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Abstract

This paper provides a framework to treat the problem of building signature schemes from
identification schemes in a unified and systematic way. The outcomes are (1) Alternatives to the
Fiat-Shamir transform that, applied to trapdoor identification schemes, yield signature schemes
with tight security reductions to standard assumptions (2) An understanding and characteriza-
tion of existing transforms in the literature. One of our transforms has the added advantage of
producing signatures shorter than produced by the Fiat-Shamir transform. Reduction tightness
is important because it allows the implemented scheme to use small parameters (thereby being
as efficient as possible) while retaining provable security.
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1 Introduction

This paper provides a framework to treat the problem of building signature schemes from identifi-
cation schemes in a unified and systematic way. We are able to explain and characterize existing
transforms as well as give new ones whose security proofs give tight reductions to standard as-
sumptions. This is important so that the implemented scheme can use small parameters, thereby
being efficient while retaining provable security. Let us begin by identifying the different elements
involved.

id-to-sig transforms. Recall that in a three-move identification scheme ID the prover sends a
commitment Y computed using private randomness y, the verifier sends a random challenge c, the
prover returns a response z computed using y and its secret key isk, and the verifier computes a
boolean decision from the conversation transcript Y ‖c‖z and public key ivk (see Fig. 3). We are
interested in transforms Id2Sig that take ID and return a signature scheme DS. The transform
must be generic, meaning DS is proven to meet some signature security goal Psig assuming only that
ID meets some identification security goal Pid . This proof is underlain by a reduction Psig→Pid

that may be tight or loose. Boxing an item here highlights elements of interest and choice in the
id-to-sig process.

Canonical example. In the most canonical example we have, Id2Sig = FS is the Fiat-Shamir
transform [17] ; Pid = IMP-PA is security against impersonation under passive attack [15, 1] ;
Psig = UF is unforgeability under chosen-message attack [20] ; and the reduction Psig→Pid is that
of AABN [1], which is loose.

We are going to revisit this to give other choices of the different elements, but first let us recall
some more details of the above. In the Fiat-Shamir transform FS [17], a signature of a message m
is a pair (Y, z) such that the transcript Y ‖c‖z is accepting for c = H(Y ‖m), where H is a random
oracle. IMP-PA requires that an adversary given transcripts of honest protocol executions still
fails to make the honest verifier accept in an interaction where it plays the role of the prover, itself
picking Y any way it likes, receiving a random c, and then producing z. The loss in the Psig→Pid

reduction of AABN [1] is a factor of the number q of adversary queries to the random oracle H:
If εid, εsig denote, respectively, the advantages in breaking the IMP-PA security of ID and the UF
security of DS, then εsig ≈ q εid.

Algebraic assumption to id. Suppose a cryptographer wants to build a signature scheme
meeting the definition Psig. The cryptographer would like to base security on some algebraic
assumption Palg . This could be factoring, RSA inversion, bilinear Diffie-Hellman, some lattice
assumption, or many others. Given an id-to-sig transform as above, the task amounts to designing
an identification scheme ID achieving Pid under Palg. (Then one can just apply the transform to
ID.) This proof is underlain by another reduction Pid→Palg that again may be tight or loose. The
tightness of the overall reduction Psig→Palg thus depends on the tightness of both Psig→Pid and
Pid→Palg.

Canonical example. Continuing with the FS+AABN-based example from above, we would need
to build an identification scheme meeting Pid = IMP-PA under Palg. The good news is that a wide
swathe of such identification schemes are available, for many choices of Palg (GQ [22] under RSA,
FS [17] under Factoring, Schnorr [35] under Discrete Log, ...). However the reduction Pid→Palg is
(very) loose.

Again, we are going to revisit this to give other choices of the different elements, but first let us
recall some more details of the above. The practical identification schemes here are typically Sigma
protocols (this means they satisfy honest-verifier zero-knowledge and special soundness, the latter
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meaning that from two accepting conversation transcripts with the same commitment but different
challenges, one can extract the secret key) and Palg = KR is the problem of computing the secret
key given only the public key. To solve this problem, we have to run a given IMP-PA adversary
twice and hope for two successes. The analysis exploits the Reset Lemma of [6]. If εalg, εid denote,
respectively, the advantages in breaking the algebraic problem and the IMP-PA security of ID, then
it results in εid ≈

√
εalg. If εsig is the advantage in breaking UF security of DS, combined with the

above, we have εsig ≈ q
√
εalg.

Approach. We see from the above that a tight overall reduction Psig→Palg requires that the
Psig→Pid and Pid→Palg reductions both be tight. What we observe is that we have a degree of
freedom in achieving this, namely the choice of the security goal Pid for the identification scheme.
Our hope is to pick Pid such that (1) We can give (new) transforms Id2Sig for which Psig→Pid is
tight, and simultaneously (2) We can give identification schemes such that Pid→Palg is tight. We
view these as two pillars of an edifice and are able to provide both via our definitions of security
of identification under constrained impersonation coupled with some new id-to-sig transforms. We
first pause to discuss some prior work, but a peek at Fig. 1 gives an outline of the results we will
expand on later.

Prior work. The first proofs of security for FS-based signatures [34] reduced UF security of the
FS-derived signature scheme directly to the hardness of the algebraic problem Palg, assuming H is
a random oracle [7]. These proofs exploit forking lemmas [34, 5, 4]. Modular proofs of the form
discussed above, that use identification as an intermediate step, begin with [32, 1]. The modular
approach has many advantages. One is that since the id-to-sig transforms are generic, we have only
to design and analyze identification schemes. Another is the better understanding and isolation
of the role of random oracles: they are used by Id2Sig but not in the identification scheme. We
have accordingly adopted this approach. Note that both the direct (forking lemma based) and the
AABN-based indirect (modular) approach result in reductions of the same looseness we discussed
above. Our (alternative but still modular) approaches will remove this loss.

Consideration of reduction tightness for signatures begins with BR [9], whose PSS scheme has a
tight reduction to the RSA problem. KW [23] give another signature scheme with a tight reduction
to RSA, and they and GJ [18] give signature schemes with tight reductions to the Diffie-Hellman
problem. The lack of tightness of the overall reduction for FS-based signatures is well recognized
as an important problem and drawback. It was first addressed by Micali and Reyzin [29], who give
a particular signature scheme with a tight reduction to factoring. It is obtained from a particular
identification scheme via a method they call “swap”. ABP [2] say that the method generalizes to
other factoring-based schemes. However, “swap” has never been stated as a general transform of
an identification scheme into a signature scheme; it appears rather as an ad hoc technique to go
directly and tightly from the algebraic problem to the signature. This lack of abstraction is perhaps
due in part to a lack of definitions, and the ones we provide allow us to fill the gap. In Section 6.5
we elevate the swap method to a general Swap transform, characterize the identification schemes
to which it applies, and prove that, when it applies, it gives a tight Psig→Pid reduction.

ABP [2] show a tight reduction of FS-derived GQ signatures to the Φ-hiding assumption
of [12]. In contrast, our methods will yield GQ signatures with a tight reduction to the stan-
dard one-wayness of RSA. AFLT [3] use a slight variant of the Fiat-Shamir transform to turn lossy
identification schemes into signature schemes with security based tightly on key indistinguishabil-
ity, resulting in signature schemes with tight reductions to the decisional short discrete logarithm
problem, the shortest vector problem in ideal lattices and subset sum.

Constrained impersonation. Recall our goal is to define a notion of identification security Pid
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CIMP-CC

CIMP-UC CIMP-CU

CIMP-UU

Pid
Id2Sig

Trapdoor? Psig-secure Signature
Reductions

Transform Psig→Pid/Pid→Palg

CIMP-CU FS No (Y, z) : c = H(Y ‖m) Tight/Loose

CIMP-UC MdCmt Yes (c, z) : Y = H(m) ; c←$ {0, 1}ID.cl Tight/Tight

CIMP-UU MdCmtCh Yes
(s, z) : s←$ {0, 1} ; Y = H1(m)

Tight/Tight
c = H2(m‖s)

CIMP-CC MdCh No
(Y, s, z) : s←$ {0, 1}sl

Tight/Unknown
c = H(m‖s)

CIMP-UC Swap Yes
(c, z) : c←$ {0, 1}ID.cl

Tight/Tight
Y = H(m‖c)

Figure 1: Top: Relations between notions Pid of security for an identification scheme ID under
constrained impersonation. Solid arrows denote implications, barred arrows denote separations. A
solid box around a notion means a tight Pid→Palg reduction for Sigma protocols; dotted means
a loose one; no box means no known reduction. Bottom: Transforms of identification schemes
into UUF (row 2,3) or UF (rows 1,4,5) signature schemes. The first column is the assumption Pid

on the identification scheme. The third column indicates whether or not the identification scheme
is assumed to be trapdoor. ID.cl is the challenge length and sl is a seed length. In rows 1,4 the
commitment Y is chosen at random. The third transform has the shortest signatures, consisting of
a response plus a single bit.

such that (1) We can give transforms Id2Sig for which Psig→Pid is tight, and (2) We can give
identification schemes such that Pid→Palg is tight. In fact our definitional goal is broader, namely
to give a framework that allows us to understand and encompass both old and new transforms,
the former including FS and Swap. We do all this with a definitional framework that we refer
to as constrained impersonation. It yields four particular definitions denoted CIMP-XY for XY ∈
{CU,UC,UU,CC}. Each, in the role of Pid, will be the basis for an id-to-sig transform such that
Psig→Pid is tight, and two will allow Pid→Palg to be tight.

In constrained impersonation we continue, as with IMP-PA, to allow a passive attack in which
the adversary A against the identification scheme ID can obtain transcripts Y1‖c1‖z1, Y2‖c2‖z2 . . .
of interactions between the honest prover and verifier. Then A tries to impersonate, meaning get
the honest verifier to accept. If X=C then the commitment in this impersonation interaction is
adversary-chosen, while if X=U (unchosen) it must be pegged to a commitment from one of the
transcripts. If Y=C, the challenge is adversary-chosen, while if Y=U it is as usual picked at random
by the verifier. In all cases, multiple impersonation attempts are allowed. The formal definitions
are in Section 3. CIMP-CU is a multi-impersonation version of IMP-PA, but the rest are novel.

What do any of these notions have to do with identification if one understands the latter as
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the practical goal of proving one’s identity to a verifier? Beyond CIMP-CU, very little. In practice
it is unclear how one can constrain a prover to only use, in impersonation, a commitment from a
prior transcript. It is even more bizarre to allow a prover to pick the challenge. Our definitions
however are not trying to capture any practical usage of identification. They view the latter as an
analytical tool, an intermediate land allowing a smooth transition from an algebraic problem to
signatures. The constrained impersonation notions work well in this regard, as we will see, both to
explain and understand existing work and to obtain new signature schemes with tight reductions.

Relations between the four notions of constrained impersonation are depicted in Fig. 1. An
arrow A → B is an implication: Every identification scheme that is A-secure is also B-secure. A
barred arrow A 6→ B is a separation: There exists an identification scheme that is A-secure but
not B-secure. (For now ignore the boxes around notions.) In particular we see that CIMP-UU is
weaker than, and CIMP-UC incomparable to, the more standard CIMP-CU. See Proposition 1 for
more precise renditions of the implications.

Auxiliary definitions and tools. Before we see how to leverage the constrained impersonation
framework, we need a few auxiliary definitions and results that, although simple, are, we believe,
of independent interest and utility.

We define a signature scheme to be UUF (Unique Unforgeable) if it is UF with the restriction
that a message can be signed at most once. (You are not allowed to twice ask the signing oracle
to sign a particular m.) It turns out that some of our id-to-sig transforms naturally achieve UUF,
not UF. However there are simple, generic transforms of UUF signature scheme into a UF ones —
succinctly, UF→UUF— that do not introduce much overhead and have tight reductions. One is to
remove randomness, and the other is to add it. In more detail, a well-known method to derandomize
a signature scheme is to specify the coins by hashing the secret key along with the message. This
has been proved to work in some instances [31, 25] but not in general. We observe that this method
has the additional benefit of turning a UUF scheme into a UF one. We call the transform DR.
Theorem 4 shows that it works. (In particular it shows UF-security of the derandomized scheme
in a more general setting than was known before.) The second transform, AR, appends a random
salt to the message before signing and includes the salt in the signature. Theorem 5 shows that
it works. The first transform is attractive because it does not increase signature size. The second
does, but is standard-model. We stress that the reductions are tight in both cases, so this step does
not impact overall tightness. Now we can take (the somewhat easier to achieve) UUF as our goal.

