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Abstract—The Niederreiter public-key cryptosystem is based
on the security assumption that decoding generic linear binary
codes is NP complete, and therefore, is regarded as an alternative
post-quantum solution to resist quantum computing. Current
hardware implementations for the Niederreiter cryptosystem
focus on data encryption/decryption but few of them consid-
er digital signature producing given that signature scheme is
much different from encrytion/decrytion and complicated to be
integrated. In this work, we address the problem of achieving
efficient Niederreiter digital signature and extending it to exe-
cute encryption/decryption on reconfigurable hardware. We first
present a new parameter selection method by which both encryp-
tion/decryption and signature are able to be performed with the
same hardware configurations. Then we design a compact ASIP
architecture with the proposed parameter selection and resource
sharing elaboration. FGPA experiments show that the proposed
unified architecture can achieve encryption, decryption and
signature with 1.41 µs, 798.57 µs and 14.07 s respectively while
maintaining acceptable area tradeoffs (4254×slices, 29×36Kb-
BRAMs and 3×DSP48E1s) on Virtex-6 devices.

Index Terms—Cryptographic hardware and implementation,
Application specific instruction set processor, Niederreiter cryp-
tosystem, FPGA.

I. INTRODUCTION

MOST currently popular public-key cryptographic sys-
tems rely on the integer factorization problem or

discrete logarithm problem, both of which would be easily
solvable on large enough quantum computers using Shor’s
algorithm [31]. Even though current publicly known quantum
computing is not powerful enough to attack real cryptographic
systems, many cryptographers are researching new algorithms
in case quantum computing becomes a threat in the future.
This work is referred now as post-quantum cryptography
[1]. One of the potential candidate for the post-quantum
cryptography is the code-based cryptography based on the
hardness of decoding a general linear code. The code-based
scheme is categorized into the McEliece cryptosystem [21] and
its variant the Niederreiter cryptosystem [22]. The Niederre-
iter cryptosystem has two advantages against the McEliece
cryptosystem: 1) It has a smaller public key size for the
same security and thus it is more efficient to be employed on
small and embedded systems. 2) The Niederreiter’s proposal
enables a practical digital signature scheme but the McEliece
does not. Based on these two merits, we stay focus on the
implementation of the Niederreiter cryptosystem in this paper
and hope to establish the necessary confidence for code-based
cryptosystem deployment in real-world applications.
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To the best of our knowledge, there exist three publicly
available hardware implementations of the Niederreiter cryp-
tosystem, targeting exclusively either at decryption/encryption
or signature. The first one is an implementation for small 8-
bit AVR microcontrollers, which reports an encryption time of
1.6 ms and a decryption time of 179 ms [10]. The most recent
Niederreiter implementation is carried out on reconfigurable
hardware, enabling encryption and decryption in 0.66 µs and
58.78 µs [11] on a Xilinx Virtex-6 FPGA. The only hardware
implementation that we are aware of for the Niederreiter
signature scheme [17] reports an average signing time of 0.86
seconds. Nevertheless, they do not implement a full version of
the signature scheme but two main steps of it. Furthermore,
their implementation for the original signature scheme cannot
resist DOOM-GBA attack [8]. Our work first of all aims at
providing the first hardware prototype for digital signatures
and then further extending it to be the first solution attempting
to integrated both data encryption and digital signature for
reconfigurable hardware.

Our contribution: 1) In this work, we propose an ap-
plication specific instruction set processor for the Niederre-
iter cryptosystem using binary Goppa code. We particular-
ly focus on evaluations and improvements of the signature
issuing and its combination of data encryption/decryption
on a unified architecture. 2) We show that by choosing
an appropriate parameter set, the proposed cryptoprocessor
can provide desirable efficiency in terms of computational
complexity for encryption (1.41 µs), decryption (798.57 µs),
signature (14.07 s) and verification (1.84 µs) on Xilinx
Vertex-6 FPGAs, respectively. 3) We also show that it is
possible to implement the complete Niederreiter cryptosystem
with acceptable area/time tradeoff on reconfigurable hard-
ware. The source code of this project is available under
https://github.com/davidhoo1988/NiederreiterCryptoprocessor.

