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Abstract—In this paper, we design a new blockchain Byzantine
consensus protocol SCP where the throughput scales nearly lin-
early with the computation: the more computing power available,
the more blocks selected per unit time. SCP is also efficient that
the number of messages it requires is nearly linear in the network
size. The computational scalability property offers the flexibility to
tune bandwidth consumption by adjusting computational param-
eters (e.g., proof-of-work difficulty). The key ideas lie in securely
establishing identities for network participants, randomly placing
them in several committees and running a classical consensus
protocol within each committee to propose blocks in parallel.
We further design a mechanism to allow reaching consensus
on blocks without broadcasting actual block data, while still
enabling efficient block verification. We prove that our protocol is
secure, efficient and applicable to several case studies. We conduct
scalability experiments on Amazon EC2 with upto 80 cores, and
confirm that SCP matches its theoretical scaling properties.

I. INTRODUCTION

Byzantine agreement is a classical problem, with a wide
range of applications in building robust distributed systems.
Imagine there are n processors communicating over a dis-
tributed network. Up to f of the processors may be malicious
or Byzantine [1]. Each processor has a private input bit (0 or
1), and the goal is to ensure that all honest processors agree
on the same value, ideally a value that is the input bit for
at least one honest processor. Malicious processors can act in
arbitrary ways to prevent the honest processors from reaching
a valid agreement. Byzantine agreement is a building block for
a wide variety of applications, extending to agreement on the
state of a larger data structure (via replicated state machine
techniques), with applications ranging from self-organizing
network overlays and fault-tolerant DHTs to payment ledgers
such as those in cryptocurrencies.

Traditional Byzantine agreement protocols are bandwidth-
limited: in real systems, the limiting factor on performance
is bandwidth. Early algorithms had exponential communica-
tion complexity [2], [3], with eventual improvements yielding
polynomial communication complexity (e.g., [4]). A big step
forward was the first claimed practical Byzantine fault-tolerant
agreement protocol (PBFT) [1]. Practical byzantine consensus
protocols such as PBFT, however, require quadratic number
of messages in the number of participants. Thus, the major
bottleneck in scaling classical byzantine consensus algorithms
is network capacity, since protocols become bandwidth-bound

with less a small number of processors.1

Recently, we have seen the advent of an entirely different ap-
proach that is computationally-limited rather than bandwidth-
limited: Nakamoto consensus. This “consensus” protocol was
introduced in Bitcoin [9], and solves a relaxation of the
traditional Byzantine consensus problem (discussed in Section
2), which is sufficiently powerful to be quite useful for many
practical applications. A key advantage of Nakamoto consen-
sus is that it uses bandwidth much more efficiently, achieving
O(n) communication complexity, with low communication
overhead. (This contrasts to the best known classical Byzantine
agreement protocols with O(n · polylog(n)) communica-
tion [5]–[8].) Nakamato consensus trades off computation for
bandwidth.

At a high level, the Nakamoto consensus works by randomly
selecting one processor per epoch (say 10 minutes) which
issues a proposal that everyone adopts—thus requiring only
a single broadcast to reach agreement.2 It uses a proof-of-
work mechanism to elect the leader, ensuring a fair choice of
leaders. Since its proposal in 2009, Bitcoin and over 250 other
cryptocurrencies use Nakamoto consensus as their primary
mechanism for ensuring secure distributed payment ledgers
(called blockchains). In terms of scale, Bitcoin employs a bil-
lion CPUs worth of computational power today (by observable
hashrates), and attracted more than one billion dollars worth
of investments in 2015 alone—one of the few well-fielded
distributed systems of such scale.

Unfortunately, Bitcoin’s throughput is not scaling well. The
Bitcoin network consumes massive computation power and
presently processes up to 7 transactions (TXs) per second.
Other centralized fiat payment systems like Paypal or Visa
process up to 2000 TXs per second, so the demand from
practical applications is three orders of magnitude more [10].
Scalability of the protocol is a raging debate in the Bitcoin
community [11]–[14]. While a number of recent proposals and
variants suggest changes to specific protocol parameters [11]–
[13], [15] (such as inter-block time, size of transaction block
size, and so on), these have fundamental scalability limits [16].

1Another series of exciting breakthroughs in the communication complexity
of Byzantine agreement [5]–[8] has reduced the communication complexity
to polylogarithmic bits per node, in theory. (See Section VIII.) The resulting
protocols, while elegant, are not simple and appear difficult to adapt to
practical settings.

2In fact, there may be temporary disagreement if two proposals occur at
the same time; eventually, with very high probability, one proposal will be
established.



2

With classical consensus protocols, since we are bandwidth-
limited, more participants leads to worse performance. Since
Nakamoto consensus is computationally limited, one might
hope that more participants yield more computation and
hence better performance. Unfortunately, that is not the case:
Nakamoto consensus, by design, does not utilize its com-
putation capacity for scaling its throughput—the protocol
ensures that one transaction block generated per time epoch
(10 minutes on Bitcoin) on average, irrespective of the total
computational power.

This raises a fundamental question — are there (relaxed)
Byzantine agreement protocols that scale in throughput lin-
early with the increase in computational capacity of the
network? If such secure computational scaling is achievable,
some important advantages are immediate. First, doubling
the computation power of the distributed network, doubles it
throughput (number of agreed values per unit time) without any
parameter adjustments. Second, by limiting how much com-
putation power constitutes one “processor”, the protocol can
tune its bandwidth consumption with flexibility. For instance,
the protocol can reduce or increase its bandwidth requirements
for consensus, simply by varying its proof-of-work parameters.
Problem & Approach. We design a scalable byzantine con-
sensus protocol suitable for use in blockchain applications,
which achieves a sweet spot between classical byzantine
consensus and Nakamoto consensus protocols. Specifically,
our protocol SCP is designed to have nearly linear (i.e.,
O(n/log(n) or sublinear) scalability with computation capac-
ity and does not require quadratic number of messages as
the network grows. Our protocol tolerates up to f < n/3
adaptive byzantine adversaries, where f and n are bounds on
the adversarial and total computational power respectively.3
The protocol can support the same blockchain data structure
format (a hash-chain) as Bitcoin; but, for further scalability,
we propose a modification that permits better efficiency pa-
rameters. Our protocol makes the same assumptions as existing
cryptocurrencies about the underlying network layer — that is,
the peer-to-peer network enables synchronous broadcasts with
low and bounded delay, and the network provably maintains
connectivity between honest peers.

The key idea in our approach is to partition (or paral-
lelize) the network into sub-committees, where the number
of committees is linear in the total computational power of
the network. Each sub-committee runs a classical byzantine
consensus protocol to process a separate set of transactions. To
do this partition, SCP leverages proof-of-work used in Bitcoin
to i) limit sybil identities in the computational network; ii)
securely split the computation nodes in the network into sub-
committees. Each committee agrees on one block, consisting
of a set of valid transactions. A final committee is designated
to combine the outputs of sub-committees into an ordered
blockchain data structure. The protocols are such that they
permit each network participant to identify the committee it
belongs to, and which transactions are meant to be processed
by that committee independently. The protocol runs once

3Here, 1/3 is an arbitrary constant bounded away from 1/2, selected as
such to yield reasonable constant parameters.

in a time epoch (say of 10 minutes), and protocol outputs
are cryptographically committed in a blockchain stored fully
replicated, the same way as in Bitcoin.

Our goal is to ensure that the protocol offers the same
level of security as Nakamoto consensus under the same
assumptions, but with a higher throughput. To achieve security
equivalent to Nakamoto consensus, several additional consid-
erations emerge in our protocol. First, the protocol must ensure
that each sub-committee consists of an honest majority with
overwhelming probability. Without this property, the commit-
tees may not reach agreement on a consistent output or agree
on invalid outputs. We solve this key challenge by developing
a protocol to distributively generate a public random coin — a
source of randomness that has a weak, bounded bias from the
computationally-limited adversary. Our further constructions
utilize this weakly-biased random coin and carefully selected
size parameters to bound the bias (or adversarial influence) in
committee selection and transaction allocation w.h.p. Similar
to Bitcoin, our random coin generation algorithm makes no
assumptions on an external randomness beacon. A second chal-
lenge is to ensure that the protocol can be serially composed,
ensuring defense against an adaptive adversary which can
observe all outputs from previous protocol runs. To ensure this,
our protocol randomizes the construction primitives in each
run, thereby limiting the adversary’s advantage to a negligible
quantity. We provide proofs of security of our constructions.

We explain how to build two blockchain applications using
our new protocol in Section VI, including a cryptocurrency.
As an additional advantage, SCP decouples the consensus step
from that of broadcasting all the transaction data immediately.
This yields a better bandwidth utilization, since data transmis-
sions for the consensus step are needed between constant size
committees only and the size of data is a small header block. In
Bitcoin and several other proposals, heavy transaction data of
previous blocks needs to be broadcast before the start of epoch.
SCP cleanly decouples the broadcast of agreed value (e.g.
transactions) from that of the consensus protocol information,
enabling lazy broadcasts of the former.

