
From Identification to Signatures, Tightly:

A Framework and Generic Transforms

Mihir Bellare1 Bertram Poettering2 Douglas Stebila3

February 2016

Abstract

This paper provides a framework to treat the problem of building signature schemes from
identification schemes in a unified and systematic way. The outcomes are (1) Three alternatives
to the Fiat-Shamir transform yielding signature schemes whose proofs give tight reductions to
standard assumptions (2) An understanding and characterization of existing transforms in the
literature. Reduction tightness is important because it allows the implemented scheme to use
small parameters (thereby being as efficient as possible) while retaining provable security.

1 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. Email: mihir@eng.ucsd.edu. URL: http://cseweb.ucsd.edu/~mihir/. Supported in
part by NSF grants CNS-1228890 and CNS-1526801 and a gift from Microsoft corporation.

2 Ruhr University Bochum, Bochum, Germany. Email: bertram.poettering@rub.de. URL: . Supported by
ERC Project ERCC (FP7/615074).

3 Queensland University of Technology, Brisbane, Australia. Email: stebila@qut.edu.au. URL:
http://www.douglas.stebila.ca/. Supported in part by Australian Research Council (ARC) Discovery Project
grant DP130104304.

1

Contents

1 Introduction 3

2 Notation and basic definitions 7

3 Constrained impersonation framework 8

4 Signatures from identification 11
4.1 From CIMP-UC identification to UUF signatures: MdCmt 11
4.2 From CIMP-UU identification to UUF signatures: MdCmtCh 13
4.3 From CIMP-CC identification to UUF signatures: MdCh 17

5 Swap: Optimized signatures from identification 19

6 Instantiation with Sigma protocols 22
6.1 Definitions . 23
6.2 Security of identification schemes . 23
6.3 Tight signatures from RSA . 24

A Signature transformations from UUF to UF 28
A.1 Going from UUF to UF by removing randomness . 28
A.2 Going from UUF to UF by adding randomness . 30

B Proof of Theorem 6 31

2

1 Introduction

This paper provides a framework to treat the problem of building signature schemes from identifi-
cation schemes in a unified and systematic way. We are able to explain and characterize existing
transforms as well as give new ones whose security proofs give tight reductions to standard as-
sumptions. This is important so that the implemented scheme can use small parameters, thereby
being efficient while retaining provable security. Let us begin by identifying the different elements
involved.

id-to-sig transforms. Recall that in a three-move identification scheme ID the prover sends a
commitment Y computed using private randomness y, the verifier sends a random challenge c, the
prover returns a response z computed using y and its secret key isk, and the verifier computes a
boolean decision from the conversation transcript Y ‖c‖z and public key ivk (see Fig. 3). We are
interested in transforms Id2Sig that take ID and return a signature scheme DS. The transform
must be generic, meaning DS is proven to meet some signature security goal Psig assuming only that
ID meets some identification security goal Pid . This proof is underlain by a reduction Psig→Pid

that may be tight or loose. Boxing an item here highlights elements of interest and choice in the
id-to-sig process.

Canonical example. In the most canonical example we have, Id2Sig = FS is the Fiat-Shamir
transform [16] ; Pid = IMP-PA is security against impersonation under passive attack [14, 1] ;
Psig = UF is unforgeability under chosen-message attack [18] ; and the reduction Psig→Pid is that
of AABN [1], which is loose.

We are going to revisit this to give other choices of the different elements, but first let us recall
some more details of the above. In the Fiat-Shamir transform FS [16], a signature of a message m
is a pair (Y, z) such that the transcript Y ‖c‖z is accepting for c = H(Y ‖m), where H is a random
oracle. IMP-PA requires that an adversary given transcripts of honest protocol executions still
fails to make the honest verifier accept in an interaction where it plays the role of the prover, itself
picking Y any way it likes, receiving a random c, and then producing z. The loss in the Psig→Pid

reduction of AABN [1] is a factor of the number q of adversary queries to the random oracle H:
If εid, εsig denote, respectively, the advantages in breaking the IMP-PA security of ID and the UF
security of DS, then εsig ≈ q εid.

Algebraic assumption to id. Suppose a cryptographer wants to build a signature scheme
meeting the definition Psig. The cryptographer would like to base security on some algebraic
assumption Palg . This could be factoring, RSA inversion, bilinear Diffie-Hellman, some lattice
assumption, or many others. Given an id-to-sig transform as above, the task amounts to designing
an identification scheme ID achieving Pid under Palg. (Then one can just apply the transform to
ID.) This proof is underlain by another reduction Pid→Palg that again may be tight or loose. The
tightness of the overall reduction Psig→Palg thus depends on the tightness of both Psig→Pid and
Pid→Palg.

Canonical example. Continuing with the FS+AABN-based example from above, we would need
to build an identification scheme meeting Pid = IMP-PA under Palg. The good news is that a wide
swathe of such identification schemes are available, for many choices of Palg (GQ [20] under RSA,
FS [16] under Factoring, Schnorr [29] under Discrete Log, ...). However the reduction Pid→Palg is
(very) loose.

Again, we are going to revisit this to give other choices of the different elements, but first let us
recall some more details of the above. The practical identification schemes here are typically Sigma
protocols (this means they satisfy honest-verifier zero-knowledge and special soundness, the latter

3

meaning that from two accepting conversation transcripts with the same commitment but different
challenges, one can extract the secret key) and Palg = KR is the problem of computing the secret
key given only the public key. To solve this problem, we have to run a given IMP-PA adversary
twice and hope for two successes. The analysis exploits the Reset Lemma of [7]. If εalg, εid denote,
respectively, the advantages in breaking the algebraic problem and the IMP-PA security of ID, then
it results in εid ≈

√
εalg. If εsig is the advantage in breaking UF security of DS, combined with the

above, we have εsig ≈ q
√
εalg.

Approach. We see from the above that a tight overall reduction Psig→Palg requires that the
Psig→Pid and Pid→Palg reductions both be tight. What we observe is that we have a degree of
freedom in achieving this, namely the choice of the security goal Pid for the identification scheme.
Our hope is to pick Pid such that (1) We can give (new) transforms Id2Sig for which Psig→Pid is
tight, and simultaneously (2) We can give identification schemes such that Pid→Palg is tight. We
view these as two pillars of an edifice and are able to provide both via our definitions of security
of identification under constrained impersonation coupled with some new id-to-sig transforms. We
first pause to discuss some prior work, but a peek at Fig. 1 gives an outline of the results we will
expand on later.

Prior work. The first proofs of security for FS-based signatures [28] reduced UF security of the
FS-derived signature scheme directly to the hardness of the algebraic problem Palg, assuming H is
a random oracle [8]. These proofs exploit forking lemmas [28, 6, 4]. Modular proofs of the form
discussed above, that use identification as an intermediate step, begin with [26, 1]. The modular
approach has many advantages. One is that since the id-to-sig transforms are generic, we have only
to design and analyze identification schemes. Another is the better understanding and isolation
of the role of random oracles: they are used by Id2Sig but not in the identification scheme. We
have accordingly adopted this approach. Note that both the direct (forking lemma based) and the
AABN-based indirect (modular) approach result in reductions of the same looseness we discussed
above. Our (alternative but still modular) approaches will remove this loss.

Consideration of reduction tightness for signatures begins with BR [9], whose PSS scheme has
a tight reduction to the RSA problem. GJ [17] and KW [21] give signature schemes with tight
reductions to the Diffie-Hellman problem. The lack of tightness of the overall reduction for FS-
based signatures is well recognized as an important problem and drawback. It was first addressed by
Micali and Reyzin [24], who give a particular signature scheme with a tight reduction to factoring.
It is obtained from a particular identification scheme via a method they call “swap”. ABN [2] say
that the method generalizes to other factoring-based schemes. However, “swap” has never been
stated as a general transform of an identification scheme into a signature scheme; it appears rather
as an ad hoc technique to go directly and tightly from the algebraic problem to the signature.
This lack of abstraction is perhaps due in part to a lack of definitions, and the ones we provide
allow us to fill the gap. In Section 5 we elevate the swap method to a general Swap transform,
characterize the identification schemes to which it applies, and prove that, when it applies, it gives
a tight Psig→Pid reduction.

ABP [2] show a tight reduction of FS-derived GQ signatures to the Φ-hiding assumption
of [12]. In contrast, our methods will yield GQ signatures with a tight reduction to the stan-
dard one-wayness of RSA. AFLT [3] use a slight variant of the Fiat-Shamir transform to turn lossy
identification schemes into signature schemes with security based tightly on key indistinguishabil-
ity, resulting in signature schemes with tight reductions to the decisional short discrete logarithm
problem, the shortest vector problem in ideal lattices and subset sum.

Constrained impersonation. Recall our goal is to define a notion of identification security Pid

4

CIMP-CC

CIMP-UC CIMP-CU

CIMP-UU

Pid
Id2Sig

Psig-secure Signature
Reductions

Transform Psig→Pid/Pid→Palg

CIMP-CU FS (Y, z) : c = H(Y ‖m) Tight/Loose

CIMP-UC MdCmt (c, z) : Y = H(m) ; c = $ Tight/Tight

CIMP-UU MdCmtCh (s, z) : s = $; Y = H1(m‖s) ; c = H2(m) Tight/Tight

CIMP-CC MdCh (c, z) : Y = $; c = H(m)‖$ Tight/Unknown

Figure 1: Top: Relations between notions Pid of security for an identification scheme ID under
constrained impersonation. Solid arrows denote implications, barred arrows denote separations. A
solid box around a notion means a tight Pid→Palg reduction for Sigma protocols; dotted means a
loose one; no box means no known reduction. Bottom: Transforms of identification schemes into
UUF signature schemes. The first column is the assumption Pid on the identification scheme.

such that (1) We can give transforms Id2Sig for which Psig→Pid is tight, and (2) We can give
identification schemes such that Pid→Palg is tight. In fact our definitional goal is broader, namely
to give a framework that allows us to understand and encompass both old and new transforms,
the former including FS and Swap. We do all this with a definitional framework that we refer
to as constrained impersonation. It yields four particular definitions denoted CIMP-XY for XY ∈
{CU,UC,UU,CC}. Each, in the role of Pid, will be the basis for an id-to-sig transform such that
Psig→Pid is tight, and two will allow Pid→Palg to be tight.

In constrained impersonation we continue, as with IMP-PA, to allow a passive attack in which
the adversary A against the identification scheme ID can obtain transcripts Y1‖c1‖z1, Y2‖c2‖z2 . . .
of interactions between the honest prover and verifier. Then A tries to impersonate, meaning get
the honest verifier to accept. If X=C then the commitment in this impersonation interaction is
adversary-chosen, while if X=U (unchosen) it must be pegged to a commitment from one of the
transcripts. If Y=C, the challenge is adversary-chosen, while if Y=U it is as usual picked at random
by the verifier. In all cases, multiple impersonation attempts are allowed. The formal definitions
are in Section 3. CIMP-CU is a multi-impersonation version of IMP-PA, but the rest are novel.

What do any of these notions have to do with identification if one understands the latter as
the practical goal of proving one’s identity to a verifier? Beyond CIMP-CU, very little. In practice
it is unclear how one can constrain a prover to only use, in impersonation, a commitment from a
prior transcript. It is even more bizarre to allow a prover to pick the challenge. Our definitions
however are not trying to capture any practical usage of identification. They view the latter as an
analytical tool, an intermediate land allowing a smooth transition from an algebraic problem to
signatures. The constrained impersonation notions work well in this regard, as we will see, both to
explain and understand existing work and to obtain new signature schemes with tight reductions.

Relations between the four notions of constrained impersonation are depicted in Fig. 1. An
arrow A → B is an implication: Every identification scheme that is A-secure is also B-secure. A

5

barred arrow A 6→ B is a separation: There exists an identification scheme that is A-secure but
not B-secure. (For now ignore the boxes around notions.) In particular we see that CIMP-UU is
weaker than, and CIMP-UC incomparable to, the more standard CIMP-CU.

Auxiliary definitions and tools. Before we see how to leverage the constrained impersonation
framework, we need a few auxiliary definitions and results that, although simple, are, we believe,
of independent interest and utility.

We define a signature scheme to be UUF (Unique Unforgeable) if it is UF with the restriction
that a message can be signed at most once. (You are not allowed to twice ask the signing oracle to
sign a particular m.)

