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ABSTRACT 
This paper is devoted to the design of a 258-bit multiplier for computing pairings over Barreto-Naehrig (BN) 
curves at 128-bit security level. The proposed design is optimized for Xilinx field programmable gate array 
(FPGA). Each 258-bit integer is represented as a polynomial with five, 65 bit signed integer, coefficients. 
Exploiting this splitting we designed a pipelined 65-bit multiplier based on new Karatsuba- Ofman variant using 
non-standard splitting to fit to the Xilinx embedded digital signal processor (DSP) blocks. We prototype the 
coprocessor in two architectures pipelined and serial on a Xilinx Virtex-6 FPGA using  around 17000 slices and 11 
DSPs in the pipelined design and 7 DSPs in the serial. The pipelined 128-bit pairing is computed in 1. 8 ms running 
at 225MHz and the serial is performed in 2.2 ms running at 185MHz. To the best of our knowledge, this 
implementation outperforms all reported hardware designs in term of DSP use. 
Keywords-Cryptography, Field Programmable Gate Array (FPGA), Modular Multiplication, Non-Standard Splitting, 
Pairing-Friendly Curves 

1 INTRODUCTION 
A bilinear pairing is a map �� × �� → �� where 

�� and �� are typically additive groups and �� is a 
multiplicative group and the map is linear in each 
component. Many pairings used in cryptography such 
as the Tate pairing [1], R-ate pairing [2], ate pairing 
[3] and optimal pairings [4], choose �� and �� to be 
specific cyclic subgroups of �(	
�), and �� to be a 

subgroup of 	∗

�. 

1.1 Ate pairing 

Let 	
 be a finite field and let � be an elliptic 
curve defined over 	
. Let � be a large prime dividing 
#�(	
) and k the embedding degree of ��	
� with 
respect to �, namely, the smallest positive integer � 
such that �|(�� − 1). For any finite extension field � 
of 	
, denote with ��	
���� the �-rational � –torsion 
group of the curve. For �∈�(�) and an integer �, let 
� be the infinity point of � and  !," be a � –rational 
function or Miller function with divisor 

� !,"� = s(P) − (�s�P) − (s −  1)(�) 
let �� =  ��	
����, �� = ��	
�� ∩ �'��(
 − ����, 

where  (
 is the  �)*  power of Frobenius 
endomorphism; 

(
: � → � 
(,, -) → (,
, -
) 

and �� = μ/ ⊂ 	∗

� 

Let � ∈ ��, � ∈ �� and 2 =  � +  1 − #�(	�) 
be the trace of Frobenius, then, 

4(�, 5) = ( )6�,7(�))(
�6�)// 
is non-degenerate bilinear, and computable 

pairing, it is the ate pairing 

1.2 Pairing-Friendly Curves 

An elliptic curve � over 	
 is called pairing-
friendly whenever there exists a large prime �|#�(	
) 

with � > √� and the embedding degree � is small 
enough, i.e. � < <=>�(�)/8. Many construction 
methods result in a parametrized family of elliptic 
curves, i.e. � and � are given by the evaluation of 
polynomials �(@) and �(@) at an integer value @. One 
of the most important examples of such families are 
the Barreto- Naehrig (BN) curves [5], ideally suitable 
for implementing pairings at the 128-bit security 
level. These curves have � =  12 are defined by 

�(@)  =  36@D +  36@E + 24@� +  6@ +  1 
�(@)  =  36@D +  36@E + 18@� +  6@ +  1 
for some @ ∈  G such that � is prime. We show 

that when we choose @ =  2H  +  �, where � is a 
reasonably small number, the modular multiplication 
in 	
 can be substantially improved. 