Efficiency & Results. From an efficiency perspective, our
protocol parallelizes the network into a sublinear number of
committees thus scaling with computation capacity. Within
each committee of size c (approximately 400) identities, we
design and run a secure consensus protocol of O(c3) message
complexity. Overall, if there are n identities participating in
an epoch, this yields a message complexity of O(nc + c3).
A classical BFT protocol without SCP’s parallelization would
run in O(n2) or O(n3). In Bitcoin, n is over 6000 nodes, thus
the improvement is about two orders of magnitude in principle.

We run our experiments on Amazon EC2 using the same
network implementation as Bitcoin [17] and simulating several
experiment scenarios. Our experiments show that Bitcoin does
not scale up even if we plug more computational power,
as expected. With increase in block size or the block rate
(i.e., reducing epoch time), the transaction rate scales up
almost linearly. However we soon hit other constraints such as
bandwidth limitation and block verification time. For instance,
when the block rate is 12 seconds, nodes have different views
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of the blockchain frequently because the underlying network is
not efficient enough to broadcast new blocks. As a result, nodes
spend much time resolving the conflicts and the transaction rate
drops significantly.

Our prototype of SCP scales its throughput sublinearly,
when run on our network simulation. With the same network
topology, the block rates (blocks per epoch) for X, 2X,
4X, 8X (X is 10 i7-3520M processors) are 1, 2.02, 2.37,
3.17 respectively. Finally, due to SCP’s ability to decouple
the consensus from block-data broadcasts, the size of data
exchanges in the consensus step is drastically smaller, leading
to smaller block-propagation delays and overall fairness.
Contributions. This paper makes following contributions.
• We propose a scalable consensus protocol SCP which

scales its throughput sublinearly with the computation
power of the network. We prove that SCP is secure and
efficient.

• We build a blockchain based on SCP, and show two
applications: a cryptocurrency and a credential ledger.

• Our experiments on an idealized network simulation on
Amazon EC2 cloud instances, ranging up to 160 CPU
cores, confirm a sublinear scale up for SCP. In com-
parison, Bitcoin’s present implementation does not show
a throughput improvement with increase in computation
power.

II. PROBLEM & CHALLENGES

A. Byzantine Consensus For BlockChains
The blockchain protocol is a fundamental contribution in-

troduced in Bitcoin, and the underlying basis of over 250
cryptocurrencies. A blockchain is a data structure which stores
a time-ordered set of facts (or transactions 4). The blockchain
data structure at any given time instance is identified by
a cryptographic digest which provides authenticity. Anyone
can verify whether a transaction is in the ordered set and
its ordering w.r.t to other committed transactions, given the
cryptographic digest. The cryptographic digest is implemented
by organizing committed transactions into subsets known as
blocks. Each block uses a Merkle tree to maintain authenticity
of the subset of transactions in it, and Merkle roots of blocks
form a cryptographic hash-chain [18].

Let us consider the key problem in maintaining the
blockchain data structure in a decentralized network, which
we call as the blockchain problem. The blockchain problem is
to allow an arbitrary large network of processors to agree on
the blockchain state (identified by its cryptographic digest),
under the assumption that the computation power of mali-
cious processors is bounded. Equivalently, we can consider
the network to consist of n independent processors of equal
computation power, out of which f processors are byzantine
or malicious and can deviate arbitrarily from the protocol.
Processors have no inherent identities, nor is there any trusted
PKI infrastructure to establish identities for processors. Each

4Facts are typically referred to as transactions, since they were originally
introduced to assert ownership and transfer of Bitcoins between pseudonymous
entities. We use the two interchangeably.

processor can choose a set of transactions it wishes to commit
to the blockchain; the goal of the protocol is to ensure that
the honest processors agree on one committed set at the end
of the protocol. The commit set is the set of new blocks to
append to the blockchain.

In this paper, we are interested in solving the blockchain
problem with byzantine adversaries accounting for up to n/3
of the processors. A solution to the blockchain problem can be
cast into a solution to original byzantine consensus problem
under the right assumptions about the network — such a
modification to Bitcoin’s solution was shown to yield a secure
byzantine consensus solution recently [19].

B. Existing Solutions Do Not Scale (Securely)
The first challenge is that processors have no inherent

identities or external PKI to trust. Each processor can thus
simulate many virtual processors, thereby creating a large set
of sybils in the consensus game. Many classical byzantine
consensus solutions assume a limited number of sybil identities
controlled by the byzantine adversary; therefore, we cannot
directly use such protocols. Bitcoin proposes a solution to the
sybil sub-problem by using a proof-of-work. Conceptually, the
main idea is to design a cryptographic puzzle which admits
no more than k solutions (w.h.p) in a unit of time for each
processor. When a processor exhibits a successful solution, it
can attach a virtual identity (identified by say a public key).
Given that the adversary controls at most f out of the n
processors worth of computation power, it can establish k · f
virtual identities per unit time. The protocol can thus prescribe
a proof-of-work puzzle which admits controllable k to limit
sybil identities.

Let us start with such a defense which creates virtual iden-
tities based on computation power bounds. The next challenge
is to agree in the network of such computational identities (say
n′), at most k′ (=k · f ) of which are byzantine. We discuss
why previous practical solutions to byzantine consensus do not
yield a scalable solution. Largely, this is because increasing the
number of computational identities either makes them insecure
or increase their communication costs prohibitively.
Practical byzantine consensus protocols. Since the first
paper in 1982 [3], researchers have introduced several models
for Byzantine consensus problem (see a survey [20]). For
instance, in [21], Fisher, Lynch and Patterson show a famous
impossibility result which says that achieving a deterministic
consensus in a asynchronous model is impossible even if
one party is dishonest. Therefore, many solutions focus on
probabilistic algorithms, tolerating a non-zero probability of in-
correctness. For a long period of time, most practical byzantine
consensus protocol require a quadratic number of messages
in the number of network identities [1]. Since the number of
messages is quadratic in the number of interacting identities,
standard byzantine consensus protocols are only effective for
use among a small number of indentions, usually a thousand at
most. Such protocols are known to become bandwidth-bound
and latency-bound quickly after a few tens of identities are
involved. As a result, the protocols cannot create large number
of computational identities, since the underlying consensus
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protocol hit network bandwidth bottlenecks quickly. Protocols
with sub-linear and polylog communication costs are an active
area of research [8], they are much more complicated and have
large constants — their practical and efficient implementations
are yet to be demonstrated.
Nakamoto Consensus in Bitcoin. Bitcoin proposes a new
protocol called Nakamoto consensus, which drastically reduces
communication costs w.r.t to classical solution. In Nakamoto
consensus, the protocol adjusts the proof-of-work to ensure that
(on average) only one out of the n′ identities is able to solve
a solution. Thus, in each protocol run, one identity (called the
block founder) is elected who broadcasts the proposed block to
the network. Clearly, since the broadcast is limited to one block
from one founder, the bandwidth utilized is not proportional to
the number of computational identities. However, Nakamoto
consensus probabilistically elects one founder, independent
of the available processors on the network — this design
does not scale with increase in the number of processors
added to the network. Note that increasing the number of
founders elected in each round of Nakamoto consensus makes
it insecure — if two blocks are proposed, the network see a
“fork” or two possible agreement values. Nakamoto consensus
rules eventually resolve the ambiguity in subsequent runs when
one of the possible hash-chain becomes longest. A longest
blockchain is only guaranteed when a protocol run yields a
single block, otherwise the network may always have more
than one possibility for agreement.

In summary, existing solutions and their direct application
do not yield a scalable and secure blockchain protocol. In this
paper, we ask whether a secure protocol exists that scales the
number of agreed transactions linearly in n.

C. Problem Definition: Subset Consensus

We propose the subset-consensus problem, which captures
the essence of agreement over a subset of transactions. Let
there be n identity-less processors, f of which are controlled
by a byzantine adversary. Each processor i has its integer input
xi ∈ ZN , and an output yi ∈ 2ZN and a externally-specified
constraint function C : 2ZN 7→ 0, 1. We seek a protocol Π
run between the processors repeatedly, yielding protocol runs
Π1,Π2, . . . ,Πr such that for all choices of xi in each Pi, if
f < n/3 then the following conditions hold:
• Agreement. There exists an X ∈ 2ZN , such that the

outputs of all honest processors is X with overwhelming
probability p > (1− 2r).

• Validity. The value X satisfied an externally specified
constraints, i.e., C(X) is 1.

Our goal is to scale the size of the set of agreed transactions
X per invocation of Π. More specifically, the size of the set
should increase sublinearly in n. If so, we say the solution has
sublinear scalability.

We point out that the subset consensus problem is a re-
laxation of the original byzantine consensus problem. The
first significant distinction is the definition of “agreement”.
Here, we allow the honest processors to be in “probabilistic
agreement” such that processors agree on a value with some

probability greater than p, rather than be in exact agree-
ment. It is desirable to have cryptographically strong level
of agreement, so in this paper we consider agreement with
overwhelmingly high probability. The second distinction is that
the agreed value can be the input of any processor, honest
or byzantine. The classical definition requires that the agreed
value also be “valid”, that is the input of at least one honest
processor. In the blockchain problem, validity can be checked
externally — each honest processor can check the agreed
value to satisfy externally-specified constraints C, and accept
a solution only if so. We discuss why such a formulation is
useful in practical blockchain applications.