It turns out that id-to-sig transforms naturally achieve UUF, not UF. However there are simple,
generic transforms of UUF signature scheme into a UF ones —succinctly, UF→UUF— that do not
introduce much overhead and have tight reductions. One is to remove randomness, and the other
is to add it. In more detail, the first transform, DR, de-randomizes the signature scheme (so that
it always returns the same signature when called on the same message), by the classic method of
deriving the signing coins by hashing the secret key along with the message [25, 22], while the
second transform, AR, appends a random salt to the message before signing and includes the salt
in the signature. For completeness we provide the transforms, theorem statements and proofs in
Appendix A. We stress that the reductions are tight in both cases, so this step does not impact
overall tightness. Now we can take (the somewhat easier to achieve) UUF as our goal.

Recall that in an identification scheme, the prover uses private randomness y to generate its
commitment Y . We are interested in a special class of identification schemes that we call trap-
door. This means the prover can pick the commitment Y directly at random from the space of
commitments and then compute the associated private randomness y using its secret key via a
prescribed algorithm. A formal definition is in Section 3. Many existing identification schemes will
meet our definition of being trapdoor modulo possibly some changes to the key structure. Thus the
GQ scheme of [20] is trapdoor if we add the decryption exponent d to the secret key. With similar
changes to the keys, the Fiat-Shamir [16] and Ong-Schnorr [27] identification schemes are trapdoor.
The factoring-based identification scheme of [24] is also trapdoor. But not all identification schemes
are trapdoor. One that is not is Schnorr’s (discrete-log based) scheme [29].

Summary of results. For each notion Pid ∈ {CIMP-CU,CIMP-UC,CIMP-UU,CIMP-CC} we
give an id-to-sig transform that turns any given Pid-secure identification scheme ID into a Psig =
UUF signature scheme DS. The reduction Psig→Pid is tight in all four cases. (To further make
the signature scheme UF secure, we can apply the above-mentioned UF→UUF transforms while
preserving tightness.) The table in Fig. 1 summarizes the results and the transforms. They are
discussed in more detail below and then fully in Section 4.

This is one pillar of the edifice, and not useful by itself. The other pillar is the Pid→Palg

reduction. In the picture at the top of Fig. 1, a solid-line box around Pid means that the reduction
Pid→Palg is tight, a dotted-line box indicates a reduction is possible but is not tight, and no box
means no known reduction. These results assume the identification scheme is a Sigma protocol,
as most are. We see that two points of our framework can be tightly obtained from the algebraic
problem, so that in these cases the overall Psig→Palg reduction is tight, which was the ultimate
goal. See below and Section 6.3 for more.

More details on results. The transform from CIMP-CU is the classical FS one. The reduction
is now tight, even though it was not from IMP-PA [1], simply because CIMP-CU allows multiple
impersonation attempts. The proof follows easily from [1] and we don’t give it here. In this case our
framework serves to better understand and articulate something implicit in the literature rather

6

than deliver anything new. For CIMP-UC, we give a transform called MdCmt, for “Message-
Derived Commitment”, where, to sign m, the signer computes the commitment Y as a hash of
the message, picks a challenge at random, uses its trapdoor to compute the coins y corresponding
to Y , uses y and the secret key to compute a response z, and returns the challenge and response
as the signature. For CIMP-UU, the weakest of the four notions, our transform MdCmtCh, for
“Message-Derived Commitment and Challenge”, has the signer compute the commitment Y as a
hash of the message and a random seed s, the commitment as a hash of the message, returning
as signature the seed and response, the latter computed as before. In the CIMP-CC case, MdCh
(“Message-Derived Challenge”) has the signer pick a random commitment and produce a challenge
half of which is the hash of the message and the other half is random. In the CIMP-UC and
CIMP-UU cases, the identification scheme needs to be trapdoor. Again the salient fact is that the
reductions underlying all four transforms are tight. See Section 4 for more information.

The Pid→Palg reduction reduces Pid = CIMP-XY security of identification schemes that are
Sigma protocols to Palg, where the latter is KR, the problem of recovering the secret key given only
the public key, which is the algebraic problem whose hardness is assumed. We show in Section 6.3
that this reduction is tight for XY ∈ {UC,UU}, making these the most attractive starting points.
For XY = CU we must use the Reset Lemma [7] so the reduction is loose. CIMP-CC is a very
strong notion and we do not have a reduction of this type for it. We can show that it is achievable,
however.

Swap. As indicated above, our framework allows us to generalize the swap method of [24] into an
id-to-sig transform Swap and understand and characterize what it does. In Section 5 we present
Swap as a generic transform of a trapdoor identification scheme ID to a signature scheme that is
just like MdCmt (cf. row 2 of the table of Fig. 1) except that the challenge c is included in the
input to the hash function. Recall that MdCmt turns a CIMP-UC identification scheme into a
UUF signature scheme. We can thence get a UF signature scheme by applying the AR transform
of Appendix A.2. Swap is a shortcut, or optimization, of this two step process: it directly turns a
CIMP-UC identification scheme into a UF signature scheme by effectively re-using the randomness
of MdCmt in AR. See Section 5 for details.

2 Notation and basic definitions

Notation. We let ε denote the empty string. If X is a finite set, we let x←$X denote picking an
element of X uniformly at random and assigning it to x. Algorithms may be randomized unless
otherwise indicated. Running time is worst case. If A is an algorithm, we let y ← A(x1, . . . ; r)
denote running A with random coins r on inputs x1, . . . and assigning the output to y. We let
y←$A(x1, . . .) be the result of picking r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)]
denote the set of all possible outputs of A when invoked with inputs x1, We use the code based
game playing framework of [10]. (See Fig. 2 for an example.) By Pr[G] we denote the event that
the execution of game G results in the game returning true. We also adopt the convention that
the running time of an adversary refers to the worst case execution time of the game with the
adversary. This means that the time taken for oracles to compute replies to queries is included.

We expand on our notation and treatment of random oracles in these games since it is a bit
unusual. In our constructions, we will need random oracles with different ranges. For example
we may want one random oracle returning points in a group Z∗N and another returning strings
of some length k. To provide a single unified definition, we have the procedure H in the games
take not just the input x but a description Rng of the set from which outputs are to be drawn at
random. Thus y←$ H(x,Z∗N) will return a random element of Z∗N , and so on. If Rng1,Rng2 are

7

Game Guf
DS(A) / Guuf

DS (A)

M ← ∅ ; (vk, sk)←$ DS.KgH

(m,σ)←$ASign,H(vk)
If m ∈M : Return false
Return DS.VfH(vk,m, σ)

H(x,Rng)

If not HT[x,Rng]: HT[x,Rng]←$ Rng
Return HT[x,Rng]

Sign(m)

If m ∈M : Return ⊥
σ←$ DS.SigH(vk, sk,m)
M ←M ∪ {m}
Return σ

Figure 2: Games defining unforgeability and unique-unforgeability of signature scheme DS. Game
Guuf

DS (A) includes the boxed code and game Guf
DS(A) does not.

different descriptions (of different sets, or even of the same set) then H(·,Rng1) and H(·,Rng2) are
independent random oracles with the indicated range sets. In instantiations, the range description
would be included as an input to the hash function to realize this independence. (See again Fig. 2
for an example.) In some figures we use shorthand H(·) with the range indicated in the caption of
the figure (such as in Fig. 5).

Signatures. In a signature scheme DS, the signer generates signing key sk and verifying key vk
via (vk, sk)←$ DS.KgH where H is the random oracle, the latter with syntax as discussed above.
Now it can compute a signature σ←$ DS.SigH(vk, sk,m) on any message m ∈ {0, 1}∗. A verifier can
deterministically compute a boolean v ← DS.VfH(vk,m, σ) indicating whether or not σ is a valid
signature of m relative to vk. Correctness as usual requires that DS.VfH(vk,m,DS.SigH(vk, sk,
m)) = true with probability one. Game Guf

DS(A) associated to DS and adversary A as per Fig. 2
captures the classical unforgeability notion of [18] lifted to the ROM as per [8], and we let Advuf

DS(A)
= Pr[Guf

DS(A)] be the UF-advantage of A. The same figure also defines game Guuf
DS (A) to capture

unique unforgeability. The difference is the inclusion of the boxed code, which disallows A from
getting more than one signature on the same message. We let Advuuf

DS (A) = Pr[Guuf
DS (A)] be the

UUF-advantage of A. In both games we assume (w.l.o.g.) that before requesting a signature or
attempting a forgery the adversary poses all corresponding H queries that it could predict.

Of course, UF implies UUF, meaning any signature scheme that is UF secure is also UUF secure.
The converse is not true, meaning there exist UUF signature schemes that are not UF secure (we
will see natural examples in this paper). In Appendix A we give simple, generic and tight ways to
turn any given UUF signature scheme into a UF one. We note that unique unforgeability (UUF)
should not be confused with unique signatures as defined in [19, 23]. In a unique signature scheme,
there is, for any message, at most one signature the verifier will accept. If a unique signature
scheme is UUF then it is also UF. But there are UUF (and UF) schemes that are not unique.

3 Constrained impersonation framework

We introduce a framework of definitions of identification schemes secure against constrained im-
personation.

Identification. An identification (ID) scheme ID operates as depicted in Fig. 3. First, via
(ivk, isk, itk)←$ ID.Kg, the prover generates a public verification key ivk, private identification key
isk, and trapdoor itk. Via (Y, y)←$ ID.Cmt(ivk) it generates commitment Y and corresponding
private state y. The verifier sends a random challenge of length ID.cl. The prover’s response z and
the verifier’s boolean decision v are deterministically computed per z ← ID.Rsp(ivk, isk, c, y) and

8

Prover

Input: ivk, isk

(Y, y)←$ ID.Cmt(ivk)

z ← ID.Rsp(ivk, isk, c, y)

Y-
c�
z-

Verifier

Input: ivk

c←$ {0, 1}ID.cl

v ← ID.Vf(ivk, Y ‖c‖z)

Figure 3: Functioning of an identification scheme ID.

Game Gcimp-xy
ID (P)

TT← ∅ ; CT← ∅ ; i← 0 ; j ← 0
(ivk, isk, itk)←$ ID.Kg

(k, z)←$ PTr,Ch(ivk)
If not (1 ≤ k ≤ j): Return false
T ← CT[k]‖z
If T ∈ TT: Return false
Return ID.Vf(ivk, T)

Tr()

i← i+ 1
(Yi, yi)←$ ID.Cmt(ivk)
ci←$ {0, 1}ID.cl

zi ← ID.Rsp(ivk, isk, ci, yi)
T ← Yi‖ci‖zi ; TT← TT ∪ {T}
Return T

Ch(l) // xy=uu

If not (1 ≤ l ≤ i): Return ⊥
j ← j + 1 ; c←$ {0, 1}ID.cl

CT[j]← Yl‖c ; Return (j, c)

Ch(l, c) // xy=uc

If not (1 ≤ l ≤ i): Return ⊥
j ← j + 1
CT[j]← Yl‖c ; Return (j, c)

Ch(Y) // xy=cu

j ← j + 1 ; c←$ {0, 1}ID.cl

CT[j]← Y ‖c ; Return (j, c)

Ch(Y, c) // xy=cc

j ← j + 1
CT[j]← Y ‖c ; Return (j, c)

Figure 4: Games defining security of identification scheme ID against constrained impersonation
under passive attack.

v ← ID.Vf(ivk, Y ‖c‖z), respectively. We require perfect correctness. An example ID scheme is the
GQ-ID; see Section 6.3. For basic ID schemes, the trapdoor plays no role; its use arises in trapdoor
identification.

Trapdoor identification. We now explain what it means for an ID scheme to be trapdoor.
Namely there is an algorithm ID.Cmt−1 that produces y from Y with the aid of the trapdoor itk.
Formally, the outputs of the following two processes must be identically distributed. Both processes
generate (ivk, isk, itk)←$ ID.Kg. The first process then lets (Y, y)←$ ID.Cmt(ivk). The second
process picks Y ←$ ID.CmtSp(ivk) and lets y←$ ID.Cmt−1(ivk, itk, Y). (Here ID.CmtSp(ivk) is the
space of commitments associated to ID.) Both processes return (ivk, isk, itk, Y, y). In a trapdoor
scheme no one can distinguish which process was used to generate the output.