Our paper is organized as follows. We first introduce the
Niederreiter cryptosystem and how we select the system
parameters for implementation in Section II. In Section III,
we describe in detail about our unified processor architecture
for encryption/decryption and signature/verification. Section
IV presents our implementation results on a Xilinx Virtex-6
FPGA. Finally, Section V concludes our work.

II. GOPPA CODE AND NIEDERREITER
CRYPTOSYSTEM

The Niederreiter cryptosystem is a variation of the McEliece
cryptosystem developed in 1986 by Harald Niederreiter [22].
The Niederreiter cryptosystem uses a syndrome as ciphertext
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and the message as an error pattern (The hamming weight
of this pattern is restricted to a certain number). It applies
the same idea to the parity check matrix H of a linear code
as the McEliece cryptosystem does, but obtains much smaller
public key size. Another prominence Niederreiter has against
the McEliece Cryptosystem is that it can be used to construct
a digital signature scheme — CFS signature [6].

A. Goppa Code

In this subsection, we briefly introduce the binary Goppa
code that the McEliece/Niederreiter cryptosystem uses as the
underlying linear code for data encryption, decryption and
signature. The Goppa code Γ(L, g(z)) is defined by the Goppa
polynomial g(z) which is a polynomial of degree t over the
extension field GF (2m), and a support L of GF (2m).

Definition 2.1:

Γ(L, g(z)) = (c0, . . . , cn−1) ∈ {0, 1}n, n = 2m

where
∑n−1

j=0
cj

z−aj
mod g(z) = 0, g(z) =

∑t
i=0 giz

t and L =

{α0, . . . , αn−1} ⊆ GF (2m).
Let c′ = (c′0, . . . , c

′
n−1) be a received word, containing r

errors, with r ≤ t (t is the degree of the polynomial g(z) in
Goppa code Γ(L, g(z))) as follows:

(c′0, . . . , c
′
n−1) = (c0, . . . , cn−1) + (e0, . . . , en−1)

with ei ̸= 0 in exactly r or less than r places. To correct
the word, and find the right codeword c = (c0, . . . , cn−1), we
have to find the error vector e = (e0, . . . , en−1) and therefore
to determine the set of error locations B = {i|ei ̸= 0}. In
coding theory, the error vector e can be obtained via error
locator polynomial σ(z) from syndrome decoding (Algorithm
1) where the syndrome s(z) and error locator σ(z) are defined
as shown in Definition 2.2:

Definition 2.2:

s(z) =

n−1∑
i=0

c′i
z − αi

=

n−1∑
i=0

ei
z − αi

mod g(z)

σ(z) =
∏
i∈B

(z − αi), αi ∈ L

After the error locator polynomial σ(z) is obtained, the
last remaining steps are to search the roots of σ(z) i.e.
{αi|σ(αi) = 0

∩
α ∈ L} such that the error vector e can

be determined by the indices i of αi. This is, in fact, the most
time-consuming operation in decoding procedure [17].

B. Data Encryption and Decryption

The relation between the Niederreiter cryptosystem and
Goppa code is illustrated as follows: a coding system generates
the corresponding generator matrix and parity check matrix to
encode or decode a message. Likewise, Niederreiter scheme
exploits this coding system to encrypt the plaintext by coding
it and to decrypt the ciphertext by decoding it. An essential
aspect of the Niederreiter cryptosystem relates to the selection
of the coding system, as the security of the cryptosystem relies
on the difficulty of how to decode the coding system without

Algorithm 1: Goppa code decoding using Patterson’s
Algorithm [23]
Input: Syndrome polynomial s(z), irreducible Goppa

polynomial g(z) and Goppa code support L
Output: Error locator polynomial σ(z)

1 Use the extended Euclidean algorithm to find T (z) such
that s(z)T (z) ≡ 1 mod g(z)

2 if T (z) = z then
3 σ(z) = z
4 else
5 Calculate d(z) =

√
T (z) + z mod g(z)

6 Use the extended Euclidean algorithm to find a(z)
and b(z) with b(z) of least degree, satisfying
d(z)b(z) ≡ a(z) mod g(z)

7 σ(z) = a2(z) + zb2(z)

8 return σ(z)

known a particular set of parameters generated by the system.
In particular, the Niederreiter system is secure when used with
a binary Goppa code and thus it is adopted as the coding
system for the Niedereiter scheme.

