc[n](x)) · · ·)
f−1c (y) = f−1c[n](· · · (f

−1
c[1](y)) · · ·) .

In Fig. 10 we show an identification scheme we call CF-ID. It is associated to CFTDF and a
challenge length l < k. The commitment space is D. When CFTDF = CFTDF[MOD], this is an
identification scheme mentioned in [22] as underlying the MSA signature scheme [21]. Following
the latter, the prefixing of the challenge with a 0 bit is to ensure that, in this case, f0(z) ∈
D. This scheme is trivially trapdoor: CF-ID.Cmt−1 is just the identity function. This means
we can apply our transform. The resulting CF-DAPS is shown at the bottom of Fig. 10. It is
parameterized by CFTDF[MOD] (and thus k), the challenge length l < k and a seed length sl. In
the CF-DAPS.Ex algorithm, we reference the claw-free TDF extraction algorithm CFTDF.Ex. This
algorithm takes f0, f1, x0, x1 such that x0, x1 ∈ D and f0(x0) = f1(x1), and computes f−10 and f−11 .
For CFTDF[MOD], this is done as follows. We have x20 ≡ 4x21 mod N and thus r = gcd(x0−2x1, N)
divides N . However x0, x1 ∈ D and hence x0 6≡ ±2x1 (mod N), so r is a non-trivial factor of
N . For the parameter choices for implementations, we use the same estimates for a time t mimp
adversary in breaking CF-DAPS as in GQ-DAPS above.

Implementation. We implemented our CF-DAPS and GQ-DAPS schemes. For comparison pur-
poses we also implemented the original PS-DAPS and used an implementation of the standard RSA
PKCS#1v.5 currently used for signing certificates. Our implementation is in C, using OpenSSL’s
BIGNUM library for number theoretic operations. 1

For the implementation of the claw-free TDF for CF-DAPS, we need to compute f−1c (x) for a c
of length l. The naive approach requires computing l square roots modulo N , which takes O(lk3)
time. Instead, we use the following technique suggested by Goldreich [15] which computes f−1c (x)
with a constant number of exponentiations (assuming a small amount of pre-computation which
can be reused), thereby achieving an overall runtime of O(k3). Compute

f−1c (x) =
RN (2l, x)

(RN (2l, 4))i(c)
mod N

where RN (2l, x) denotes the 2l-th square root of x modulo N , l is the bit-length of c, and i(c) denotes
the integer representation of c. RN (2l, x) can be computed quickly by computing Rp(2

l, x) and
Rq(2

l, x) and using the Chinese remainder theorem. Rp(2
l, x) can be computed by precomputing

a = (p + 1)/4 (the “inverse” of 2 modulo ϕ(p)) and b = al mod ϕ(p) (the “inverse” of 2l modulo
ϕ(p)), and then computing Rp(2

l, x) as xb mod p.
To hash onto quadratic residues we follow the framework of Brier et al. for indifferentiable

hashing [9] as described by Poettering and Stebila [25]: we first hash onto ZN to obtain an element
r. With high probability, randomly chosen elements of ZN are also in Z∗N . If r has Jacobi symbol
−1, we set r ← rt mod N where t is a fixed element with Jacobi symbol −1, in our case t = 2
always suffices. Exactly one of r and N − r will be a quadratic residue mod N .

For the implementation of GQ-DAPS, we use encryption exponent e = 65537 as this is the default
RSA public key exponent in OpenSSL, allowing for fair comparisons with RSA PKCS#1v1.5.

1The implementation source code can be downloaded from the anonymous URL https://173.203.208.70:54242/

npfTVfFK/src.zip.

17

CF-ID.Kg

(f0, f1, f
−1
0 , f−11 , D)←$ CFTDF

Return ((f0, f1, D), (f−10 , f−11), ε)

Prover

Input: (f0, f1, D), (f−10 , f−11)

Y ←$D

z ← f−10c (Y)

Y-
c�
z-

Verifier

Input: (f0, f1, D)

c←$ {0, 1}l

z′ ← f0c(z)
v ← (z′ = y)

CF-DAPS.KgH

((f0, f1, D), (f−10 , f−11),⊥)←$ CF-ID.Kg
Return ((f0, f1, D), (f−10 , f−11))

CF-DAPS.ExH((f0, f1, D),m1,m2, σ1, σ2)

For i = 1, 2 do
(ai, pi)← mi ; (z′i, si)← σi
z′i ← f0(z′i)