Recall that in an identification scheme, the prover uses private randomness y to generate its
commitment Y . We call the scheme trapdoor if the prover can pick the commitment Y directly
at random from the space of commitments and then compute the associated private randomness
y using its secret key via a prescribed algorithm. The concept is implicit in [29] but does not
seem to have been formalized before, so we give a formal definition in Section 3. Many existing
identification schemes will meet our definition of being trapdoor modulo possibly some changes to
the key structure. Thus the GQ scheme of [22] is trapdoor if we add the decryption exponent d to
the secret key. With similar changes to the keys, the Fiat-Shamir [17] and Ong-Schnorr [33] iden-
tification schemes are trapdoor. The factoring-based identification scheme of [29] is also trapdoor.
But not all identification schemes are trapdoor. One that is not is Schnorr’s (discrete-log based)
scheme [35].

Summary of results. For each notion Pid ∈ {CIMP-CU,CIMP-UC,CIMP-UU,CIMP-CC} we
give an id-to-sig transform that turns any given Pid-secure identification scheme ID into a Psig =
UUF signature scheme DS; the transform from CIMP-CC security achieves a UF signature scheme.
The reduction Psig→Pid is tight in all four cases. (To further make the signature scheme UF secure,
we can apply the above-mentioned UF→UUF transforms while preserving tightness.) The table
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in Fig. 1 summarizes the results and the transforms. They are discussed in more detail below and
then fully in Section 6.

This is one pillar of the edifice, and not useful by itself. The other pillar is the Pid→Palg

reduction. In the picture at the top of Fig. 1, a solid-line box around Pid means that the reduction
Pid→Palg is tight, a dotted-line box indicates a reduction is possible but is not tight, and no box
means no known reduction. These results assume the identification scheme is a Sigma protocol, as
most are, and are discussed in Section 4. We see that two points of our framework can be tightly
obtained from the algebraic problem, so that in these cases the overall Psig→Palg reduction is tight,
which was the ultimate goal.

More details on results. The transform from CIMP-CU is the classical FS one. The reduction
is now tight, even though it was not from IMP-PA [1], simply because CIMP-CU is IMP-PA
extended to allow multiple impersonation attempts. The result, which we state as Theorem 9,
is implicit in [1], but we give a proof to illustrate how simple the proof now is. In this case our
framework serves to better understand, articulate and simplify something implicit in the literature,
rather than deliver anything particularly new.

For CIMP-UC, we give a transform called MdCmt, for “Message-Derived Commitment”,
where, to sign m, the signer computes the commitment Y as a hash of the message, picks a
challenge at random, uses its trapdoor to compute the coins y corresponding to Y , uses y and the
secret key to compute a response z, and returns the challenge and response as the signature. See
Section 6.1.

For CIMP-UU, the weakest of the four notions, our transform MdCmtCh, for “Message-
Derived Commitment and Challenge”, has the signer compute the commitment Y as a hash of the
message. It then picks a single random bit s and computes the challenge as a hash of the message
and seed, returning as signature the seed and response, the latter computed as before. Beyond
a tight reduction, this transform has the added feature of short signatures, the signature being a
response plus a single bit. (In all other transforms, whether prior or ours, the signature is at least
a response plus a challenge, often more.) See Section 6.2.

Since CIMP-CC implies CIMP-UC and CIMP-UU (Fig. 1, top), the MdCmt and MdCmtCh
transforms would both work. However, these require the identification scheme to be trapdoor and
achieve UUF rather than UF. (The above-mentioned UUF → UF transforms are applied on top
to get UF.) We give an alternative transform called MdCh (“Message-Derived Challenge”) from
CIMP-CC that directly achieves UF and works (gives a tight reduction) even if the identification
scheme is not trapdoor. It has the signer pick a random commitment, produce the challenge as in
MdCmtCh, namely as a randomized hash of the message, compute the response, and return the
conversation transcript as signature. See Section 6.3.

Again the salient fact is that the reductions underlying all four transforms are tight.
To leverage the above we now have to consider achieving CIMP-XY. We do this in Section 4.

We give reductions Pid→Palg of the Pid = CIMP-XY security of identification schemes that are
Sigma protocols to their key-recovery (KR) security, the latter being the problem of recovering the
secret key given only the public key, which is typically the algebraic problem Palg whose hardness is
assumed. For CIMP-UC and CIMP-UU the Pid→Palg reduction is tight, as per Theorem 2, making
these the most attractive starting points. For CIMP-CU we must use the Reset Lemma [6] so the
reduction (cf. Theorem 3) is loose. CIMP-CC is a very strong notion and, as we discuss at the end
of Section 4, not achieved by Sigma protocols but achievable by other means.

Swap. As indicated above, our framework allows us to generalize the swap method of [29] into an
id-to-sig transform Swap and understand and characterize what it does. In Section 6.5 we present
Swap as a generic transform of a trapdoor identification scheme ID to a signature scheme that
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is just like MdCmt (cf. row 2 of the table of Fig. 1) except that the challenge c is included in
the input to the hash function (cf. row 5 of the table of Fig. 1). Recall that MdCmt turns a
CIMP-UC identification scheme into a UUF signature scheme. We can thence get a UF signature
scheme by applying the AR transform of Section 5.2. Swap is a shortcut, or optimization, of this
two step process: it directly turns a CIMP-UC identification scheme into a UF signature scheme
by effectively re-using the randomness of MdCmt in AR. We note that the composition of our
DR with our MdCmtCh yields a UF signature scheme with shorter signatures than Swap while
also having a tight reduction to the weaker CIMP-UU assumption, and would thus be superior.
However we think Swap is of historical interest and accordingly present it. See Section 6.5 for
details.

Discussion. Schnorr signatures [35] over elliptic curves have been considered superior in perfor-
mance to factoring or RSA-based signatures based on the argument that one can use smaller groups
for the same security. This argument ignores reduction tightness. Schnorr signatures are obtained
from the Schnorr identification scheme [35] via the (loose) FS transform, while our reductions allow
us to obtain factoring and RSA based signatures via tight reductions. If group sizes are chosen
based on tightness of reductions to standard assumptions, the performance gap between Schnorr
and factoring or RSA based signatures narrows.

An intriguing application area to explore for our transforms is in lattice-based cryptography.
Here signatures have been obtained via the FS transform [27, 28]. The underlying lattice-based
identification schemes do not appear to be trapdoor, so our transforms would not apply. However,
via the techniques of MP [30], one can build lattice-based trapdoor identification schemes to which
our transforms apply. Whether there is a performance benefit will depend on the trade-off between
the added cost from having the trapdoor and the smaller parameters permitted by the improved
security reduction.

We measure reduction tightness stringently, in a model where running time, queries and success
probability are separate parameters. The picture changes if one considers the expected success
ratio, namely the ratio of running time to success probability. Reduction tightness under this
metric is considered in PS [34] and the concurrent and independent work of KMP [24].

We establish the classical notion of standard unforgeability (UF) [20]. Our transforms also es-
tablish strong unforgeability if the identification scheme has the extra property of unique responses.
(For any public key, commitment and challenge, there exists at most one response that the verifier
accepts.)

GK [19] give an example of a 3-move protocol where FS yields a secure signature scheme in
the ROM, but the RO is not instantiable. Their protocol however is not a Sigma protocol, as is
assumed for the ones we start with and is true for practical identification schemes. Currently, secure
instantiation of the RO, both for FS and our transforms, is not ruled out for such identification
schemes.

2 Notation and basic definitions

Notation. We let ε denote the empty string. If X is a finite set, we let x←$X denote picking
an element of X uniformly at random and assigning it to x. We use a1‖a2‖ · · · ‖an as shorthand
for (a1, a2, . . . , an). Algorithms may be randomized unless otherwise indicated. Running time is
worst case. If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A with random coins r
on inputs x1, . . . and assigning the output to y. We let y←$A(x1, . . .) be the result of picking r
at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all possible outputs
of A when invoked with inputs x1, . . .. We use the code based game playing framework of [10].
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Game Guf
DS(A) / Guuf

DS (A)

M ← ∅ ; (vk, sk)←$ DS.KgH

(m,σ)←$ASign,H(vk)
If m ∈M : Return false
Return DS.VfH(vk,m, σ)

H(x,Rng)

If not HT[x,Rng]: HT[x,Rng]←$ Rng
Return HT[x,Rng]

Sign(m)

If m ∈M : Return ⊥
σ←$ DS.SigH(vk, sk,m)
M ←M ∪ {m}
Return σ

Figure 2: Games defining unforgeability and unique unforgeability of signature scheme DS. Game
Guuf

DS (A) includes the boxed code and game Guf
DS(A) does not.

(See Fig. 2 for an example.) By Pr[G] we denote the event that the execution of game G results
in the game returning true. Boolean flags (like bad) in games are assumed initialized to false. By
a1‖a2‖ · · · an ← x we mean that x is parsed into its constituents. We adopt the convention that
the running time of an adversary refers to the worst case execution time of the game with the
adversary. This means that the time taken for oracles to compute replies to queries is included.

Our treatment of random oracles is more general than usual. In our constructions, we will
need random oracles with different ranges. For example we may want one random oracle returning
points in a group Z∗

N and another returning strings of some length l. To provide a single unified
definition, we have the procedure H in the games take not just the input x but a description Rng of
the set from which outputs are to be drawn at random. Thus y←$ H(x,Z∗

N ) will return a random
element of Z∗

N , while c←$ H(x, {0, 1}l) will return a random l-bit string, and so on. Sometimes if
the range set is understood, it is dropped as an argument.

Signatures. In a signature scheme DS, the signer generates signing key sk and verifying key vk
via (vk, sk)←$ DS.KgH where H is the random oracle, the latter with syntax as discussed above.
Now it can compute a signature σ←$ DS.SigH(vk, sk,m) on any message m ∈ {0, 1}∗. A verifier can
deterministically compute a boolean v ← DS.VfH(vk,m, σ) indicating whether or not σ is a valid
signature of m relative to vk. Correctness as usual requires that DS.VfH(vk,m,DS.SigH(vk, sk,
m)) = true with probability one. Game Guf

DS(A) associated to DS and adversary A as per Fig. 2
captures the classical unforgeability notion of [20] lifted to the ROM as per [7], and we let Advuf

DS(A)
= Pr[Guf

DS(A)] be the UF-advantage of A. The same figure also defines game Guuf
DS (A) to capture

unique unforgeability. The difference is the inclusion of the boxed code, which disallows A from
getting more than one signature on the same message. We let Advuuf

DS (A) = Pr[Guuf
DS (A)] be the

UUF-advantage of A.
Of course, UF implies UUF, meaning any signature scheme that is UF secure is also UUF secure.

The converse is not true, meaning there exist UUF signature schemes that are not UF secure (we
will see natural examples in this paper). In Section 5 we give simple, generic and tight ways to
turn any given UUF signature scheme into a UF one.

We note that unique unforgeability (UUF) should not be confused with unique signatures as
defined in [21, 26]. In a unique signature scheme, there is, for any message, at most one signature
the verifier will accept. If a unique signature scheme is UUF then it is also UF. But there are UUF
(and UF) schemes that are not unique.
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Prover

Input: ivk, isk

(Y, y)←$ ID.Ct(ivk)

z ← ID.Rp(ivk, isk, c, y)

Y-
c�
z-

Verifier

Input: ivk

c←$ {0, 1}ID.cl

v ← ID.Vf(ivk, Y ‖c‖z)

Figure 3: Functioning of an identification scheme ID.

3 Constrained impersonation framework

We introduce a framework of definitions of identification schemes secure against constrained im-
personation.

Identification. An identification (ID) scheme ID operates as depicted in Fig. 3. First, via
(ivk, isk, itk)←$ ID.Kg, the prover generates a public verification key ivk, private identification
key isk, and trapdoor itk. Via (Y, y)←$ ID.Ct(ivk) it generates commitment Y and corresponding
private state y. The verifier sends a random challenge of length ID.cl. The prover’s response z
and the verifier’s boolean decision v are deterministically computed per z ← ID.Rp(ivk, isk, c, y)
and v ← ID.Vf(ivk, Y ‖c‖z), respectively. We assume throughout that identification schemes have
perfect correctness. An example ID scheme is the GQ; see Section 7. For basic ID schemes, the
trapdoor plays no role; its use arises in trapdoor identification.