Security against impersonation. Classically, the security goal for an identification scheme ID
has been impersonation [15, 1]. The framework has two stages. First, the adversary, given ivk but
not isk, attacks the honest, isk-using prover. Second, using the information it gathers in the first
stage, it engages in an interaction with the verifier, attempting to impersonate the real prover by
successfully identifying itself. In the second stage, the adversary, in the role of malicious prover,
submits a commitment Y of its choice, receives an honest verifier challenge c, submits a response
z of its choice, and wins if ID.Vf(ivk, Y ‖c‖z) = true. A hierarchy of possible first-phase attacks is

9

defined in [7]. In the context of conversion to signatures, the relevant one is the weakest, namely
passive attacks, where the adversary is just an eavesdropper and gets honestly-generated protocol
transcripts. This is the IMP-PA notion. (Active and even concurrent attacks are relevant in other
contexts [7].) We note that in the second stage, the adversary is allowed only one interaction with
the honest verifier.

Security against constrained impersonation. We introduce a new framework of goals for
identification that we call constrained impersonation. There are two dimensions, the commitment
dimension X and the challenge dimension Y, for each of which there are two choices, X ∈ {C,U}
and Y ∈ {C,U}, where C stands for chosen and U for unchosen. This results in four notions,
CIMP-UU, CIMP-UC, CIMP-CU, CIMP-CC. It works as follows. The adversary is allowed a
passive attack, namely the ability to obtain transcripts of interactions between the honest prover
and the verifier. The choices pertain to the impersonation, when the adversary interacts with the
honest verifier in an attempt to make it accept. When X = C, the adversary can send the verifier
a commitment of its choice, as in classical impersonation. But when X = U, it cannot. Rather,
it is required (constrained) to use a commitment that is from one of the transcripts it obtained in
the first phase and thus in particular honestly generated. Next comes the challenge. If Y = U,
this is chosen freshly at random, as in the classical setting, but if Y = C, the adversary actually
gets to pick its own challenge. Regardless of choices made in these four configurations, to win
the adversary must finally supply a correct response. And, also regardless of these choices, the
adversary can mount multiple attempts to convince the verifier.

For choices xy ∈ {uu, uc, cu, cc} of parameters, the formalization considers game Gcimp-xy
ID (P) of

Fig. 4 associated to identification scheme ID, adversary P, and lets Advcimp-xy
ID (P) = Pr[Gcimp-xy

ID (P)].
The transcript oracle Tr returns upon each invocation a transcript of an interaction between the
honest prover and verifier, allowing P to mount its passive attack, and is the same for all four
games. The impersonation attempts are mounted through calls to the Ch oracle, which creates
a partial transcript TT[j] consisting of a commitment and a challenge, where j is a session id,
and it returns the session id and challenge. Multiple impersonation attempts are captured by the
adversary being allowed to call Ch as often as it wants. Eventually the adversary outputs a session
id k and a response z for session k, and wins if the corresponding transcript is both accepting and
new, the latter meaning not one returned by the transcript oracle. In the UU case, P would give
Ch only an index l of an existing transcript already returned by Tr, and TT[j] consists of the
commitment from the l-th transcript together with a fresh random challenge. In the UC case, Ch
takes in addition a challenge c chosen by the adversary, and TT[j] consists of the commitment from
the l-th transcript together with this challenge. In CU, the adversary can specify the commitment
but the challenge is honestly chosen, while in CC, it can specify both.

CIMP-CU is a multi-impersonation extension of the classical IMP-PA notion. The other notions
are new, and all will be the basis of transforms of identification to signatures admitting tight security
reductions. CIMP-CU captures a practical identification security goal. As discussed in Section 1,
the other notions have no such practical interpretation. However we are not aiming to capture
some practical form of identification. We wish to use identification only as an analytical tool in
the design of signature schemes. For this purpose, as we will see, our framework and notions are
indeed useful, allowing us to characterize past transforms and build new ones.

Relations. Fig. 1 shows the relations between the four CIMP-XY notions. The implications are
straightforward; we now establish the separations.

CIMP-CU 6=⇒ CIMP-UC as follows. Start with any CIMP-CU scheme; we will modify it so
that it remains CIMP-CU-secure but is not CIMP-UC-secure. Distinguish a single challenge c∗ ∈
{0, 1}ID.cl, e.g., c∗ = 0ID.cl. Revise the verifier’s algorithm so that it will accept any transcript with

10

challenge c∗. This is still CIMP-CU-secure (albeit with probability decreased by 1/2ID.cl) since, in
the CIMP-CU game, challenges are picked uniformly at random for the adversary, so existence of
a magic challenge is unlikely to be useful. This is manifestly not CIMP-UC-secure since there the
adversary can use any challenge of its choice. CIMP-UU 6=⇒ CIMP-UC for the same reason.

CIMP-UC 6=⇒ CIMP-CU as follows. Start with any CIMP-UC scheme; again we will modify
it so that it remains CIMP-UC-secure but is not CIMP-CU-secure. This time, distinguish a single
commitment Y ∗: one way of doing this is for ID.Kg to sample Y ∗←$ ID.CmtSp(ivk) and include
Y ∗ in the public key ivk; another is to agree for example that (Y ∗, y∗) ← ID.Cmt(ivk; 0l) where
l is the number of random bits required by ID.Cmt. Revise the verifier’s algorithm so that it will
accept any transcript with commitment Y ∗. This is still CIMP-UC-secure (albeit with probability
decreased by 1/|ID.CmtSp(ivk)|) since, in the CIMP-UC game, commitments are generated ran-
domly for the adversary, so existence of a magic commitment is unlikely to be useful. This is
manifestly not CIMP-CU-secure since there the adversary can use any commitment of its choice.
CIMP-UU 6=⇒ CIMP-CU for the same reason.

Finally, CIMP-UC 6=⇒ CIMP-CC and CIMP-CU 6=⇒ CIMP-CC since otherwise, by transitivity
in Fig. 1, we would contradict the separation between CIMP-UC and CIMP-CU.

4 Signatures from identification

We specify our three new transforms of identification schemes to signature schemes, namely the
ones of rows 2,3,4 of the table of Fig. 1. For each, we give a security proof based on the assumption
Pid listed in the 1st column of the corresponding row of the table, so that we give transforms from
CIMP-UC,CIMP-UU and CIMP-CC. It turns out that these transforms naturally achieve UUF
rather than UF, and this is what we prove, with tight reductions of course. The transformation
UF→UUF can be done at the level of signatures, not referring to identification, in generic and
simple ways, and also with tight reductions, as detailed in Appendix A. We thus get UF-secure
signatures with tight reductions to each of CIMP-UC,CIMP-UU and CIMP-CC.

4.1 From CIMP-UC identification to UUF signatures: MdCmt

MdCmt transforms a CIMP-UC ID scheme to a UUF signature scheme using message-dependent
commitments.

The construction. Let ID be a trapdoor identification scheme and ID.cl its challenge length.
Our MdCmt (message-dependent commitment) transform associates to ID the signature scheme
DS = MdCmt[ID]. The algorithms of DS are defined in Fig. 5. Signatures are effectively iden-
tification transcripts, but the commitments are chosen in a particular way. Recall that with
trapdoor ID schemes it is the same whether one executes (Y, y)←$ ID.Cmt directly, or samples
Y ←$ ID.CmtSp(ivk) followed by computing y←$ ID.Cmt−1(Y). Our construction exploits this: To
each message m it assigns an individual commitment Y ← H(m), where H is a random oracle
with range ID.CmtSp(ivk). The signing algorithm, using the trapdoor, completes this commitment
to a transcript (Y, c, z) and outputs the pair c, z as the signature. Verification then consists of
recomputing Y from m and invoking the verification algorithm of the ID scheme.

Unforgeability. The following theorem establishes that the (unique) unforgeability of a signature
scheme constructed with MdCmt tightly reduces to the CIMP-UC security of the underlying ID
scheme, in the random oracle model. The intuition of the proof is as follows: For answering a
random oracle query H(m) on an unseen message, the reduction requests a fresh identification
transcript (Yi, ci, zi) from its Tr oracle and programs H such that it maps mi to Yi. A signature

11

DS.KgH

(ivk, isk, itk)←$ ID.Kg
vk ← ivk ; sk ← (isk, itk)
Return (vk, sk)

DS.VfH(vk,m, σ)

ivk ← vk ; (c, z)← σ
Y ← H(m)
Return ID.Vf(ivk, Y ‖c‖z)

DS.SigH(vk, sk,m)

ivk ← vk ; (isk, itk)← sk
Y ← H(m)
y←$ ID.Cmt−1(ivk, itk, Y)
c←$ {0, 1}ID.cl

z ← ID.Rsp(ivk, isk, c, y)
σ ← (c, z)
Return σ

Figure 5: The construction of signature scheme DS = MdCmt[ID] from trapdoor identification
scheme ID. By H(·) we denote random oracle H(·, ID.CmtSp(ivk)) with range ID.CmtSp(ivk).

query on mi can subsequently be answered by releasing the pair (ci, zi). (This works only once
per message, yielding precisely UUF unforgeability!) Finally, when the adversary outputs a forgery
(c, z) on a new message mi, with overwhelming probability we have c 6= ci, as no information on ci
was exposed before.

Theorem 1 Let signature scheme DS = MdCmt[ID] be obtained from trapdoor identification
scheme ID as in Fig. 5. Let A be a UUF-adversary against DS. Suppose the number of queries
that A makes to its H oracle is qh and let N = min |ID.CmtSp(ivk)| where the minimum is over all
(ivk, isk, itk) ∈ [ID.Kg]. Then from A we construct a CIMP-UC adversary P such that

Advuuf
DS (A) ≤ Advcimp-uc

ID (P) +
q2h
2N

+
1

2ID.cl
. (1)

Adversary P makes qh queries to Tr and one query to Ch and has running time about that of A.

Proof of Theorem 1: Consider games G0, . . . ,G4 from Fig. 6. Game G0 is precisely the
UUF experiment (cf. Fig. 2) with the algorithms of MdCmt[ID] plugged in. (Recall we assume
the adversary, before requesting a signature or attempting a forgery, to pose all corresponding H
queries.) We have Pr[G0] = Advuuf

DS (A).

In G0, the code implementing the H oracle generates hash values by sampling uniformly at random
from ID.CmtSp(ivk). Game G1 is like G0 but it aborts if any two of these values collide (set YT is
used to keep track of that). As G0 and G1 are identical unless such a collision happens, we have
Pr[G0] ≤ Pr[G1] + (0 + . . .+ (qh − 1))/|ID.CmtSp(ivk)| ≤ Pr[G1] + (q2h/2)/N .

In G1, the crucial code of Sign is executed at most once per message. As by assumption each
Sign query is preceded by a H query on the same message, the signatures output by Sign can be
precomputed by the H oracle. This is done in Game G2, in which table ST helps identifying for
each signed message the corresponding H query. We have Pr[G1] = Pr[G2].

In the H implementation of G2, first Yi←$ ID.CmtSp(ivk) is sampled and then yi←$ ID.Cmt−1(ivk, itk, Yi).
The definition of a trapdoor ID scheme allows us to replace this by the single instruction (Yi, yi)←$ ID.Cmt(ivk).
We obtain Game G3 and Pr[G2] = Pr[G3].

In Game G4 an added abort condition catches the case where the adversary forges a signature on
a message using as the challenge c the value cl picked inside the H oracle for that message. As cl
is uniformly distributed in {0, 1}ID.cl and by m /∈ M no information about it is ever leaked to the
adversary, the probability that c = cl is precisely 1/2ID.cl. As G3 and G4 are identical unless this
event occurs, we have Pr[G3] ≤ Pr[G4] + 1/2ID.cl.

12

Game G0, G1, G2, G3, G4

M ← ∅ ; ST← ∅ ; YT← ∅ ; i← 0
(ivk, isk, itk)←$ ID.Kg
(m,σ)←$ASign,H(ivk)
If m ∈M : Abort
(c, z)← σ
Y ← HT[m] // G0–G1

l← ST[m] ; Y ← Yl // G2–G4

If c = cl: Abort // G4

Return ID.Vf(ivk, Y ‖c‖z)
H(m)

If HT[m]: Return HT[m]
i← i+ 1 ; ST[m]← i
Yi←$ ID.CmtSp(ivk) // G0–G2

yi←$ ID.Cmt−1(ivk, itk, Yi) // G2

(Yi, yi)←$ ID.Cmt(ivk) // G3–G4

ci←$ {0, 1}ID.cl // G2–G4

zi ← ID.Rsp(ivk, isk, ci, yi) // G2–G4

If Yi ∈ YT: Abort // G1–G4

YT← YT ∪ {Yi} // G1–G4

HT[m]← Yi
Return HT[m]

Sign(m)

If m ∈M : Return ⊥
Y ← HT[m] // G0–G1

y←$ ID.Cmt−1(ivk, itk, Y) // G0–G1

c←$ {0, 1}ID.cl // G0–G1

z ← ID.Rsp(ivk, isk, c, y) // G0–G1

l← ST[m] ; c← cl ; z ← zl // G2–G4

σ ← (c, z)
M ←M ∪ {m} ; Return σ

Figure 6: Games used in the proof of Theorem 1. Game G0 is the UUF game with the algorithms
of MdCmt[ID] plugged in. The Abort instruction terminates the execution of A and stops the
game with output false.