For i = 1, . . . , l do
If (z′1 6= z′2) ∧ (fc1[i](z

′
1) = fc2[i](z

′
2)) then

If (c1[i], c2[i]) = (0, 1) then
Return CFTDF.Ex(f0, f1, z

′
1, z
′
2)

If (c1[i], c2[i]) = (1, 0) then
Return CFTDF.Ex(f0, f1, z

′
2, z
′
1)

z′1 ← fc1[i](z
′
1)

z′2 ← fc2[i](z
′
2)

Return ⊥

CF-DAPS.SigH((f0, f1, D), (f−10 , f−11),m)

(a, p)← m ; s←$ {0, 1}sl
Y ← H(a,D)
c← H(Y ‖a‖p‖s, {0, 1}l)
z ← f−10c (Y)
σ ← (z, s) ; Return σ

CF-DAPS.VfH((f0, f1, D),m, σ)

(a, p)← m ; (z, s)← σ
c← H(Y ‖a‖p‖s, {0, 1}l)
z′ ← f0c(z)
Return (z′ = H(a,D))

Figure 10: Top: Identification scheme CF-ID associated to claw-free TDF generator CFTDF and
challenge length l. Bottom: CF-DAPS = Tid2Daps[CF-ID, sl] derived via our transform.

Performance experiments. Timings were run on an Intel Core i7 (3720QM) with 4 cores each
running at 2.6 GHz; the tests were run on a single core with TurboBoost and hyper-threading
disabled. Software was compiled for the x86 64 architecture with -O3 optimizations using llvm 6.0
(clang 600.0.56). The OpenSSL version used was v1.0.2.

Table 11 shows average runtimes and key sizes using 1024-bit modulii and 160-bit hashes and
using 2048-bit modulii and 256-bit hashes. For DAPS schemes, address is 15 bytes and payload
is 33 bytes; for RSA PKCS#1v1.5, message is 48 bytes. Times reported are an average over 30
seconds. For RSA sign and verify operations, standard deviation was between 3% and 44%. For
all other operations, standard deviation was less than 4%.

The table omits runtimes for key generation, as this is a one-time operation. Key generation
times are fairly similar across schemes, as for all schemes the main cost is the generation of an RSA
modulus. For all schemes with 1024-bit keys, key generation times, from the top row to the bottom
row, are 29.9ms, 24.2ms, 31.5ms, and 23.7ms;; with 2048-bit keys, generation times are 156.5ms,
135.6ms, 167.8ms, and 125.5ms. For all key generation operations, standard deviation was between
64% and 74% (this is to be expected, as key generation involves generating primes, a probabilistic
process with high variance in runtime). While key generation is substantially more expensive than
signing or verification, it is still less than a second, and each signer needs to do it only once.

18

1024-bit modulus, 160-bit hash 2048-bit modulus, 256-bit hash

Scheme
Runtime (ms) Size (bits) Runtime (ms) Size (bits)

sign verify pub. sig. sign verify pub. sig.

PS-DAPS [25] 208.30 71.33 1024 164864 1009.88 271.36 2048 528384
GQ-DAPS (Fig. 9) 0.76 0.15 2048 1184 5.10 0.68 4096 2304
CF-DAPS (Fig. 10) 1.26 1.00 1024 1184 3.00 2.34 2048 2304

RSA PKCS#1v1.5 0.21 0.02 1024 1024 1.32 0.05 2048 2048

Figure 11: Average runtime in milliseconds and public key/signature sizes for double-authentication
preventing signatures and standard RSA signatures. Secret key sizes are the same as the modulus
size for all schemes.

Compared with the existing PS-DAPS, our CF-DAPS and GQ-DAPS are several orders of mag-
nitude faster for both signing and verification. When using 2048-bit modulii, CF-DAPS signatures
can be generated 336× and verified 116× faster, and GQ-DAPS signatures can be generated 198×
and verified 399× faster; moreover our signatures are much smaller, both just 2304 bits, compared
with 528384 bits for PS-DAPS, and nearly the same size as RSA PKCS#1v1.5 signatures. Signing
times for our schemes are competitive with RSA PKCS#1v1.5 signatures. Using CF-DAPS or GQ-
DAPS for signatures in digital certificates would incur little computational or size overhead relative
to currently used signatures.

References

[1] M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification to signatures
via the Fiat-Shamir transform: Minimizing assumptions for security and forward-security. In
L. R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 418–433. Springer,
Heidelberg, Apr. / May 2002.

