
Brinci Riadh

1

Efficient Hardware Design for Computing Pairings
Using Few FPGA In-built DSPs

Riadh Brinci*, Walid Khmiri, Mefteh Mbarek, Abdellatif Ben Rabâa, Ammar

Bouallègue
*(Labortoire Sys’Com, Ecole Nationale d’Ingénieurs de Tunis, 1000 Tunis

Email: br.riadh@gmail.com)

ABSTRACT
This paper is devoted to the design of a 258-bit multiplier for computing pairings over Barreto-Naehrig (BN)
curves at 128-bit security level. The proposed design is optimized for Xilinx field programmable gate array
(FPGA). Each 258-bit integer is represented as a polynomial with five, 65 bit signed integer, coefficients.
Exploiting this splitting we designed a pipelined 65-bit multiplier based on new Karatsuba- Ofman variant using
non-standard splitting to fit to the Xilinx embedded digital signal processor (DSP) blocks. We prototype the
coprocessor in two architectures pipelined and serial on a Xilinx Virtex-6 FPGA using around 17000 slices and 11
DSPs in the pipelined design and 7 DSPs in the serial. The pipelined 128-bit pairing is computed in 1. 8 ms running
at 225MHz and the serial is performed in 2.2 ms running at 185MHz. To the best of our knowledge, this
implementation outperforms all reported hardware designs in term of DSP use.
Keywords-Cryptography, Field Programmable Gate Array (FPGA), Modular Multiplication, Non-Standard Splitting,
Pairing-Friendly Curves

1 INTRODUCTION
A bilinear pairing is a map �� × �� → �� where

�� and �� are typically additive groups and �� is a
multiplicative group and the map is linear in each
component. Many pairings used in cryptography such
as the Tate pairing [1], R-ate pairing [2], ate pairing
[3] and optimal pairings [4], choose �� and �� to be
specific cyclic subgroups of �(
�), and �� to be a

subgroup of 	∗

�.

1.1 Ate pairing

Let 	
 be a finite field and let � be an elliptic
curve defined over 	
. Let � be a large prime dividing
#�(
) and k the embedding degree of ��	
� with
respect to �, namely, the smallest positive integer �
such that �|(�� − 1). For any finite extension field �
of 	
, denote with ��	
���� the �-rational � –torsion
group of the curve. For �∈�(�) and an integer �, let
� be the infinity point of � and !," be a � –rational
function or Miller function with divisor

� !,"� = s(P) − (�s�P) − (s − 1)(�)
let �� = ��	
����, �� = ��	
�� ∩ �'��(
 − ����,

where (
 is the �)* power of Frobenius
endomorphism;

(
: � → �
(,, -) → (,
, -
)

and �� = μ/ ⊂ 	∗

�

Let � ∈ ��, � ∈ �� and 2 = � + 1 − #�(�)
be the trace of Frobenius, then,

4(�, 5) = ()6�,7(�))(
�6�)//
is non-degenerate bilinear, and computable

pairing, it is the ate pairing

1.2 Pairing-Friendly Curves

An elliptic curve � over 	
 is called pairing-
friendly whenever there exists a large prime �|#�(
)

with � > √� and the embedding degree � is small
enough, i.e. � < <=>�(�)/8. Many construction
methods result in a parametrized family of elliptic
curves, i.e. � and � are given by the evaluation of
polynomials �(@) and �(@) at an integer value @. One
of the most important examples of such families are
the Barreto- Naehrig (BN) curves [5], ideally suitable
for implementing pairings at the 128-bit security
level. These curves have � = 12 are defined by

�(@) = 36@D + 36@E + 24@� + 6@ + 1
�(@) = 36@D + 36@E + 18@� + 6@ + 1
for some @ ∈ G such that � is prime. We show

that when we choose @ = 2H + �, where � is a
reasonably small number, the modular multiplication
in 	
 can be substantially improved.