To assess Pr[G4] we construct from A an adversary P against CIMP-UC and analyze its success
probability. The code of P is given in Fig. 7. It internally executes A and mimics the environment
otherwise provided by G4. The general idea is to outsource the transcript generation that happens
in H to the Tr oracle, to process Sign queries as in G4, and to convert signature forgeries into
transcript forgeries. Precisely, when A comes up with a forgery m, (c, z), reduction P identifies
the corresponding identification transcript Yl‖cl‖zl that it obtained from its own challenger as an
answer to the Tr query corresponding to m, forwards the forgery challenge c to its Ch oracle, and
finally outputs z. That is, it tries to be successful in the CIMP-UC game with transcript Yl‖c‖z.
Observe that this transcript is valid if and only if A’s forgery is. Further, as Yl is uniquely bound to
m (since G1) and c 6= cl (since G4), the pair (Yl, c) is different from all commitment-challenge pairs
obtained from the Tr oracle, i.e., the transcript is fresh. We thus have Pr[G4] = Advcimp-uc

ID (P).
Overall, we obtain the bound from Equation (1).

4.2 From CIMP-UU identification to UUF signatures: MdCmtCh

MdCmtCh transforms a CIMP-UU ID scheme to a UUF signature scheme using message-dependent
commitments and challenges.

The construction. Let ID be a trapdoor identification scheme. Our MdCmtCh (message-
dependent commitment and challenge) transform associates to ID and a seed length sl ∈ N a
signature scheme DS = MdCmtCh[ID, sl]. The algorithms of DS are defined in Fig. 8. Here we
specify the commitment Y as a hash of the message alone, then use the trapdoor property to allow
our signer to obtain y←$ ID.Cmt−1(ivk, itk, Y). We then specify the challenge as a randomized

13

Adversary PTr,Ch(ivk)

M ← ∅ ; ST← ∅ ; YT← ∅ ; i← 0
(m,σ)←$ASign,H(ivk)
If m ∈M : Abort
(c, z)← σ ; l← ST[m]
If c = cl: Abort
(j, c′)← Ch(l, c) // j = 1 ∧ c′ = c
Return (j, z)

Sign(m) // P
If m ∈M : Return ⊥
l← ST[m] ; σ ← (cl, zl)
M ←M ∪ {m} ; Return σ

H(m) // P
If HT[m]: Return HT[m]
i← i+ 1 ; ST[m]← i
Yi‖ci‖zi←$ Tr()
If Yi ∈ YT: Abort
YT← YT ∪ {Yi}
HT[m]← Yi
Return HT[m]

Figure 7: CIMP-UC adversary for proof of Theorem 1. The Abort instruction lets P terminate the
execution of A and stop with (⊥,⊥).

DS.KgH

(ivk, isk, itk)←$ ID.Kg
vk ← ivk ; sk ← (isk, itk)
Return (vk, sk)

DS.VfH(vk,m, σ)

ivk ← vk ; (z, s)← σ
Y ← H1(m)
c← H2(m‖s)
Return ID.Vf(ivk, Y ‖c‖z)

DS.SigH(vk, sk,m)

s←$ {0, 1}sl
ivk ← vk ; (isk, itk)← sk
Y ← H1(m)
y←$ ID.Cmt−1(ivk, itk, Y)
c← H2(m‖s)
z ← ID.Rsp(ivk, isk, c, y)
σ ← (z, s) ; Return σ

Figure 8: Our construction of signature scheme DS = MdCmtCh[ID, sl] from a trapdoor identifica-
tion scheme ID and a seed length sl ∈ N. By H1(·) we denote random oracle H(·, ID.CmtSp(ivk)) with
range ID.CmtSp(ivk) and by H2(·) we denote random oracle H(·, {0, 1}ID.cl) with range {0, 1}ID.cl.

hash of the message. (Unlike in the FS transform, the commitment is not hashed along with the
message.) The randomization is captured by the seed s whose length sl was a parameter of our
transform.

Unforgeability of our construction. The following shows that unique unforgeability of
our signature tightly reduces to the CIMP-UU security of the underlying ID scheme. Standard
unforgeability follows immediately (and tightly) by applying one of the UUF-to-UF transforms in
Appendix A.

Theorem 2 Let signature scheme DS = MdCmtCh[ID, sl] be obtained from trapdoor identification
scheme ID and seed length sl as in Fig. 8. Let A be a UUF-adversary against DS. Suppose the
number of queries that A makes to its H1, H2, Sign oracles are, respectively, q1, q2, qs. Then from
A we can construct CIMP-UU adversary P such that

Advuuf
DS (A) ≤ Advcimp-uu

ID (P) +
qs(2q2 + qs − 1)

2sl+1
. (2)

Adversary P makes q1 + qs + 1 queries to Tr and q2 queries to Ch. It has running time about that
of A.

14

Game G0/ G1

(ivk, isk, itk)←$ ID.Kg
vk ← ivk ; sk ← (isk, itk)
(m,σ)←$ASign,H(vk)
Return DS.VfH(vk,m, σ)

H1(x)

If HT1[m]: Return HT1[m]
HT1[m]←$ ID.CmtSp(ivk)
Return HT1[m]

H2(x)

If HT2[m]: Return HT2[m]
HT2[m]←$ {0, 1}ID.cl

Return HT2[m]

Sign(m)

s←$ {0, 1}sl
ivk ← vk ; (isk, itk)← sk
Y ← H1(m)
y←$ ID.Cmt−1(ivk, itk, Y)
If (not HT2[m‖s]):

HT2[m‖s]←$ {0, 1}ID.cl

Else
bad← true
HT2[m‖s]←$ {0, 1}ID.cl

c← HT2[m‖s]
z ← ID.Rsp(ivk, isk, c, y)
σ ← (z, s) ; Return σ

Figure 9: Games for proof of Theorem 2. Game G1 includes the boxed code and game G0 does not.

Proof of Theorem 2: We assume that A avoids certain pointless behavior that would only
cause it to lose. Thus, we assume it did not query to Sign the message m in the forgery (m,σ)
that it eventually outputs. This means that the set M in game Guuf

DS (A), and the code and checks
associated with it, are redundant and can be removed. We will work with this simplified form of the
game. Throughout the proof, H1(·) denotes H(·, ID.CmtSp(ivk)) and H2(·) denotes H(·, {0, 1}ID.cl),
and HT1 and HT2 denote the corresponding tables maintained by the code implementing random
oracle H.

When procedure Sign is replying to signing query m, it first computes Y and picks s. We would like
that, at this point, it can define the table entry HT2[m‖s] without caring whether it was already
defined. (This is to allow an eventual impersonation adversary to program this RO response
with a challenge emanating from a transcript obtained from the transcript oracle.) In general,
of course, this would be wrong, but intuitively the random choice of s means it is usually right.
(This indeed is why we have the seed in the scheme.) To show this formally we consider the
games G0,G1 of Fig. 9. Game G0 excludes the boxed code, so that its Sign procedure defines
HT1[m‖s] only when this entry was not already defined, but game G1 includes the boxed code,
so that Sign defines this entry always, as we would like. But these games are identical-until-
bad [10], meaning differ only in code that follows the setting of the boolean flag bad to true. So
we have Advuuf

DS (A) = Pr[G0]. By the Fundamental Lemma of Game Playing of [10], we have
Pr[G0] = Pr[G1] + Pr[G0]− Pr[G1] ≤ Pr[G1] + Pr[G0 sets bad].

The random choice of s made by procedure Sign ensures

Pr[G0 sets bad] ≤
qs−1∑
i=0

q2 + i

2sl
=
qs(2q2 + qs − 1)

2sl+1
. (3)

Now we need to bound Pr[G1]. Consider game G2 of Fig. 10. Towards using CIMP-UU, this game
refrains from using isk directly in procedure Sign. Instead, it begins by generating conversation
transcripts Yi‖ci‖zi and has Sign use these. To make this possible, H1(·) values are set to the
transcript commitments. Then Sign retrieves the corresponding commitment Y , sets HT2[m‖s]
to the challenge from the same transcript, and puts the corresponding response in the signature.
(Ind1 is used to remember the mapping between hashes and transcripts.) Since the signatures are
correctly distributed we have Pr[G1] = Pr[G2].

15

Game G2

(ivk, isk, itk)←$ ID.Kg
vk ← ivk
For i = 1, . . . , q1 + qs + 1 do

(Yi, yi)←$ ID.Cmt(ivk)
ci←$ {0, 1}ID.cl

zi ← ID.Rsp(ivk, isk, ci, yi)
i1 ← 0
(m,σ)←$ASign,H(vk)
(z, s)← σ
Y ← H1(m)
c← H2(m‖s)
Return ID.Vf(ivk, Y ‖c‖z)

Sign(m)

s←$ {0, 1}sl ; Y ← H1(m)
i← Ind1(m) ; HT2[m‖s]← ci
σ ← (zi, s) ; Return σ

H1(x)

If HT1[m]: Return HT1[m]
i1 ← i1 + 1 ; HT1[x]← Yi1 ; Ind1(x)← i1
Return HT1[x]

H2(x)

If HT2[m]: Return HT2[m]
HT2[m]←$ {0, 1}ID.cl

Return HT2[m]

Figure 10: Game G2 for the proof of Theorem 2.

Adversary PTr,Ch(ivk)

vk ← ivk
For i = 1, . . . , q1 + qs + 1:

(Yi, ci, zi)←$ Tr()
i1 ← 0
(m,σ)←$ASign,H(vk)
(z, s)← σ
Y ← H1(m)
c← H2(m‖s)
j ← Ind2(m‖s)
Return (j, z)

Sign(m) // P
s←$ {0, 1}sl ; Y ← H1(m)
i← Ind1(m) ; HT2[m‖s]← ci
σ ← (zi, s) ; Return σ

H1(x) // P
If HT1[m]: Return HT1[m]
i1 ← i1 + 1 ; HT1[x]← Yi1 ; Ind1(x)← i1
Return HT1[x]

H2(x) // P
If HT2[m]: Return HT2[m]
m‖s← x ; Y ← H1(m) ; l← Ind1(m)
(j, c)←$ Ch(l) ; Ind2(x)← j ; HT2[x]← c
Return HT2[x]

Figure 11: Adversary for proof of Theorem 2.

We build CIMP-UU adversary P so that Pr[G2] ≤ Advcimp-uu
ID (P). Game G2 was crafted exactly

to make the construction of adversary P quite direct. The construction is described in detail in
Fig. 11. Adversary P has access to oracles Tr,Ch as per game Gcimp-uu

ID (P) in which it is executing.
It runs A, simulating answers to A’s queries to Sign, H1, and H2 as shown. It obtains conversation
transcripts using its Tr oracle to play the role of the ones generated in G2. Using these, Sign can
be simulated as per game G2. Oracle H1(·) is simulated as in G2. When a query x is made to
H1(·), adversary P parses x as m‖s. Using mapping Ind1, it retrieves the index l corresponding
to m in the list of transcripts and submits this to its challenge oracle Ch to get back a session id
j and a challenge, and returns this challenge as the response to the oracle query. Finally when A
produces a forgery, the session id corresponding to the message and seed in the forgery is retrieved
via mapping Ind2. Adversary P terminates by outputting the response in the forged signature as
the impersonation for this session. We need to show that the impersonation is successful as long
as the forgery was valid. A somewhat delicate point is that we use the fact that the message m
in the forgery was not a Sign query. This is what ensures that a CIMP-UU challenge session
corresponding to the forgery conversation exists.