[2] M. Abdalla, F. Ben Hamouda, and D. Pointcheval. Tighter reductions for forward-secure
signature schemes. In K. Kurosawa and G. Hanaoka, editors, PKC 2013, volume 7778 of
LNCS, pages 292–311. Springer, Heidelberg, Feb. / Mar. 2013.

[3] M. Abdalla, P.-A. Fouque, V. Lyubashevsky, and M. Tibouchi. Tightly-secure signatures from
lossy identification schemes. In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 572–590. Springer, Heidelberg, Apr. 2012.

[4] A. Bagherzandi, J. H. Cheon, and S. Jarecki. Multisignatures secure under the discrete loga-
rithm assumption and a generalized forking lemma. In P. Ning, P. F. Syverson, and S. Jha,
editors, ACM CCS 08, pages 449–458. ACM Press, Oct. 2008.

[5] M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking
lemma. In A. Juels, R. N. Wright, and S. Vimercati, editors, ACM CCS 06, pages 390–399.
ACM Press, Oct. / Nov. 2006.

[6] M. Bellare and A. Palacio. GQ and Schnorr identification schemes: Proofs of security against
impersonation under active and concurrent attacks. In M. Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 162–177. Springer, Heidelberg, Aug. 2002.

19

[7] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, Nov. 1993.

[8] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 409–426. Springer, Heidelberg, May / June 2006.

[9] E. Brier, J.-S. Coron, T. Icart, D. Madore, H. Randriam, and M. Tibouchi. Efficient indif-
ferentiable hashing into ordinary elliptic curves. In T. Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 237–254. Springer, Heidelberg, Aug. 2010.

[10] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In S. Goldwasser, editor,
CRYPTO’88, volume 403 of LNCS, pages 319–327. Springer, Heidelberg, Aug. 1990.

[11] R. Cramer. Modular Design of Secure, yet Practical Protocls. PhD thesis, University of
Amsterdam, 1996.

[12] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. Journal of Cryptology,
1(2):77–94, 1988.

[13] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In A. M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194. Springer, Heidelberg, Aug. 1987.

[14] M. Fischlin. Communication-efficient non-interactive proofs of knowledge with online extrac-
tors. In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 152–168. Springer,
Heidelberg, Aug. 2005.

[15] O. Goldreich. Two remarks concerning the Goldwasser-Micali-Rivest signature scheme. In
A. M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 104–110. Springer, Heidel-
berg, Aug. 1987.

[16] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, Apr. 1988.

[17] L. C. Guillou and J.-J. Quisquater. A “paradoxical” indentity-based signature scheme resulting
from zero-knowledge. In S. Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 216–
231. Springer, Heidelberg, Aug. 1990.

[18] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permutations.
In 21st ACM STOC, pages 44–61. ACM Press, May 1989.

[19] V. Lyubashevsky. Lattice-based identification schemes secure under active attacks. In
R. Cramer, editor, PKC 2008, volume 4939 of LNCS, pages 162–179. Springer, Heidelberg,
Mar. 2008.

[20] V. Lyubashevsky. Lattice signatures without trapdoors. In D. Pointcheval and T. Johansson,
editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 738–755. Springer, Heidelberg, Apr.
2012.

[21] S. Micali. A secure and efficient digital signature algorithm. Technical Memo MIT/LCS/TM-
501b, Massachusetts Institute of Technology, Laboratory for Computer Science, Apr. 1994.

20

Game EXAID
(ivk, isk, tk)←$ ID.Kg
(Y, c1, z1, c2, z2)←$A(ivk, isk, tk)
v1 ← ID.Vf(ivk, Y ‖c1‖z1) ; v2 ← ID.Vf(ivk, Y ‖c2‖z2)
sk∗←$ ID.Ex(ivk, Y, c1, z1, c2, z2)
Return (sk∗ 6= sk) ∧ (c1 6= c2) ∧ v1 ∧ v2

Figure 12: Game defining extractability of identification scheme ID.

[22] S. Micali and L. Reyzin. Improving the exact security of digital signature schemes. Journal of
Cryptology, 15(1):1–18, 2002.

[23] K. Ohta and T. Okamoto. On concrete security treatment of signatures derived from identifi-
cation. In H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 354–369. Springer,
Heidelberg, Aug. 1998.