Encryption and Decryption are described as follows: Sup-
pose Bob wishes to send a message m to Alice whose public
key is {Ĥ, t}, where Ĥ = SHP , S is the randomly selected
non-singular matrix, P is the randomly selected permutation
matrix, H is the parity check matrix of Goppa code Γ(L, g(z))
and t is the degree of polynomial g(z). Bob uses Algorithm 2
to encrypt the message m.

Algorithm 2: Niederreiter Message Encryption

Input: message vector m, public key pk ={Ĥ ,t}
Output: ciphertext c

1 Bob encodes the message m as a binary matrix/vector of
length n and weight at most t.

2 Bob computes the ciphertext as c = ĤmT , mT is the
transpose of matrix m.

3 return c

Upon receipt of c = ĤmT from Bob, Alice performs
Algorithm 3 to retrieve the message m with her private key
{S, P, g(z), L}. Typically, matrix inverses in step 1 are pre-
computed and restored for speed-up.

C. CFS Digital Signature Scheme

The signature scheme is shown as following:
1) Hash the document d → hd (with a public hash

algorithm).
2) Decrypt hd as if it were an instance of ciphertext (hd →

d′) using the private key.
3) Append the decrypted message d′ to the document d as

a signature.
Signature verification applies the public encryption function

to the signature and checks whether or not this equals the hash
value of the document. However, when using Niederreiter, or
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Algorithm 3: Niederreiter Message Decryption
Input: ciphertext c, secret key sk = {S, P, g(z), L}
Output: recovered message m

1 Alice computes the inverse of P and S (i.e. P−1, S−1).
2 Alice computes S−1c = HPmT to get the syndrome

polynomial s(z).
3 Alice applies Algorithm 1 with inputs s(z), g(z) and L

to obtain the error locator polynomial σ(z).
4 Alice searches all roots αi of σ(z) to determine
B = {i|σ(αi) = 0}

5 Alice recovers the error vector
e = (e0, . . . , en−1) = PmT where ei = 1 for i ∈ B and
ei = 0 elsewhere.

6 Alice computes the message m via mT = P−1e.
7 return m

in fact any cryptosystem based on error correcting codes, the
second step of the signature scheme almost always fails and
the probability of this failure is referred as failure rate of the
signature. The failure rate exists because a random syndrome
usually corresponds to an error pattern of weight greater than
t. In other words, it is difficult to generate a random ciphertext
for issuing signatures without failure unless it is explicitly
produced as an output of the encryption algorithm.

In 2001, Courtois, Finiasz and Sendrier proposed to use
almost complete decoding to tackle this problem [6] (CFS
signature scheme). The idea is that, for example, assume the
hashed document hd corresponds to the error pattern with
t + δ errors, then repeat the following procedure: randomly
reverse the values in δ positions of the error pattern followed
by decoding it. Within finite iterations hd would becomes
decodable. This is because at the end of the iteration, the
randomly selected δ positions are all corrected and thus the left
t positions of errors would be easily found out via the efficient
syndrome decoding algorithm. To successfully produce a valid
signature, [6] also estimates the average number of decoding
is close to t! and the total signature time would be significantly
reduced if we could simplify the root finding of σ(z) as
mentioned in Section II A. One solution is to perform the
divisibility test prior to the root finding, that is, to check
whether z2

m ≡ z mod σ(z) [6] and therefore we only have
to compute the roots for once during the signature producing.
The detailed flow of CFS signature is shown in Algorithm 4.

D. Parameter Selection

The primary target of our implementation for the Niederre-
iter cryptosystem is to apply an identical set of parameters for
both encryption/decryption and signature. Previous work for
the hardware implementation of the Niederreiter cryptosystem
[10], [11] aim at optimizing the timing performance of encryp-
tion/decryption with secure parameters. But in our cases, we
consider both encryption/decryption and signature/verification
for an unbiased evaluation. The basic principal of our pa-
rameter selection is to maximize the speed performance with
acceptable memory overhead in the context of roughly 80-bit
security level.