The R-ate pairing [2] is a generalization of ate
pairing and can be seen as an instantiation of optimal
pairings [4]. Since the definition of the optimal ate
pairing really depends on the particular elliptic curve
one is using, we only provide the definition in the case
of BN curves: using the same �� and �� as for ate

Brinci Riadh

2

pairing, the optimal ate pairing on BN curves is
defined as [6],

 I(�, 5)
= (. K . <L7,7(�)M

. <N(L7O7),L7(�))(
�6�)//

where P = 6@ + 2, = L,7(�) and <Q,R denotes
the line through points S and T

Algorithm Algorithm Algorithm Algorithm 1111 Optimal Ate Pairing over BN Curves

InputInputInputInput: P = |6@ + 2| = ∑ Pj2j , � ∈ ��	
����,!6�

jkl
 5 ∈ ��	
mn���� ∩ �'� ((
 − ���)
OutputOutputOutputOutput: o(�, 5) ∈ 	
mn
1. p ← 5, ← 1
2. forforforfor s = � − 2 downtodowntodowntodownto 0
3. p ← 2p, ← �. <�,�(�)
4. ifififif Pj=1 thenthenthenthen
5. p ← p + 5, ← . <�,7(�)
6. end ifend ifend ifend if
7. end forend forend forend for
8. ← (. K . <L7,7(�)M

. <N(L7O7),L7(�))(
�6�)//

9. returnreturnreturnreturn

Algorithm 1 used arithmetic in 	
mn based on
irreducible binomials through a tower of extensions.
In our paper we present the towering scheme as:

	
n = 	
�s�/(s� − z), where z = −1
	
{ = 	
n���/(�� − |), where | = s + 1
	
mn = 	
{�2�/(2E − �) = 	
n�}�/(}~ − |),

The choice of this towering 	
n → 	
{ → 	
mn makes
the final exponentiation much cheaper than other
choices. Also we choose � ≡ 3 �=� 4 to accelerate
arithmetic in 	
n since multiplication by z = −1 is
simple subtraction. For BN curve we choose �: -� =
,E + 2 and @ = −(2~E + 857). This choice of curve
parameters will simplify and speed up the reduction
phases of the proposed Modular Integer Polynomial
Montgomery Multiplier.

1.3 FPGA resources
FPGA manufacturers integrate more and more of

dedicated function blocks into modern devices. For
example, Xilinx Virtex-6 FPGAs include separate
columns of additional function hard cores for memory
(BRAM) and arithmetic DSP operations. The DSP
blocks are grouped in pairs that span the height of four
or five CLBs, respectively. The dual-ported BRAM
matches the height of the pair of DSP blocks and
supports a fast data path between memory and the
DSP elements. Of particular interest is the use of these
memory elements and DSP blocks for efficient
Boolean and integer arithmetic operations with low
signal propagation time. Large devices of Xilinx
Virtex-6 class are equipped with up to thousand
individual function blocks of these dedicated memory
and arithmetic units. Originally, the integrated DSP
blocks as indicated by their name were designed to

accelerate DSP applications, e.g., Finite Impulse
Response (FIR) filters, etc. However, these arithmetic
units can be programmed to perform universal
arithmetic functions not limited to the scope of DSP
filter applications; they support generic
multiplication, addition and subtraction of (un)signed
integers [7].

1.4 Outline
The remainder of this paper is organized as

follows: Section II studies the most important existing
works related to efficient hardware implementations
of multiplication over 	
suitable for computing
pairings over BN curves. Section III introduces our
hardware design of 65 x 65 bit multiplier based on
DSP macro for Virtex-6 and performance
comparison. Section IV focuses on the hardware
implementation and performance comparison of our
258 bit multiplier. Finally, section V provides
conclusion and future works.

2 RELATED WORKS
Since 2009, many hardware implementations of

multiplication over 	
 suitable for computing pairings
on BN curves was described. The first work was
described by Fan et al. [8]. Their proposed
architecture was based on Hybrid Montgomery
Multiplier (HMM) where multiplication and
reduction was interleaved. In same year, a new
Application Specific Integrated Circuit (ASIC)
implementation of pairings over BN curves was
proposed. In 2010 Fan et al. [6] proposed a new
pipelined and parallelized version of their HMM [8].
In 2011, Corona et al. [9] proposed a new hardware
implementation of 258 bit multiplier suitable for
computing pairings over BN curves. They used an
asymmetric divide and conquer approach to
efficiently implement their 65x65 bit multiplier. Their
design used only 12 DSP slices on a Xilinx Virtex 6.
In same year, Yao et al. [10] proposed a new hardware
implementation of optimal ate pairing on Virtex 6.
The design computed multiplication over 	
 using 32
DSP slices. They combined Lazy reduction with RNS
representation.