[24] H. Ong and C.-P. Schnorr. Fast signature generation with a Fiat-Shamir-like scheme. In
I. Damg̊ard, editor, EUROCRYPT’90, volume 473 of LNCS, pages 432–440. Springer, Heidel-
berg, May 1991.

[25] B. Poettering and D. Stebila. Double-authentication-preventing signatures. In M. Kutylowski
and J. Vaidya, editors, ESORICS 2014, Part I, volume 8712 of LNCS, pages 436–453. Springer,
Heidelberg, Sept. 2014.

[26] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13(3):361–396, 2000.

[27] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In 22nd ACM
STOC, pages 387–394. ACM Press, May 1990.

[28] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–
174, 1991.

[29] C. Timberg. Apple will no longer unlock most iPhones, iPads for police, even with
search warrants, Sept. 2014. Washington Post, http://www.washingtonpost.com/business/
technology/2014/09/17/2612af58-3ed2-11e4-b03f-de718edeb92f_story.html.

A Identification scheme extractability

The extractability property for identification schemes is defined as follows. If ID is an identification
scheme and A an adversary then we let Advex

ID(A) = Pr[EXAID] where the game is in Fig. 12. This
measures the ability of an adversary (who knows the secret key) to create two accepting transcripts
with the same commitment but different challenges which cannot be used by the extraction algo-
rithm to recover the secret key. This is sometimes called special soundness for a Sigma protocol
[14].

B Mimp from one wayness

We establish mimp security of an identification scheme based on the one-wayness of the key-
generation process. All proofs are omitted.

21

Adversary PTr,Ch,Dec
1 (ivk)

j∗←$ {1, . . . , q} ; i← 0
d←$ PTr,ChS,DecS(ivk)

ChS(Y)

i← i+ 1 ; U ← U ∪ {i}
If i 6= j∗ then c←$ {0, 1}ID.cl

Else (1, c)←$ Ch(Y)
TT[i]← Y ‖c ; Return (i, c)

DecS(j, z)

If j 6∈ U then return ⊥
If j = j∗ then d← Dec(1, z)
Else d← ID.Vf(ivk,TT[j]‖z)
U ← U \ {j}
Return d

Figure 13: Adversary for proof of Theorem 3.

Game OWIID

(ivk, isk, tk)←$ ID.Kg ; isk′←$ I(ivk) ; Return (isk′ = isk)

Figure 14: Game defining one-wayness of the (key-generation process of) an identification scheme
ID.

mimp security from imp. In the first step we show that mimp security reduces to standard imp
security with a factor in loss equal to the number of Ch,Dec queries of the adversary. We do not
need to define imp security separately; it is simply mimp security for adversaries making only one
query to each of their Ch,Dec oracles. The result is thus captured by the following.

Theorem 3 Let ID be an identification scheme. Let P be a mimp-adversary against ID making
q queries to its Ch oracle and q queries to its Dec oracle. Then from P we can construct mimp
adversary P1 making only one query to its Ch oracle and only one query to its Dec oracle such
that

Advmimp
ID (P) ≤ q ·Advmimp

ID (P1) .

Adversary P1 makes as many queries to its Tr oracle as P does. The running time of P1 is that
of P plus some small overhead.

Proof: Adversary P1 is shown in Fig. 13. It has access to oracles Tr,Ch,Dec as per game mIMPP1
ID

in which it is executing, but makes only make one query to each of the second and third oracles. It
guesses an instance j∗ uniformly from {1, . . . , q} and runs P. Adversary P1 passes P’s Tr queries
directly to its own Tr oracle. P1 simulates answers to P’s queries to its Ch,Dec oracles via the
shown subroutines ChS,DecS, calling its own oracles inside these. Adversary P1’s simulation is
perfect. Since P1 will guess the instance j∗ which P successfully impersonates with probability 1/q,
adversary P1’s success probability is at least 1/q times that of P.

imp security from ow. If ID is an identification scheme and I an adversary then we let
Advow

ID (I) = Pr[OWI
ID] where the game is in Fig. 14. This simply measures the one-wayness

of the key-generation algorithm, meaning how hard it is to recover the secret identification key
from the public verification key. For GQ-ID this is the one-wayness of the underlying RSA genera-
tor. For CF-ID it is the hardness of factoring the modulus. Now for identification schemes satisfying
the Sigma protocol extractability and honest-verifier zero-knowledge conditions, one can use the
reset lemma of [6] to show that imp security follows from this one-wayness:

22

ID.Kg

(vk, sk)←$ DS.Kg
Return (vk, sk, ε)