Algorithm 4: CFS Signature Scheme
Input: document hash hd, secret key

sk = {S, P, g(z), L}, public key pk = {Ĥ}
Output: document hash d with signature d′

1 while True do
2 Generate δ random integer numbers {r1, r2, . . . , rδ}.
3 Re-calculate syndrome polynomial s(z) according to

random numbers R, document hash hd and public
key Ĥ .

4 Decode syndrome s(z) to get the error locator σ(z)
using Algorithm 1 with the private key sk.

5 if z2
m ≡ z mod σ(z) then

6 Find all roots αi of σ(z) to determine
B = {i|σ(αi) = 0}

7 Set d′ = (d0, . . . , dn−1) where di = 1 for
i ∈ B

∪
R and di = 0 elsewhere.

8 break
9

10 return {d,d′}

The fastest known attacks against the Niederreiter cryp-
tosystem is the information set decoding (ISD) [33] and for
safety use of this system, we must select security parameters a-
gainst ISD and its variants [2], [9], [20]. Table I lists common-
ly used security parameters for the Niederreiter cryptosystem.
According to this table, we cannot use the parameters proposed
by Bernstein et al. [2] originally intended for encryption. This
is primarily because with these parameters, the failure rate of
signature is almost 100%. Instead, we select the parameters in
the remaining parameter space proposed by Finiasz et al. [8]
such that the failure rate for CFS signature is approximately
0. The major problems for these parameters are the very long
run time and the significant large public key size. For instance,
n = 220,m = 20, t = 8 offers the shortest signature time but
20 Mbits of the public key size is too large to be supported by
any type of Xilinx FPGAs. Therefore, we select the parameter
set n = 216,m = 16, t = 9 for both encryption and signature
after a consideration of the security level (76.5-bit security),
running time and memory size.

ISD algorithms are particularly efficient for solving in-
stances of the syndrome decoding problem which have a single
(or a few) solutions. For CFS signature scheme, there are very
likely a large number of solutions and a more threatening
attack is the generalized birthday algorithm (GBA) attack [35].
Finiasz et al. [8] proposed another countermeasure, called
parallel-CFS, against such attack for improving the security
of the CFS signature scheme. The idea of this method is to
produce λ (typically two to four) hashes from the document
to be signed and to sign each of those hash values separately.
The final signature will be the collection of all those hash
values [17]. The parameter λ is highly related to the security
level of the CFS signature scheme. Table II lists the security
levels of the parameter set we have selected for hardware im-
plementation against such new attack. We use the parameter λ
from this table to implement the actual parallel-CFS signature
on our proposed hardware. Readers can also verify that more
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TABLE I
SOME PARAMETER ANALYSIS FOR THE NIEDERREITER CRYPTOSYSTEM AGAINST INFORMATION SET DECODING (ISD) ATTACKS

(n,m, t) ISD Security∗ Failure Rate† Run Time⋆ Public/Secret Key Size
(Mbits) Supported Xilinx FPGAs Application

(210, 10, 38) 260 ≈ 1 — 0.371/0.148 Virtex-II, 4, 5, 6, 7 Encryption
(211, 11, 27) 280 ≈ 1 — 0.580/0.106 Virtex-II, 4, 5, 6, 7 Encryption
(216, 16, 9) 276.5 2−155 5.995× 108 9/1.019 Virtex-5, 6, 7 Signature
(218, 18, 9) 284.5 2−2483 6.306× 108 40.5/4.525 Virtex-7 Signature
(220, 20, 8) 281 2−437111 6.258× 107 160/20.025 — Signature

∗The security level is measured by the number of binary operations. The first two sets of parameters are evaluated by Bernstein et al. [2] for encryption
and the last three sets by Finiasz et al. [8] for signature.