3 FINITE FIELD MODULAR MULTIPLIER
Multiplication is one of the major elements of a

pairing coprocessor. In this paper, we propose a
Modular Integer Polynomial Montgomery Multiplier
(MIPMM) based on 5-Term Karatsuba. It is hybrid
multiplier that computation is achieved in four
dependent phases. In open literature there is many
works proposed to efficient implement serialization
of Karatsuba in pairing computation. Few papers
presented implementation in prime fields [6], [8][9].
This paper focuses on the Karatsuba serialization in
prime field 	

Brinci Riadh

3

Algorithm Algorithm Algorithm Algorithm 2222 Modular Integer Polynomial Montgomery
Multiplier (MIPMM) for BN curves

InputInputInputInput: P(@) = ∑ Pj@jD

jkl , �(@) # ∑ �j@jDjkl
�(@) # 36@D 3 36@E 3 24@� 3 6@ 3 1

OutputOutputOutputOutput: �(@) ≡ P(@). �(@). @6� �=� �(@)
1. Phase 1: Polynomial Multiplication
2. �(@) # ∑ �j@j # P(@). �(@)�jkl

/*computed by algorithm 3*/
3. Phase 2: Partial coefficient reduction
4. forforforfor s # 0 totototo 4
5. �j # �j �s� 2H; �j # �j �=� 2H
6. �jO� # �jO� 3 �j; �j # �j � �. �j
7. end forend forend forend for
8. Phase 3: Polynomial reduction

9. 2(@) # K��D 3 6��E � 2�� � 6(�� � 9�l)�M @D
10. 3���E 3 6(�� � 2�� � 6�l)�@E
11. 3(��� 3 6(�� � 2�l))@�
12. 3(��� 3 6�l)@
13. �(@) # 362D@E
14. 336(2D 3 2E)@�
15. 312(22D 3 3(2E 3 2�))@
16. 36(2D 3 42E 3 6(2� 3 2�))
17. �(@) # �(@)/@� 3 �(@)
18. Phase 4: Coefficient reduction
19. forforforfor s # 0 totototo 3
20. �j # �j �s� 2H; �j # �j �=� 2H
21. �jO� # �jO� 3 �j; �j # �j � �. �j
22. end forend forend forend for
23. returnreturnreturnreturn �(@)

This multiplier consists of 258 bits five terms

Karatsuba multiplication which is constructed by one
65x65 bits multiplier basic core. There is registers
units to save intermediate results to be used later. The
main contributions of this paper are the efficient use
of in-built features offered by modern FPGA devices:
DSP, adders, subtractors, shift registers… We also
designed two variants of basic 65x65 bits multiplier
using respectively 7 and 11 DSP slices. Our proposed
serialization exploits the independence in each phase
and between phases to reduce the cycle count. Figure
1 depicts the top level of the proposed design of
Modular Integer Polynomial Montgomery Multiplier
for BN curves.

Figure 1 Top level of MIPMM

3.1 Five term Karatsuba Multiplier
The first work to compute Karatsuba using more

than three terms was proposed by Peter Montgomery
[11]. But it was not suitable for hardware
implementation because the large number of addition
and subtraction. Corona et al. [9] proposed new
scheduling for addition and subtraction to fit
hardware design. In this work we propose a more
efficient scheduling to achieve one 258 bit
multiplication in only 22 cycles. Algorithm 3
describes our Five term Karatsuba Multiplier. This
multiplier is based on basic 65 bit multiplier core
described in the next subsection.

 Algorithm Algorithm Algorithm Algorithm 3333 Proposed Five Term Karatsuba

InputInputInputInput: P(@) # ∑ Pj@jDjkl , �(@) # ∑ �j@jDjkl
OutputOutputOutputOutput: �(@) ≡ ∑ �j@j�jkl
1. �l # Pl�l
2. �� # P���; �l # Pl 3 P�; �� # �l 3 ��
3. �� # �l��
4. �E # P���; �� # Pl 3 P�; �E # �l 3 ��
5. �D # ���E
6. �� # PE�E; �D # P� 3 PE; �� # �� 3 �E
7. �~ # �D��; �~ # PE 3 P�; �� # �E 3 ��
8. �� # �~��; �� # �l 3 �D; �� # �� 3 ��
9. �� # ����
10. �� # PD�D; ��l # Pl 3 PD; ��� # �l 3 �D
11. ��l # ��l���; ��� # �l 3 PD; ��E # �� 3 �D
12. ��� # �����E; ��D # P� 3 PD; ��� # �� 3 �D
13. ��� # ��D���; ��~ # ��D 3 PE; ��� # ��� 3 �E
14. ��� # ��~���
15. �l # �l
16. �l # �� 3 �l; �� # �� � �l;
17. �� # �� � �l; �� # �� 3 �l
18. ��� # �� 3 ��; ��D # �� 3 �E
19. �� # �D � �E; �� # �D 3 ��
20. �� # �� 3 ��; �E # �E 3 ��
21. �� # �~ � �E; �� # �E � ��
22. �� # �� 3 ��; ��� # �� � ���
23. �~ # �� � ��
24. �E # �~ � ��; ��l # ��l 3 ��
25. �D # ��l 3 ��; ��E # ��� � ��l
26. �� # ��E � ���; ��� # ��� 3 ��
27. �~ # ��� � ��D; ��~ # ��E � ��
28. �� # ��~ � ���
29. returnreturnreturnreturn �(@)