Note that subset consensus protocol captures the essence of
scalability, and cleanly separates other concerns in building
a full-blockchain. Once the network agrees on the subset of
transactions (denoted by xi) included in the agreed set, it can
create a cryptographic digest using a hash-chain as explained.
Our problem formulation cleanly separates the consensus prob-
lem from that of sending actual transactions, which may be
hundreds of bytes rather than integers. However, as we show
in Section III, we can agree on a hash-value of transactions
using the subset-consensus protocol, and lazily broadcast the
transactions themselves separately. This decouples the con-
sensus protocol from the transmission of transactions, allow-
ing the two functions to not have a serial dependency. Our
problem formulation does not mandate a specific definition
of validity beyond “agreed by all honest parties”, as captured
by the function C. This has immediate advantages, because
we decouple the consensus protocol from checking validity
of transactions. Different applications of a blockchain demand
different kinds of validation checks. For instance, a blockchain
may function simply as an decentralized immutable ledger
which requires no checks on the agreed set. A cryptocurrency
application, such as Bitcoin, may wish to enforce constraints
on eliminating double-spending transactions. We show in our
evaluation that we can implement a distributed implementation
of C to preserve such double-spending defenses; however, this
is specific to the Bitcoin application and need not be baked into
the consensus protocol.

Threat Model. We consider a threat model that includes
arbitrary and round-adaptive adversary. Processors controlled
by the byzantine adversary can be arbitrarily malicious, e.g.,
deviate from the protocol, and/or drop messages from other
processors. All malicious processors can collude together.
Further, we consider a round-adaptive adversary, which can
select which processors to corrupt at the start of each round
(or run) Πi. The adversary has complete access to the outputs
of all previous i − 1 runs to make its choices. However,
once a protocol run begins, the choices of compromised
processors are fixed. The processors are assumed to point-to-
point communication links between them, and the adversary
has full information about the messages transmitted on all
links.

Security Assumptions. First, we assume that we know the
upper bounds on the true computation power n (say in Giga-
hash/sec), and that f is less than n/3. Estimating such a bound
is feasible from observing network hashrates, as in Bitcoin,
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with the caveat that adversaries can pretend to control f much
lower than they actually do. For this work, we assume such
information is externally available. Second, we assume that
the total computation power of the byzantine adversaries is
still confined to standard cryptographic assumptions of prob-
abilistic polynomial-time adversaries. We assume availability
of certain standard cryptographic primitives, described later in
our constructions. Third, we make the same assumptions about
the underlying network overlay layer as Bitcoin. Explicitly,
the network graph between honest processors is connected
and the communication channel is synchronous, i.e., once any
user broadcasts any message, the rest of the honest nodes
will receive it within a negligible and bounded delay (say 5
seconds); we refer to this as a “consistent” broadcast.5 Note
that such timing and connectivity assumptions are implicit in
Bitcoin, and attacks on our protocol affecting these assump-
tions apply to Bitcoin too. In this work, we make assume
an “idealized” network layer that is reliable and low-latency
broadcast channel. We recognize that these are open challenges
for many distributed systems beyond blockchains, especially
which deal with dynamic churn [22], [23].

III. SCP DESIGN

In this section, we present the SCP protocol. We will begin
with an overview of the protocol, and then proceed to describe
each part of the protocol in more detail.

A. Solution overview

The algorithm proceeds in epochs, each of which decides
on a set of values (published as a cryptographically verifiable
digest). In this description, we describe the steps taken during
one epoch.

The key idea is to parallelize the available computation
power, dividing it into sub-committees. The number of com-
mittees grows proportionally to the total computation power
in the network. A committee has a small number of members
(e.g., c = 400), and each committee runs a consensus protocol
to internally agree on one value. A final committee called the
consensus committee is responsible for combining the values
selected by the committees, computing a cryptographic digest
and broadcasting it to the whole network.

As the last step in the epoch, the final committee generates
a set of shared public random bit strings, all of which have
bounded bias. These random strings are used in subsequent
epochs as a source of randomness.

In each epoch, processors execute the following 5 steps:
• Committee Formation. This step is a local computation

at each processor, which reveals to the processor its
virtual identity and the identity of the committee that it
participates in for that epoch.

• Committee Overlay Join. In this step, processors commu-
nicate to discover identities of other processors in their
committee.

5Throughout Section III, we discuss how to relax this assumption, allowing
messages from malicious users to be delivered inconsistently.

• Intra-committee Consensus. In this step, processors run an
authenticated Byzantine agreement protocol within their
committee to agree on a single value. Each committee
sends the selected value, signed, to a designated final
committee.

• Final Consensus Broadcast. The final committee com-
putes a final value from all the values received from
committees, and broadcast the final result.

• Shared Randomness Generation. The final committee
runs a distributed commit-and-xor scheme to generate a
sufficiently unbiased random value. The random value is
broadcast to the network.

In Step 1, each processor generates an identity consisting of
a public key, an IP address and a PoW solution. The public key
and the IP address are selected by the processor; the processor
must solve a a proof-of-work (PoW) to generate the final
component of the identity. Because PoW requires computation,
the number of identities that the malicious processors can
create is limited, as they control at most 1/3 of the total
computational power.

In Step 2, processors join their committees, creating an
overlay. The overlay is a fully-connected subgraph containing
all the committee members (i.e., it is small). A naıve solution
is for every processor to broadcast its identity and committee
membership to everyone; however, this solution will result in
O(n2) messages, which is not scalable. We provide a simple
solution that requires a small number of broadcasts, after which
group multicasts within a committee complete the overlay join
step.

In Step 3, each committee executes an intra-committee
consensus protocol to agree on a value. We ensure that each
committee has a majority of honest members, and any (au-
thenticated) Byzantine agreement protocol that requires only a
correct majority can be used.

In Step 4, the results from the committees are combined
into a final value by taking a set union to generate the final
agreed subset. This step is performed by a special designated
final committee.

In Step 5, the final committee generates a random value
which has at most c/2 biased bits. This random value is used
in the PoW in the next epoch.

Throughout this paper, we use the following notation: n is
the total number of identities that we expect to be generated in
an epoch, f is the fraction of total computational power that
is controlled by malicious users (i.e., the adversary), the size
of each committee is c, the number of committees is 2s, for
some constant s. Without loss of generality, s can be picked
such that (1− f) · n = c · 2s.
Efficiency. The protocol agrees on a set of values equal to
the number of committees, which scales sublinearly in n. Our
protocol requires O(c) broadcasts to the whole network (step
2, 4 and 5). Each such broadcast can be implemented in O(n)
message transmissions and has low latency. Step 3, 4 and
5 require at most c2 multicasts with committees of size c,
thus the message transmissions is O(c3). Therefore, the total
number of message transmissions is O(nc + c3) or roughly
O(n) if we consider c to be a small constant (e.g., 400).
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All the committees can communicate internally in parallel,
so the overall latency of each step O(`). The computation
costs have to be carefully setup as they impact security and
correctness. Clearly, the PoW must be sufficiently larger than
`, say constant times larger, so that network latencies do not
raise unmanageable unfairness for processors. We discuss these
parameters carefully in our constructions.
Security. In each epoch, for f = 1/3 and a sufficiently large
c, our protocol guarantees the following properties with high
probability:
• S1. Among the first n′ identities created, at most n′/2−1

are controlled by malicious users, with very high proba-
bility (depending on n′).

• S2. For each committee, the number of honest processors
is at least c/2 + 1 at the end of Step 1.

• S3. All honest committee members will discover all the
other honest committee members in Step 2.

• S4. For each committee, Step 3 will yield a consensus
value, signed by over half of the identities on the com-
mittee.

• S5. Step 4 yields a valid solution to the subset-consensus
problem, signed by more than half of the final committee.

• S6. Step 5 will yield a set of random r-bit value with at
least r − c/2 entropy. Therefore, the random values are
sufficiently unbiased to be used for proof-of-work in the
next round.

Our main analysis, presented in Section IV, shows that the
adversaries cannot create more than n/2 identities in step 1
(S1), and cannot establish a committee with more than c/2
malicious identities (S2) in an epoch time with non-negligible
probability (even if all the malicious users collude). Given that,
the remaining security properties S3–S6 above will hold even
in a adversarial execution.

There is one more security consideration that merits clarifi-
cation. The shared randomness generated in Step 5 of an epoch
is used as an input to the PoW in the next epoch. There are
two potential sources of advantage for the adversary here: (a)
the adversary learns the random value before of honest nodes
(gaining a headstart on the next PoW); and (b) the adversary
can bias the random string. However, our protocol ensure that
these two sources give negligible advantage to the adversary
in the next epoch. (See, e.g., S6.)