16

DS.KgH

(ivk, isk, itk)←$ ID.Kg
vk ← ivk ; sk ← isk
Return (vk, sk)

DS.VfH(vk,m, σ)

ivk ← vk ; (Y, c2, z)← σ
c1 ← H(m) ; c← c1‖c2
Return ID.Vf(ivk, Y ‖c‖z)

DS.SigH(vk, sk,m)

ivk ← vk ; isk ← sk
(Y, y)←$ ID.Cmt(ivk)
c1 ← H(m)
c2←$ {0, 1}ID.cl/2

c← c1‖c2
z ← ID.Rsp(ivk, isk, c, y)
σ ← (Y, c2, z)
Return σ

Figure 12: The construction of signature scheme DS = MdCh[ID] from identification scheme ID
with even challenge length ID.cl. By H(·) we denote random oracle H(·, {0, 1}ID.cl/2) with range
{0, 1}ID.cl/2.

4.3 From CIMP-CC identification to UUF signatures: MdCh

The MdCmt and MdCmtCh transformations described above crucially build on the trapdoor
property of the underlying ID scheme. This is not the case for the MdCh construction described
next. However, amongst the security notions for ID schemes that we defined, MdCh assumes the
strongest one: CIMP-CC.

The construction. Let ID be an identification scheme and let its challenge length ID.cl be
an even number. Our MdCh (message-dependent challenge) transform is defined in Fig. 12 and
associates to ID the signature scheme DS = MdCh[ID]. In a nutshell, signatures are identification
transcripts where one half of the challenge is picked at random and the other half is derived from
the message via a random oracle. Only the random part is included in the signature; the other part
is recomputed by the verifier.

Unforgeability. As we prove below (with tight reduction), the MdCh construction yields a
UUF-secure signature scheme if the underlying ID scheme offers CIMP-CC security. In the proof, a
query to the H oracle on an unseen message mi is answered by taking a fresh identification transcript
(Yi, ci, zi), splitting the challenge into two parts ci,1, ci,2, and using ci,1 as the value assigned by the
hash function. A signature query on mi can subsequently be answered by releasing the remaining
part of the transcript. Importantly, unless a signature query on mi is posed, the second part of the
challenge, ci,2, is never revealed. Thus, with overwhelming probability, any challenge c induced by
a forgery is not amongst the challenges ci touched while processing the H queries. That is, a valid
and fresh identification transcript can be put together by the reduction.

Theorem 3 Let signature scheme DS = MdCh[ID] be obtained from identification scheme ID as
in Fig. 12. Let A be a UUF-adversary against DS. Suppose the number of queries that A makes to
its H oracle is qh. Then from A we construct a CIMP-CC adversary P such that

Advuuf
DS (A) ≤ Advcimp-cc

ID (P) +
q2h + 1

2ID.cl/2
. (4)

Adversary P makes qh queries to Tr and one query to Ch and has running time about that of A.

Proof of Theorem 3: Consider games G0, . . . ,G4 from Fig. 13. Game G0 is precisely the
UUF experiment (cf. Fig. 2) with the algorithms of MdCh[ID] plugged in. (Recall we assume
the adversary, before requesting a signature or attempting a forgery, to pose all corresponding H
queries.) We have Pr[G0] = Advuuf

DS (A).

17

Game G0, G1, G2, G3, G4

M ← ∅ ; ST← ∅ ; CT← ∅ ; i← 0
(ivk, isk, itk)←$ ID.Kg
(m,σ)←$ASign,H(ivk)
If m ∈M : Abort
(Y, c2, z)← σ
c1 ← HT[m] // G0–G1

l← ST[m] ; c1 ← cl,1 // G2–G4

If c2 = cl,2: Abort // G3–G4

Return ID.Vf(ivk, Y ‖c1‖c2‖z)
H(m)

If HT[m]: Return HT[m]
i← i+ 1 ; ST[m]← i
(Yi, yi)←$ ID.Cmt(ivk) // G2–G4

ci,1←$ {0, 1}ID.cl/2 // G0–G3

ci,2←$ {0, 1}ID.cl/2 // G2–G3

ci ← ci,1‖ci,2 // G2–G3

ci←$ {0, 1}ID.cl // G4

ci,1‖ci,2 ← ci // G4

zi ← ID.Rsp(ivk, isk, ci, yi) // G2–G4

If ci,1 ∈ CT: Abort // G1–G4

CT← CT ∪ {ci,1} // G1–G4

HT[m]← ci,1
Return HT[m]

Sign(m)

If m ∈M : Return ⊥
(Y, y)←$ ID.Cmt(ivk) // G0–G1

c1 ← HT[m] // G0–G1

c2←$ {0, 1}ID.cl/2 // G0–G1

c← c1‖c2 // G0–G1

z ← ID.Rsp(ivk, isk, c, y) // G0–G1

l← ST[m] ; Y ← Yl // G2–G4

c2 ← cl,2 ; z ← zl // G2–G4

σ ← (Y, c2, z)
M ←M ∪ {m} ; Return σ

Figure 13: Games used in the proof of Theorem 3. Game G0 is the UUF game with the algorithms
of MdCh[ID] plugged in. The Abort instruction terminates the execution of A and stops the game
with output value false.

In G0, the code implementing the H oracle generates hash values by sampling uniformly at random
from {0, 1}ID.cl/2. Game G1 is like G0 but it aborts if any two of these values collide (set CT is
used to keep track of that). As G0 and G1 are identical unless such a collision happens, we have
Pr[G0] ≤ Pr[G1] + (0 + . . .+ (qh − 1))/2ID.cl/2 ≤ Pr[G1] + q2h/2

ID.cl/2+1.

In G1, the crucial code of Sign is executed at most once per message. As by assumption each
Sign query is preceded by a H query on the same message, the signatures output by Sign can be
precomputed by the H oracle. This is done in Game G2, in which table ST helps identifying for
each signed message the corresponding H query. We have Pr[G1] = Pr[G2].

In Game G3 an added abort condition catches the case where the adversary forges a signature on
a message using as the challenge component c2 the value cl,2 picked inside the H oracle for that
message. As cl,2 is uniformly distributed in {0, 1}ID.cl/2 and by m /∈ M no information about it is
ever leaked to the adversary, the probability that c2 = cl,2 is precisely 1/2ID.cl/2. As G2 and G3 are
identical unless this event occurs, we have Pr[G2] ≤ Pr[G3] + 1/2ID.cl/2.

The transition to Game G4 is a simple rewriting step: In the H oracle, the operation of randomly
picking ci,1, ci,2 and concatenating them via ci ← ci,1‖ci,2 is replaced by the equivalent operation
of randomly picking ci and decomposing it into ci,1 and ci,2. We have Pr[G3] = Pr[G4].

To assess Pr[G4] we construct from A an adversary P against CIMP-CC and analyze its success
probability. The code of P is given in Fig. 14. It internally executes A and mimics the environment
otherwise provided by G4. The general idea is to outsource the transcript generation that happens

18

Adversary PTr,Ch(ivk)

M ← ∅ ; ST← ∅ ; CT← ∅ ; i← 0
(m,σ)←$ASign,H(ivk)
If m ∈M : Abort
(Y, c2, z)← σ
l← ST[m] ; c1 ← cl,1 ; c← c1‖c2
If c2 = cl,2: Abort
(j, c′)← Ch(Y, c) // j = 1 ∧ c′ = c
Return (j, z)

Sign(m) // P
If m ∈M : Return ⊥
l← ST[m] ; σ ← (Yl, cl,2, zl)
M ←M ∪ {m} ; Return σ

H(m) // P
If HT[m]: Return HT[m]
i← i+ 1 ; ST[m]← i
Yi‖ci‖zi←$ Tr()
ci,1‖ci,2 ← ci
If ci,1 ∈ CT: Abort
CT← CT ∪ {ci,1}
HT[m]← ci,1
Return HT[m]

Figure 14: Adversary for proof of Theorem 3. The Abort instruction lets P terminate the execution
of A and stop with (⊥,⊥).

in H to the Tr oracle, to process Sign queries as in G4, and to convert signature forgeries into
transcript forgeries. Precisely, when A comes up with a forgery m, (Y, c2, z), reduction P identifies
the corresponding identification transcript Yl‖cl,1‖cl,2‖zl that it obtained from its own challenger
as an answer to the Tr query corresponding to m, forwards the forgery commitment Y and the
composed challenge c = cl,1‖c2 to its Ch oracle, and finally outputs z. That is, it tries to be
successful in the CIMP-CC game with transcript Y ‖cl,1‖c2‖z. Observe that this transcript is valid
if and only if A’s forgery is. Further, as cl,1 is uniquely bound to m (since G1) and c2 6= cl,2
(since G3), the submitted challenge c is different from all challenges obtained from the Tr oracle,
i.e., the transcript is fresh. We thus have Pr[G4] = Advcimp-cc

ID (P). Overall, we obtain the bound
from Equation (4).

5 Swap: Optimized signatures from identification

Amongst others, in Section 4 we propose the MdCmt transform that constructs UUF-secure
signatures from CIMP-UC-secure identification. Further, in Appendix A we propose two generic
techniques that convert UUF signatures to signatures with full UF security. One of the latter, AR,
achieves its goal by adding randomness to signed messages as follows: for signing m, it picks a
fresh random seed s and signs m‖s instead. The seed is included in the signature. Overall, the
combination of MdCmt with AR yields tightly secure signatures of the form

σ = c ‖ ID.Rsp(c, ID.Cmt−1(H(m, s))) ‖ s

(for simplicity we do not annotate trapdoors and keys). In the following, giving up on modularity
and with the goal of achieving more compact UF secure signatures, we show that it is safe to choose
c and s to be identical. We call this direct transformation Swap; the details are specified in Fig. 15.

The name of our transform is inspired by the work of [24] where the authors use the term
“swap” for a very specific construction of a signature scheme with tight reduction to the hardness
of factoring. Folklore, and hints in the literature [2], indicate that researchers understand the
method was more general. But exactly how general was not understood or determined before,
perhaps for lack of definitions. Our definition of trapdoor identification and the CIMP-UC notion

19

DS.KgH

(ivk, isk, itk)←$ ID.Kg
vk ← ivk ; sk ← (isk, itk)
Return (vk, sk)

DS.VfH(vk,m, σ)

ivk ← vk ; (c, z)← σ
Y ← H(m, c)
Return ID.Vf(ivk, Y ‖c‖z)

DS.SigH(vk, sk,m)

ivk ← vk ; (isk, itk)← sk
c←$ {0, 1}ID.cl

Y ← H(m, c)
y←$ ID.Cmt−1(ivk, itk, Y)
z ← ID.Rsp(ivk, isk, c, y)
σ ← (c, z) ; Return σ

Figure 15: The construction of signature scheme DS = Swap[ID] from a trapdoor identification
scheme ID. By H(·, ·) we denote random oracle H((·, ·), ID.CmtSp(ivk)) with range ID.CmtSp(ivk).

allows us to fill this gap and give a characterization of the swap method via the general Swap
transform.

Theorem 4 Let signature scheme DS = Swap[ID] be obtained from trapdoor identification scheme
ID as in Fig. 15. Let A be a UF-adversary against DS. Suppose the number of queries that A
makes to its H oracle is qh, the number of queries to Sign is qs, and that q = qs + qh. Let
N = min |ID.CmtSp(ivk)| where the minimum is over all (ivk, isk, itk) ∈ [ID.Kg]. Then from A we
construct a CIMP-UC adversary P such that

Advuf
DS(A) ≤ Advcimp-uc

ID (P) +
q2

2N
+
q2 + 1

2ID.cl
. (5)

Adversary P makes q queries to Tr and one query to Ch. Its running time is about that of A.

Proof of Theorem 4: Consider games G0, . . . ,G6 from Fig. 16 and Fig. 17. Game G0 is precisely
the UUF experiment (cf. Fig. 2) with the algorithms of Swap[ID] plugged in. (Recall we assume
the adversary, before requesting a signature or attempting a forgery, to pose all corresponding H
queries.) We have Pr[G0] = Advuf

DS(A).

In G0, the code implementing the H oracle generates hash values by sampling uniformly at random
from ID.CmtSp(ivk). Game G1 is like G0 but it aborts if any two of these values collide (set YT is
used to keep track of that). As G0 and G1 are identical unless such a collision happens, we have
Pr[G0] ≤ Pr[G1] + (0 + . . .+ (qh + qs − 1))/|ID.CmtSp(ivk)| ≤ Pr[G1] + (q2/2)/N .