†We use the methods proposed by [8] to estimate these values.
⋆The run time formula is explained in Appendix A.

numbers of the parallel signatures to perform indicate a better
GBA security but do not affect ISD security. On the other
hand, the run time of parallel-CFS increases by a factor of λ.

TABLE II
THE SECURITY PARAMETERS THAT WE HAVE CHOSEN FOR THE

PARALLEL-CFS AGAINST BEST KNOWN ATTACKS INCLUDING GBA AND
ISA ATTACKS

(n,m, t) λ∗ ISD
Security

GBA
Security

Run Time Failure
Rate

(216, 16, 9)
1

276.5
253.6 5.995× 108 2−155

2 268.7 1.199× 109 2−154

3 274.9 1.799× 109 2−153

∗λ denotes the number of parallel signatures to perform. If λ = 1, it is
exactly the original CFS signature scheme. λ > 3 can never compensate the
cost in signature time and size of the signature. See [17] for more details.

III. APPLICATION SPECIFIC INSTRUCTION SET
PROCESSOR FOR THE NIEDERREITER CRYPTOSYSTEM

We introduce in this section the internal structure of the
proposed cryptoprocessor, shown in Fig. 1. There are five main
structure components:

• Control unit (instruction fetching unit and instruction
decoding unit): Controls the operation of the processor.

• Arithmetic and logic unit (ALU and PRNG): Perform
data processing functions.

• Registers (GPRFs and SPRFs): Provides storage internal
to the processor.

• Main memory: Stores instructions and data.
• System bus: Some mechanism that provides for commu-

nication among the control unit, ALU, and registers.
User can write their own programs e.g. encryption, decryp-

tion, signature, verification in the form of assembly language
with the instruction set we have designed. Then a simplified
assembler written in Perl translates user’s program into ma-
chine binaries. These binaries are eventually uploaded into
the instruction RAM for our cryptoprocessor to process. To
fully exploit the main memory storage, user is only allowed
to upload one application program (encryption, decryption,
signature, verification) and its corresponding data at a time into
instruction RAM and data RAM respectively. For instance,
user should upload the encryption binaries to the instruction
RAM and the public key and the plaintext to the data RAM

when encrypting messages whereas he should switch to de-
cryption the binaries, the secret key and the ciphertext when
decrypting a message.

A. Instruction Set

With a thorough analysis of the algorithms used in the
Niederreiter cryptosystem, we design in total 22 instructions
listed in Table VII in the form of assembly codes. These
instructions are roughly divided into 4 categories: data transfer,
arithmetic & logic,random number generation and transfer of
control. Readers can refer to Appendix B for more details of
these instructions.

B. Instruction Fetching Unit and Decoding Unit

The instruction fetching unit is designed to fetch instructions
from instruction memory according to the execution of as-
sembly code programmers have written. Normally, instructions
are executed sequentially and this can be done by increasing
the program counter register by one. In the meantime, a
large number of instruction branches exist in the Niederreiter
cryptosystem, and therefore the conditional and unconditional
jump instructions are implemented to fulfil this requirement.

Instruction decoding unit is used to decode the instructions
obatined from the instruction fetching unit. The input instruc-
tions after decoding are then decomposed to a bunch of useful
signals sent to other components including instruction fetching
unit, memory, GPRF, SPRF, ALU and PRNG.

C. GPRF and SPRF

A register file is an array of processor registers and used
to store data between memory and the function units (e.g.
ALU, PRNG). In our design, the register file is refined to
two categories: general general purpose register file (GPRF)
and special purpose register file (SPRF). GPRFs are used
for internal storage of the computational results whereas
SPRFs are particularly designed for loop control and memory
addressing. The detailed differences of these two register files
can be found in Appendix C.