B. Committee Formation
First, each processor creates a set of identities of the form

(IP, PK), where PK is a public key. The processor will re-
veal its identities to the network, keeping its private key secret.
Throughout the epoch, this identity can sign messages. As
discussed, we ensure that the total number of identities created
by malicious processors should not exceed those created by
honest processors (S1).

Next, our protocol assigns each identity to a random com-
mittee in 2s, identified by an s-bit committee identity. The
committee assignment must be random, even for the malicious
users: a probabilistic polynomial-time adversary should not
be able to bias its committee assignment with non-negligible
probability.

We use a proof-of-work to achieve these goals. Let H be a
random oracle that acts as a pre-image resistant hash function.
As a “seed” for the proof-of-work, we need a public random
string generated at the end of the previous epoch. (This ensures
that the proof-of-work was not precomputed.) See the later
discussion for how this is generated and verified. Assume,
for now, that epochrandomness is a public random string
generated in the previous epoch.

To join a committee, each processor locally searches for a
valid nonce that satisfies the following constraint:

O = H(epochRandomness||IP ||PK||nonce) ≤ D.

D is a predefined parameter in the network which determines
how much work a processor has to do to solves a PoW. For
example, D is set to require O to have 50 leading zeros. The
last s bits of O specifies which (s-bit) committee id that the
processor belongs to.

All processors know epochRandomness and choose their
identity IP and PK privately. For any choice of nonce,
H produces a sufficiently long random output. Assuming H
generates an r bit string, the probability that a single invocation
of H satisfies the constraint for a randomly chosen nonce is
thus p = (D+1)/2r = 2−50 (for the choice of D involving 50
leading zeros). No efficient adversary can find a nonce that
satisfies the constraint on the number of leading zeros with
non-negligible probability better than p by the cryptographic
pre-image resistance assumption. Therefore, each invocation
can be seen as a coin flip with probability of yielding success
with odds at most p. Once a processor obtains an output
that satisfies the constraint, it can use the least significant
bits and the nonce as its solution. If each processor has
the computational power to invoke the hash function k times,
the number of successes (i.e., the number of identities) is a
binomial distribution B(k, p). Therefore, the expected number
of identities created by honest and byzantine processors is
n(1 − f) · p and nf · p respectively. Applying a Chernoff
bound [24] and we can easily obtain S1.

For establishing S2, we need to examine the number of hon-
est and Byzantine identities that map to any given committee.
Since H is a random oracle, we can treat the bits in its output
as unbiased and random. Therefore, the s bit strings generated
in the solution are random, and an identity is mapped to a
given committee with probability 2−s. Further, If n = 2sc,
then within O(n log n) solutions to the proof-of-work, all the
committees are filled (with high probability).

Byzantine adversaries can choose to not broadcast valid
solutions, thereby denying membership in a committee. How-
ever, this does not advantage their membership in any other
committee. It remains to choose the parameters s, which
determines the number of committes, and D, which determines
the difficulty. The difficulty should be significantly larger than
the broadcast time, so as to limit the unfairness created by
network broadcast latency.

C. Committee Overlay Join
Once identities and their committees are established, com-

mittee members need a way to establish point-to-point con-
nections with their committee peers. A challenge here is that
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identities are established through a proof-of-work, which is
a probabilistic process that occurs over time: identities are
continuously being created at some rate. We need a mechanism
to establish the first c members of the committee so that all
honest members have the same view of the member set.

One could run any authenticated byzantine fault tolerant
protocol here (aBTF) which tolerate upto n/2 malicious iden-
tities. However, this would yield BFT protocol running over
the entire network without any parallelization. Here we need
something more efficient.

The first c identities created in the network broadcast
their identities to everyone—these identities are automatically
elected to form a special directory committee. All subsequent
identities created will contact the directory members to an-
nounce their committee membership. Directory members keep
track of the committee membership announcements, and when
their list for a committee reaches size c, they multicast it
to all members of that committee. (If two announcements
arrive at the same time, they are processed in lexicographic
order.) Committee members accept any list that is sent by at
least c/2 + 1 directories. Notice that there are only O(nc)
messages to or from the directories (in expectation), along with
an additional O(c) broadcasts to create the directory.

Why is this protocol secure? As with the committees,
the directory will have an honest majority, with very high
probability (as per Property S2). All the honest identities on
the directory will, for each committee, identify the same c
members (due to consistent broadcast and a consistent ordering
in which the members are processed).

If we weaken the consistent broadcast assumption, then
it becomes possible for honest directories to have slightly
different sets of c committee members (depending on which
messages arrive and in which order). In this case, a closer
analysis of the rate at which proof-of-works are solved shows
that, with high probability, the sets only differ by a very small
amount. We can observe that small differences in the views
on committee membership have no impact (as those identities
can be just treated as Byzantine).

D. Intra-committee Consensus
Once a committee is established, the protocol to agree

on a value can reuse any existing authenticated Byzantine
agreement protocol. (e.g., [3], [25].) All members have the
public keys of all other committee members, therefore an
authenticated BFT protocol are a natural choice. We point out
that one can use an asynchronous or synchronous protocol here
depending on your network; our implementation uses a simple
synchronous protocol for ease of implementation.

Thus, each member of the committee chooses a value to
propose, checks its validity (if such a check is necessary), and
executes the agreement protocol. If the value produces by the
consensus protocol is invalid, then the agreement protocol is
repeated.

The selected value is digitally signed by the committee
members, i.e., it acquires at least c/2 + 1 signatures from
the honest members. Each committee member then sends the
signed value to the final committee (using the directory, again,

to acquire the list of final committee members). A value that is
not the agreed one cannot have c/2 + 1 signatures since there
are fewer than c/2 malicious identities, and honest identities
only sign the selected value. The final committee can verify
that a certain value is the selected one by checking that it has
at least c/2 + 1 signatures.

E. Final Consensus Broadcast
The next step of the protocol is to merge the results of

committees and to create a cryptographic digest (a digital
signature) of the final agreed result. A final committee (say,
with a fixed s-bit committee id) is designated to perform
this step. The merge function is simple: each final committee
member validates that the values received from the committees
are signed by at least c/2+1 members of the proper committee,
and takes the ordered set union of all inputs. To ensure that the
result is indeed correctly composed from the correct inputs,
the final committee run the same intra-committee algorithm
described previously. This step obtain a verifiable signature by
at least c/2 + 1 members of the final committee, which the
entire network can verify upon broadcast.

F. Generating Shared Randomness
In the final step of the protocol, the final committee gen-

erates a set of random strings for use in the next epoch. It is
critical that this happens at the very end of the epoch, so that
the malicious users do not learn the random string too early
(and hence cannot start working on the proof-of-work for the
next epoch too early).

This phase of the protocol consists of two rounds of
communication. In the first round, each member of the final
committee chooses a random string u consisting of r random
bits and broadcasts a hash H(u) to everyone (i.e., not just
to the final committee). This serves as a commitment to the
random string. In the second round, each member of the final
committee broadcasts a message containing the random string
u itself to everyone (i.e., not just to the final committee).6

At this point, each user in the system has received at least
c/2+1 and at most c pairs of commitments and random strings
from members of the final committee: the honest members
follow the protocol, while the malicious users may choose
to withhold either the commitment or the random string.
Each user discards any random strings that do not match the
commitment.

For the purpose of the next epoch, each user takes an XOR
of the set of valid random strings received. In a network with
consistent broadcast, everyone receives the same set of strings.
In a network without consistent broadcast, users may receive
different subsets of the strings. We consider the XOR of any
subset of size at least c/2 + 1 of the valid random strings sent
by the final committee to be a valid shared random string.

6In practice, the first round of communication should be long enough to
compensate for any variation in when members start the round; these two
rounds may be separated by a small gap to ensure that no message from the
first round is accepted as valid after any message from the second round has
been sent. Each round should be long enough to ensure that all the messages
sent by honest members are received.
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Recall that these random strings are used as the seed for the
proof-of-work in the next epoch. In order to verify that a proof-
of-work is valid, the user should attach to the solution of the
proof-of-work the set of random strings of size at least c/2+1
used to generate the seed. Any other user can then verify that
these random strings were sent by the final committee members
and match the commitments.

Finally, we will need to argue that the random strings
generated from this process have sufficient entropy, i.e., are
not too biased by the malicious users. Notice that by choosing
which c/2 + 1 of the c valid random strings are used to
generate the seed for the proof-of-work, a malicious user can
gain some control over the random string. However, as we
discuss in Section IV, this reduces the entropy by at most c/2
bits, yielding a random string with at least r − c/2 bits of
entropy—which is sufficient.

IV. SECURITY ANALYSIS

In this section, we show how the security properties de-
scribed in S1 to S6 are achieved in the SCP protocol.

We begin by clarifying several assumptions. First, we as-
sume time is divided into discrete communication rounds each
of which has fixed length (e.g., five seconds) long enough
for users to broadcast information to each other. We assume
all honest processors are synchronized: they have the same
view during beginning and ending of each round. Second, we
assume that the network layer can provide consistent broadcast
(i.e., every broadcast message is delivered to every other user).7

Definition 1. In a given epoch, for each committee, we refer
to the first c identities that broadcast a valid proof-of-work for
this committee as the members of this committee. (If more than
one proof-of-work is broadcasted during the same round, they
are ordered lexicographically, and the smallest one is picked.)