The R-ate pairing [2] is a generalization of ate 
pairing and can be seen as an instantiation of optimal 
pairings [4]. Since the definition of the optimal ate 
pairing really depends on the particular elliptic curve 
one is using, we only provide the definition in the case 
of BN curves: using the same �� and �� as for ate 
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pairing, the optimal ate pairing on BN curves is 
defined as [6], 

 I(�, 5)
=  ( . K . <L7,7(�)M



. <N(L7O7),L7(�))(
�6�)// 

where P = 6@ + 2,  =  L,7(�) and <Q,R denotes 
the line through points S and T 

 
Algorithm Algorithm Algorithm Algorithm 1111    Optimal Ate Pairing over BN Curves 

    
InputInputInputInput: P = |6@ + 2| = ∑ Pj2j ,   � ∈ ��	
����,!6�

jkl  
  5 ∈ ��	
mn���� ∩ �'� ((
 − ���) 
OutputOutputOutputOutput: o(�, 5) ∈ 	
mn 
1. p ← 5,  ← 1 
2. forforforfor    s = � − 2    downtodowntodowntodownto    0 
3.     p ← 2p,  ←  �. <�,�(�) 
4.         ifififif    Pj=1 thenthenthenthen 
5.             p ← p + 5,  ←  . <�,7(�) 
6.         end ifend ifend ifend if 
7. end forend forend forend for 
8.  ← ( . K . <L7,7(�)M



. <N(L7O7),L7(�))(
�6�)//  

9. returnreturnreturnreturn      
 

Algorithm 1 used arithmetic in 	
mn based on 
irreducible binomials through a tower of extensions. 
In our paper we present the towering scheme as: 

	
n = 	
�s�/(s� − z), where z = −1 
	
{ = 	
n���/(�� − |), where | = s + 1 
	
mn = 	
{�2�/(2E − �) = 	
n�}�/(}~ − |), 

The choice of this towering 	
n → 	
{ → 	
mn makes 
the final exponentiation much cheaper than other 
choices. Also we choose � ≡ 3 �=� 4 to accelerate 
arithmetic in 	
n since multiplication by z = −1 is 
simple subtraction. For BN curve we choose �: -� =
,E + 2 and @ = −(2~E + 857). This choice of curve 
parameters will simplify and speed up the reduction 
phases of the proposed Modular Integer Polynomial 
Montgomery Multiplier. 

1.3 FPGA resources 
FPGA manufacturers integrate more and more of 

dedicated function blocks into modern devices. For 
example, Xilinx Virtex-6 FPGAs include separate 
columns of additional function hard cores for memory 
(BRAM) and arithmetic DSP operations. The DSP 
blocks are grouped in pairs that span the height of four 
or five CLBs, respectively. The dual-ported BRAM 
matches the height of the pair of DSP blocks and 
supports a fast data path between memory and the 
DSP elements. Of particular interest is the use of these 
memory elements and DSP blocks for efficient 
Boolean and integer arithmetic operations with low 
signal propagation time. Large devices of Xilinx 
Virtex-6 class are equipped with up to thousand 
individual function blocks of these dedicated memory 
and arithmetic units. Originally, the integrated DSP 
blocks as indicated by their name were designed to 

accelerate DSP applications, e.g., Finite Impulse 
Response (FIR) filters, etc. However, these arithmetic 
units can be programmed to perform universal 
arithmetic functions not limited to the scope of DSP 
filter applications; they support generic 
multiplication, addition and subtraction of (un)signed 
integers [7]. 

1.4 Outline 
The remainder of this paper is organized as 

follows: Section II studies the most important existing 
works related to efficient hardware implementations 
of multiplication over 	
suitable for computing 
pairings over BN curves. Section III introduces our 
hardware design of 65 x 65 bit multiplier based on 
DSP macro for Virtex-6 and performance 
comparison. Section IV focuses on the hardware 
implementation and performance comparison of our 
258 bit multiplier. Finally, section V provides 
conclusion and future works. 