Trapdoor identification. We now explain what it means for an ID scheme to be trapdoor.
Namely there is an algorithm ID.Ct−1 that produces y from Y with the aid of the trapdoor itk.
Formally, the outputs of the following two processes must be identically distributed. Both processes
generate (ivk, isk, itk)←$ ID.Kg. The first process then lets (Y, y)←$ ID.Ct(ivk). The second pro-
cess picks Y ←$ ID.CS(ivk) and lets y←$ ID.Ct−1(ivk, itk, Y ). (Here ID.CS(ivk) is the space of
commitments associated to ID.) Both processes return (ivk, isk, itk, Y, y). In a trapdoor scheme no
one can distinguish which process was used to generate the output.

Security against impersonation. Classically, the security goal for an identification scheme ID
has been impersonation [16, 1]. The framework has two stages. First, the adversary, given ivk but
not isk, attacks the honest, isk-using prover. Second, using the information it gathers in the first
stage, it engages in an interaction with the verifier, attempting to impersonate the real prover by
successfully identifying itself. In the second stage, the adversary, in the role of malicious prover,
submits a commitment Y of its choice, receives an honest verifier challenge c, submits a response
z of its choice, and wins if ID.Vf(ivk, Y ‖c‖z) = true. A hierarchy of possible first-phase attacks is
defined in [6]. In the context of conversion to signatures, the relevant one is the weakest, namely
passive attacks, where the adversary is just an eavesdropper and gets honestly-generated protocol
transcripts. This is the IMP-PA notion. (Active and even concurrent attacks are relevant in other
contexts [6].) We note that in the second stage, the adversary is allowed only one interaction with
the honest verifier.

Security against constrained impersonation. We introduce a new framework of goals for
identification that we call constrained impersonation. There are two dimensions, the commitment
dimension X and the challenge dimension Y, for each of which there are two choices, X ∈ {C,U}
and Y ∈ {C,U}, where C stands for chosen and U for unchosen. This results in four notions,
CIMP-UU, CIMP-UC, CIMP-CU, CIMP-CC. It works as follows. The adversary is allowed a
passive attack, namely the ability to obtain transcripts of interactions between the honest prover
and the verifier. The choices pertain to the impersonation, when the adversary interacts with the
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Game Gcimp-xy
ID (P)

S← ∅ ; i← 0 ; j ← 0
(ivk, isk, itk)←$ ID.Kg

(k, z)←$ PTr,Ch(ivk)
If not (1 ≤ k ≤ j): Return false

T ← CT[k]‖z
Return ID.Vf(ivk, T )

Tr()

i← i+ 1
(Yi, yi)←$ ID.Ct(ivk)
ci←$ {0, 1}ID.cl

zi ← ID.Rp(ivk, isk, ci, yi)
T ← Yi‖ci‖zi ; S← S ∪ {(Yi, ci)}
Return T

Ch(l) // xy=uu

If not (1 ≤ l ≤ i): Return ⊥
j ← j + 1 ; c←$ {0, 1}ID.cl

CT[j]← Yl‖c ; Return c

Ch(l, c) // xy=uc

If not (1 ≤ l ≤ i): Return ⊥
If (c = cl): Return ⊥
j ← j + 1
CT[j]← Yl‖c ; Return c

Ch(Y ) // xy=cu

j ← j + 1 ; c←$ {0, 1}ID.cl

CT[j]← Y ‖c ; Return c

Ch(Y, c) // xy=cc

If (Y, c) ∈ S: Return ⊥
j ← j + 1
CT[j]← Y ‖c ; Return c

Figure 4: Games defining security of identification scheme ID against constrained impersonation
under passive attack.

honest verifier in an attempt to make it accept. When X = C, the adversary can send the verifier
a commitment of its choice, as in classical impersonation. But when X = U, it cannot. Rather,
it is required (constrained) to use a commitment that is from one of the transcripts it obtained in
the first phase and thus in particular honestly generated. Next comes the challenge. If Y = U,
this is chosen freshly at random, as in the classical setting, but if Y = C, the adversary actually
gets to pick its own challenge. Regardless of choices made in these four configurations, to win
the adversary must finally supply a correct response. And, also regardless of these choices, the
adversary can mount multiple attempts to convince the verifier.

For choices xy ∈ {uu,uc, cu, cc} of parameters, the formalization considers game Gcimp-xy
ID (P)

of Fig. 4 associated to identification scheme ID and adversary P. We let

Advcimp-xy
ID (P) = Pr[Gcimp-xy

ID (P)] .

The transcript oracle Tr returns upon each invocation a transcript of an interaction between the
honest prover and verifier, allowing P to mount its passive attack, and is the same for all four
games. The impersonation attempts are mounted through calls to the Ch oracle, which creates a
partial transcript CT[j] consisting of a commitment and a challenge, where j is a session id, and
it returns the challenge. Multiple impersonation attempts are captured by the adversary being
allowed to call Ch as often as it wants. Eventually the adversary outputs a session id k and a
response z for session k, and wins if the corresponding transcript is accepting. In the UU case, P
would give Ch only an index l of an existing transcript already returned by Tr, and CT[j] consists
of the commitment from the l-th transcript together with a fresh random challenge. In the UC case,
Ch takes in addition a challenge c chosen by the adversary. The game requires that it be different
from cl (the challenge in the l-th transcript), and CT[j] then consists of the commitment from the
l-th transcript together with this challenge. In CU, the adversary can specify the commitment but
the challenge is honestly chosen. In CC, it can specify both, as long as the pair did not occur in a
transcript. The adversary can call the oracles as often as it wants and in whatever order it wants.
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Game G0, G1

i← 0 ; j ← 0
(ivk, isk, itk)←$ ID.Kg

(k, z)←$ PTr,Ch
uu (ivk)

If not (1 ≤ k ≤ j): Return false

T ← CT[k]‖z
Return ID.Vf(ivk, T )

Tr()

i← i+ 1
(Yi, yi)←$ ID.Ct(ivk)
ci←$ {0, 1}ID.cl

zi ← ID.Rp(ivk, isk, ci, yi)
Return Yi‖ci‖zi
Ch(l)

If not (1 ≤ l ≤ i): Return ⊥
j ← j + 1 ; c←$ {0, 1}ID.cl

If (c = cl):

bad← true ; c←$ {0, 1}ID.cl \ {cl}
CT[j]← Yl‖c ; Return c

Adversary PTr,Ch
uc (ivk)

i← 0 ; j ← 0
(k, z)←$ PTr∗,Ch∗

(ivk)
If not (1 ≤ k ≤ j): Return ⊥
l← Ind(k) ; c← Ch(l, c∗k)
Return (1, z)

Tr∗()

i← i+ 1 ; Yi‖ci‖zi←$ Tr
Return Yi‖ci‖zi
Ch∗(l)

If not (1 ≤ l ≤ i): Return ⊥
j ← j + 1 ; Ind(j)← l
c∗j ←$ {0, 1}ID.cl \ {cl} ; Return c∗j

Adversary PTr,Ch
cu (ivk)

j ← 0
(k, z)←$ PTr∗,Ch∗

(ivk)
If not (1 ≤ k ≤ j): Return ⊥
Return (k, z)

Tr∗()

i← i+ 1 ; Yi‖ci‖zi←$ Tr
Return Yi‖ci‖zi
Ch∗(l)

If not (1 ≤ l ≤ i): Return ⊥
j ← j + 1 ; c∗j ←$ Ch(Yl)
Return c∗j

Figure 5: Games and adversaries for proof of Proposition 1 parts 1. and 2.

CIMP-CU is a multi-impersonation extension of the classical IMP-PA notion. The other notions
are new, and all will be the basis of transforms of identification to signatures admitting tight security
reductions. CIMP-CU captures a practical identification security goal. As discussed in Section 1,
the other notions have no such practical interpretation. However we are not aiming to capture
some practical form of identification. We wish to use identification only as an analytical tool in
the design of signature schemes. For this purpose, as we will see, our framework and notions are
indeed useful, allowing us to characterize past transforms and build new ones.

Implications. Fig. 1 shows the relations between the four CIMP-XY notions. The implications
are captured by Proposition 1. (The separations will be discussed below.) The bounds in these
claims imply some conditions or assumptions for the implications which we did not emphasize before
because they hold for typical identification schemes. Namely, CIMP-UC→ CIMP-UU assumes the
identification scheme has large challenge length. CIMP-CC → CIMP-UC assumes it has a large
commitment space. CIMP-CC → CIMP-CU again assumes it has a large challenge length. We
remark that in all but one case, the constructed adversary makes only one Ch query, regardless of
how many the starting adversary made.

Proposition 1 Let ID be an identification scheme. Let ID.CSS = min{ |ID.CS(ivk)| : (ivk, isk, itk) ∈
[ID.Kg] }.
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Adversary PTr,Ch
cc (ivk)

i← 0 ; j ← 0
(k, z)←$ PTr∗,Ch∗

uc (ivk)
If not (1 ≤ k ≤ j): Return ⊥
l← Ind(k) ; c← Ch(Yl, c

∗
k)

Return (1, z)

Tr∗()

i← i+ 1 ; Yi‖ci‖zi←$ Tr
Return Yi‖ci‖zi
Ch∗(l, c)

If not (1 ≤ l ≤ i): Return ⊥
If (c = cl): Return ⊥
j ← j + 1 ; c∗j ← c ; Ind(j)← l
Return c

Adversary PTr,Ch
cc (ivk)

j ← 0
(k, z)←$ PTr,Ch∗

cu (ivk)
If not (1 ≤ k ≤ j): Return ⊥
c← Ch(Y ∗k , c

∗
k) ; Return (1, z)

Ch∗(Y )

j ← j + 1 ; c∗j ←$ {0, 1}ID.cl ; Y ∗j ← Y
Return c

Figure 6: Adversaries for proof of Proposition 1 parts 3. and 4.

1. [CIMP-UC → CIMP-UU] Given Puu making qc queries to Ch, we construct Puc making one
Ch query and such that Advcimp-uu

ID (Puu) ≤ Advcimp-uc
ID (Puc) + qc · 2−ID.cl.

2. [CIMP-CU → CIMP-UU] Given Puu we construct Pcu making as many Ch queries as P and
such that Advcimp-uu

ID (Puu) ≤ Advcimp-cu
ID (Pcu).

3. [CIMP-CC → CIMP-UC] Given Puc making qt queries to Tr, we construct Pcc making one
Ch query and such that Advcimp-uc

ID (Puc) ≤ Advcimp-cc
ID (Pcc) + qt(qt − 1)/2ID.CSS.

4. [CIMP-CC→ CIMP-CU] Given Pcu making qt queries to Tr and qc queries to Ch, we construct
Pcc making one Ch query and such that Advcimp-cu

ID (Pcu) ≤ Advcimp-cc
ID (Pcc) + qtqc · 2−ID.cl.

In all cases, the constructed adversary makes the same number of Tr queries as the starting
adversary and has about the same running time.

Proof of Proposition 1: We write Tr∗ and Ch∗ for subroutines in the code of the constructed
adversaries that provide answers to the Tr and Ch queries, respectively, of the given adversary.
We now proceed item by item.

For part 1. consider the games of Fig. 5. Game G0 omits the boxed code while game G1 includes
it. Game G0 is game Gcimp-uu

ID (Puu) of Fig. 4. Games G0 and G1 are identical until bad. By the
Fundamental Lemma of Game Playing [10] we have

Advcimp-uu
ID (Puu) = Pr[G0] = Pr[G1] + (Pr[G0]− Pr[G1]) ≤ Pr[G1] + Pr[G0 sets bad]

≤ Pr[G1] +
qc

2ID.cl
.

We construct adversary Puc as shown in the top right of Fig. 5. It executes Puu, responding to
Tr and Ch queries of the latter via the shown procedures, which are subroutines in the code of I.
It simulates for Puu the environment of game G1. This guarantees that the challenge c∗k in its Ch

query is different from cl. Thus Pr[G1] ≤ Advcimp-uc
ID (Puc), completing the proof.

For part 2. the adversary Pcu is on the bottom right in Fig. 5. It answers a Ch(l) query of Puu
by the challenge returned by its only Ch oracle on the transcript commitment Yl. The analysis is
straightforward because there are no restrictions on winning in either case.
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The remaining two implications are not of importance for our results and given for completeness.
We omit the game-based analysis required to make the proofs rigorous. For part 3. the adversary
Pcc is on the left in Fig. 6. When Puc returns (k, z), adversary Pcc calls its Ch oracle on the
corresponding commitment and challenge. It will win its game unless the pair is not new, meaning
is in the set S, which can happen with at most the probability that some commitment is returned
more than once by Tr. The probability of the latter is at most qt(qt − 1)/2ID.CSS.