Notice that, by definition, each committee has exactly c
members, and these are exactly the members identified by the
directory.

All our claims for an epoch depend on their being sufficient
random strings generated in the previous epoch:

Definition 2. We say that an epoch has good randomness
if: (1) every user has a publically random string of r bits,
verifiably generated in the previous epoch, with at least r−c/2
bits of entropy, and (2) no user has access to such a verifiable
random string more than two communication rounds prior to
the beginning of the epoch.

We now prove the security properties of SCP. In particular,
we start with S1, which states honest identities take a dominate
portion in all the generated identities.

Lemma 3 (S1: Good Majority). In every epoch with good
randomness, for every integer n′: among the first n′ identities
created, at most n′/2 are controlled by the adversary, with
probability at least 1− e−27n

′/160,

7In Section III, we discussed in presenting the protocol how to cope with
weaker broadcast assumptions; the reliance on consistent broadcast simplifies,
but is not necessary.

Proof: The proof-of-work guarantees that if all the users
start at the same time, each solution generated has a 2/3 prob-
ability of being held by an honest processor since the honest
processors have 2/3 of the computational power. However, the
malicious users may start at most two (communication) rounds
early—if T is the expected time for all the users, collectively,
to find one proof-of-work, then a loose upper bound shows
that each proof-of-work is malicious with probability at most
[(T + 2)/T ](1/3), i.e., it increases their power very slightly
proportional to the extra time they have. Assuming T ≥ 10,
this yields the probability of a malicious proof of work to be
2/5.

As a result, we know for each identity generated, with
probability at most 2/5 it will be taken by the adversary, and
with probability at least 3/5 it will be taken by the honest
processors. Now, Let Xi be an indicator random variable
which takes value one if the ith identity is generated by an
honest processor. Let X =

∑n′

i=1 Xi. We know in expectation,
X = 3n′/5. Apply a Chernoff bound [24], we know with
probability at most P(X ≤ (1 − 3/4)(3n′/5)) = P(X ≤
n′/2) ≤ exp(−(3n′/5)(9/16)/2) = exp(−27n′/160), the
first n′ identities will contain at least n′/2 malicious identities.

By a similar argument, we can obtain S2, which states each
committee is dominated by honest identities. We also show that
the malicious users will not generate too many malicious iden-
tities during the epoch. (Recall that even after the committee
is full, the malicious users can continue to generate identities
which they could use to form a fake committee.)

Lemma 4 (S2: Committees Good). In every epoch with good
randomness, for each committee, at least c/2 + 1 committee
members will be honest with probability at least 1−e−27c/160.
Moreover, the probability of generating c/2 + 1 malicious
identities by the end of the epoch is also exponentially small.

Proof: Consider a given committee, by an argument
similar to the one as in the proof of Lemma 3, we know
that each “seat” in the committee is honest with probability
at least 3/5 and malicious with probability at least 2/5. Thus
by the same Chernoff bound calculation, the probability of
a committee containing c/2 + 1 malicious users is at most
exp(−27c/160).

Similarly, notice that the expected time for the malicious
users to generate c/2+1 identities is (approximately) twice that
of the honest users. Assume that Thonest is the expected time
for the honest users to generate c/2 + 1 identities (and hence
a lower bound on the expected time to form a committee)
and Trest is the time for the epoch after the honest users
generate c/2 + 1 identities. As long as Thonest = Ω(Trest)
(e.g., the committee generation is at least 10 times longer than
the remainder of the epoch), then a similar Chernoff bound
shows that the probability of the malicious nodes generating
c/2+1 identities in time Thonest+Trest is exponentially small.

(A somewhat tighter bound on the probability can be found
numerically evaluating the binomial distribution, which we
used when selecting our committee size of c = 400 to ensure
a probability of error of approximately 2−40.)
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We now proceed to prove S3, which states for any given
committee, all honest members will correctly obtain the (same)
member list.

Lemma 5 (S3: Consistent Committees). In every epoch with
good randomness, if the directory size is d, then for each
committee, with probability at least 1− (e−27c/160, all honest
committee members will correctly adopt the (same) member
list for the committee.

Proof: The directory consists of the first c identities to
be established, and we know from Lemma 3 that at least a
majority of the directory is honest with probability at least
1 − e−27c/160. Each honest directory member will adopt the
same memership list for the directory (by consistently ordering
the membership requests for the committee), and hence will
broadcast identical lists. Hence each member on the committee
will receive at least c/2 + 1 identical lists from the directory,
and hence they will adopt this (unique) list.

We now show S4, which argues that a committee correctly
decides a single value.

Lemma 6 (S4: Consensus). In every epoch with good ran-
domness, the honest members agree on a unique value with at
least c/2+1 signatures, with probability at least 1−e−27c/116.

Proof: Consider a given committee, by Lemma 4, we
know that a majority of the committee is correct with prob-
ability at least 1 − e−27c/116. The authenticated Byzantine
agreement protocol then guarantees agreement, i.e., only one
value selected). The protocol is repeated until a valid value
is produced, which is then signed by (at least) all the honest
members.

By a similar argument, we can show S5, which states
the final committee can correctly combine values from other
committees and broadcast it to the whole network.

Lemma 7 (S5: Final Committee). In every epoch with good
randomness, the final committee its honest members will
broadcast a combined value (from values from other commit-
tees) which has at least c/2 + 1 signatures, with probability
at least 1− 2s · (e−27c/160.

Proof: By Lemma 6, each committee submits a valid
value to the final committee with at least c/2 + 1 signatures.
Moreover, according to Lemma 4, we know that there cannot
be more than c/2 malicious members that have solved the
proof-of-work for this committee in this epoch. This implies,
for each committee, the final committee will only receive one
value from it which has at least c/2 + 1 signatures. Therefore,
the final committee can correctly combine values from the
other committees.

On the other hand, once the honest members of the final
committee combine the values and broadcast it, the adversary
cannot broadcast another such value to fool the network, as
the value is signed by at least c/2 + 1 members (and the final
committee indeed has at least c/2 + 1 honest members), yet
the adversary can only control at most c/2 members in the
final committee (due to Lemma 4).

Lastly, we show S6, i.e., that the shared randomness gener-
ated is sufficient:

Lemma 8 (S6: Good Randomness). In every epoch with good
randomness, with probability at least 1 − ·(e−27c/160: at the
end of the epoch every user computes a random string of r
bits that: (a) contains at least r− c/2 bits of entropy, and (b)
can be verified as validly generated in that epoch. Moreover,
no user knows any of the random strings until at least two
rounds prior to the end of the epoch. That is, if epoch e has
good randomness, then epoch e+1 also has good randomness.

Proof: By Lemma 4, the final committee has a majority of
honest identities with probability at least 1− 2s · (e−27c/160),
and the probability that the malicious users have more than
c/2 identities having solved the proof-of-work for the final
committee is exponentially small.

Thus, each user receives between c/2+1 and c commitments
and random strings from members of the final committee in
the last two rounds of the epoch. The user’s random string is
generated by xoring these strings.

Since there are at least c/2+1 bit strings received, we know
that least one of them originated at an honest user, and hence
contains r bits of entropy. The remaining bit strings may be
generated by the malicious users. However, the malicious users
committed to these strings prior to observing the bit strings
from the honest users. Hence the only method by which they
can reduce the entropy of the xor of the strings is by choosing
which subset of the c possible strings are included in the subset
of size c/2 + 1.

For each bit string that the malicious users can choose to
include or not include, the entropy of the final xor is reduced
by 1 bit, yielding a final bit string with at least r− c/2 bits of
entropy. (To see this, notice that to fix y bits in the outcome, the
adversary needs 2y possible choices, which requires y different
committed bit strings, and y ≤ c/2.)

Finally, by construction any user can verify that the set of
c/2 + 1 bit strings is valid by checking the commitments sent
out previously. Similarly, it is immediate that no user knows
the random string prior to two rounds before the end of the
epoch.

With the above lemmas in hand, the correctness of the SCP
protocol follows by induction:

Theorem 9. For every epoch i ≥ 1, with probability at least
1 − i · 2s · (e−27c/160, the following properties hold: (a) the
final committee will broadcast only one combined value to the
network with at least c/2+1 signatures and no other combined
value will have c/2 + 1 signatures; (b) this combined value
contains 2s sub-values each of which comes from a committee
and is verified by at least one honest processor; and (c) at the
end of the epoch, each user has a publically verifiable random
bit string of length r containing at least r−c/2 bits of entropy
(i.e., the following epoch has good randomness).