2 RELATED  WORKS 
Since 2009, many hardware implementations of 

multiplication over 	
 suitable for computing pairings 
on BN curves was described. The first work was 
described by Fan et al. [8]. Their proposed 
architecture was based on Hybrid Montgomery 
Multiplier (HMM) where multiplication and 
reduction was interleaved. In same year, a new 
Application Specific Integrated Circuit (ASIC) 
implementation of pairings over BN curves was 
proposed. In 2010 Fan et al. [6] proposed a new 
pipelined and parallelized version of their HMM [8]. 
In 2011, Corona et al. [9] proposed a new hardware 
implementation of 258 bit multiplier suitable for 
computing pairings over BN curves. They used an 
asymmetric divide and conquer approach to 
efficiently implement their 65x65 bit multiplier. Their 
design used only 12 DSP slices on a Xilinx Virtex 6. 
In same year, Yao et al. [10] proposed a new hardware 
implementation of optimal ate pairing on Virtex 6. 
The design computed multiplication over 	
 using 32 
DSP slices. They combined Lazy reduction with RNS 
representation. 

3 FINITE FIELD MODULAR MULTIPLIER 
Multiplication is one of the major elements of a 

pairing coprocessor. In this paper, we propose a 
Modular Integer Polynomial Montgomery Multiplier 
(MIPMM) based on 5-Term Karatsuba. It is hybrid 
multiplier that computation is achieved in four 
dependent phases. In open literature there is many 
works proposed to efficient implement serialization 
of Karatsuba in pairing computation. Few papers 
presented implementation in prime fields [6], [8][9]. 
This paper focuses on the Karatsuba serialization in 
prime field 	
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Algorithm Algorithm Algorithm Algorithm 2222  Modular Integer Polynomial Montgomery 
Multiplier (MIPMM) for BN curves

 
InputInputInputInput:  P(@) = ∑ Pj@jD

jkl , �(@) # ∑ �j@jDjkl  
�(@)  #  36@D 3  36@E 3 24@� 3  6@ 3  1 

OutputOutputOutputOutput: �(@) ≡ P(@). �(@). @6� �=� �(@) 
1. Phase 1: Polynomial Multiplication 
2. �(@) # ∑ �j@j # P(@). �(@)�jkl  

/*computed by algorithm 3*/ 
3. Phase 2: Partial coefficient reduction 
4. forforforfor  s # 0 totototo 4 
5.  �j # �j  �s� 2H;    �j # �j  �=� 2H 
6.  �jO� # �jO� 3 �j; �j # �j � �. �j  
7.  end forend forend forend for    
8. Phase 3: Polynomial reduction 

9. 2(@) # K��D 3 6��E � 2�� � 6(�� � 9�l)�M @D 
10.   3���E 3 6(�� � 2�� � 6�l)�@E 
11.   3(��� 3 6(�� � 2�l))@� 
12.   3(��� 3 6�l)@ 
13. �(@) # 362D@E 
14.   336(2D 3 2E)@� 
15.   312(22D 3 3(2E 3 2�))@ 
16.   36(2D 3 42E 3 6(2� 3 2�)) 
17. �(@) # �(@)/@� 3 �(@) 
18. Phase 4: Coefficient reduction 
19. forforforfor  s # 0 totototo 3 
20.  �j # �j  �s� 2H;    �j # �j  �=� 2H 
21.  �jO� # �jO� 3 �j; �j # �j � �. �j 
22.  end forend forend forend for    
23. returnreturnreturnreturn �(@) 

 
This multiplier consists of 258 bits five terms 

Karatsuba multiplication which is constructed by one 
65x65 bits multiplier basic core. There is registers 
units to save intermediate results to be used later. The 
main contributions of this paper are the efficient use 
of in-built features offered by modern FPGA devices: 
DSP, adders, subtractors, shift registers… We also 
designed two variants of basic 65x65 bits multiplier 
using respectively 7 and 11 DSP slices. Our proposed 
serialization exploits the independence in each phase 
and between phases to reduce the cycle count. Figure 
1 depicts the top level of the proposed design of 
Modular Integer Polynomial Montgomery Multiplier 
for BN curves. 