Prover

Input: vk, sk

Y ←$ {0, 1}sl

z ← DS.Sig(sk, Y ‖c)

Y-
c�
z-

Verifier

Input: vk

c←$ {0, 1}sl

v ← DS.Vf(vk, (Y, c), z)

ID.Cmt−1(ivk, tk, Y)

Return Y

ID.Ex(ivk, Y1‖c1‖z1, Y2‖c2‖z2)

Return DS.Ex(ivk, (Y1, c1), (Y2, c2), z1, z2)

Figure 15: Our construction of a trapdoor identification scheme ID = Daps2Tid[DS, sl] from a
DAPS DS and a seed length sl ∈ N. ID.CmtSp(ivk) = {0, 1}sl for all ivk.

Theorem 4 Let ID be an identification scheme satisfying the Sigma protocol extractability and
honest-verifier zero-knowledge conditions. Let P be a mimp-adversary against ID making one query
to its Ch oracle and one query to its Dec oracle. Then from P we can construct an adversary I
such that

Advmimp
ID (P) ≤ 1

2ID.cl
+
√

Advow
ID (I) (10)

The running time of I is about twice that of P plus the time for an execution of the extraction
algorithm of ID.

Combing this with Theorem 3 we have a proof of the mimp security of an identification scheme
based on the one-wayness of its key-generation process. In particular, this proves mimp-security
of GQ-ID based on the one-wayness of RSA and mimp-security of CF-ID based on the hardness of
factoring.

This establishes that mimp security of the identification schemes, and thus unforgeability of
our DAPSs, can be based on standard assumptions. However, the reduction emanating from
the combination of Theorems 4 and 3 is not tight. Furthermore, cryptanalytic information says
that this lack of tightness does not reflect real security losses but is rather an artifact of the
proofs. Accordingly, we do not use these formulas to pick parameter sizes in Section 5. Instead we
cryptanalytically and directly estimate mimp security and then use Theorem 2.

C From DAPS to trapdoor ID

Here we show that DAPS implies trapdoor identification. Given any DAPS satisfying double-
authentication-prevention and unforgeability, we build a trapdoor identification scheme, via the
construction Daps2Tid in Fig. 15, that is mimp-secure and satisfies the Sigma protocol extractabil-
ity condition. This shows that the assumption we make to obtain DAPS is effectively necessary.
All proofs are omitted.

The basic idea of the construction is as follows. The ID scheme’s keys are just the keys of a
DAPS. A commitment is a random string, as is a challenge; the response is generated as a DAPS
signature with the commitment as the address and challenge as the payload. Verification in the
ID scheme is just verification in the DAPS. The ID scheme is trapdoor because the commitment

23

Adversary ASign
1 (vk)

d←$ATrS,ChS,DecS(vk)

TrS()

Y ←$ ID.CmtSp(vk)
c←$ {0, 1}sl
z←$ Sign((Y, c))
Return Y ‖c‖z

ChS(Y)

i← i+ 1 ; U ← U ∪ {i} ; c←$ {0, 1}ID.cl

TT[i]← Y ‖c ;
Return (i, c)

DecS(j, z)

If (j 6∈ U) then return ⊥
U ← U \ {j} ; Y ‖c← TT[j]
v ← DS.Vf(vk, (Y, c), z)
If v then A1 returns ((Y, c), z) to its uf-challenger
Return v (to A)

Figure 16: Adversary for proof of Theorem 6.

“secret” is just the commitment itself, and the extractability of the Sigma protocol comes from the
double-signature extractability of the DAPS.

We now make and prove three claims about the identification scheme: (1) it is trapdoor (2) It
is mimp-secure, and (3) It satisfies Sigma-protocol extractability as defined in Appendix A. These
are exactly the properties assumed of the identification scheme for our transform to work, so that
our result here shows that the sufficient assumptions we make in Section 4 on the identification
scheme to obtain DAPS are in fact also necessary.

Theorem 5 Let DS be a DAPS and let sl ∈ N. Then ID = Daps2Tid[DS, sl] is trapdoor.

Proof: Recall that for an ID scheme to be trapdoor, the following two processes must be identically
distributed:

1. (isk, ivk, tk)←$ ID.Kg ; (Y, y)←$ ID.Cmt(ivk) ; Return (isk, ivk, tk, Y, y).