For part 4. the adversary Pcc is on the right in Fig. 6. Again it will win its game unless the pair
is not new, meaning is in the set S. This can happen with at most the probability that a challenge
chosen by Ch∗ is the same as one in a transcript returned by Tr. The probability of this is at most
qtqc · 2−ID.cl.

Separations. We now discuss the separations, beginning with CIMP-CU 6=⇒ CIMP-UC. Start
with any CIMP-CU scheme. We will modify it so that it remains CIMP-CU-secure but is not
CIMP-UC-secure. Distinguish a single challenge c∗ ∈ {0, 1}ID.cl, e.g., c∗ = 0ID.cl. Revise the
verifier’s algorithm so that it will accept any transcript with challenge c∗. This is still CIMP-CU-
secure (as long as ID.cl is large) since, in the CIMP-CU game, challenges are picked uniformly
at random for the adversary, so existence of the magic challenge is unlikely to be useful. This
is manifestly not CIMP-UC-secure since there the adversary can use any challenge of its choice.
CIMP-UU 6=⇒ CIMP-UC for the same reason.

We turn to CIMP-UC 6=⇒ CIMP-CU . Start with any CIMP-UC scheme. Again we will modify
it so that it remains CIMP-UC-secure but is not CIMP-CU-secure. This time, distinguish a single
commitment Y ∗: one way of doing this is for ID.Kg to sample Y ∗←$ ID.CS(ivk) and include Y ∗

in the public key ivk; another is to agree for example that (Y ∗, y∗)← ID.Ct(ivk; 0l) where l is the
number of random bits required by ID.Ct. Revise the verifier’s algorithm so that it will accept
any transcript with commitment Y ∗. This is still CIMP-UC-secure (assuming |ID.CS(ivk)| is large)
since, in the CIMP-UC game, commitments are generated randomly for the adversary, so existence
of a magic commitment is unlikely to be useful. This is manifestly not CIMP-CU-secure since there
the adversary can use any commitment of its choice. CIMP-UU 6=⇒ CIMP-CU for the same reason.

Finally, CIMP-UC 6=⇒ CIMP-CC and CIMP-CU 6=⇒ CIMP-CC since otherwise, by transitivity
in Fig. 1, we would contradict the separation between CIMP-UC and CIMP-CU.

4 Achieving CIMP-XY security

Here we show how to obtain identification schemes satisfying our CIMP-XY notions of security. We
base CIMP-XY security on the problem of recovering the secret key of the identification scheme
given nothing but the public key, which plays the role of the algebraic problem Palg in typical
identification schemes and corresponds to a standard assumption. (For example for GQ it is one-
wayness of RSA.) For CIMP-UC and CIMP-UU, the reductions are tight. For CIMP-CU, the
reduction is not tight. CIMP-CC cannot be obtained via these paths, and instead we establish it
from signatures. First we need to recall a few standard definitions.

HVZK and extractability. We say that an identification scheme ID is honest verifier zero-
knowledge (HVZK) if there exists an algorithm ID.Sim (called the simulator) that given the verifi-
cation key, generates transcripts which have the same distribution as honest ones, even given the
verification key. Formally, if A is an adversary, let Advzk

ID(A) = 2 Pr[Gzk
ID(A)]−1 where the game is

shown in Fig. 7. Then ID is HVZK if Advzk
ID(A) = 0 for all adversariesA. (Regardless of the running

time of A.) We say that an identification scheme ID is extractable if there exists an algorithm ID.Ex
(called the extractor) which from any two transcripts that have the same commitment but different
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Game Gex
ID(A)

(ivk, isk, itk)←$ ID.Kg
(Y, c1, z1, c2, z2)←$A(ivk, isk, itk)
v1 ← ID.Vf(ivk, Y ‖c1‖z1)
v2 ← ID.Vf(ivk, Y ‖c2‖z2)
isk∗←$ ID.Ex(ivk, Y ‖c1‖z1, Y ‖c2‖z2)
Return (isk∗ 6= isk) ∧ (c1 6= c2) ∧ v1 ∧ v2

Game Gzk
ID(A)

(ivk, isk, itk)←$ ID.Kg ; b← {0, 1}
(Y1, y)←$ ID.Ct(ivk) ; c1←$ {0, 1}ID.cl

z1 ← ID.Rp(ivk, isk, c1, y)
Y0‖c0‖z0←$ ID.Sim(ivk)
b′←$A(ivk, Yb‖cb‖zb)
Return (b = b′)

Game Gkr
ID(I)

(ivk, isk, itk)←$ ID.Kg
isk∗←$ I(ivk)
Return (isk∗ = isk)

Figure 7: Games defining the extractability, HVZK and key-recovery security of an identification
scheme ID.

Adversary I(ivk)

(k, z)←$ PTr,Ch(ivk)
If not (1 ≤ k ≤ j): Return ⊥
T ← CT[k]‖z ; l← Ind(k)
isk∗ ← ID.Ex(ivk, Yl‖cl‖zl, T )
Return isk∗

Tr()

i← i+ 1
Yi‖ci‖zi←$ ID.Sim(ivk)
Return Yi‖ci‖zi
Ch(l, c)

If not (1 ≤ l ≤ i): Return ⊥
If (c = cl): Return ⊥
j ← j + 1 ; CT[j]← Yl‖c ; Ind(j)← l
Return c

Figure 8: Games and adversary for proof of Theorem 2.

challenges can recover the secret key. Formally, if A is an adversary, let Advex
ID(A) = Pr[Gex

ID(A)]
where the game is shown in Fig. 7. Then ID is extractable if Advex

ID(A) = 0 for all adversaries A.
(Regardless of the running time of A.) We say that an identification scheme is a Sigma protocol [14]
if it is both HVZK and extractable.

Security against key recovery. An identification scheme ID is resilient to key recovery if
it is hard to recover the secret key given nothing but the verification key. This was defined by
OO [32]. Formally, if I is an adversary, let Advkr

ID(I) = Pr[Gkr
ID(I)] where the game is shown in

Fig. 7. Security against key recovery is precisely the (standard) assumption Palg underlying most
identification schemes. For example, for the GQ identification scheme, this is the assumption that
RSA is one-way. For factoring-based schemes, it is the factoring assumption. Thus reducing the
key recovery security is precisely reducing to Palg as desired.

Obtaining CIMP-UU and CIMP-UC. Here we show that for Sigma protocols, CIMP-UU and
CIMP-UC security reduce tightly to security under key recovery.
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Theorem 2 Let ID be an identification scheme that is honest verifier zero-knowledge and ex-
tractable. Then for any adversary P against CIMP-UC we construct a key recovery adversary
I such that

Advcimp-uc
ID (P) ≤ Advkr

ID(I) . (1)

Also for any adversary P against CIMP-UU that makes qc queries to its Ch oracle we construct a
key recovery adversary I such that

Advcimp-uu
ID (P) ≤ Advkr

ID(I) + qc · 2−ID.cl . (2)

In both cases, the running time of I is about that of P plus the time for one execution of ID.Ex and
the time for a number of executions of ID.Sim equal to the number of Tr queries of P.

Proof of Theorem 2: Adversary I for the first claim is shown in Fig. 8. It response to Tr
queries of P via the simulator. In a Ch(l, c) query, the game ensures that c 6= cl, so P’s output
immediately allows the extractor to obtain the secret key. The second claim follows from the first
and Part 1. of Proposition 1.

Obtaining CIMP-CU. CIMP-CU security of Sigma protocols can also be established under their
key recovery security, but the reduction is not tight.

Theorem 3 Let ID be an identification scheme that is honest verifier zero-knowledge and ex-
tractable. For any adversary P against CIMP-CU making q queries to its Ch oracle, we construct
a key recovery adversary I such that

Advcimp-cu
ID (P) ≤ q

(√
Advkr

ID(I) +
1

2ID.cl

)
. (3)

The running time of I is about twice that of P.

To establish Theorem 3, our route will be via standard techniques and known results, and the
proof can be found for completeness in Appendix A. Lemma 12 relates CIMP-CU security of ID
to IMP-PA, the standard security against impersonation under passive attack as formalized in [1].
(IMP-PA is exactly CIMP-CU restricted to adversaries that make only one Ch query.) Lemma 13
relates IMP-PA security to key recovery using the reset lemma of [6] and the extractability property
of ID. Together these yield CIMP-CU security.

Obtaining CIMP-CC. This is our strongest notion, and is quite different from the rest. Sigma pro-
tocols will fail to achieve CIMP-CC because an HVZK identification scheme cannot be CIMP-CC-
secure. The attack (adversary) P showing this is as follows. Assuming ID is HVZK, our adversary
P, given the verification key ivk, runs the simulator to get a transcript Y ‖c‖z←$ ID.Sim(ivk). It
makes no Tr queries, so the set S in the game is empty. It then makes query Ch(Y, c) and returns
(1, z) to achieve Advcimp-cc

ID (P) = 1.
This doesn’t mean CIMP-CC is unachievable. We now show how to achieve it. Our construction

is from a UF digital signature scheme DS. Associate to DS and a challenge length l the identification
scheme ID defined as follows. It has challenge length ID.cl = l. Key generation algorithm ID.Kg
lets (vk, sk)←$ DS.Kg and returns (vk, sk, ε). The commitment is empty, meaning ID.Ct(ivk)
returns (ε, ε). The response is a signature of the challenge, meaning ID.Rp(vk, sk, c, ε) returns
z←$ DS.Sig(vk, sk, c). This identification scheme is trivially trapdoor, ID.Ct−1(vk, ε, ε) returning
ε. It is CIMP-CC assuming DS is UF and the challenge length l is large enough, with a tight
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DS∗.Kg

Return DS.Kg

DS∗.Vf (vk,m, σ)

Return DS.Vf (vk,m, σ)

DS∗.SigH(vk, sk,m)

r ← H(sk‖m)
Return DS.Sig(vk, sk,m; r)

DS∗.Kg

Return DS.Kg

DS∗.Vf (vk,m, σ∗)

σ‖s← σ∗

Return DS.Vf (vk,m‖s, σ′)

DS∗.Sig(vk, sk,m)

s←$ {0, 1}sl
σ←$ DS.Sig(vk, sk,m‖s)
σ∗ ← σ‖s ; Return σ∗

Figure 9: Left: Our construction of deterministic signature scheme DS∗ = DR[DS] from a sig-
nature scheme DS. By H(·) we denote H(·, {0, 1}DS.rl), which has range {0, 1}DS.rl. Right: Our
construction of added-randomness signature scheme DS∗ = AR[DS, sl] from a signature scheme DS
and a seed length sl ∈ N.

reduction. More precisely, given adversary P making qt queries to its Tr oracle and qc queries
to its Ch oracle, we can build adversary A such that Advcimp-cc

ID (P) ≤ Advuf
DS(A) + qtqc · 2−l.

Adversary A makes qt queries to its Sign oracle and has about the same running time as P.
While this shows CIMP-CC is achievable, and even under standard assumptions, it is not of

help for us, since we want to obtain signature schemes from identification schemes and if the latter
are themselves built from a signature scheme then nothing has been gained. We consider CIMP-CC
nonetheless because our framework naturally gives rise to it and we wish to see the full picture,
and also because there may be other ways to achieve CIMP-CC.

5 From UUF to UF

Some of our transforms of identification schemes into signature schemes naturally achieve UUF
security rather than UF security. To achieve the latter, one can take our UUF schemes and apply
the transforms in this Section to turn them into UF schemes. The reductions are tight and the
costs are low. First we observe that standard derandomization (removing randomness) has the
additional benefit (apparently not noted before) of turning UUF into UF. Second, we show that
message randomization (adding randomness) is also a natural solution.

5.1 From UUF to UF by removing randomness

It is standard to derandomize a signing algorithm by obtaining the coins as a hash of the message
and a secret key. This has been shown to preserve UF security —meaning, if the starting scheme
is UF-secure, so is the derandomized scheme— in some cases. This is true if one uses a PRF as
the hash function with the PRF key added to the signing secret key [31], but this changes the
signing key, which can be undesirable in practice. Instead one can hash the signing key with the
message, modeling the hash function as a random oracle. This has been proven to work for certain
particular choices of the starting signature scheme, namely when this scheme is ECDSA [25]. Such
de-randomization is used in the Ed25519 signature scheme [11]. However, it has not been proven
in the general case. This will follow from our results.