By the definition of a trapdoor ID scheme, picking commitments Y uniformly at random from
ID.CmtSp(ivk) or by executing (Y,)←$ ID.Cmt(ivk) (the second value of the output is ignored)
yields the same distribution. In Game G2 we correspondingly change the implementation of H. We
have Pr[G1] = Pr[G2].

In the Sign oracle of G2, challenges c are sampled uniformly at random from {0, 1}ID.cl. Such a
sample may collide with a value previously queried to the H oracle, or with a challenge previously
sampled when processing a Sign query. Game G3 is like G2 but it aborts if one of these events
happens, i.e., with probability at most (0 + . . . + (qh + qs − 1))/2ID.cl ≤ (q2/2)/2ID.cl. As G2 and
G3 are identical otherwise, we have Pr[G2] ≤ Pr[G3] + q2/2ID.cl+1.

Observe that in G3 every H query within Sign is a fresh one, i.e., a new commitment is sampled and
assigned (as opposed to: an old one replayed). In Game G4 we let Sign perform the corresponding
H operations itself. This is a rewriting step, so we have Pr[G3] = Pr[G4].

20

Game G0, G1, G2, G3, G4

M ← ∅ ; YT← ∅
(ivk, isk, itk)←$ ID.Kg
(m,σ)←$ASign,H(ivk)
If m ∈M : Abort
(c, z)← σ
Y ← HT[m, c]
Return ID.Vf(ivk, Y ‖c‖z)
H(m, c)

If HT[m, c]: Return HT[m, c]
Y ←$ ID.CmtSp(ivk) // G0–G1

(Y,)←$ ID.Cmt(ivk) // G2–G4

If Y ∈ YT: Abort // G1–G4

YT← YT ∪ {Y } // G1–G4

HT[m, c]← Y
Return HT[m, c]

Sign(m)

c←$ {0, 1}ID.cl

If HT[m, c]: Abort // G3–G4

Y ← H(m, c) // G0–G3

(Y,)←$ ID.Cmt(ivk) // G4

If Y ∈ YT: Abort // G4

YT← YT ∪ {Y } // G4

HT[m, c]← Y // G4

y←$ ID.Cmt−1(ivk, itk, Y)
z ← ID.Rsp(ivk, isk, c, y)
σ ← (c, z)
M ←M ∪ {m} ; Return σ

Figure 16: Games G0–G4 used in the proof of Theorem 4. Game G0 is the UF game with the
algorithms of DS = Swap[ID] plugged in. The Abort instruction terminates the execution of A
and stops the game with output value false.

Game G5, G6

M ← ∅ ; YT← ∅ ; i← 0 ; ST← ∅
(ivk, isk, itk)←$ ID.Kg
(m,σ)←$ASign,H(ivk)
If m ∈M : Abort
(c, z)← σ ; l← ST[m, c]
If c = cl: Abort // G6

Return ID.Vf(ivk, Yl‖c‖z)
H(m, c)

If HT[m, c]: Return HT[m, c]
i← i+ 1 ; ST[m, c]← i
(Yi,)←$ ID.Cmt(ivk)
ci←$ {0, 1}ID.cl

If Yi ∈ YT: Abort
YT← YT ∪ {Yi}
HT[m, c]← Yi
Return HT[m, c]

Sign(m)

i← i+ 1
(Yi, yi)←$ ID.Cmt(ivk)
ci←$ {0, 1}ID.cl

zi ← ID.Rsp(ivk, isk, ci, yi)
If HT[m, ci]: Abort
ST[m, ci]← i
If Yi ∈ YT: Abort
YT← YT ∪ {Yi}
HT[m, ci]← Yi
σ ← (ci, zi)
M ←M ∪ {m} ; Return σ

Figure 17: Games G5 and G6 used in the proof of Theorem 4. The Abort instruction terminates
the execution of A and stops the game with output value false.

The step from G4 to G5 is larger, but also pure rewriting: It consists of numerating the invocations
of the ID.Cmt algorithm, permuting the lines of the Sign oracle to a more convenient order (note
that this does not change the probability of aborting), adding to the H code the sampling of
a redundant challenge, changing the way private state y is computed in the Sign oracle to an
equivalent method, and introducing the look-up table ST that links message-challenge pairs to the
corresponding ID.Cmt invocation. We have Pr[G4] = Pr[G5].

In Game G6 an added abort condition catches the case where the adversary forges a signature on

21

Adversary PTr,Ch(ivk)

M ← ∅ ; YT← ∅ ; i← 0 ; ST← ∅
(m,σ)←$ASign,H(ivk)
If m ∈M : Abort
(c, z)← σ ; l← ST[m, c]
If c = cl: Abort
(j, c′)← Ch(l, c) // j = 1 ∧ c′ = c
Return (j, z)

H(m, c) // P
If HT[m, c]: Return HT[m, c]
i← i+ 1 ; ST[m, c]← i
Yi‖ci‖ ←$ Tr()
If Yi ∈ YT: Abort
YT← YT ∪ {Yi}
HT[m, c]← Yi
Return HT[m, c]

Sign(m) // P
i← i+ 1
Yi‖ci‖zi←$ Tr()
If HT[m, ci]: Abort
ST[m, ci]← i
If Yi ∈ YT: Abort
YT← YT ∪ {Yi}
HT[m, ci]← Yi
σ ← (ci, zi)
M ←M ∪ {m} ; Return σ

Figure 18: Adversary for proof of Theorem 4. The Abort instruction lets P terminate the execution
of A and stop with output value (⊥,⊥).

a message using as the challenge c the value cl picked inside the H oracle for that message. As cl is
uniformly distributed in {0, 1}ID.cl and no information about it is ever leaked to the adversary, the
probability that c = cl is precisely 1/2ID.cl. As G5 and G6 are identical unless this event occurs, we
have Pr[G5] ≤ Pr[G6] + 1/2ID.cl.

To assess Pr[G6] we construct from A an adversary P against CIMP-UC and analyze its success
probability. The code of P is given in Fig. 18. It internally executes A and mimics the environment
otherwise provided by G6. The general idea is to outsource the transcript generation that happens
in H and Sign to the Tr oracle, and to convert signature forgeries into transcript forgeries. Pre-
cisely, when A comes up with a forgery m, (c, z), reduction P identifies the corresponding (partial)
identification transcript Yl‖cl‖ that it obtained from its own challenger as an answer to the Tr
query corresponding to m and c, forwards the forgery challenge c to its Ch oracle, and finally
outputs z. That is, it tries to be successful in the CIMP-UC game with transcript Yl‖c‖z. Observe
that this transcript is valid if and only if A’s forgery is. Further, as Yl is uniquely bound to m
(since G1) and c 6= cl (since G6), the pair (Yl, c) is different from all commitment-challenge pairs
obtained from the Tr oracle, i.e., the transcript is fresh. We thus have Pr[G6] = Advcimp-uc

ID (P).
Overall, we obtain the bound from Equation (5).

6 Instantiation with Sigma protocols

We have shown several ways to obtain signature schemes from identification schemes that meet our
new Pid notions, the advantage over the standard FS method being that the Psig→Pid reduction
is tight. To exploit this, we need another step, namely to obtain identification schemes for which
Pid can be established with a tight reduction to the underlying algebraic problem or assumption
Palg. Here we show that this is possible, for two choices of Pid, namely CIMP-UC and CIMP-UU,
for a broad class of identification schemes, namely those that are Sigma protocols. The problem
Palg will be recovery of the secret key of the identification scheme given nothing but the public
key, which is usually the one under which we aim to prove security of both the identification and

22

signature schemes. First we need to recall a few standard definitions.

6.1 Definitions

We say that an identification scheme ID is honest verifier zero-knowledge (HVZK) if there ex-
ists a public algorithm TrS that generates identification transcripts with the same distribution
as an honest execution of ID’s algorithms. More precisely, we require the outputs of the follow-
ing two processes to be identically distributed. Both processes first generate (ivk, isk, itk)←$

ID.Kg. The first process then lets (Y, y)←$ ID.Cmt(ivk), followed by c←$ {0, 1}ID.cl, followed by z
←$ ID.Rsp(ivk, isk, c, y), and outputs (ivk, Y ‖c‖z). The second process simply outputs ivk and a
transcript obtained via Y ‖c‖z←$ TrS(ivk).

We say that an identification scheme ID is extractable if from any two transcripts that have the
same commitment but different challenges one can recover the secret key. Formally we require the
existence of an algorithm ID.Ex such that for all (ivk, isk, itk) ∈ [ID.Kg], if Y1‖c1‖z1 and Y2‖c2‖z2 are
accepting transcripts under ivk with Y1 = Y2 but c1 6= c2, then ID.Ex given ivk and the transcripts
returns isk.

We say that an identification scheme is a Sigma protocol [13] if it is both HVZK and extractable.
An identification scheme ID is resilient to key recovery if it is hard to recover the secret key

from just the verification key (but no transcripts). Formally, we require the key-recovery advan-
tage Advkr

ID(I) = Pr[Gkr
ID(I)] to be small for any adversary I, where the game first initialises

(ivk, isk, itk)←$ ID.Kg, then executes the adversary via isk∗←$ I(ivk), and finally outputs true if
isk∗ = isk.

Finally, an identification scheme ID has unique responses if for any (ivk, isk, itk) ∈ [ID.Kg] and
any commitment-challenge pair (Y, c) there is at most one response z that is valid, i.e., satisfies
ID.Vf(ivk, Y ‖c‖z) = true.

6.2 Security of identification schemes

As we show next, identification schemes that fulfill suitable combinations of these properties also
provide security in the sense of CIMP-UU, CIMP-UC, or CIMP-CU. The crucial point is that in
the first two cases, the reduction is tight. This is shown by the following.

Theorem 5 Let ID be an identification scheme that is honest verifier zero-knowledge and ex-
tractable. Then for any adversary P against CIMP-UU that poses q-many Ch queries we construct
a key recovery adversary I such that

Advcimp-uu
ID (P) ≤ Advkr

ID(I) + q/2ID.cl .

If ID also has unique responses, then for any adversary P against CIMP-UC we construct a key
recovery adversary I such that

Advcimp-uc
ID (P) ≤ Advkr

ID(I) .

In both cases, the running time of I is about that of the corresponding P.

Proof of Theorem 5: Consider the CIMP-UU case first. The Tr oracle of game Gcimp-uu
ID (P)

from Fig. 4 generates transcripts Yi‖ci‖zi by first invoking ID.Cmt, then samling from {0, 1}ID.cl,
and then invoking ID.Rsp. By the zero-knowledge property if ID this can perfectly be emulated
using the TrS algorithm. Consider next the Ch oracle: each query is associated to a specific

23

Tr-generated transcript Yl‖cl‖zl and involves picking a fresh challenge c for Yl. The probability
that throughout the experiment the condition c = cl is ever met is precisely q/2ID.cl. Consider
now the modification of Gcimp-uu

ID (P) where (a) the Tr oracle is simulated using TrS, and (b) the
game aborts if c = cl holds. In this game from any winning adversary P we obtain a transcript
Yl‖c‖z such that together with Yl‖cl‖zl the precondition of extraction is fulfilled. Thus, from P
and algorithm ID.Ex we can construct an adversary I that recovers the secret key. This establishes
the claimed bound.

We move on to the CIMP-UC case. Consider the modification of Gcimp-uc
ID (P) where the Tr oracle

is simulated as above, i.e., using TrS. Note that this time the Ch oracle lets the adversary specify
its own challenges. From any winning adversary we obtain a transcript Yl‖c‖z. Let Yl‖cl‖zl be the
corresponding transcript simulated in the Tr oracle. As we assume unique responses, if c = cl then
also z = zl, i.e., the adversary did not forge but instead replay. Thus for any winning adversary we
have c 6= cl and can construct a key recovering algorithm I is above.

In the CIMP-CU case, a reduction is possible but it is not tight, as shown by the following:

Theorem 6 Let ID be an identification scheme that is honest verifier zero-knowledge and ex-
tractable. For any adversary P against CIMP-CU making q queries to its Ch oracle, we construct
a key recovery adversary I such that

Advcimp-cu
ID (P) ≤ q

(√
Advkr

ID(I) +
1

2ID.cl

)
.

The running time of I is about twice that of P.