Notice that we have shown, at this point, that each epoch
ends with a correct (combined) value selected. Any user that
is in the system can, by listening, verify that this combined
value is the correct and honest one. Often, it is desirable that
the correctness by externally verifiable, e.g., by a user that was
not in the system at the time. In Bitcoin, this is achieved by
showing that the chain constructed is the longest chain, with
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1 Input:
2 PreviousTX: ID of previous transaction
3 Index: 0
4 scriptSig: Sign(PubKey), PubKey
5
6 Output:
7 Value: 5000000000
8 scriptPubKey: %take Signature and PubKey as params
9 checkif Hash(PubKey) = Payee’s ID,

10 checkif Sign(PubKey) is valid

Fig. 1: Illustration of a simple transaction in Bitcoin. User’s address
is computed by hashing their public key. scriptPubKey is a script
that defines how the payee claims the recieved Bitcoin.

very high probability (i.e., exponentially small probability). In
fact, the same property holds here: on average, it will take
the malicious users twice as long to generate a signed final
value as the honest users. Hence, an honest “chain” will grow
twice as fast as a malicious “chain” and hence with very high
probability it will be externally verifiable. (For a more detailed
discussion of this issue in Bitcoin, see [19]; the argument here
is similar.)

V. IMPLEMENTING SCP IN BLOCKCHAIN

We describe our implementation to adapt SCP consensus
protocol and build scalable blockchains. However, we first
provide brief background about blockchain structure including
transactions and the cryptographic digest that we use in SCP.

A. Implementation Background
A transaction (TX) represents an atomic operation that users

carry out in the network. Each valid TX updates the state
of the blockchain. For example, in Bitcoin, a regular TX
sends some amount of Bitcoin from a sender to a receiver,
as shown Figure 1. The sender must specify in the Input
part of the TX where he gets the Bitcoin from and a proof
to show that he is a valid owner, i.e., having a valid private
key. The sender also specifies in the Output part the receiver
and on what condition (in scriptPubKey) the receiver can
spend the money. Users when verify a TX need to check
the sender’s proof in scriptSig by running through the
scriptPubKey of the previousTX that the sender is
spending. Currently this computation is done by all users in
the Bitcoin network for all TXs included in a new block.

Bitcoin and existing cryptocurrencies use Merkle tree struc-
ture to cryptographically commit a set of transactions in a
block [26]. A Merkle tree is essentially a binary hash tree.
Each leaf node stores some transaction ID (hash of some
transaction). Each internal node stores a hash on the concate-
nation of its children nodes’ values. Thus, Merkle tree allows
all transactions to e committed in a single hash value stored
by the Merkle root. An example of a Merkle tree storing all
transactions having IDs from 1 to 8 is illustrated in Figure 2.
The Merkle tree allows one to prove the existence of some
transaction in a committed tree by a short proof of roughly
log(m)-size, where m is the number of leaf nodes in the
tree. Additionally, a verifier only needs to store the Merkle

1 3 4 5 6 7 82

Merkle root

H34
H12=H(1||2)

H14 H58

H56
H78

H18

Fig. 2: An example of a Merkle tree which commits all transactions
having IDs from 1 to 8.

root hash of the committed tree. For example, one can prove
that 1 is included in the Merkle tree in Figure 2 by providing
H(2), H34, H58. The verifier checks if he/she can reconstruct the
committed Merkle root hash to accept the proof.

B. Two-layer blockchain
We devise a novel two-layer blockchain design to implement

SCP and improve the transaction rate in the network. Our two-
layer blockchain includes two different block types namely
consensus block and data block. A data block is proposed by
normal committee while a consensus block is proposed by the
final designated committee in SCP to include all data blocks.

A data block contains transactions like a normal block in
Bitcoin but is not broadcast to the network immediately. On the
other hand, a consensus block has only commitments of data
blocks with header information, e.g., timestamp, block hash.
Further, there is only one consensus block in an epoch and
a valid consensus block must be broadcast immediately. As
shown in Figure 3, a data block is committed to a consensus
block by only two SHA256 values: a block hash and a Merkle
root hash. As discussed in Section III, SCP allows users to
trust the validity of all blocks without downloading the data.
Thus, our blockchain implementation enjoys the advantage
of separating the transactional data and data needed for the
consensus formation. We depict the overview of a blockchain
which implements SCP’s protocol in Figure 4.
Estimate computation capacity in the network. Another
important feature when implementing SCP is to estimate the
computation capacity in the network and to adjust the number
of committees accordingly. This is to keep the average of epoch
time constant, e.g., 10 minutes as in Bitcoin. We employ a
similar technique as in Bitcoin to adjust the number of data
blocks can be introduced per each time blocks. Concretely,
we consider a timespan of, say, 100 epochs. If the average
time taken by an epoch is longer than the expected time, e.g.,
10 minutes, we reduce the number of committees as in the
following equation.

Next #. committees = Current #. committees× Expected epoch time

Average epoch time
(1)

Based on Equation 1, all parties can determines how many bits
that they need to consider in their valid PoWs to computer their
committee numbers. There is an edge case where the number
of committees is already 1 and the expected epoch time is more
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Consensus	Block	

Previous	Block	
Hash	

Timestamp	

Commi6ee	
signatures	

No.	of	data	blocks	

Data	block	commitments	

No.	 Data	Block’s	
hash	

Merkle	root		
of	TXs	

1	 0x123abc…	

2	 0x123456…	

Data	Block	

Data	Block	header	

Previous	
Consensus	Blk	

Merkle	root		
commitment	of	TXs	

Block	hash	 No.	of	TXs	

Commi6ee	
signatures	

Timestamp	

Included	TXs	

No.	 TX	ID	 TX	data	

1	 0x123abc456…	

2	 0x123efg456…	

Data	Block	

Data	Block	header	

Previous	
Consensus	Blk	

Merkle	root		
commitment	of	TXs	

Block	hash	 No.	of	TXs	

Commi6ee	
signatures	

Timestamp	

Included	TXs	

No.	 TX	ID	 TX	data	

1	 0x122abc456…	

2	 0x122efg456…	

Fig. 3: Block templates of consensus block and data block in SCP.
Each data block is committed to a consensus block by their block hash
and the Merkle root of a Merkle hash tree over included transactions.
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Previous	
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Consensus	Block	i-1	

Previous	
Consensus	Blk	

Timestamp	

Commi4ee	
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No.	of	data	
blocks	
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Consensus	Block	i+1	

Previous	
Consensus	Blk	

Timestamp	

Commi4ee	
signatures	

No.	of	data	
blocks	

Data	block	commitments	

Fig. 4: Blockchain design in SCP. Each block epoch has only one
consensus block but multiple data blocks.

than 10 minutes. In this case we fall back to the Nakamoto
consensus protocol to adjust the difficulty D of the PoW using
a similar formula as in Equation 1.

C. Potential advantages
We discuss about other advantages that SCP provides in

addition to achieving our scalability goal.
Verifier’s dilemma. The verifier’s dilemma happens when
verifying a block is expensive [27]. The intuition of the
dilemma is that users do not know whether to i) skip the
verification of a block to gain more advantage in finding the
next ones or ii) to verify and avoid the risk of mining invalid
blocks. SCP eliminates this dilemma by requiring users to
verify only a small constant amount of information, i.e., the
block header, when they receive a block from their peers. It

is because users can rely on the fact that the correctness of
a block is verified by at least one honest member in some
committee. Thus, users can process to the next block race
without verifying all data included in all blocks.
Mining and transaction centralization. One serious problem
in Bitcoin and most cryptocurrencies is mining centralization
in which users with insufficient computational power often
join some mining pool to mine together. As a subsequence,
the blocks in Bitcoin mostly come from a few popular pools.
For example, as of writing, 3 most popular pools account
for 55% of computation capacity in the network 8. Thus,
the security of the network relies on how those big pools
behave. Further, these pools can decide 55% of transactions
going to the network. In SCP, we allow miners of much less
computational power to join a committee and vote for a block.
Second, the transactions are split uniformly among several data
blocks, thus improving the decentralization of the network.

VI. CASE STUDIES

We next describe how to build several blockchain-based
applications on top of our two layer blockchain. For each ap-
plication, we show how one can efficiently implement different
validity checkers C based on SCP’s design to allow committee
members to check if a block is valid. A validity checker C takes
a block data and previous block headers as input then outputs
if the block data is valid. In order to verify a block in SCP,
one needs to verify all included transactions. Thus, an atomic
operation in C is to check whether a transaction is valid. A
normal transaction is valid if its input i) refers to an output
of a previous transaction; ii) includes a valid proof that it can
update the account associating with that proof. There may be
other application-specific property of a transaction like double
spending in cryptocurrency will require an additional check.
We illustrate how to efficiently perform all general and specific
checks in SCP.

A. Blockchain-based certificate directory
Previous works have proposed several decentralized cre-

dential systems based on Bitcoin and cryptocurrency which
support attestation about user identity [28], [29]. These systems
allow organizations like service providers (e.g., Gmail, Face-
book), DNS maintainers to verify whether a user is valid, e.g.,
has a correct private key according to some account. This
design is shown to have many advantages over traditional cen-
tralized authentication systems. First, organization can securely
authenticate users without a centralized certificate/ password
database, thus removing the risks of insider attacker or single
point of failure. Second, users can actively manage their
credentials without contacting the organization servers. For
example, users can add/ revoke their public keys correspond-
ing to some account by directly sending a transaction to
the blockchain. The next time the user logs in, the website
verifies if the user is valid based on the latest state of the
blockchain. The third and most significant advantage is that
users and websites can leverage the script feature provided in

8https://blockchain.info/pools

https://blockchain.info/pools
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a cryptocurrency to define more authentication policies. For
example, a group of 4 users sharing an account can dictate a
rule that requires at least any 3 users to login and all 4 users to
update the corresponding certificates. The systems in [28], [29]
also provide high guarantee for user privacy and anonymity.