The purpose of the method, above, was exactly to derandomize, namely to ensure that the
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signing process is deterministic, and the starting signature scheme was assumed UF-secure. We
observe here that the method has an additional benefit which does not seem to have been noted
before, namely that it works even if the starting scheme is only UUF secure, meaning it upgrades
UUF security to UF security. It is an attractive way to do this because it preserves signature
size and verification time, while adding to the signing time only the cost of one hash. We specify
a derandomization transform and prove that that it turns UUF schemes into UF ones in general,
meaning assuming nothing more than UUF security of the starting scheme. In particular, we justify
derandomization in a broader context than previous work.

The construction. For a signature scheme DS, let DS.rl denote the length of the randomness
(number of coins) used by the signing algorithm DS.Sig. We write σ ← DS.Sig(vk, sk,m; r) for
the execution of DS.Sig on inputs vk, skm and coins r ∈ {0, 1}DS.rl. Let signature scheme DS∗ =
DR[DS] be obtained from DS as in Fig. 9. Here, the H(·) used to compute r in algorithm DS∗.Sig
is H(·, {0, 1}DS.rl), meaning the range is set to {0, 1}DS.rl.

While algorithms of the starting scheme DS may invoke the random oracle (and, in the schemes
we construct in Section 6, they do), it is assumed they do not invoke H(·, {0, 1}DS.rl). This can be
ensured in a particular case by domain separation. Given this, other calls of the algorithms of the
starting scheme to the random oracle can be simulated directly in the proof via the random oracle
available to the constructed adversaries. Accordingly in the scheme description of Fig. 9, and proof
below, for simplicity, we do not give the algorithms of the starting signature scheme access to the
random oracle. That is, think of the starting scheme as being a standard-model one.

Unforgeability. The following says that the constructed scheme DS∗ is UF-secure assuming the
starting scheme DS was UUF secure, with a tight reduction. The reason a deterministic scheme
that is UUF is also UF is clear, namely there is nothing to gain by calling the signing oracle more
than once on a particular message, because one just gets back the same thing each time. What
the proof needs to ensure is that the method of making the scheme deterministic does not create
any weaknesses. The danger is that including the secret key as an input to the hash increases the
exposure of the key. The proof says that it might a little, but the advantage does not go up by
more than a factor of two.

Theorem 4 Let signature scheme DS∗ = DR[DS] be obtained from signature scheme DS as in
Fig. 9. Let A be a UF-adversary against DS∗ that makes qh queries to H and qs queries to Sign.
Then from A we can construct UUF-adversary A such that

Advuf
DS∗(A) ≤ 2 ·Advuuf

DS (A) . (4)

Adversary A makes qs queries to Sign. It has running time about that of A plus the time for qh
invocations of DS.Sig and DS.Vf.

Proof: Game G0 of Fig. 10 includes the boxed code, while game G1 does not. We assume (wlog)
that A does not repeat a query to its H oracle. We assume the message m in the forgery (m,σ)
returned by A was not queried to Sign. Game G0 is equivalent to the UF game of Fig. 2 with the
algorithms of DS∗ plugged in. Games G0,G1 are identical until bad. By the Fundamental Lemma
of Game Playing [10] we have

Advuf
DS∗(A) = Pr[G0] = Pr[G1] + (Pr[G0]− Pr[G1]) ≤ Pr[G1] + Pr[G1 sets bad] .

We construct adversaries A0,A1 such that

Pr[G1] ≤ Advuuf
DS (A1) and Pr[G1 sets bad] ≤ Advuuf

DS (A0) .
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Game G0 , G1

M ← ∅
(vk, sk)←$ DS.Kg

(m,σ)←$ASign,H
(vk)

Return DS.Vf (vk,m, σ)

Sign(m)

If m ∈M : Return ST[m]
r←$ {0, 1}DS.rl

If HT[sk,m]:
bad← true ; r ← HT[sk,m]

HT[sk,m]← r
σ ← DS.Sig(vk, sk,m; r)
ST[m]← σ ; M ←M ∪ {m}
Return σ

H(x)

sk∗‖m← x ; r←$ {0, 1}DS.rl

If HT[sk∗,m]:
bad← true ; r ← HT[sk∗,m]

HT[sk∗,m]← r
Return HT[sk∗,m]

Adversary ASign
0 (vk)

S ← ∅ ; (m,σ)←$ASign∗,H∗

(vk)
Pick some m∗ 6∈M
For sk∗ ∈ S do
σ∗←$ DS.Sig(vk, sk∗,m∗)
If DS.Vf (vk,m∗, σ∗): Return (m∗, σ∗)

Return ⊥

Adversary ASign
1 (vk)

S ← ∅ ; (m,σ)←$ASign∗,H∗

(vk)
Return (m,σ)

Sign∗(m)

If m 6∈M : ST[m]←$ Sign(m)
Return ST[m]

H∗(x)

sk∗‖m← x ; S ← S ∪ {sk∗}
HT[sk∗,m]←$ {0, 1}DS.rl

Return HT[sk∗,m]

Figure 10: Games and adversaries for proof of Theorem 4.

The adversaries are shown in Fig. 10. They have access to a Sign oracle for the DS scheme.
They do not have access to H because of our simplifying assumption that DS is a standard-model
scheme. They execute A, responding to H and Sign queries of the latter via the shown procedures
H∗ and Sign∗, respectively. These procedures are subroutines in the code of A0 and A1, and both
incorporate and use them. Procedure Sign∗ ensures that the adversaries are uuf, meaning do not
submit a particular message twice to their own Sign oracle that is invoked by Sign∗. Adversary
A1 simulates for A the environment of game G1 and returns the forgery that A returns. Adversary
A0 also simulates for A the environment of game G1. The code of H∗ records all candidate secret
keys. At the end, A0 attempts a forgery under each of them, returning one that is successful. In
G1, we claim that if bad is set, either by Sign or by H, it must be that there was a H query of the
form sk‖m for some m. To justify this, consider two cases. First, if bad is set by Sign, it could
only be because of a prior H query of the form sk‖m. Second, consider bad being set by H. We
have assumed that A does not repeat a query to H. Thus, if a query sk∗‖m to H sets bad, it must
be that HT[sk∗,m] was defined by Sign, in which case it must be that sk∗ = sk. Thus if G1 sets
bad then sk ∈ S, so A0 is successful. Finally we define ASign(vk) to pick a random bit c←$ {0, 1}
and return ASign

c (vk). This means

Advuuf
DS (A0) + Advuuf

DS (A1) = 2 ·Advuuf
DS (A) ,

which completes the proof.

We remark that adversary A0 actually violates key recovery security of DS, not just its UUF
security.
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Game G0, G1

S ← ∅
(vk, sk)←$ DS.Kg

(m,σ∗)←$ASign
(vk)

σ‖s← σ∗

Return DS.Vf (vk,m‖s, σ)

Sign(m)

s←$ {0, 1}sl
σ←$ DS.Sig(vk, sk,m‖s)
σ∗ ← σ‖s
If m‖s ∈ S then:
bad← true ; σ∗ ← ⊥

S ← S ∪ {m‖s}
Return σ∗

Adversary ASign(vk)

S ← ∅ ; (m,σ∗)←$ASign∗

(vk)
σ‖s← σ∗

Return DS.Vf (vk,m‖s, σ)

Sign∗(m)

s←$ {0, 1}sl
σ←$ Sign(m‖s)
σ∗ ← σ‖s
Return σ∗

Figure 11: Games and adversaries for proof of Theorem 5.

5.2 From UUF to UF by adding randomness

A complementary and natural method for constructing UF signatures from UUF ones is by adding
randomness: before being signed, the message is concatenated with a random seed s, so even for
the same message, the inputs to the UUF signing algorithm are (with high probability) distinct.
Compared to derandomization, the drawback of this method is that the signature size increases
because the seed must be included in the signature. The potential advantage is that the transform
is standard model, not using a random oracle, while preserving the secret key. (Derandomization
can be done in the standard model via a PRF, but this requires augmenting the signing key with
the PRF key.)

The construction. Let signature scheme DS∗ = DR[DS] be obtained from DS as in Fig. 9. As
above, DS is for simplicity assumed to be a standard-model scheme, so that its algorithms do not
have access to H. The transform itself does not use H.

Unforgeability. The following says that the constructed scheme DS∗ is UF-secure assuming the
starting scheme DS was UUF secure, with a tight reduction. The reason is quite simple, namely
that unless seeds collide, the messages being signed are distinct.

Theorem 5 Let signature scheme DS∗ = AR[DS, sl] be obtained from signature scheme DS and
seed length sl ∈ N as in Fig. 9. Let A be a UF-adversary against DS∗ making qs queries to its Sign
oracle. Then from A we construct a UUF adversary A such that

Advuf
DS∗(A) ≤ Advuuf

DS (A) +
q2s

2sl+1
.

Adversary A makes qs queries to its Sign oracle and has about the same running time as A.

Proof of Theorem 5: Game G1 of Fig. 11 includes the boxed code, while game G0 does not.
Game G0 is equivalent to the UF game of Fig. 2 with the algorithms of DS∗ plugged in. We assume
the message m in the forgery (m,σ) returned by A was not queried to Sign. Games G0,G1 are
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DS.KgH

(ivk, isk, itk)←$ ID.Kg
vk ← ivk ; sk ← (isk, itk)
Return (vk, sk)

DS.VfH(vk,m, σ)

ivk ← vk ; (c, z)← σ
Y ← H(m)
Return ID.Vf(ivk, Y ‖c‖z)

DS.SigH(vk, sk,m)

ivk ← vk ; (isk, itk)← sk
Y ← H(m)
y←$ ID.Ct−1(ivk, itk, Y )
c←$ {0, 1}ID.cl

z ← ID.Rp(ivk, isk, c, y)
σ ← (c, z)
Return σ

Figure 12: The construction of signature scheme DS = MdCmt[ID] from trapdoor identification
scheme ID. By H(·) we denote H(·, ID.CS(ivk)).

identical until bad. By the Fundamental Lemma of Game Playing [10] we have

Advuf
DS∗(A) = Pr[G0] = Pr[G1] + (Pr[G0]− Pr[G1]) ≤ Pr[G1] + Pr[G0 sets bad]

≤ Pr[G1] +
q2s

2sl+1
.

We construct adversary A such that

Pr[G1] ≤ Advuuf
DS (A) .

Adversary A is shown in Fig. 11. It has access to a Sign oracle for the DS scheme. It executes
A, responding to Sign queries of the latter via the shown procedure Sign∗. This procedure is a
subroutine in the code of A. In the execution of game Guuf

DS (A), if A repeats a query to Sign, the
reply will be ⊥. This means that A is providing A the environment of G1.

6 Signatures from identification

We specify our three new transforms of identification schemes to signature schemes, namely the
ones of rows 2,3,4 of the table of Fig. 1. In each case, we give a security proof based on the
assumption Pid listed in the 1st column of the corresponding row of the table, so that we give
transforms from CIMP-UC,CIMP-UU and CIMP-CC. It turns out that these transforms naturally
achieve UUF rather than UF, and this is what we prove, with tight reductions of course. The
transformation UF→UUF can be done at the level of signatures, not referring to identification,
in generic and simple ways, and also with tight reductions, as detailed in Section 5. We thus get
UF-secure signatures with tight reductions to each of CIMP-UC,CIMP-UU and CIMP-CC.

6.1 From CIMP-UC identification to UUF signatures: MdCmt

MdCmt transforms a CIMP-UC trapdoor identification scheme to a UUF signature scheme using
message-dependent commitments.

The construction. Let ID be a trapdoor identification scheme and ID.cl its challenge length. Our
MdCmt (message-dependent commitment) transform associates to ID the signature scheme DS =
MdCmt[ID]. The algorithms of DS are defined in Fig. 12. By H(·) we denote H(·, ID.CS(ivk)),
meaning the range is set to ID.CS(ivk). Signatures are effectively identification transcripts, but the
commitments are chosen in a particular way. Recall that with trapdoor ID schemes it is the same
whether one executes (Y, y)←$ ID.Ct directly, or samples Y ←$ ID.CS(ivk) followed by computing
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Adversary PTr,Ch(ivk)

M ← ∅ ; i← 0
(m,σ)←$ASign,H(ivk)
Y ← H(m)
(c, z)← σ ; l← ST[m]
c′ ← Ch(l, c) // c′ = c
Return (1, z)

Sign(m) // P
If m ∈M : Return ⊥
Y ← H(m)
l← ST[m] ; σ ← (cl, zl)
M ←M ∪ {m} ; Return σ

H(m) // P
If HT[m]: Return HT[m]
i← i+ 1 ; ST[m]← i
Yi‖ci‖zi←$ Tr()
HT[m]← Yi
Return HT[m]

Figure 13: CIMP-UC adversary for proof of Theorem 6.

y←$ ID.Ct−1(Y ). Our construction exploits this: To each message m it assigns an individual
commitment Y ← H(m). The signing algorithm, using the trapdoor, completes this commitment
to a transcript (Y, c, z) and outputs the pair c, z as the signature. Verification then consists of
recomputing Y from m and invoking the verification algorithm of the ID scheme.