To establish CIMP-CU security, our route will be via standard techniques exploiting known results,
and the proof can be found for completeness in Appendix B. Lemma 10 relates CIMP-CU security
of ID to IMP-PA, the standard security against impersonation under passive attack as formalized
in [1]. (Since CIMP-CU security in which the adversary makes exactly one query to its Ch oracle is
equivalent to IMP-PA security, we define Advimp-pa

ID (P) = Advcimp-cu
ID (P) such that, in Gcimp-cu

ID (P),
P makes exactly one query to its Ch oracle.) Lemma 11 relates IMP-PA security to key recovery
using the reset lemma of [7] and the extractability property of ID. Together these yield CIMP-CU
security as in Theorem 5.

6.3 Tight signatures from RSA

Our framework applies to a large number of identification schemes to turn them into signature
schemes with tight reductions. As an illustrative and canonical example, we discuss GQ. We show
how it is a trapdoor identification scheme and discuss its security.

GQ. The GQ [20] scheme is shown in Fig. 19. It makes use of an RSA generator: for a modulus
length k, RSA is an algorithm that returns a tuple (N, e, d) where modulus N = pq in the range
2k−1 < N < 2k is the product of distinct, odd primes p and q, encryption and decryption exponents
e, d are in Z∗ϕ(N) and ed ≡ 1 (mod ϕ(N)). Fig. 19 shows the GQ-ID identification scheme associated

to RSA and a challenge length l < k such that gcd(e, c) = 1 for all c ∈ {0, 1}l and all (N, e, d) ∈
[RSA]. The commitment space is ZN \ {0}. We can see via Algorithm GQ-ID.Cmt−1 of Fig. 19 that
GQ-ID is trapdoor. Note that this requires putting the decryption exponent d in the secret key, a
change from the classic GQ scheme.

In order to apply Theorem 5 to tightly obtain a signature scheme from GQ-ID using our trans-
formations, we must show that GQ-ID satisfies several conditions. Most of these are standard

24

GQ-ID.Kg

(N, e, d)←$ RSA
x←$ Z∗N
X ← xe mod N
Return ((N, e,X), x, d)

Prover

Input: (N, e,X), x

y←$ (ZN \ {0})
Y ← ye mod N

z ← yxc mod N

Y-
c�
z-

Verifier

Input: (N, e,X)

c←$ {0, 1}l

v ← (ze ≡ Y Xc (mod N))
∧ (Y 6≡ 0 (mod N))

GQ-ID.Cmt−1((N, e,X), d, Y)

y ← Y d mod N
Return y

GQ-ID.Ex((N, e,X), Y, c1, z1, c2, z2)

If gcd(z1, N) 6= 1 or gcd(z2, N) 6= 1):
Factor N to get ϕ(N)
d← e−1 mod ϕ(N)
x← Xd mod N
Return x

z ← z1z
−1
2 mod N

c← c1 − c2
(a, b)← egcd(e, c)
x← Xazb mod N
Return x

Game Gow
RSA(A)

(N, e, d)←$ RSA
x←$ Z∗N
X ← xe mod N
x′←$A(N, e,X)
Return (x′ = x)

Figure 19: Identification scheme GQ-ID associated to RSA generator RSA with modulus length k,
and challenge length l. Bottom right: Game defining one-wayness of RSA generator RSA.

observations. Then, since we have tight reductions Psig→Pid and Pid→Palg, we can pick the RSA
modulus based on the assumption that the NFS is the best factoring method.

Sigma protocol properties. First we recall why the scheme is honest verifier zero knowledge.
Given a public key (N, e,X), transcripts can be simulated as follows. Sample c←$ {0, 1}l and
z←$ ZN \ {0}. Compute Y ← ze/Xc mod N . The transcript is Y ‖c‖z. This has the same
distribution as transcripts generated in Fig. 19: c is clearly identically distributed in Fig. 19; if
y is uniform on ZN \ {0} then so is Y since exponentiation by e is a permutation on ZN ; and
thus z is also uniform on ZN \ {0}. Next we recall why it is extractable. Algorithm GQ-ID.Ex of
Fig. 19 provides extractability of the GQ secret key x given two accepting transcripts with the same
commitment but distinct challenges. By egcd we denote the extended gcd algorithm that given
relatively prime inputs e, c returns a, b such that ae+ bc = 1.

Resilient to key recovery. KR security of GQ-ID holds under one-wayness of RSA, formalized
by defining the OW-advantage of an adversary A against RSA by Advow

RSA(A) = Pr[Gow
RSA(A)]

where the game is in Fig. 19.

Theorem 7 Let GQ-ID be the identification scheme associated to RSA generator RSA with modulus
length k and challenge length l as above. Let I be a KR adversary. Then from I we can construct
OW adversary A such that

Advkr
GQ-ID(I) ≤ Advow

RSA(A) . (6)

The running time of A is that of I.

The proof of Theorem 7 is simple. A immediately provides the (N, e,X) values from the OW-
challenger for RSA to I. For simulating KR, this is sufficient: in particular, A does not have to

25

simulate transcript queries. I returns the secret key of the ID scheme directly, which is the solution
to the RSA challenge.

Hashing onto commitment space. Several constructions require a random oracle with range
ID.CmtSp(ivk), which is ZN \ {0}, which we can easily build.

References

[1] M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification to signatures
via the Fiat-Shamir transform: Minimizing assumptions for security and forward-security. In
L. R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 418–433. Springer,
Heidelberg, Apr. / May 2002.

[2] M. Abdalla, F. Ben Hamouda, and D. Pointcheval. Tighter reductions for forward-secure
signature schemes. In K. Kurosawa and G. Hanaoka, editors, PKC 2013, volume 7778 of
LNCS, pages 292–311. Springer, Heidelberg, Feb. / Mar. 2013.

[3] M. Abdalla, P.-A. Fouque, V. Lyubashevsky, and M. Tibouchi. Tightly-secure signatures from
lossy identification schemes. In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 572–590. Springer, Heidelberg, Apr. 2012.

[4] A. Bagherzandi, J. H. Cheon, and S. Jarecki. Multisignatures secure under the discrete loga-
rithm assumption and a generalized forking lemma. In P. Ning, P. F. Syverson, and S. Jha,
editors, ACM CCS 08, pages 449–458. ACM Press, Oct. 2008.

[5] G. Barwood. Digital signatures using elliptic curves. sci.crypt mailing list, February 2 1997.
https://groups.google.com/forum/#!msg/sci.crypt/SalLSLBBTe4/xtYNGDe6irIJ.

[6] M. Bellare and G. Neven. Multi-signatures in the plain public-key model and a general forking
lemma. In A. Juels, R. N. Wright, and S. Vimercati, editors, ACM CCS 06, pages 390–399.
ACM Press, Oct. / Nov. 2006.

[7] M. Bellare and A. Palacio. GQ and Schnorr identification schemes: Proofs of security against
impersonation under active and concurrent attacks. In M. Yung, editor, CRYPTO 2002,
volume 2442 of LNCS, pages 162–177. Springer, Heidelberg, Aug. 2002.

[8] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73. ACM Press, Nov. 1993.

[9] M. Bellare and P. Rogaway. The exact security of digital signatures: How to sign with RSA
and Rabin. In U. M. Maurer, editor, EUROCRYPT’96, volume 1070 of LNCS, pages 399–416.
Springer, Heidelberg, May 1996.

[10] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 409–426. Springer, Heidelberg, May / June 2006.

[11] D. J. Bernstein. How to design an elliptic-curve signature system, Mar. 2014. http://blog.

cr.yp.to/20140323-ecdsa.html.

26

[12] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with
polylogarithmic communication. In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS,
pages 402–414. Springer, Heidelberg, May 1999.

[13] R. Cramer. Modular Design of Secure, yet Practical Protocls. PhD thesis, University of
Amsterdam, 1996.

[14] U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of identity. In A. Aho, editor, 19th
ACM STOC, pages 210–217. ACM Press, May 1987.

[15] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. Journal of Cryptology,
1(2):77–94, 1988.

[16] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In A. M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194. Springer, Heidelberg, Aug. 1987.

[17] E.-J. Goh and S. Jarecki. A signature scheme as secure as the Diffie-Hellman problem. In E. Bi-
ham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 401–415. Springer, Heidelberg,
May 2003.

[18] S. Goldwasser, S. Micali, and R. L. Rivest. A digital signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, Apr. 1988.

[19] S. Goldwasser and R. Ostrovsky. Invariant signatures and non-interactive zero-knowledge
proofs are equivalent (extended abstract). In E. F. Brickell, editor, CRYPTO’92, volume 740
of LNCS, pages 228–245. Springer, Heidelberg, Aug. 1993.

[20] L. C. Guillou and J.-J. Quisquater. A “paradoxical” indentity-based signature scheme resulting
from zero-knowledge. In S. Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 216–
231. Springer, Heidelberg, Aug. 1990.

[21] J. Katz and N. Wang. Efficiency improvements for signature schemes with tight security
reductions. In S. Jajodia, V. Atluri, and T. Jaeger, editors, ACM CCS 03, pages 155–164.
ACM Press, Oct. 2003.

[22] N. Koblitz and A. Menezes. The random oracle model: A twenty-year retrospective. Cryptol-
ogy ePrint Archive, Report 2015/140, 2015. http://eprint.iacr.org/2015/140.

[23] A. Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH sepa-
ration. In M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 597–612. Springer,
Heidelberg, Aug. 2002.

[24] S. Micali and L. Reyzin. Improving the exact security of digital signature schemes. Journal of
Cryptology, 15(1):1–18, 2002.

[25] D. M’Räıhi, D. Naccache, D. Pointcheval, and S. Vaudenay. Computational alternatives to
random number generators. In S. E. Tavares and H. Meijer, editors, SAC 1998, volume 1556
of LNCS, pages 72–80. Springer, Heidelberg, Aug. 1999.

[26] K. Ohta and T. Okamoto. On concrete security treatment of signatures derived from identifi-
cation. In H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 354–369. Springer,
Heidelberg, Aug. 1998.

27

DDS.KgH

Return DS.KgH

DDS.VfH(vk,m, σ)

Return DS.VfH(vk,m, σ)

DDS.SigH(vk, sk,m)

r ← H(sk,m)
Return DS.SigH(vk, sk,m; r)

Figure 20: Our construction of deterministic signature scheme DDS = DR[DS, rl] from a signature
scheme DS and a randomization length rl ∈ N. By H(·, ·) we denote random oracle H((·, ·), {0, 1}rl)
with range {0, 1}rl.

[27] H. Ong and C.-P. Schnorr. Fast signature generation with a Fiat-Shamir-like scheme. In
I. Damg̊ard, editor, EUROCRYPT’90, volume 473 of LNCS, pages 432–440. Springer, Heidel-
berg, May 1991.

[28] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13(3):361–396, 2000.

[29] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4(3):161–
174, 1991.

A Signature transformations from UUF to UF

We propose two methods (transforms) to turn an arbitrary, given UUF signature scheme into one
meeting the standard UF notion. The reductions underlying both transforms are tight. Applying
these transforms to the signature schemes given by our transforms of Section 4 results in UF sig-
nature schemes with tight reductions to the underlying identification. The first transform requires
one more cryptographic component, the other has longer signatures.

A.1 Going from UUF to UF by removing randomness

Every signature scheme that is secure in the unique unforgeability sense can easily be transformed
into one that is secure in the standard unforgeability sense by derandomization: any randomness
used in the signing procedure is generated as the hash of the long-term secret key and the message.
This technique has long been discussed in the context of the standardized DSA and ECDSA signa-
ture schemes [5, 11] and a proof for that case is in [22]. We generalize this. The scheme is depicted
formally in the transformation DR of Fig. 20. The following establishes the general security of this
approach.

Theorem 8 Let DS be a digital signature scheme where DS.Sig uses rl bits of randomness. Let
signature scheme DDS = DR[DS, rl] be obtained from DS and rl as in Fig. 20. Let A be a UF-
adversary against DDS. Then from A we can construct UUF-adversaries A1 and A2 as in Fig. 22
such that

Advuf
DDS(A) ≤ Advuuf

DS (A1) + Advuuf
DS (A2) . (7)

The number of queries adversary A1 and A2 makes to Sign and H is upper-bounded by the number
of queries A makes to its corresponding oracles. A1 and A2 each have running time about that of
A, plus at most q times the running time of signature generation plus signature verification in DS,
where q is the number of H queries of A1 or A2 respectively.