 
 

Figure 1 Top level of MIPMM 

3.1 Five term Karatsuba Multiplier 
The first work to compute Karatsuba using more 

than three terms was proposed by Peter Montgomery 
[11]. But it was not suitable for hardware 
implementation because the large number of addition 
and subtraction. Corona et al. [9] proposed new 
scheduling for addition and subtraction to fit 
hardware design. In this work we propose a more 
efficient scheduling to achieve one 258 bit 
multiplication in only 22 cycles. Algorithm 3 
describes our Five term Karatsuba Multiplier. This 
multiplier is based on basic 65 bit multiplier core 
described in the next subsection. 

 Algorithm Algorithm Algorithm Algorithm 3333 Proposed Five Term Karatsuba
 

InputInputInputInput:  P(@) # ∑ Pj@jDjkl , �(@) # ∑ �j@jDjkl  
OutputOutputOutputOutput: �(@) ≡ ∑ �j@j�jkl  
1. �l # Pl�l 
2. �� # P���;    �l # Pl 3 P�;    �� # �l 3 �� 
3. �� # �l�� 
4. �E # P���;    �� # Pl 3 P�;    �E # �l 3 �� 
5. �D # ���E 
6. �� # PE�E;    �D # P� 3 PE;    �� # �� 3 �E 
7. �~ # �D��;    �~ # PE 3 P�;    �� # �E 3 �� 
8. �� # �~��;    �� # �l 3 �D;    �� # �� 3 �� 
9. �� # ���� 
10. �� # PD�D;    ��l # Pl 3 PD;    ��� # �l 3 �D 
11. ��l # ��l���;    ��� # �l 3 PD;    ��E # �� 3 �D 
12. ��� # �����E;    ��D # P� 3 PD;    ��� # �� 3 �D 
13. ��� # ��D���;    ��~ # ��D 3 PE;    ��� # ��� 3 �E 
14. ��� # ��~��� 
15. �l # �l 
16. �l # �� 3 �l;    �� # �� � �l;    
17. �� # �� � �l;    �� # �� 3 �l 
18. ��� # �� 3 ��;    ��D # �� 3 �E 
19. �� # �D � �E;    �� # �D 3 �� 
20. �� # �� 3 ��;    �E # �E 3 �� 
21. �� # �~ � �E;    �� # �E � �� 
22. �� # �� 3 ��;    ��� # �� � ��� 
23. �~ # �� � �� 
24. �E # �~ � ��;    ��l # ��l 3 �� 
25. �D # ��l 3 ��;    ��E # ��� � ��l 
26. �� # ��E � ���;    ��� # ��� 3 �� 
27. �~ # ��� � ��D;    ��~ # ��E � �� 
28. �� # ��~ � ��� 
29. returnreturnreturnreturn �(@) 

 
3.2 Basic 65 bit multiplier core  

The five term Karatsuba multiplier turned around 
this module. We propose two different architectures 
to perform asymmetric multiplication using common 
non-standard splitting technique. For instance, the 
asymmetric operands can be computed by the 
following equation with 25 and 18 bits to fit DSP core 
of the FPGA. We reserve the most significant bit as 
operand’s sign. Let 

G # ST # (� Pj2j~D

jkl
)(� �j2j~D

jkl
) 
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We decide to not perform full DSP computation for 
the last core T��:~DSl:�E  to avoid non-useful 
operations. So, we can write G = Gl + 2�DG� +
2D�G� as described in Figure 2 For example we can 
split the operands of Gl as 

Gl = Tl:�~Sl:�E   + 2��(T��:EESl:�E
+ 2��(TED:�lSl:�E
+ 2��(T��:~DSl:�E))) 

In this work we propose two designs called 
respectively full pipelined and serial architectures 
depicted respectively. In the first design, we propose 
three sets of DSP cores arrangement (Zl, Z� and Z�): 
the two first sets have the same design and each set is 
performed by four DSP slices.

 
Figure 3 Proposed tilling 

The last set is computed by only three slices. We used 
in the basic core three DSP parameterization detailed 
as eight 25x18 bit, two 25x15 and one 18x18 DSP 
configuration. This idea reduces the frequency of the 
multiplier but let us reduce power consumption by 
saving extra registers and non-useful operations. This 
first design achieves one 65x65 bit multiplication in 
seven cycles using eleven DSP cores.  