Unforgeability. The following theorem establishes that the (unique) unforgeability of a signature
scheme constructed with MdCmt tightly reduces to the CIMP-UC security of the underlying ID
scheme, in the random oracle model.

Theorem 6 Let signature scheme DS = MdCmt[ID] be obtained from trapdoor identification
scheme ID as in Fig. 12. Let A be a UUF-adversary against DS. Suppose the number of queries
that A makes to its H and Sign oracles are qh and qs, respectively. Then from A we construct a
CIMP-UC adversary P such that

Advuuf
DS (A) ≤

Advcimp-uc
ID (P)

1− 2−ID.cl
. (5)

Adversary P makes qh + qs + 1 queries to Tr and one query to Ch. Its running time is about that
of A.

The bound of Equation (5) may be a bit hard to estimate. The following simpler bound is also
true and may be easier to use:

Advuuf
DS (A) ≤ Advcimp-uc

ID (P) +
1

2ID.cl
. (6)

We now explain why Equation (5) implies Equation (6) and also compare the bounds. For nota-
tional ease let p = Advcimp-uc

ID (P) and ε = 2−ID.cl. Then consider two cases. First, if p ≥ 1− ε then
the right side of Equation (6) is at least 1 so the equation is trivially true. Now suppose p ≤ 1− ε.
This means p/(1− ε) ≤ 1. Then from Equation (5) we have

Advuuf
DS (A) ≤ p

1− ε
=
p(1− ε) + pε

1− ε
= p+ ε · p

1− ε
≤ p+ ε ,

which establishes Equation (6). Now, to compare, although both bounds hold, Equation (5) will
be better when p is small, specifically, p < 1− ε. But this is usually the case since otherwise we are
not indicating much security.
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Proof of Theorem 6: Adversary P is shown in Fig. 13. It executes A, responding to H and
Sign queries of the latter via the shown procedures, which are subroutines in the code of P. For
each H query, it uses its Tr oracle to generate a transcript, assigning the commitment from this
transcript as the answer to the query. The reason for the “Y ← H(m)” statements in the code of
Sign and following the execution of A is to ensure that the value of H(m) is assigned. We assume
the message m in the forgery (m,σ) returned by A was not queried to Sign and is not in the
set M , since otherwise A would automatically lose. Adversary P identifies the transcript index l
corresponding to the forgery message, and calls its Ch oracle with this l and the challenge c in the
forged signature. The Ch oracle will assign this session identifier j = 1 and now P can provide the
response as per the forged signature. Adversary A wins if the forgery is successful and c 6= cl. The
events being independent we have

Advcimp-uc
ID (P) ≥ (1− 2−ID.cl) ·Advuuf

DS (A) .

Transposing terms yields Equation (5).

6.2 From CIMP-UU identification to UUF signatures: MdCmtCh

MdCmtCh transforms a CIMP-UU trapdoor identification scheme to a UUF signature scheme
using message-dependent commitments and challenges.

The construction. Our MdCmtCh (message-dependent commitment and challenge) transform
associates to trapdoor identification scheme ID the signature scheme DS = MdCmtCh[ID] whose
algorithms are defined in Fig. 14. Here we specify the commitment Y as a hash of the message
alone, then use the trapdoor property to allow our signer to obtain y←$ ID.Ct−1(ivk, itk, Y ). We
then specify the challenge as a randomized hash of the message. (Unlike in the FS transform, the
commitment is not hashed along with the message.) The randomization is captured by a one-bit
seed s. The construction, and proof below, both use the technique of KW [23].

By H1(·) we denote random oracle H(·, ID.CS(ivk)) with range ID.CS(ivk) and by H2(·) we
denote random oracle H(·, {0, 1}ID.cl) with range {0, 1}ID.cl. We assume ID.CS(ivk) 6= {0, 1}ID.cl so
that these random oracles are independent. In case ID.CS(ivk) = {0, 1}ID.cl, the scheme should be
modified to use domain separation, for example prefix a 1 to any query to H1 and a 0 to any query
to H2.

Notice that the signature consists of a response plus a bit. It is thus shorter than for MdCmt
(where it is a response plus a challenge) or for FS (where it is a response plus a commitment or, in
the more compact form, a response plus a challenge). These shorter signatures are a nice feature
of MdCmtCh.

Unforgeability of our construction. The following shows that unique unforgeability of
our signature tightly reduces to the CIMP-UU security of the underlying ID scheme. Standard
unforgeability follows immediately (and tightly) by applying one of the UUF-to-UF transforms in
Section 5.

Theorem 7 Let signature scheme DS = MdCmtCh[ID] be obtained from trapdoor identification
scheme ID as in Fig. 14. Let A be a UUF-adversary against DS. Suppose the number of queries
that A makes to its H1 and H2 oracles is qh, and the number to its Sign oracle is qs. Then from
A we can construct CIMP-UU adversary P such that

Advuuf
DS (A) ≤ 2 ·Advcimp-uu

ID (P) . (7)

Adversary P makes qh + qs + 1 queries to Tr and qh + qs queries to Ch. It has running time about
that of A.
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DS.KgH

(ivk, isk, itk)←$ ID.Kg
vk ← ivk ; sk ← (isk, itk)
Return (vk, sk)

DS.VfH(vk,m, σ)

ivk ← vk ; (z, s)← σ
Y ← H1(m)
c← H2(m‖s)
Return ID.Vf(ivk, Y ‖c‖z)

DS.SigH(vk, sk,m)

s←$ {0, 1}
ivk ← vk ; (isk, itk)← sk
Y ← H1(m)
y←$ ID.Ct−1(ivk, itk, Y )
c← H2(m‖s)
z ← ID.Rp(ivk, isk, c, y)
σ ← (z, s) ; Return σ

Figure 14: Our construction of signature scheme DS = MdCmtCh[ID] from a trapdoor identifica-
tion scheme ID. By H1(·) we denote random oracle H(·, ID.CS(ivk)) with range ID.CS(ivk) and by
H2(·) we denote random oracle H(·, {0, 1}ID.cl) with range {0, 1}ID.cl.

Adversary PTr,Ch(ivk)

vk ← ivk ; i← 0 ; M ← ∅
(m,σ)←$ASign,H(vk)
(z, s)← σ
Y ← H1(m)
j ← Ind(m)
Return (j, z)

Sign(m) // P
If m ∈M : Return ⊥
M ←M ∪ {m}
Y ← H1(m) ; l← Ind(m)
σ ← (zl, sl) ; Return σ

H1(m) // P
If HT1[m]: Return HT1[m]
i← i+ 1 ; Yi‖ci‖zi←$ Tr()
HT1[m]← Yi ; Ind(m)← i
si←$ {0, 1} ; HT2[m‖si]← ci
HT2[m‖si]←$ Ch(i)
Return HT1[m]

H2(x) // P
If HT2[x]: Return HT2[x]
m‖s← x ; Y ← H1(m)
Return HT2[x]

Figure 15: Adversary for proof of Theorem 7.

Proof of Theorem 7: Adversary P is shown in Fig. 15. It executes A, responding to H1, H2 and
Sign queries of the latter via the shown procedures, which are subroutines in the code of P. (Recall
that H1(·) denotes H(·, ID.CS(ivk)) and H2(·) denotes H(·, {0, 1}ID.cl).) We assume the message m
in the forgery (m,σ) returned by A was not queried to Sign and is not in the set M , since otherwise
A would automatically lose. The “Y ← H1(m)” instructions in the code of Sign, the code of H2

and following the execution of A ensure that H1(m) is queried at this point. Each time a new
H1(m) query is made, a transcript is generated by P using its Tr oracle. The commitment in this
transcript is the reply to the H1(m) query. Additionally, however, steps are taken to ensure that,
if, later, a Sign(m) query is made, then a signature to return is available. This is done by picking
a random one-bit seed si and assigning H2(m‖si) the value ci. At the time of a signing query, one
can use si as the seed and use the response of the corresponding transcript to create the signature.
To be able to win via the forgery, H2(m‖si) is assigned a challenge via Ch, where si denotes the
complement of the bit si. Now, when the forgery (m, (z, s)) is obtained from A, the associated
index j is computed, and then z is returned as a response for that session. Adversary P will be
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DS.KgH

(ivk, isk, itk)←$ ID.Kg
vk ← ivk ; sk ← isk
Return (vk, sk)

DS.VfH(vk,m, σ)

ivk ← vk ; (Y, s, z)← σ
c← H(m‖s)
Return ID.Vf(ivk, Y ‖c‖z)

DS.SigH(vk, sk,m)

ivk ← vk ; isk ← sk
s←$ {0, 1}sl
(Y, y)←$ ID.Ct(ivk)
c← H(m‖s)
z ← ID.Rp(ivk, isk, c, y)
σ ← (Y, s, z)
Return σ

Figure 16: The construction of signature scheme DS = MdCh[ID, sl] from identification scheme ID
and seed length sl. By H(·) we denote random oracle H(·, {0, 1}ID.cl) with range {0, 1}ID.cl.

successful as long as A is successful and s = sj . The events being independent we have

Advcimp-uu
ID (P) ≥ 1

2
·Advuuf

DS (A) .

Transposing terms yields Equation (7).

6.3 From CIMP-CC identification to UF signatures: MdCh

The MdCmt and MdCmtCh transforms described above rely on the trapdoor property of the
underlying identification scheme and achieve UUF rather than UF. The MdCh transform we
describe here does not have these limitations. (It does not require the identification scheme to be
trapdoor, and it directly achieves UF.) However, amongst the security notions for ID schemes that
we defined, MdCh assumes the strongest one: CIMP-CC.

The construction. Our MdCh (message-dependent challenge) transform associates to iden-
tification scheme ID and a seed length sl ∈ N the signature scheme DS = MdCh[ID, sl] whose
algorithms are defined in Fig. 16. Signing picks the commitment directly rather than (as in our
prior transforms) specifying it as the hash of the message. The challenge is derived as a randomized
hash of the message, the randomization is captured by the seed s whose length sl is a parameter of
the transform. By H(·) we denote random oracle H(·, {0, 1}ID.cl) with range {0, 1}ID.cl.

Unforgeability. As we prove below (with tight reduction), the MdCh construction yields a
UF-secure signature scheme if the underlying identification scheme offers CIMP-CC security.

Theorem 8 Let signature scheme DS = MdCh[ID, sl] be obtained from identification scheme ID
and seed length sl ∈ N as in Fig. 16. Let A be a UF-adversary against DS making qh queries to its
H oracle and qs queries to its Sign oracle. Then from A we construct a CIMP-CC adversary P
such that

Advuf
DS(A) ≤ Advcimp-cc

ID (P) +
qhqs
2ID.cl

+
(qh + qs)qs

2sl
. (8)

Adversary P makes qs queries to Tr and one query to Ch and has running time about that of A.

Proof of Theorem 8: Game G0 of Fig. 17 includes the boxed code, while game G1 does not.
Game G0 is precisely the UF game of Fig. 2 with the algorithms of DS plugged in. We assume
the message m in the forgery (m,σ) returned by A was not queried to Sign. Games G0,G1 are
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Game G0 , G1

(ivk, isk, itk)←$ ID.Kg
(m,σ)←$ASign,H(ivk)
(Y, s, z)← σ
c← H(m‖s)
Return ID.Vf(ivk, Y ‖c‖z)
Sign(m)

s←$ {0, 1}sl
(Y, y)←$ ID.Ct(ivk)
c←$ {0, 1}ID.cl

If HT[m, s]:
bad← true ; c← HT[m, s]

HT[m, s]← c
z ← ID.Rp(ivk, isk, c, y)
σ ← (Y, s, z)
Return σ

H(x)

m‖s← x
If not HT[m, s]: HT[m, s]←$ {0, 1}ID.cl

Return HT[m, s]

Adversary PTr,Ch(ivk)

(m,σ)←$ASign,H(ivk)
(Y, s, z)← σ
c← H(m‖s)
c′ ← Ch(Y, c) // c′ = c
Return (1, z)

Sign(m)

s←$ {0, 1}sl
Y ‖c‖z←$ Tr()
HT[m, s]← c
σ ← (Y, s, z)
Return σ

H(x)

m‖s← x
If not HT[m, s]: HT[m, s]←$ {0, 1}ID.cl

Return HT[m, s]

Figure 17: Games and adversary for proof of Theorem 8.

identical until bad. By the Fundamental Lemma of Game Playing [10] we have

Advuf
DS(A) = Pr[G0] = Pr[G1] + (Pr[G0]− Pr[G1]) ≤ Pr[G1] + Pr[G1 sets bad]

≤ Pr[G1] +
(qh + qs)qs

2sl
.