28

Game G0, G1, G2, G3, G4, G5

ST← ∅ ; M ← ∅
(vk, sk)←$ DS.KgH

(m,σ)←$ASign,H(vk)
If m ∈M : Abort
Return DS.VfH(vk,m, σ)

H(sk∗,m)

If HT[sk∗,m]: Return HT[sk∗,m]
Pick some m∗ 6∈M // G3–G4

σ∗←$ DS.SigH(vk, sk∗,m∗) // G3–G4

If DS.VfH(vk,m∗, σ∗): // G3–G4

bad← true // G3–G4

Abort // G3

HT[sk∗,m]←$ {0, 1}rl
Return HT[sk∗,m]

Sign(m)

If m ∈M : Return ST[m] // G1–G5

r ← H(sk,m) // G0–G1

If not HT[sk,m]: // G2–G4

HT[sk,m]←$ {0, 1}rl // G2–G4

r ← HT[sk,m] // G2–G4

r←$ {0, 1}rl // G5

σ ← DS.SigH(vk, sk,m; r)
ST[m]← σ // G1–G5

M ←M ∪ {m} ; Return σ

Figure 21: Games for proof of Theorem 8. The Abort instruction terminates the execution of A
and stops the game with output value false.

Proof:

When procedure Sign is replying to signing query m in the deterministic scheme DDS, it should
compute the randomness by hashing together its secret key sk and the message m. Ideally, this
would be freshly chosen the first time a new message is signed; and if each message is signed
only once, then we are in the same scenario as the unique unforgeability security game for the
non-deterministic scheme DS. However, there is the possibility that the adversary has previously
queried this input to the random oracle. If this occurs, then the adversary has recovered the signing
key, which enables a signature forgery. This intuition underlies the proof in the sequence of games
shown in Fig. 21.

Game G0 is precisely the unmodified UF game of Fig. 2 with the construction from Fig. 20 plugged
in. Observe the scheme is deterministic, so the signing oracle may cache signatures. This is
implemented in Game G1, using the ST[] table. We have Pr[G0] = Pr[G1].

In Game G2, the signing oracle localises the evaluation of the random oracle if the input is of the
form x = sk‖m and the requested output range is {0, 1}rl. This is again a rewriting step, and thus
Pr[G1] = Pr[G2].

In Game G3 the oracle implementing H watches out for queries from the adversary that correspond
to derandomization—meaning they start with the signing key (or something related to the signing
key). When such a query occurs, we check to see if the adversary somehow computed a signing
key sk∗ that yields a valid signature. Note however that, rather than checking if the queried sk∗ is
equal to the hidden signing key sk, we instead check to see if the queried sk∗ enables the creation
of valid signatures. When this occurs, G3 terminates with success, so the adversary has higher
advantage to win in G3 than in G2: We have Pr[G2] ≤ Pr[G3].

The only difference between G3 and G4 is that, when G3’s procedure H finds a valid signature, it
terminates the experiment, whereas G4 continues. This is where both games set the flag bad to
true. These games are identical-until-bad [10], meaning differ only in code that follows the setting

29

Adversary ASign,H,A
1 (vk)

(m,σ)←$ASign′,H′
(vk)

Adversary ASign,H,A
2 (vk)

(m,σ)←$ASign′,H(vk)

Sign′(m)

If not ST[m]:
ST[m]←$ Sign(m)

Return ST[m]

H′(sk∗,m)

Pick some m∗ 6∈M
σ∗←$ DS.SigH(vk, sk∗,m∗)
If DS.VfH(vk,m∗, σ∗):

Return (m∗, σ∗) from A1

Return H(sk∗,m)

Figure 22: Adversaries A1 and A2 for proof of Theorem 8.

of the boolean flag bad to true. So we have

Pr[G3] = Pr[G4] + Pr[G3]− Pr[G4] (8)

≤ Pr[G4] + Pr[G4 sets bad] . (9)

We will need to bound Pr[G4] and Pr[G4 sets bad].

We can see that, when G4 sets bad, it has found a valid signature (m∗, σ∗) but m∗ 6∈ M , meaning
m∗ was never queried to Sign. This is a forgery. UUF adversary A1 in Fig. 22 simulates G4 and
uses A to construct a forgery for DS; thus

Pr[G4 sets bad] ≤ Advuuf
DS (A1) (10)

To bound Pr[G4], consider Game G5. Since the portion of G4’s H procedure that leads to setting
bad ← true does not actually change the behaviour of the experiment, we can remove that code,
resulting in G5. Furthermore, in G4, the logic established by G1 and G3 ensures that for each m, the
value H[sk,m] is evaluated at most once throughout the whole experiment, so the corresponding
line in the signature oracle can be replaced with a random assignment. The hop to G5 implements
this change. Thus Pr[G4] = Pr[G5].

Game G5 is not quite the UUF game from Fig. 2, but it is close. The difference is that for repeated
queries to Sign, game G5 returns the cached previous signature ST[m], whereas the UUF game
would return ⊥. It is trivial to create an algorithm that connects Game 5 and the uuf game. Namely,
algorithm A2 in Fig. 22 wins the uuf game whenever A wins G5, and thus Pr[G5] ≤ Advuuf

DS (A2).

We remark that in bounding Pr[G4 sets bad], the proof works by obtaining a valid signing key
from the adversary and then using that to forge messages. This suggests that it would be reduce
to the key recoverability of DS; however, since we already have a Advuuf

DS (A1) term from the bound
on Pr[G5], there is little value in reducing to key recoverability instead of uuf in G4.

A.2 Going from UUF to UF by adding randomness

A complementary method for constructing UF signatures from UUF is by adding randomness:
before being signed, the message is concatenated with a random seed s, so even for the same
message, the input to the UUF signing algorithm is (with high probability) distinct.

30

DDS.Kg

Return DS.Kg

DDS.Vf(vk,m, σ)

σ′‖s← σ
Return DS.Vf(vk,m‖s, σ′)

DDS.Sig(vk, sk,m)

s←$ {0, 1}sl
σ′←$ DS.Sig(vk, sk,m‖s)
σ ← σ′‖s
Return σ

Figure 23: Our construction of added-randomness signature scheme DDS = AR[DS, sl] from a
signature scheme DS and a seed length sl ∈ N.

Theorem 9 Let signature scheme DDS = AR[DS, sl] be obtained from signature scheme DS and
seed length sl as in Fig. 23. Let A be a UF -adversary against DDS. Then from A we construct a
UUF adversary A1 such that

Advuf
DDS(A) ≤ Advuuf

DS (A1) +
q2

2sl+1
, (11)

where q is the number of Sign queries posed by A. Adversaries A and A1 have comparable running
times.

Proof of Theorem 9: Let A be a UF-adversary against DDS. Consider the sequence of games
from Fig. 24. Game G0 is precisely the UF experiment (cf. Fig. 2) with the algorithms of AR[DS, sl]
plugged in. We have Pr[G0] = Advuf

DDS(A).

In the Sign oracle of G0, random seeds are sampled uniformly at random from {0, 1}sl. Game G1 is
like G0 but it aborts if any two of these seeds collide. This is tracked via set S. As G0 and G1 are
identical unless a collision occurs, and the latter happens with probability (0 + . . .+ (q− 1))/2sl =
((q − 1)2 + (q − 1))/2sl+1 ≤ q2/2sl+1, we have Pr[G0] ≤ Pr[G1] + q2/2sl+1.

In Game G2 we introduce an additional abort condition that triggers whenever the Sign oracle
invokes the underlying DS.Sig algorithm twice on the same message-seed combination m‖s. This is
tracked by set M ′. As by the change introduced with G1 it is ensured that seeds s do not repeat,
this abort condition is never met. We have Pr[G1] = Pr[G2].

The winning condition m /∈ M of G2 is replaced by m‖s /∈ M ′ in Game G3. Observe that
m‖s ∈ M ′ always implies m ∈ M , i.e., the winning condition is relaxed by this step and we have
Pr[G2] ≤ Pr[G3].

To assess Pr[G3] we construct from A an adversary A1 against UUF and analyze its success prob-
ability. The code of A1 is given in Fig. 25. It internally executes A and mimics the environment
otherwise provided by G3. The general idea is to outsource the signature generation in A’s Sign
oracle to A1’s Sign1 oracle, and to convert DDS forgeries to DS forgeries. Note that the m‖s ∈M ′
condition in Sign ensures that Sign1 always returns a signature (as opposed to ⊥). Observe further
that whenever A’s forgery (m,σ′‖s) is valid and fresh, then so is the output (m‖s, σ′) of A1. We
thus have Pr[G3] = Advuuf

DS (A1). Overall, we obtain the bound from Equation (11).

B Proof of Theorem 6

The following results imply Theorem 6. They rely on standard techniques and are included here
for completeness.

31

Game G0, G1, G2, G3

M ← ∅ ; S ← ∅ ; M ′ ← ∅
(vk, sk)←$ DS.Kg
(m,σ)←$ASign(vk)
If m ∈M : Abort // G0–G2

σ′‖s← σ
If m‖s ∈M ′: Abort // G3

Return DS.Vf(vk,m‖s, σ′)

Sign(m)

s←$ {0, 1}sl
If s ∈ S: Abort // G1–G3

S ← S ∪ {s} // G1–G3

If m‖s ∈M ′: Abort // G2–G3

σ′←$ DS.Sig(vk, sk,m‖s)
M ′ ←M ′ ∪ {m‖s} // G2–G3

σ ← σ′‖s
M ←M ∪ {m} ; Return σ

Figure 24: Games used in the proof of Theorem 9. Game G0 is the UF game with the algorithms
of AR[DS, sl] plugged in. The Abort instruction terminates the execution of A and stops the game
with output value false.

Adversary ASign1
1 (vk)

M ← ∅ ; S ← ∅ ; M ′ ← ∅
(m,σ)←$ASign(vk)
σ′‖s← σ
If m‖s ∈M ′: Abort
Return (m‖s, σ′)

Sign(m) // A1

s←$ {0, 1}sl
If s ∈ S: Abort
S ← S ∪ {s}
If m‖s ∈M ′: Abort
σ′←$ Sign1(m‖s)
M ′ ←M ′ ∪ {m‖s}
σ ← σ′‖s
M ←M ∪ {m} ; Return σ

Figure 25: Adversary for proof of Theorem 9. The Abort instruction letsA1 terminate the execution
of A and stop with output value (⊥,⊥).

Lemma 10 Let ID be an identification scheme. Let P be a CIMP-CU-adversary against ID making
q queries to its Ch oracle. Then from P we can construct IMP-PA adversary P1 such that

Advcimp-cu
ID (P) ≤ q ·Advimp-pa

ID (P1) .
Adversary P1 makes as many queries to its Tr oracle as P does. The running time of P1 is that
of P plus some small overhead.

Proof of Lemma 10: Adversary P1 is shown in Fig. 26. It has access to oracles Tr,Ch as
per game Gcimp-cu

ID (P1) in which it is executing, but may only make one query to its Ch oracle.
It guesses an instance k∗ uniformly from {1, . . . , q} and runs P. Adversary P1 passes P’s Tr
queries directly to its own Tr oracle. P1 simulates answers to P’s queries to its Ch oracle via the
subroutine ChS, calling its own oracles inside this. Adversary P1’s simulation is perfect. Since P1
will guess the instance k∗ which P successfully impersonates with probability 1/q, adversary P1’s
success probability is at least 1/q times that of P.

Lemma 11 Let ID be an identification scheme that is honest verifier zero-knowledge and ex-
tractable. Then for any adversary P against the IMP-PA security of ID, we can construct an
adversary I such that

Advimp-pa
ID (P) ≤ 1

2ID.cl
+

√
Advkr

ID(I) .

The running time of I is about twice that of P, plus the time for an execution of ID.Ex.

32

Adversary PTr,Ch
1 (ivk)

k∗←$ {1, . . . , q} ; j ← 0
(k, z)←$ PTr,ChS(ivk)
If k 6= k∗: Return ⊥
Return (1, z)

ChS(Y)

j ← j + 1
If j 6= k∗: c←$ {0, 1}ID.cl

Else (1, c)←$ Ch(Y)
CT[j]← Y ‖c ; Return (j, c)

Figure 26: Adversary for proof of Lemma 10.

Lemma 11 follows directly from the reset lemma of [7] and the extractability property of ID.
The reset lemma gives a bound on Advimp-pa

ID (P) based on the probability of obtaining a pair
of distinct valid transcripts Y ‖c1‖z1, Y ‖c2‖z2 running the same adversary twice, the second time
where the adversary is “reset” with the same state it had the moment it output its commitment Y .
From these distinct valid transcripts and the verification key ivk, we can execute ID.Ex to obtain
the secret key isk, winning the key recoverability game.

33