D. ALU structure

ALU is that part of the proposed ASIP that actually perform-
s arithmetic and logical operations on data. All of the other
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GOPF_MUL

GOPF_DIV

GOPF_EVAL

MAC ARRAY

GOPF_DEG GOPF_SPLITGOPF_ADDComparator

GF_INV

PRNG
GPRF SPRF

System Bus

ALU

Processor

Instruction RAM

Data RAM

Instruction Decoding

Unit

Instruction Fetching 

Unit

Assembly Language 

Program

Assembler

Machine Binaries

ALU

Fig. 1. System architecture for the proposed Niederreiter cryptoprocessor which includes five main components: Control unit (instruction fetching unit and
instruction decoding unit), arithmetic and logic unit (ALU and PRNG), registers (GPRFs and SPRFs), main memory (instruction RAM and data RAM) and
system bus. The PRNG is exclusively required by the CFS signature scheme for producing random integer numbers. The ALU is the most complex component
which handles all arithmetic computation, for example, finite field multiplication & inversion, polynomial multiplication & division, root finding and some
parts of logical computation like unconditional jump. To improve the performance of the ALU, a delicate MAC array composed of 9 multiplier-accumulation
operators is shared by other critical units including polynomial multiplier, divisor, evaluator and inverter.

elements of the processor — control unit, registers, memory,
PRNG — are there mainly to bring data into the ALU for it
to process and then to take the results back out. ALU, in a
sense, is the essence of the processor. Table VII in Appendix B
(Arithmetic and Logic) lists all computational operations for
the Niederreiter cryptosystem that we have implemented in
the ALU. In this section, we describe in very detail about
how these key ALU operations are realized.

1) Multiply-accumulator (MAC): To perform the arithmetic
operations, the most fundamental thing is to build up fi-
nite field multiplication and addition over GF (216). In our
previous design, multiplication and addition are separated
and thus it takes GF (216) multiplier one clock cycle to do
multiplication and then another clock cycle to do addition
using GF (216) adder. However, we observe that the most com-
putational intensive operations, including polynomial multipli-
cation, polynomial division and polynomial evaluation, share
a similar multiply-and-accumulate operation (a+ b ∗ c, where
a, b, c are all GF (216) elements). That is, multiplication of
two GF (216) elements is right followed up by adding another
GF (216) element. As GF (216) multiplication is rather small
with 16 bits operand size and GF (216) addition is nothing
but exclusive gate operation, to merge GF (216) addition into
GF (216) multiplication has little negative effect on the critical
path but improves the timing performance significantly. In this
way, the new MAC is capable of executing one multiplication
and one addition in a single clock cycle delay.

Fig. 2 depicts the detailed structure of the proposed MAC
module. Note that the multiplier employed in MAC is a
straightforward implementation of Mastrovito product matrix
approach [18], [19]. In fact, a variety of timing or area efficient
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Fig. 2. Multiply-accumulate module (MAC) for performing a + b ∗ c over
GF (216). The primitive polynomial used for this field is f(x) = x16+x3+
x2 + 1.

multipliers are proposed in literature [4], [24] but they appear
to be efficient when the operand size is considerably large,
for example, 512 bits or even larger. In our application, the



6

TABLE III
COMPUTATIONAL STEPS FOR ITA INVERTER TO FIND INVERSE

b = a−1 ∈ GF (216)

Step With GF (216) Multiplier With GF (216) Squarer
Initialize b = a

1 — r = b2

2 b = a× r —
3 — r = b2

4 b = a× r —
5 — r = b2

3

6 b = a× r —
7 — r = b2

8 b = a× r —
9 — r = b2

7

10 b = a× r —
11 — r = b2

12 b = a× r —
13 — b = b2

Return b

operand size is as small as 16 bits in which the classic
Mastrovito multiplier is more advantageous in terms of both
timing and area performance.

2) Inverter: Multiplicative inverse of a finite field element
is necessary in the Niederreiter cryptosystem from two aspects:
First, one needs to compute inverse of the leading term of
the divisor in polynomial division; Second, to normalize the
error locator polynomial σ(z), one also needs to calculate the
inverse of the leading term of the σ(z).

Basically there are two approaches to achieve multiplicative
inverse over GF (2m): Euclidean extended algorithm (EEA)
and Itoh and Tsujii algorithm (ITA) [14]. We have adopted
ITA method for inverse because the existing MAC module
can be directly exploited to do the inverse without complicat-
ed controls whereas EEA requires trial divisions and hence
appears to be less attractive for implementation on hardware.