Adversary P of Fig. 17 executes A, responding to H and Sign queries of the latter via the shown
procedures, which are subroutines in the code of P. (Recall that H(·) denotes H(·, {0, 1}ID.cl).)
Adversary P simulates for A the environment of game G1. In the execution of game Gcimp-cc

ID (P)
of Fig. 4, let B denote the event that (Y, c) ∈ S, where Y, c is the argument to the single Ch query
made by our P. Then

Pr[G1] ≤ Advcimp-cc
ID (P) + Pr[B] .

To complete the proof, it suffices to show that

Pr[B] ≤ qhqs
2ID.cl

.

We bound Pr[B] by the probability that c is a challenge in one of the transcripts. The message
m in the forgery is assumed not one of those signed so HT[m‖s] was not set by Sign and is thus
independent of the transcript challenges. There are at most qs transcript challenges and at most
qh queries to H, so Pr[B] ≤ qhqs/2ID.cl.

6.4 From CIMP-CU identification to UF signatures: FS

The first proofs of UF-security of FS-based signatures used a Forking Lemma and were quite
complex [34]. More modular approaches were given in OO [32] and AABN [1]. AABN reduce
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DS.KgH

(ivk, isk, itk)←$ ID.Kg
vk ← ivk ; sk ← isk
Return (vk, sk)

DS.VfH(vk,m, σ)

ivk ← vk ; (Y, z)← σ
c← H(Y ‖m)
Return ID.Vf(ivk, Y ‖c‖z)

DS.SigH(vk, sk,m)

ivk ← vk ; isk ← sk
(Y, y)←$ ID.Ct(ivk)
c← H(Y ‖m)
z ← ID.Rp(ivk, isk, c, y)
σ ← (Y, z)
Return σ

Figure 18: The construction of signature scheme DS = FS[ID] from identification scheme ID. By
H(·) we denote random oracle H(·, {0, 1}ID.cl) with range {0, 1}ID.cl.

UF-security of the signature scheme to IMP-PA security of the identification scheme. (The latter
is established separately via the Reset Lemma of [6].) The reduction of AABN is not tight.

Our framework allows a tight reduction of the UF security of FS-based signatures to the
CIMP-CU-security of the underlying identification scheme. The reason for this is simple, namely
that CIMP-CU is the multi-impersonation version of IMP-PA. The proof is implicit in AABN [1].
We give a proof however for completeness and to illustrate how much simpler this proof is to prior
ones.

We note that this tighter reduction does not change overall tightness. That is, in AABN,
Psig→Pid was not tight, while for us, it is, but the tightness of the overall Psig→Palg reduction
remains the same in both cases.

The construction. The FS transform [17] associates to identification scheme ID the signature
scheme DS = FS[ID] whose algorithms are defined in Fig. 18. Signing picks the commitment
directly. The challenge is derived as a hash of the commitment and message. By H(·) we denote
random oracle H(·, {0, 1}ID.cl) with range {0, 1}ID.cl.

Unforgeability. The following theorem says that the FS construction yields a UF-secure sig-
nature scheme if the underlying ID scheme offers CIMP-CU security and the commitment (as
generated by the prover) is uniformly distributed over a large space. The latter condition is true
for typical identification schemes. The intuition of the proof is that signing queries are answered
via transcripts and hash queries are mapped to challenge queries, this failing only if commitments
collide.

Theorem 9 Let signature scheme DS = FS[ID] be obtained from identification scheme ID as in
Fig. 18. Assume that for all ivk the distribution of Y induced by (Y, y)←$ ID.Ct(ivk) is uniform
over ID.CS(ivk). Let ID.CSS = min{ |ID.CS(ivk)| : (ivk, isk, itk) ∈ [ID.Kg] }. Let A be a UF-
adversary against DS making qh queries to its H oracle and qs queries to its Sign oracle. Then
from A we construct a CIMP-CU adversary P such that

Advuf
DS(A) ≤ Advcimp-cu

ID (P) +
qs(2qh + qs − 1)

2 · ID.CSS
. (9)

Adversary P makes qs queries to Tr and qh + 1 queries to Ch and has running time about that
of A.

Proof of Theorem 9: Game G0 of Fig. 19 includes the boxed code, while game G1 does not.
Game G0 is precisely the UF game of Fig. 2 with the algorithms of DS plugged in. We assume
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Game G0 , G1

(ivk, isk, itk)←$ ID.Kg
(m,σ)←$ASign,H(ivk)
(Y, z)← σ
c← H(Y ‖m)
Return ID.Vf(ivk, Y ‖c‖z)
Sign(m)

(Y, y)←$ ID.Ct(ivk)
c←$ {0, 1}ID.cl

If HT[Y,m]:
bad← true ; c← HT[Y,m]

HT[Y,m]← c
z ← ID.Rp(ivk, isk, c, y)
σ ← (Y, z)
Return σ

H(x)

Y ‖m← x
If not HT[Y,m]: HT[Y,m]←$ {0, 1}ID.cl

Return HT[Y,m]

Adversary PTr,Ch(ivk)

j ← 0
(m,σ)←$ASign,H(ivk)
(Y, z)← σ
c← H(Y ‖m)
k ← Ind(Y,m)
Return (k, z)

Sign(m)

Y ‖c‖z←$ Tr()
HT[Y,m]← c
σ ← (Y, z)
Return σ

H(x)

Y ‖m← x
If HT[Y,m]: Return HT[Y,m]
j ← j + 1 ; Ind(Y,m)← j
HT[Y,m]←$ ←$ Ch(Y )
Return HT[Y,m]

Figure 19: Games and adversary for proof of Theorem 9.

the message m in the forgery (m,σ) returned by A was not queried to Sign. Games G0,G1 are
identical until bad. By the Fundamental Lemma of Game Playing [10] we have

Advuf
DS(A) = Pr[G0] = Pr[G1] + (Pr[G0]− Pr[G1]) ≤ Pr[G1] + Pr[G1 sets bad] .

We assumed that for all ivk the distribution of Y induced by (Y, y)←$ ID.Ct(ivk) is uniform over
ID.CS(ivk). This implies that

Pr[G1 sets bad] ≤
qs−1∑
i=0

qh + i

ID.CSS
=
qsqh + qs(qs − 1)/2

ID.CSS
=
qs(2qh + qs − 1)

2 · ID.CSS
.

Now consider adversary P of Fig. 19. It executes A, responding to H and Sign queries of the
latter via the shown procedures, which are subroutines in the code of P. (Recall that H(·) denotes
H(·, {0, 1}ID.cl).) Adversary P simulates for A the environment of game G1. When A queries Y ‖m
to H, adversary P calls Ch on Y and returns the resulting challenge as the answer to the H query.
When P obtains A’s forgery (m, (Y, z)), it looks up the partial transcript corresponding to Y,m
and offers z as the corresponding response. A subtle point is that this partial transcript is defined
because m was not queried to Sign. We have

Pr[G1] ≤ Advcimp-cu
ID (P) ,

which completes the proof.

6.5 From CIMP-UC identification to UF signatures: Swap

Micali and Reyzin [29] use the term “swap” for a specific construction of a signature scheme that
they give with a tight reduction to the hardness of factoring. Folklore, and hints in the literature [2],

28



DS.KgH

(ivk, isk, itk)←$ ID.Kg
vk ← ivk ; sk ← (isk, itk)
Return (vk, sk)

DS.VfH(vk,m, σ)

ivk ← vk ; (c, z)← σ
Y ← H(m‖c)
Return ID.Vf(ivk, Y ‖c‖z)

DS.SigH(vk, sk,m)

ivk ← vk ; (isk, itk)← sk
c←$ {0, 1}ID.cl

Y ← H(m‖c)
y←$ ID.Ct−1(ivk, itk, Y )
z ← ID.Rp(ivk, isk, c, y)
σ ← (c, z) ; Return σ

Figure 20: The construction of signature scheme DS = Swap[ID] from a trapdoor identification
scheme ID. By H(·) we denote H(·, ID.CS(ivk)).

indicate that researchers understand the method is more general. But exactly how general was
not understood or determined before, perhaps for lack of definitions. Our definition of trapdoor
identification and the CIMP-XY framework allows us to fill this gap and give a characterization of
the swap method and also better understand it.

In this Section we define a transform of trapdoor identification schemes to signature schemes
that we call Swap (cf. Fig. 20). We show that it yields UF-signature signatures if the identification
scheme is CIMP-UC secure.

The construction. The Swap transform associates to trapdoor identification scheme ID the
signature scheme DS = Swap[ID] whose algorithms are defined in Fig. 20.

Recall that in Section 6.1 we gave the MdCmt transform that constructs UUF-secure signatures
from CIMP-UC-secure identification. Further, in Section 5 we proposed two generic techniques that
convert UUF signatures to signatures with full UF security. One of the latter, AR, achieves its
goal by adding randomness to signed messages as follows: for signing m, it picks a fresh random
seed s and signs m‖s instead. The seed is included in the signature. Overall, the combination of
MdCmt with AR yields tightly secure signatures of the form (c, ID.Rp(c, ID.Ct−1(H(m, s))), s).
Swap (cf. Fig. 20) effectively, says that it is safe to choose c and s to be identical. Thus it can be
viewed as an optimization of MdCmt + AR, giving up on modularity to achieve more compact
UF secure signatures.

We note however that our MdCmtCh transform coupled with our DR UUF-to-UF transform
yields UF signatures that seem superior in every way: they are shorter (response plus a bit as
opposed to response plus a challenge), the (tight) reduction is to the weaker CIMP-UU notion, and
the efficiency is the same. Thus we would view Swap at this point as of mostly historical interest.

Unforgeability. The following theorem says that the Swap construction yields a UF-secure
signature scheme if the underlying ID scheme offers CIMP-UC security and has sufficiently large
challenge length.

Theorem 10 Let signature scheme DS = Swap[ID] be obtained from trapdoor identification scheme
ID as in Fig. 20. Let A be a UF-adversary against DS. Suppose the number of queries that A makes
to its H oracle is qh and the number of queries it makes to Sign is qs. Then from A we construct
a CIMP-UC adversary P such that

Advuf
DS(A) ≤ Advcimp-uc

ID (P) +
(qh + qs)qs + 1

2ID.cl
. (10)

Adversary P makes qh + qs + 1 queries to Tr and one query to Ch. Its running time is about that
of A.
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Game G0 , G1

(ivk, isk, itk)←$ ID.Kg ; i← 0
(m,σ)←$ASign,H(ivk)
(c, z)← σ ; Y ← H(m‖c)
Return ID.Vf(ivk, Y ‖c‖z)
Sign(m)

(Y, y)←$ ID.Ct(ivk)
c←$ {0, 1}ID.cl

If HT[m, c]:
bad← true ; Y ← HT[m, c]

HT[m, c]← Y
z ← ID.Rp(ivk, isk, c, y)
σ ← (c, z)
Return σ

H(x)

m‖c← x
If HT[m, c]: Return HT[m, c]
i← i+ 1 ; (Yi, y)←$ ID.Ct(ivk)
ci←$ {0, 1}ID.cl

zi ← ID.Rp(ivk, isk, ci, y)
HT[x]← Yi
Return HT[m, ci]

Adversary PTr,Ch(ivk)

i← 0
(m,σ)←$ASign,H(ivk)
(c, z)← σ
Y ← H(m‖c) ; l← Ind(m, c)
c′ ← Ch(l, c) // c′ = c
Return (1, z)

Sign(m)

i← i+ 1 ; Yi‖ci‖zi←$ Tr()
HT[m, ci]← Yi
σ ← (ci, zi)
Return σ

H(x)

m‖c← x
If HT[m, c]: Return HT[m, c]
i← i+ 1 ; Yi‖ci‖zi←$ Tr()
HT[x]← Yi ; Ind(m, ci)← i
Return HT[m, ci]

Figure 21: Games and adversary for the proof of Theorem 10.