In this case study, we discuss how one can implement
such decentralized credential systems by employing SCP. For
simplicity, we introduce a simple global certificate directory
namely SCERT that allows websites to store users’ certifi-
cates in the blockchain. One can draw an analogy between
transactions in Bitcoin and SCERT. Specifically, in Bitcoin
a transaction represents a coin ownership while in the latter
system it represents an ccount ownership. A user U can
transfer and update the ownership of an account by creating a
new transaction that “spends” some existing one.
Building a validity checker Ccert in SCERT. We illustrate
how one can check if a SCERT’s transaction Ti is valid
given only the transaction data and previous block headers.
In SCOIN, we explicitly ask the sender of Ti to provide two
proofs in Ti’s input: One proves that Ti is using an output
of some transaction Tp included in previous blocks, the other
proves that the sender is a valid owner of that Tp’s output. In
order to generate the first proof, Ti’s sender provides Tp’s data
and a Merkle proof that shows Tp’s hash was committed in
some previous block B. Checking this proof is easy given B’s
header, as we discussed in Section V-A. On the other hand, the
second proof depends on the semantic defined in Tp’s output.
For example, this second proof can be as simple as a signature
signed by a correct private key. Although the second proof
does not have a fixed format, it is verified easily given Tp’s
output. Thus, using our general validity checker C, committee
members can verify the correctness of a block based on the
block’s data and all previous block headers.

B. SCOIN: A Scalable Cryptocurrency

We next discuss how one can build a scalable cryptocurrency
SCOIN on top of SCP. Building SCOIN is trickier than SCERT
as now there exists the double spending problem. We consider
a simple scenario in which Alice has some coin and wants
to send to Bob. She does that by creating a transaction with
a valid signature as a proof of payment. Using our above
general validity checker C, Bob can verify if Alice actually
has the money, but Bob cannot check if Alice has not sent
the same coin to someone else. A naive approach to check if
a transaction Ti is double spending some money is to check
all previous blocks to see if some transaction Tj(i <> j) has
spent that money. This approach is used in Bitcoin and requires
previous block data 9. In SCP, the validity checker Ccoin only
has the current block data and previous block headers, thus
this naive approach does not work.

1) Avoid double spending transactions: Our approach to
prevent double spending is performed in two steps: local dou-
ble spending detection and global double spending detection.
The two steps check if a transaction Ti is double spending

9Bitcoin implements a mempool data structure to make this search progress
more efficient, but the check still cannot be done without previous block data.

1struct BlockHeader:
2 uint256 prevBlockHash
3 uint256 txsHash
4 uint256 OutMklTree
5 uint256 nonce
6 uint timestamp

Fig. 5: A 164-byte block header of SCOIN. txsHash is the Merkle
hash root of a Merkle tree storing all Transactions included in the
block while OutMklTree is the second hash root of a Merkle tree
committing all sorted pTxOuts, i.e., outputs of previous transactions
which are being spent in this block.

within a block, e.g., Ti and Tj are included in the same
block, and across blocks, i.e., Tj is included in a different
block. We show that our cryptocurrency-specific Ccoin can
guarantee that all TXs are not locally double spending and
provides a ground trust so that TX receivers can perform
the global double spending detection. Specifically, Alice can
include her global double spending transaction in SCOIN, but
Bob can easily detect the problem and decide not to accept
Alice’s payment. Thus, our approach gets receivers involved in
preventing double spending transactions. This is a reasonable
approach since double spending transactions affect receivers
directly, hence they should be more responsible than the
network to check whether a transaction is not spent elsewhere.
We next describe how to build such Ccoin and how Alice can
prove to Bob that her transaction is not spent elsewhere.

For simplicity, we assume that a transaction in SCOIN
includes only one transaction input (TxIn) and one transaction
output (TxOut). The TxIn indicates a previous TxOut (pTxOut)
that it is going to spend the money from and a prove that the
transaction creator is eligible to spending it.
Constructing a cryptocurrency-specific checker Ccoin. We
recall that Ccoin has two main functions namely checking if
a transaction is double spending within a block and building
a platform for detecting global double spending transactions.
We introduce an additional Merkle tree namely OutMklTree
to commit all previous transaction outputs (pTxOuts) which
are being spent in a block. The pTXOuts stored in leaf nodes
are sorted in an ascending order if we travel from left to right.
Our new block header is illustrated in Figure 5. Typically,
our cryptocurrency-specific C will mark a block as valid if:
i) all transactions are marked valid by a general check; ii)
there is no pTxOut appearing twice in our OutMklTree —
this is to prevent double spending transaction within a block;
iii) pTxOuts are in ascending order and the Merkle tree which
stores them is correctly built. Checking all these conditions is
thus easily done, given current block data and previous block
headers. We next explains how Bob can rely on the correctness
of C to detect if a transaction is globally double spending.
Detecting global double spending. In SCOIN, a transaction is
included in a block does not guarantee that it is valid. However,
it still shows that the senders, e.g., Alice, try to spend the
money from a particular pTxOut specified in the TxIn of that
transaction. Thus, Bob can accept Alice’s transaction if only
pTxOut has not been spent in any previous blocks. SCOIN
allows Bob to do that by using previous block headers to check
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hash(pi) hash(pi+1)

Merkle root

Fig. 6: Alice proves that a pTxOuts p which has SHA2(p) = 5 does
not get included in a committed Merkle tree. Alice provides Merkle
paths of pi, pi+1 that SHA2(pi) = 4 and SHA2(pi+1) = 6 to Bob. Bob
can verify if pi, pi+1 are committed and consecutive in the pTxOuts
tree to conclude if p is not included in a block.

a proof from Alice. Specifically, Alice has to generate a proof
which demonstrates that her spending pTxOut has not been
included in any block. We recall that a SCOIN block has a
Merkle tree which commits all pTxOuts that are being spent,
and these pTxOuts are sorted. Thus, Alice can generate a proof
of size log(m) to show that her pTxOut is not included in a
specific block, given m is the number of transactions in that
block. Bob can verify the correctness of Alice’s proof based
on the OutMklTree stored in the block header. For example,
if her pTxOut p is indeed not in a block, Alice can find two
consecutive pTxOuts pi and pi+1 in the second Merkle tree
which satisfy

SHA2(pi) < SHA2(p) < SHA2(pi+1) (2)

where SHA2 is the function that compute the ID of a transaction
output. Alice then computes the Merkle paths of pi, pi+1 and
send them to Bob. To verify, Bob recalculates two Merkle
paths of the pTxOuts given by Alice. If the two are adjacent
in the committed Merkle tree and condition (2) holds, Bob
can assure that there is no transaction in the block spending p.
We illustrate an example of this proof in Figure 6. Similarly,
a proof which shows p is not included in any previous blocks
is of size klog(m) with k is the number of blocks in the
blockchain.

VII. EVALUATION

We implemented a prototype of SCP and provide empirical
evaluation on the scalability of SCP and Bitcoin. We will
discuss about our experiment setup and the properties that we
seek to evaluate SCP.

A. Bitcoin’s Scalability Limits

Experiment setup. Our experiments are run over Amazon
EC2 platform. We launch several instances with high network
performance from different geographical regions. We feed
enough transactions to the network in every experiment 10.
We run the first set of experiments using the same network

10We guarantee that the mempool size in Bitcoin is always larger than the
block size
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Fig. 7: The throughput in Bitcoin does not increase if we add more
computational power to the network. Epoch time: 1 minute.

implementation in Bitcoin [17] to show that Bitcoin and
Nakamoto protocol do not scale up if computationally power
or bandwidth in the network increases. We also show that
reparameterization helps improve the throughput in Bitcoin,
but the network will soon hit some constraints like bandwidth
limit, block validation cost.