Figure 4 Proposed hardware design of the first DSP set 

The diagram in describes the delay constrained of 
the full pipelined architecture that takes seven cycles 
to achieve 65x65 bit multiplication. 

 

 

Figure 5 delay constrained of the full pipelined 
architecture 

In the second design, we rearrange operations to make 
Gl and G� share the same hardware. So, we compute 
Gl and G� in parallel. To get results at same time we 
added a pipeline stage in the DSP set of G�. At the 5)* 
we have our outputs. In the second cycle, we entered 
the operands of G� to get it at the 6)* cycle. At this 
time we have also the result of the addition �l = Gl +
2D�G� . The adder is an in-built feature of the FPGA 
configured to give result after one cycle. Finally, we 
performed the last addition, configured also with 
latency one, giving full result after seven cycles using 
only seven DSP slices. In this second architecture we 
have added extra hardware finite state machine, 
multiplexers and demultiplexers. 

3.3 Coefficient and polynomial reductions  

The architecture described in Pipelined 
architecture                            

    (b) Serial architecture 

Figure 6 depicts the top level of each architecture 
shows the polynomial reduction phase. It can reduce 
the coefficients one by one taking twelve cycles to 
achieve the entire reduction. We performed 
multiplication by � using shifts and addition. In this 
phases, the complexity can be reduced by exploiting 
the characteristics of the different constants. Since 
� = 2�(2D + 2E) + 2~ + (2D + 2E) + 1, 
multiplication by � is performed by three additions in 
three cycles. There is also multiplication by the 
following constants 6, 9, 12 and36 computed by 
shifts and additions, e.g. 6P = 2�P + 2P;  9P =
2EP + P; 12P = 2EP + 2�P; 36P = 2�P + 2�P; 

3.4 Delay constrained of MIPMM 
As mentioned before, the 65x65 bit multiplication 
takes seven cycles to achieve one multiplication. We 
get all partial products (PP) �j∈{l,�E} shown in 
algorithm 3 after 13 cycles. However the delay of 
datapath for the post partial products combined with 
PP is two clock cycles. As result, five term Karatsuba 
gives the first output after 22 clock cycles. As soon as 
each �j∈{l,�} gets out from the pipelined PP core, it is 
scheduled on the fly to be partially reduced. This 
phase ends at the 22 second clock cycle. Other 
reduction phases also combined with phase one take 
13 cycles Therefore, to sum up, the cost of the entire 
multiplier is 35 clock cycles.

0 

24 

48 

64 
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(a) Pipelined architecture                                (b) Serial architecture 
Figure 6 Top level design of proposed pipelined and serial architectures 

4 PAIRING DESIGN 

Most operations in optimal pairing algorithm 
steps of are performed in 	
mn. Many techniques give 
efficient computation in extended fields with low 
complexity. We choose methods with minimum 
squaring and multiplication. The underlying 
operations are computed in base field. Therefore we 
design our coprocessor as scheduling of 	
 
operations. 

As shown in Algorithm 1, Miller loop phase 
consists of the following major operations: 
- Doubling step, is the elliptic curve point doubling 

combined with the computation of the line <. 
- Addition step, is the elliptic curve point addition 

combined with the computation of the line <. 
- Squaring of the Miller function  . 
- Spare multiplication of   by < having only half of 

non-zero coefficients. 

We adopt homogenous coordinates proposed in 
[12] to efficient compute the different curve 
operations in the Miller loop. The listed above steps 
need arithmetic in 	
n such as multiplication and 
squaring. We propose Karatsuba method described by 
the following equation to compute multiplication. 
�l = Pl�l; �� = P��� 
�l = �l − �� 
�� = (Pl + P�)(�l + ��) − �l − �� 

We also refer to complex method to perform 
squaring in 	
n. First, we precompute �l = PlP�. 
Then, the square � = P� is computed as 
�l = (Pl + P�)(Pl − P�) 
�� = 2�l 