Proof of Theorem 10: Game G0 of Fig. 21 includes the boxed code, while game G1 does not.
Game G0 is precisely the UF game of Fig. 2 with the algorithms of DS plugged in. We assume
the message m in the forgery (m,σ) returned by A was not queried to Sign. Games G0,G1 are
identical until bad. By the Fundamental Lemma of Game Playing [10] we have

Advuf
DS(A) = Pr[G0] = Pr[G1] + (Pr[G0]− Pr[G1]) ≤ Pr[G1] + Pr[G1 sets bad]

≤ Pr[G1] +
(qh + qs)qs

2ID.cl
.

Adversary P of Fig. 21 executes A, responding to H and Sign queries of the latter via the shown
procedures, which are subroutines in the code of P. (Recall that H(·) denotes H(·, ID.CS(ivk)).)
Adversary P simulates for A the environment of game G1. In the execution of game Gcimp-cc

ID (P) of
Fig. 4, let B denote the event that c = cl, where l, c is the argument to the single Ch query made
by our P. Then

Pr[G1] ≤ Advcimp-uc
ID (P) + Pr[B] .

To complete the proof, it suffices to show that

Pr[B] ≤ 1

2ID.cl
.

The message m in the forgery is assumed not one of those signed so HT[m‖c] was set by H and
not set or overwritten by Sign. So Pr[B] ≤ 1/2ID.cl.
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Signature scheme DS Pid Bound on Advuf
DS(A) Sig. size Equations

DR[MdCmt[ID]] CIMP-UC 2ε/(1− 2−l) k + l (4),(5),(1)

Swap[ID] CIMP-UC ε+ (qhqs + q2s + 1) · 2−l k + l (10),(1)

DR[MdCmtCh[ID]] CIMP-UU 4ε+ 4(qh + qs) · 2−l k + 1 (4),(7),(2)

FS[ID] CIMP-CU (qh + 1)(
√
ε+ 2−l) + (2qhqs + q2s)/2C k + c (9),(3)

Figure 22: UF signature schemes obtained from identification scheme ID. We show bounds
on the uf advantage of an adversary A making qh queries to H and qs queries to Sign. Here
ε = Advkr

ID(I) is the kr-advantage of an adversary I of roughly the same running time as A. By
l, c, k we denote the lengths of the challenge, commitment and response, respectively. By C we
denote the size of the commitment space. By Pid we denote the notion of identification security
used in the Psig→Pid reduction.

6.6 From identification to UF signatures: Summary

Fig. 22 puts things together. We consider obtaining a UF (not just UUF) signature scheme DS
from a given identification scheme ID via the various transforms in this paper. In the first three
rows, the identification scheme is assumed to be trapdoor. Whenever a transform achieves UUF,
we apply DR on top to get UF. We give bounds on the uf-advantage Advuf

DS(A) of an adversary A
making qh queries to H and qs queries to Sign. By l = ID.cl we denote the challenge length of ID,
and by C = ID.CSS the size of the commitment space. We show the full Psig→Palg reduction, so
that the bounds are in terms of the kr-advantage ε = Advkr

ID(I) of a kr-adversary I having about
the same running time as A. The bounds are obtained by combining the various relevant theorems,
referring to the indicated equations. We show the notion Pid of identification security used as an
intermediate point, namely Psig → Pid → Palg. Signature size is shown as a function of the size k
of a response, the challenge length l and the size c of a commitment. In summary, the bounds in
the first three rows are tight, but the transform of the third row has the added advantage of shorter
signatures and a linear (as opposed to quadratic) additive term in the bound. We do not show the
MdCh transform from CIMP-CC because the latter is not achieved by Sigma protocols. We note
that the bound for FS is that same as in [1]. (Our Psig→Pid reduction, unlike theirs, is tight, but
there is no change in the tightness of the full Psig→Palg reduction.)

7 Signatures from GQ

Our framework applies to a large number of identification schemes to turn them into signature
schemes with tight reductions. As an illustrative and canonical example, we discuss the GQ iden-
tification scheme. We show how it is a trapdoor identification scheme and discuss its security,
obtaining various signature schemes based on the one-wayness of RSA.

RSA generators. An RSA generator RSA for a modulus length k is an algorithm that returns a
tuple (N, e, d) where modulus N = pq in the range 2k−1 < N < 2k is the product of distinct, odd
primes p and q, encryption and decryption exponents e, d are in Z∗

ϕ(N) and ed ≡ 1 (mod ϕ(N)).

The OW (one-wayness) advantage of an adversary A against RSA by Advow
RSA(A) = Pr[Gow

RSA(A)]
where the game is in Fig. 23. One-wayness is the standard assumption on RSA.

GQ. Fig. 23 shows the GQ identification scheme [22] associated to RSA and a challenge length
l < k such that gcd(e, c) = 1 for all c ∈ {0, 1}l and all (N, e, d) ∈ [RSA]. The commitment space
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GQ.Kg

(N, e, d)←$ RSA
x←$ Z∗N
X ← xe mod N
Return ((N, e,X), x, d)

Prover

Input: (N, e,X), x

y←$ (ZN \ {0})
Y ← ye mod N

z ← yxc mod N

Y-
c�
z-

Verifier

Input: (N, e,X)

c←$ {0, 1}l

v ← (ze ≡ Y Xc (mod N))
∧ (Y 6≡ 0 (mod N))

GQ.Cmt−1((N, e,X), d, Y )

y ← Y d mod N
Return y

GQ.Ex((N, e,X), Y, c1, z1, c2, z2)

If gcd(z1, N) 6= 1 or gcd(z2, N) 6= 1):
Factor N to get ϕ(N)
d← e−1 mod ϕ(N)
x← Xd mod N
Return x

z ← z1z
−1
2 mod N

c← c1 − c2
(a, b)← egcd(e, c)
x← Xazb mod N
Return x

Game Gow
RSA(A)

(N, e, d)←$ RSA
x←$ Z∗N
X ← xe mod N
x′←$A(N, e,X)
Return (x′ = x)

Figure 23: Identification scheme GQ associated to RSA generator RSA with modulus length k, and
challenge length l. Bottom right: Game defining one-wayness of RSA generator RSA.

is ZN \ {0}. We can see via Algorithm GQ.Cmt−1 of Fig. 23 that GQ is trapdoor. Note that this
requires putting the decryption exponent d in the secret key, a change from the classic GQ scheme.

In order to apply Theorem 2 to tightly obtain a signature scheme from GQ using our transforma-
tions, we must show that GQ satisfies several conditions. Most of these are standard observations.
Then, since we have tight reductions Psig→Pid and Pid→Palg, we can pick the RSA modulus based
on the assumption that the NFS is the best factoring method.

CIMP-XY. In order to use GQ in our transforms, we need to establish its security under the
notions in our framework. We will apply Theorem 2 to show that CIMP-UC and CIMP-UU are
obtained tightly from the one-wayness of RSA. This involves noting that (1) key recovery for GQ
is exactly one-wayness of RSA (2) GQ is HVZK (3) GQ is extractable. Claims (2), (3) are well
known but for completeness we recall why they hold. First, to establish HVZK, given a public key
(N, e,X), transcripts can be simulated as follows. Sample c←$ {0, 1}l and z←$ ZN \{0}. Compute
Y ← ze/Xc mod N . The transcript is Y ‖c‖z. This has the same distribution as transcripts
generated in Fig. 23: c is clearly identically distributed in Fig. 23; if y is uniform on ZN \ {0} then
so is Y since exponentiation by e is a permutation on ZN ; and thus z is also uniform on ZN \ {0}.
Next we recall why it is extractable. Algorithm GQ.Ex of Fig. 23 provides extractability of the GQ
secret key x given two accepting transcripts with the same commitment but distinct challenges. By
egcd we denote the extended gcd algorithm that given relatively prime inputs e, c returns a, b such
that ae+ bc = 1. Claim (1) is detailed below. The definition of kr-security was given in Section 4.

Theorem 11 Let GQ be the identification scheme associated to RSA generator RSA with modulus
length k and challenge length l as above. Let I be a KR adversary. Then from I we can construct
OW adversary A such that

Advkr
GQ(I) ≤ Advow

RSA(A) . (11)
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The running time of A is that of I.

The proof of Theorem 11 is simple. A immediately provides the (N, e,X) values from the OW-
challenger for RSA to I. For simulating KR, this is sufficient: in particular, A does not have to
simulate transcript queries. I returns the secret key of the ID scheme directly, which is the solution
to the RSA challenge. Note that key recovery only requires recovery of isk, not of the trapdoor itk.

Hashing onto commitment space. Several constructions require a random oracle with range
ID.CS(ivk), which is ZN \ {0}, which we can easily build.

Bounds for concrete instantiations. Signature sizes and unforgeability (that is, UF, not
UUF) bounds obtained by constructing concrete signature schemes from the GQ scheme via the
transforms in this paper can be obtained by instantiating ID with GQ in Fig. 22. Replace ε =
Advkr

ID(I) by ε = Advow
RSA(I), the advantage of an adversary I, having about the same running

time as A, in breaking one-wayness of RSA. The value of C is 2k−1. The summary is that the
bounds are tight in the first three cases, but the third scheme has the added advantage of shorter
signatures.

With regard to signatures from RSA, we already have other schemes with reduction to the
one-wayness of RSA in the ROM. For FDH [8], the reduction is not tight [8, 13], while for PSS [8]
and the KW scheme [23], it is. Signature size is k bits for the first two and k + 1 for the third.
The GQ-based schemes we have illustrated do not thus appear to yield anything we do not have
for RSA-based signatures. (FS can have faster signing, but the looseness of the reduction may
make this moot.) We have discussed GQ-based signatures here merely as the simplest illustrative
example for applying our framework.
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Adversary PTr,Ch
1 (ivk)

k∗←$ {1, . . . , q} ; j ← 0
(k, z)←$ PTr,Ch∗

(ivk)
If k 6= k∗: Return ⊥
Return (1, z)

Ch∗(Y )

j ← j + 1
If j 6= k∗: c←$ {0, 1}ID.cl

Else c←$ Ch(Y )
CT[j]← Y ‖c ; Return c

Figure 24: Adversary for proof of Lemma 12.

A Proof of Theorem 3

The following results imply Theorem 3. They rely on standard techniques and are included here
for completeness.

Lemma 12 Let ID be an identification scheme. Let P be a CIMP-CU-adversary against ID making
q queries to its Ch oracle. Then from P we can construct a CIMP-CU adversary P1 making one
query to its Ch oracle such that

Advcimp-cu
ID (P) ≤ q ·Advcimp-cu

ID (P1) .
Adversary P1 makes as many queries to its Tr oracle as P does. The running time of P1 is about
that of P.

Proof of Lemma 12: Adversary P1 is shown in Fig. 24. It has access to oracles Tr,Ch as
per game Gcimp-cu

ID (P1) in which it is executing, but may only make one query to its Ch oracle.
It guesses an instance k∗ uniformly from {1, . . . , q} and runs P. Adversary P1 passes P’s Tr
queries directly to its own Tr oracle. P1 simulates answers to P’s queries to its Ch oracle via the
subroutine Ch∗, calling its own oracles inside this. Adversary P1’s simulation is perfect. Since P1
will guess the instance k∗ which P successfully impersonates with probability 1/q, adversary P1’s
success probability is at least 1/q times that of P.

Lemma 13 Let ID be an identification scheme that is honest verifier zero-knowledge and ex-
tractable. Then for any CIMP-CU adversary P1 making one query to its Ch oracle, we can
construct an adversary I such that

Advcimp-cu
ID (P1) ≤

1

2ID.cl
+

√
Advkr

ID(I) .

The running time of I is about twice that of P1, plus the time for an execution of ID.Ex.

Lemma 13 follows directly from the reset lemma of [6]. The reset lemma gives a bound on
Advcimp-cu

ID (P) based on the probability of obtaining a pair of distinct valid transcripts Y ‖c1‖z1,
Y ‖c2‖z2 by running the same adversary twice, the second time where the adversary is “reset” with
the same state it had the moment it output its commitment Y . From these distinct valid transcripts
and the verification key ivk, we can execute ID.Ex to obtain the secret key isk, winning the key
recoverability game.
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