2. (isk, ivk, tk)←$ ID.Kg ; Y ←$ ID.CmtSp(ivk) ; y←$ ID.Cmt−1(ivk, tk, Y) ; Return (isk, ivk,
tk, Y, y).

For ID = Daps2Tid[DS, sl], since ID.Cmt(ivk) simply selects Y ←$ ID.CmtSp(ivk) and Y = y, we
have that both processes above are equivalent to:

(isk, ivk, tk)←$ ID.Kg ; Y ←$ ID.CmtSp(ivk) ; Return (isk, ivk, tk, Y, Y)

This completes the proof.

Next we show that our constructed identification scheme is mimp secure.

Theorem 6 Let DS be a DAPS and let sl ∈ N. Let A be a mimp-adversary against ID =
Daps2Tid[DS, sl] making q queries to its Tr oracle. Then from A we can construct uf-adversary
A1 such that Advmimp

ID (A) ≤ Advuf
DS(A1). A1 makes q queries to its Sign oracle and the running

time of A1 is that of A plus some small overhead, including one execution of DS.Vf for each call
by A to its Dec oracle.

Proof: Adversary A1 is shown in Fig. 16. A1 directly simulates the mimp experiment for A; to
create transcripts, A1 uses its Sign oracle. If A submits an accepting transcript to its DecS oracle,
this immediately gives A1 a forgery for DS. A1’s simulation of game UFADS is perfect. The bound
follows.

Finally we show that our constructed identification scheme satisfies Sigma-protocol extractability.

24

Adversary A1(vk, sk)

(Y, c1, z1, c2, z2)←$A(vk, sk, ε)
Return ((Y, c1), (Y, c2), z1, z2)

Figure 17: Adversary for proof of Theorem 7.

Game DPRFAF
(s,St)←$A
(pk, sk)←$ F.Kg(s) ; A← ∅
b←$ {0, 1}
b′←$ASmp(pk,St)
Return (b′ = b)

Smp(a, p)

If a ∈ A then return ⊥
A← A ∪ {a}
y1←$ F.Ev(sk, a, p, s)
y0←$ {0, 1}|y1|

Return yb

Game EXAF
(s,St)←$A
(pk, sk)←$ F.Kg(s)
(a, p1, p2)←$A(pk, sk,St)
y1 ← F.Ev(sk, a, p1, s)
y2 ← F.Ev(sk, a, p2, s)
(sk∗, s∗)←$ F.Ex(pk, a, p1, p2, y1, y2)
Return ((sk∗, s∗) 6= (sk, s)) ∧ (p1 6= p2)

Figure 18: Games defining security of DPRF F.

Theorem 7 Let DS be a DAPS and let sl ∈ N. Let A be a ex-adversary against ID = Daps2Tid[DS,

sl]. From A we can construct dap-adversary A1 such that Advex
ID(A) ≤ Advdap

DS (A1). The running
time of A1 is that of A.

Proof: Adversary A1 is shown in Fig. 17. A1 directly calls A which is an ex adversary against the
identification scheme ID. Note that, for ID = Daps2Tid[DS, sl], the trapdoor key tk = ε, so this
is a perfect simulation of EXAID. If A returns two accepting transcripts Y ‖c1‖z1 and Y ‖c2‖z2 with
c1 6= c2, then (Y, c1) and (Y, c2) are a pair of colliding messages for DS and z1 and z2, respectively,
are valid signatures. ID.Ex fails to return the correct secret key from this part of transcripts exactly
when DS.Ex fails. The bound in the theorem statement follows.

D DPRFs

Here we define a new primitive we call a DPRF. It can be used to build a DAPS. We would like to
construct this without random oracles but do not know how at this point.

Definitions. A DPRF F specifies the following. Key generation algorithm F.Kg takes input a
string s called the message and returns a key pair (pk, sk), where pk is a public key and sk is
a secret key. Deterministic evaluation algorithm F.Ev takes sk, a, p, s and returns an output y.
Extraction algorithm F.Ex takes pk, a, p1, p2, y1, y2 and returns a string.

Define the advantage Advex
F (A) = Pr[EXAF] associated to adversary A, where game EXAF is in

Fig. 18. We require that this advantage be negligible for all polynomial time A. This measures
extraction.

We also require pseudo-randomness. Define the advantage Advdprf
F (A) = 2 Pr[DPRFAF] − 1

where game DPRFAF is in Fig. 18. We require that this advantage be negligible for all polynomial
time A. This says that the outputs look random as long as addresses do not repeat.

25