3.2 Basic 65 bit multiplier core

The five term Karatsuba multiplier turned around
this module. We propose two different architectures
to perform asymmetric multiplication using common
non-standard splitting technique. For instance, the
asymmetric operands can be computed by the
following equation with 25 and 18 bits to fit DSP core
of the FPGA. We reserve the most significant bit as
operand’s sign. Let

G # ST # (� Pj2j~D

jkl
)(� �j2j~D

jkl
)

Brinci Riadh

4

We decide to not perform full DSP computation for
the last core T��:~DSl:�E to avoid non-useful
operations. So, we can write G = Gl + 2�DG� +
2D�G� as described in Figure 2 For example we can
split the operands of Gl as

Gl = Tl:�~Sl:�E + 2��(T��:EESl:�E
+ 2��(TED:�lSl:�E
+ 2��(T��:~DSl:�E)))

In this work we propose two designs called
respectively full pipelined and serial architectures
depicted respectively. In the first design, we propose
three sets of DSP cores arrangement (Zl, Z� and Z�):
the two first sets have the same design and each set is
performed by four DSP slices.

Figure 3 Proposed tilling

The last set is computed by only three slices. We used
in the basic core three DSP parameterization detailed
as eight 25x18 bit, two 25x15 and one 18x18 DSP
configuration. This idea reduces the frequency of the
multiplier but let us reduce power consumption by
saving extra registers and non-useful operations. This
first design achieves one 65x65 bit multiplication in
seven cycles using eleven DSP cores.

Figure 4 Proposed hardware design of the first DSP set

The diagram in describes the delay constrained of
the full pipelined architecture that takes seven cycles
to achieve 65x65 bit multiplication.

Figure 5 delay constrained of the full pipelined
architecture

In the second design, we rearrange operations to make
Gl and G� share the same hardware. So, we compute
Gl and G� in parallel. To get results at same time we
added a pipeline stage in the DSP set of G�. At the 5)*
we have our outputs. In the second cycle, we entered
the operands of G� to get it at the 6)* cycle. At this
time we have also the result of the addition �l = Gl +
2D�G� . The adder is an in-built feature of the FPGA
configured to give result after one cycle. Finally, we
performed the last addition, configured also with
latency one, giving full result after seven cycles using
only seven DSP slices. In this second architecture we
have added extra hardware finite state machine,
multiplexers and demultiplexers.

3.3 Coefficient and polynomial reductions

The architecture described in Pipelined
architecture

 (b) Serial architecture

Figure 6 depicts the top level of each architecture
shows the polynomial reduction phase. It can reduce
the coefficients one by one taking twelve cycles to
achieve the entire reduction. We performed
multiplication by � using shifts and addition. In this
phases, the complexity can be reduced by exploiting
the characteristics of the different constants. Since
� = 2�(2D + 2E) + 2~ + (2D + 2E) + 1,
multiplication by � is performed by three additions in
three cycles. There is also multiplication by the
following constants 6, 9, 12 and36 computed by
shifts and additions, e.g. 6P = 2�P + 2P; 9P =
2EP + P; 12P = 2EP + 2�P; 36P = 2�P + 2�P;

3.4 Delay constrained of MIPMM
As mentioned before, the 65x65 bit multiplication
takes seven cycles to achieve one multiplication. We
get all partial products (PP) �j∈{l,�E} shown in
algorithm 3 after 13 cycles. However the delay of
datapath for the post partial products combined with
PP is two clock cycles. As result, five term Karatsuba
gives the first output after 22 clock cycles. As soon as
each �j∈{l,�} gets out from the pipelined PP core, it is
scheduled on the fly to be partially reduced. This
phase ends at the 22 second clock cycle. Other
reduction phases also combined with phase one take
13 cycles Therefore, to sum up, the cost of the entire
multiplier is 35 clock cycles.