Multiplication and squaring operations need 
respectively 36 and 39 cycles to get out their results. 
To efficient compute Miller loop we made 
rearrangements and scheduling in each step to fit our 

design. In the doubling step we have to compute three 
squaring and two multiplications which are 
equivalent to 12 	
 multiplications in the first part. 
They takes 48 cycles. In the second part, we have 17 
	
 multiplications giving results out in the 94th cycle. 
The  � and   . < need 111 	
 multiplications 
computed in 3.885 cycles. To sum up, each Miller 
loop iteration takes 3.979 clock cycles. Using the 
same strategy in curve rearrangement addition step is 
achieved in 3,385 clock cycles. As result, Miller loop 
takes 277.000 cycles. 

The final exponentiation consists of final addition 
and final exponentiation. Table 1 gives the different 
operation in this step and the cycle count.  

 
step 	
 multiplications  
Final Addition 204 

 
�6� 579 

 
�O� 768 

 
�6
nO�/� 1813 
Others 356 
Cycle count 130.200 

 
Table 1 Cycle count of the final exponentiation 

5 RESULTS AND COMPARISON 
The hole design has been done in VHDL using 

Xilinx ISE design suite on a Virtex-6 xc6vlx240t-
3ff784 FPGA. It used in total 17560 slices, 7 and 11 
DSP cores in our serial and pipelined architectures 
respectively. It runs at 185Mhz and finishes pairing 
computation on BN curve at 128 bit security level in 
2.2 ��.  

Table 2 lists the performance hardware 
implementations reported in recent literature. 
Compared with the other hardware implementation 
[6] our design saves DSP cores 

Gl 
DSP 

set 1 

 

DSP 

set 2 

DSP 

set 3 

+ 

G�≪24 

Sl 

Tl 

S� 

T� 

S� 

T� 

+ 

�l 

� 

G�≪48 

S� 

Sl 

S� 

T� 

T� 

Tl 

DSP 

set 1 

  

DSP 

set 3 

+ 

G�≪48 

�l 

� 
G� ≪ 24 + 

0 

 

1 

Gl 
0 

 

1 

1 

 

0 

Control FSM 
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Designs  Curve Architecture  Target Area Frequency 
MHz 

Cycles 
x103 

Delay 
ms 

This work BN128 Pipelined  xc6vlx240t 17560 slices, 11 DSP 225 407 1.8 
BN128 Serial  xc6vlx240t 14890 slices, 7 DSP 185 407 2.2 

[8] BN126 HMM digit-serial ASIC 130mm 183k Gates 204 861 4.2 
[6] BN128 HMM parallel xc6vlx240t 4014 slices, 42 DSP 210 245 1.17 
[13] BN128 Blakley  Xc4vlx200 52000 slices 50 821 16.4 
[14] BN126 Montgomery xc6vlx240t 3813 slices, 144 DSP 166 70 0.43 
[15] BN126 RNS (Parallel) xc6vlx240t 5237 slices, 64 DSP 210 78 0.338 

Table 2 Performance comparison of hardware implementations of pairings at around 128-bit security 

 
until 90%. Our goal is to keep the design of the 
pairing coprocessor full used by efficient resource 
sharing at high frequency. It is a serial 
implementation with minimum area use. The current 
design not only gains in in-built DSP slices with 
comparable pairing computation time but also shows 
that modern FPGA can be able to perform pairing 
with high complexity at higher security level on 
different friendly curves with large algebraic closure. 

 

6 CONCLUSION 
In this paper we introduce a new hardware design 

to efficiently serialize polynomial integer 
multiplication on BN curves over large prime field. 
Due to deep arrangement and careful scheduling of 
different steps of the coprocessor our design saves 
90% of DSP slices and achieves one pairing 
computation in 1.8 ms. Our future work will be the 
multi-pairing computation to respond faster to many 
client requests. We plan also to implement other 
curves and different types of pairings on this 
architecture. Furthermore, we will provide an optimal 
parameter set and pairing implementations for higher 
security level including 192-bit or 256-bit security. 
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