We run the first set of experiments with various computation
capacities in the network, e.g., 20 CPU cores, 40 CPU cores
and 80 CPU cores. Since the difficulty adjustment for the PoW
happens after a certain number of blocks, e.g., 2016 blocks in
Bitcoin, we measure the throughput after the first adjustment
happens and the network becomes more stable. To speed up
our experiments, we set the epoch time as 1 minute and the
difficulty adjustment happens after every 50 blocks. We report
our results in Figure 7. Our experiments show that, because
of the self-adjustment mechanism in Bitcoin, the block rate
remains almost constant regardless of how much computational
power is in the network. Thus, we see that the transaction rates
are fluctuating around 22 TX/s when the network has 40 CPU
cores (22.12 TX/s), 80 CPU cores (20.32 Tx/s) or 160 CPU
cores (23.99 TX/s). Therefore, Bitcoin cannot scale up linearly
in the computation capacity of the network.
Reparameterization in Bitcoin. One simple way to scale up
Bitcoin is by reparameteraization, i.e., changing some param-
eters like epoch time, block size. We experimentally show
that Bitcoin scales up somewhat linearly with the adjustment
of these parameters up to a point after which the agreement
begins to fail. Particularly, we change the epoch time of Bitcoin
protocol and see how much the improvement on the transaction
throughput is. We also feed as many transactions as possible
to the network and run several Bitcoin blockchain of 12
seconds, 1 minute, 2 minutes, 4 minutes and 10 minutes. The
underlying network parameters like bandwidth, computational
power remains constants throughout the experiments at 80
CPU cores. Our results in Figure 8 show that the more the
epoch time reduces, the higher the TX rate is. For example,
the TX rate are 3.29 and 7.33 TXs per second at epoch times
of 10 minutes and 4 minutes respectively. However, as the
epoch time gets smaller, the gap between the TX rate and the
expected TX rate is wider. For instance, at epoch time of 1
minute, we get a TX rate of 20.32 TXs per second instead
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Fig. 8: Bitcoin can scale up by adjusting the protocol parameters
like epoch time. The expected TX rate for a network with particular
epoch time of X seconds is computed as (experimental rate for 10-
mins)×(600/X)

of 32.9 e.g., 10 times the TX rate in the 10-minute epoch
blockchain. Further, at epoch time of 12 seconds, the network
hits the bandwidth constraint when nodes cannot broadcast
new blocks fast enough. Thus we observe a significantly low
TX rate (3.63 TX/s) since the network spends much more time
reaching consensus on the blockchain stain.

B. Scalability of SCP

We implement a prototype of SCP by modifying the existing
Bitcoin client code [17]. For the sake of simulation, we fix
our committee size at c = 50 and our epoch time is at 9
minutes to ensure that there is a sufficiently large gap between
two consecutive members in a committee. We also simulate
an authenticated BFT protocol in [25] which has a message
complexity of O(c2) and each message has the size of a
block hash. In order to simulate the consistent broadcast, we
run our SCP experiments in a local network to prevent the
deterministic failure in EC2 network.

The goal of our experiments is to show that SCP can
scale up computationally and the bandwidth incurred in the
network does not increase quadratically. We start with a fixed
amount of computational power (10 CPU cores) and double
it several times to 20, 40 and 80 CPU cores. We quantify
the block rate (block per epoch time) in each setup. We
report our results in Figure 9. We see that our experimental
throughput closely matches the expected throughput when the
computational power increases.

We further show the optimism of our design in separating
data needed for reaching consensus and actual transactional
data. We provide a breakdown of how measure how much
data needs to be transfered immediately and how much data is
transfered by a node. We report our numbers in Figure 10.
We see that SCP’s bandwidth for reaching consensus is
independent of the bandwidth in the data plane, i.e., data block.
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Fig. 9: SCP can scale up nearly linearly in the computation capacity
of the network without quadratically increasing the bandwidth.
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Fig. 10: Breakdown of bandwidth cost for a node in SCP. Our
broadcast mechanism reduces the bandwidth broadcast to the network
significantly and makes it independent of the block size.

VIII. RELATED WORK

A. Blockchain Scalability Solutions
Building a scalable Bitcoin is an active problem in the Bit-

coin community. There have been several proposals from both
academia and industry. However, There are two significant
differences from SCP to others that i) only SCP allows the
throughput to scale up sublinearly with the computation capac-
ity; ii) SCP efficiently separates the bandwidth of consensus
layer and that of data layer. We discuss all proposed solutions
below.

GHOST, introduced by Sompolinsky et al. [30], pushes
more transactions to the network by modifying the rule to
accept the main valid blockchain. At every fork, GHOST
considers the branch which has the most amount of work as
the valid chain. Thus GHOST accepts not only the earliest
block at each epoch, but also other blocks which are found
later, e.g., “orphaned blocks”. GHOST succeeds at allowing
block parallelism in the network, but it does not separate the
bandwidth data plane and the consensus plane. Thus, all data of
those orphaned blocks needs to be broadcast to the network and
puts more burden on the network bandwidth when reaching
agreement. Further, GHOST does not allow the network to
scale up with the computational power.
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A concurrent work namely Bitcoin-NG proposed recently by
Eyal et al. also improves the transaction rate by introducing
more blocks within an epoch [14]. Similar to SCP, Bitcoin-NG
also introduces two different block types, namely key blocks
and microblocks. However, these blocks have different roles.
The key blocks are for leader elections while the microblocks
only contain transactions proposed by the leader of that epoch.
Similar to GHOST, all Bitcoin-NG blocks in one epoch still
need to be broadcast to users immediately, thus creating a
serial dependency between the data blocks. Moreover, Bitcoin-
NG does not allow a system to grow linearly with the
computational capacity of the network. On the contrary, SCP
completely decouples the data block and the consensus block
in addition to the sublinear scale up with the computational
power.

Recently Poon et al. introduced lightning-network to im-
prove the transaction throughput in Bitcoin network by having
an offchain micro-payment channel between two parties [31].
Their technique allows both parties to send multiple and instant
transactions between them more efficiently, with only a few
transactions that will be included in the blockchain. However,
micro-payment channel, although improves the transaction
throughput significantly, is only an application running on top
of Bitcoin and still relies on the underlying protocol of Bitcoin.
Thus, lightning-network does not solves the core problem
of the Nakamoto consensus protocol. First, micro-payment
channels only make sense for sending transactions with small
values. The need of a scalable cryptocurrency network will
show up when more transactions of higher values occur in the
network.

Buterin et al. also aims to address the scalability problem
in blockchain with sampling and challenging techniques [32].
Similar to SCP, the paper proposes to split network partici-
pants into several sub-committees in the network to distribute
computational and verification cost. However, Buterin et al.
randomly samples verifier to verify the correctness of others’
updates, and allow someone to challenge others’ verification
results if they ever detect an invalid update. Their solution is
somewhat complicated and does not provide security proofs.

Sidechains is a protocol that allows users to move coins
between different blockchains [33]. It is widely understood that
Sidechains does not solves the scalability problem in Bitcoin.
Specifically, Sidechains does not makes Bitcoin scalable or
reduces any costs in Bitcoin. Sidechains is only but a method
to easily setup experimental blockchain without requiring a
currency. For example, with Sidechains, users can transfer their
Bitcoin to a new blockchain which provides a different security
guarantee. Thus, applications enabled by Sidechains do not
enjoy the same security guarantee as the applications that run
on the Bitcoin blockchain. On the other hand, SCP allows
scaling up computationally without degrading any security
property of Bitcoin.

B. Scalable Consensus Protocol
There have been significant efforts devoted to develop-

ing scalable communication-efficient consensus protocols. The
idea of dividing the users into committees (as we do in this

paper) is prevalent in the existing literature; first introduced by
Bracha [34].

If the users are honest, but crash prone, there exists an
optimal algorithm with Θ(n) communication complexity based
on the idea of universe reduction, i.e., choosing a small
committee to manage the process [35].

If the users are malicious, it is much more difficult to
achieve good communication complexity. For many years,
the best known protocols had exponential communication
complexity [2], [3]. A key improvement was made by Srikanth
and Toueg [4], who developed an efficient algorithm with
polynomial communication complexity.

While the preceding algorithms generally assumed a syn-
chronous network, there was also significant work on con-
sensus in asynchronous and partially synchronous networks.
In a seminal paper, Castro and Liskov [1] implemented a
replicated state machine based on Byzantine agreement that
is often described as the first practical Byzantine fault-tolerant
system. It led to a floor of work on Byzantine agreement, with
many attempts to improve the efficiency and trade-off different
aspects of the performance (e.g., [36]–[39]).

Despite these significant efforts, these protocols remained
bandwidth limited, typically requiring Θ(n2) messages (or
more). Over the last several years, there has been an exciting
breakthrough [5]–[8], reducing the communication complexity
of agreement to O(n · polylog(n)) for a system with n
players. The basic idea is to first solve almost everywhere
agreement, convincing most of the users to agree on a single
value. Then, a secondary almost-everywhere-to-everywhere
protocol is used to spread the information to the remaining
laggards.

The basic idea (for almost everywhere agreement) is to
assign the users to committees, and organize the committees
into a tree. They assign the users to committees in such
a way as to ensure that almost all the committees have a
majority of honest users (using an adapted version of Feige’s
leader election algorithm [40]). A leader is elected at the
root of the tree, and then information is propagated down the
tree to everyone. Later, to cope with an adaptive adversary,
secret sharing and additional information hiding techniques are
needed [41]. However, these papers do not discuss the issues
of splitting processors securely using computational power
assumption.

The algorithm proposed in this paper is not directly compa-
rable to these newer communication-efficient protocols: SCP
is simpler and potentially more communication efficient, but it
relies on a stronger underlying network model. Its key advan-
tage is in using computational power to tune the parallelization
of processors, yet detaining security on bounded computational
assumption.
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