0

24

48

64

34 17 51 64

P10 P9

P0 P3 P2 P1

P4 P7 P6 P5

P9

24 48

B�51:64�

B�34:50�

B�17:33�

 X

X

X

X

+
≪17

+

+

≪17

≪17

A�0:23�

A�0:23�

A�0:23�

A�0:23�

B�0:16�

P0�0:16�

P0�51:87�

P0�34:50�

P0�17:33�

Result

Gl

G�

5

G�

�l

 6

�

7
Cycles

�l = Gl + 2�DG�

� = �l + 2D�G�

Brinci Riadh

5

(a) Pipelined architecture (b) Serial architecture
Figure 6 Top level design of proposed pipelined and serial architectures

4 PAIRING DESIGN

Most operations in optimal pairing algorithm
steps of are performed in 	
mn. Many techniques give
efficient computation in extended fields with low
complexity. We choose methods with minimum
squaring and multiplication. The underlying
operations are computed in base field. Therefore we
design our coprocessor as scheduling of 	

operations.

As shown in Algorithm 1, Miller loop phase
consists of the following major operations:
- Doubling step, is the elliptic curve point doubling

combined with the computation of the line <.
- Addition step, is the elliptic curve point addition

combined with the computation of the line <.
- Squaring of the Miller function .
- Spare multiplication of by < having only half of

non-zero coefficients.

We adopt homogenous coordinates proposed in
[12] to efficient compute the different curve
operations in the Miller loop. The listed above steps
need arithmetic in 	
n such as multiplication and
squaring. We propose Karatsuba method described by
the following equation to compute multiplication.
�l = Pl�l; �� = P���
�l = �l − ��
�� = (Pl + P�)(�l + ��) − �l − ��

We also refer to complex method to perform
squaring in 	
n. First, we precompute �l = PlP�.
Then, the square � = P� is computed as
�l = (Pl + P�)(Pl − P�)
�� = 2�l

Multiplication and squaring operations need
respectively 36 and 39 cycles to get out their results.
To efficient compute Miller loop we made
rearrangements and scheduling in each step to fit our

design. In the doubling step we have to compute three
squaring and two multiplications which are
equivalent to 12 	
 multiplications in the first part.
They takes 48 cycles. In the second part, we have 17
	
 multiplications giving results out in the 94th cycle.
The � and . < need 111 	
 multiplications
computed in 3.885 cycles. To sum up, each Miller
loop iteration takes 3.979 clock cycles. Using the
same strategy in curve rearrangement addition step is
achieved in 3,385 clock cycles. As result, Miller loop
takes 277.000 cycles.

The final exponentiation consists of final addition
and final exponentiation. Table 1 gives the different
operation in this step and the cycle count.

step 	
 multiplications
Final Addition 204

�6� 579

�O� 768

�6
nO�/� 1813
Others 356
Cycle count 130.200

Table 1 Cycle count of the final exponentiation

5 RESULTS AND COMPARISON
The hole design has been done in VHDL using

Xilinx ISE design suite on a Virtex-6 xc6vlx240t-
3ff784 FPGA. It used in total 17560 slices, 7 and 11
DSP cores in our serial and pipelined architectures
respectively. It runs at 185Mhz and finishes pairing
computation on BN curve at 128 bit security level in
2.2 ��.

Table 2 lists the performance hardware
implementations reported in recent literature.
Compared with the other hardware implementation
[6] our design saves DSP cores

Gl
DSP

set 1

DSP

set 2

DSP

set 3

+

G�≪24

Sl

Tl

S�

T�

S�

T�

+

�l

�

G�≪48

S�

Sl

S�

T�

T�

Tl

DSP

set 1

DSP

set 3

+

G�≪48

�l

�
G� ≪ 24 +

0

1

Gl
0

1

1

0

Control FSM

Brinci Riadh

6

Designs Curve Architecture Target Area Frequency
MHz

Cycles
x103

Delay
ms

This work BN128 Pipelined xc6vlx240t 17560 slices, 11 DSP 225 407 1.8
BN128 Serial xc6vlx240t 14890 slices, 7 DSP 185 407 2.2

[8] BN126 HMM digit-serial ASIC 130mm 183k Gates 204 861 4.2
[6] BN128 HMM parallel xc6vlx240t 4014 slices, 42 DSP 210 245 1.17
[13] BN128 Blakley Xc4vlx200 52000 slices 50 821 16.4
[14] BN126 Montgomery xc6vlx240t 3813 slices, 144 DSP 166 70 0.43
[15] BN126 RNS (Parallel) xc6vlx240t 5237 slices, 64 DSP 210 78 0.338

Table 2 Performance comparison of hardware implementations of pairings at around 128-bit security

until 90%. Our goal is to keep the design of the
pairing coprocessor full used by efficient resource
sharing at high frequency. It is a serial
implementation with minimum area use. The current
design not only gains in in-built DSP slices with
comparable pairing computation time but also shows
that modern FPGA can be able to perform pairing
with high complexity at higher security level on
different friendly curves with large algebraic closure.

6 CONCLUSION
In this paper we introduce a new hardware design

to efficiently serialize polynomial integer
multiplication on BN curves over large prime field.
Due to deep arrangement and careful scheduling of
different steps of the coprocessor our design saves
90% of DSP slices and achieves one pairing
computation in 1.8 ms. Our future work will be the
multi-pairing computation to respond faster to many
client requests. We plan also to implement other
curves and different types of pairings on this
architecture. Furthermore, we will provide an optimal
parameter set and pairing implementations for higher
security level including 192-bit or 256-bit security.

REFERENCES
[1] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M.

Scott. Efficient Algorithms for Pairing Based
Cryptosystems. CRYPTO 2002, volume 2442 of
Lecture Notes in Computer Science, pages 354-368.
Springer, 2002.

[2] E. Lee, H. S. Lee, and C. M. Park. Efficient and
Generalized Pairing Computation on Abelian
Varieties. Cryptology ePrint Archive, Available from
http://eprint.iacr.org/. Report 2009/040.

[3] F. Hess, N. P. Smart, and F. Vercauteren. The Eta
Pairing Revisited. IEEE Transactions on Information
Theory, 52(10), pages 459-462, Oct.2006.

[4] F. Hess. Pairing Lattices. Pairing 2008, volume 5209
of Lecture Notes in Computer Science, pages 18-38.
Springer, 2008.

[5] P. Barreto and M. Naehrig. Pairing-friendly elliptic
curves of prime order. Selected Areas in

Cryptography, SAC 2005, LNCS 3897, pages 319-
331, 2006.

[6] J. Fan, F. Vercauteren, and I. Verbauwhede. Efficient
hardware implementation of Fp-arithmetic for
pairing-friendly curves. Computers, IEEE
Transactions on, 61(5), 2012, 676-685.

[7] T.Güneysu. Utilizing hard cores of modern FPGA
devices for high-performance cryptography, Journal
of Cryptographic Engineering, 1(1), 2011, 37-55.

[8] J. Fan, F. Vercauteren, and I. Verbauwhede. Faster Fp
Arithmetic for Cryptographic Pairings on Barreto-
Naehrig Curves. CHES 2009, volume 5747 of Lecture
Notes in Computer Science, pages 240-253. Springer,
2009.

[9] C. Corona, C., Moreno, E. F., & Henriquez, F. R.
Hardware design of a 256-bit prime field multiplier
suitable for computing bilinear pairings.
International Conference on Reconfigurable
Computing and FPGAs (ReConFig 2011), 2011, 229-
234.

[10] G. X. Yao, J. Fan, R. C. Cheung, and I.
Verbauwhede. A high speed pairing coprocessor
using RNS and lazy reduction. Cryptology ePrint
Archive, Available from http://eprint.iacr.org/.
Report 2011/258, 2011

[11] P. L. Montgomery. Five, six, and seven-term
Karatsuba-like formulae, IEEE Transactions on
Computers, vol. 54(3), 362-369

[12] Costello, C., Lange, T., & Naehrig, M. (2010).
Faster pairing computations on curves with high-
degree twists. In Public Key Cryptography–PKC
2010 (pp. 224-242). Springer Berlin Heidelberg.

[13] Ghosh, S., Mukhopadhyay, D., & Roychowdhury,
D. (2010). High speed flexible pairing
cryptoprocessor on FPGA platform. Pairing-Based
Cryptography-Pairing 2010 (pp. 450-466). Springer
Berlin Heidelberg.

[14] Ghosh, S., Verbauwhede, I., & Roychowdhury, D.
(2013). Core based architecture to speed up optimal
ate pairing on FPGA platform. In Pairing-Based
Cryptography–Pairing 2012 (pp. 141-159). Springer
Berlin Heidelberg.

[15] Yao, G. X., Fan, J., Cheung, R. C., & Verbauwhede,
I. (2013). Faster pairing coprocessor architecture.
In Pairing-Based Cryptography–Pairing 2012 (pp.
160-176). Springer Berlin Heidelberg.