In our case, we just need to do inverse on GF (216) thus,
all steps in ITA are deterministic, indicating it is beneficial
for hardware implementation to unfold the loop inside the
algorithm. In fact, a single multiplier and a squaring unit can
achieve inverse. To illustrate this point, we list Table III the
step-by-step procedure to calculate GF (216) inverse. It is easy
to observe from this table that the multiplier and the squarer
interleave executions to obtain the inverse. For the sake of
better timing performance, three types of squaring units are
implemented — b2, b2

3

, b2
7

and therefore both squaring and
multiplication can be done in one clock cycle respectively.
Fig. 3 illustrates the ITA inversion architecture with a squaring
block and a MAC. Note that the existing MAC module works
here as a pure GF (216) multiplier with its addition operand
set to zero.

3) Goppa Field Polynomial Multiplier : The polynomial
multiplication in this work refers exactly to the multiplication
operation for an extension field of GF (216), denoted as Goppa
field G ≃ GF (216)[z]/g(z) where g(z) = z9+g8z

8+ . . .+g0
is the irreducible Goppa polynomial. Define two polynomials
in GF (216)[z]/g(z) as A(z) = a0 + a1z + . . . a8z

8 and
B(z) = b0 + b1z + . . . + b8z

8. Equation 1 represents an
alternative way for Goppa field polynomial multiplication.
From this equation, one can see that to do Goppa field poly-

a
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sel1 sel2 cs_sel
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b
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b
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b
2
3

b
2
7 Mac

Squarer
 

Fig. 3. GF (216) ITA inverter for computing GF (216) inverse.

nomial multiplication, three steps are required — polynomial
multiplying z (zi ·A(z)), scalar multiplication (bi ·A(z)) and
accumulation. To multiply polynomials by z (Eq. (2)), first a
right shift operation is performed to get a0z+a1z

2+. . .+a8z
9,

then if the leading coefficient a8 is non-zero, another scalar
multiplication is performed to obtain a8z

9 mod g(z), that is
a8z

9 = a8 · (g(z)+ z9) mod g(z). Finally, the partial product
are all summed to get the result.

A(z) · z =(a0 + a1z + a2z
2 + . . .+ a8z

8)z mod g(z)

=a0z + a1z
2 + . . .+ a8z

9 mod g(z)

=a0z + a1z
2 + . . .+ a8 · (g(z) + z9) (2)

At this stage, we can introduce the techniques we have used
in Goppa field polynomial multiplier (GOPF MUL). The first
technique is that those aforementioned three steps share the
same array of 9 MACs. Fig. 4 helps illustrate how it works.
The MAC array enables the computation like A(z)bi +A′(z)
where A(z), A′(z) are GF (2m)[z] polynomials and bi is a
GF (2m) element, which combines the second step — scalar
multiplication and the third step — accumulation together. On
the other hand, the first step — polynomial multiplying z itself
is also a combination of scalar multiplication and addition (See
Eq. (2)), it is also natural to share exactly the same MAC
array for the computation in which we set A(z) = g(z) + z9,
A′(z) = a0z + . . .+ a7z

8 and bi = a8.
The second technique to boost the performance is that the

application of GOPF DEG which computes the degree of
polynomial B(z). As the degree of the input multiplicand
polynomial B(z) is uncertain, ranging from 0 to 9, time delay
is reduced by pre-computing the degree such that we do not
have to traverse every coefficient bi of B(z) but terminate
the computation as early as possible. The control logic of
this multiplier shows the work flow: The multiplier is, first
of all, reset to state PRE and then immediately runs into
state DEGREE to obtain the degree of polynomial B(z). After
this, the multipliers starts the major three steps in Goppa field
polynomial multiplication by commuting between state MAC
and state SHIFT.

4) Goppa Field Polynomial Divider: A polynomial division
is critical and needed in the extended Euclidean algorithm.
Two things are considered in our implementation: First, both
remainder and quotient must be obtained and therefore we
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A(z) ·B(z) =A(z)(b0 + b1z + . . .+ bt−1z
8) mod g(z)

=A(z)b0 + zA(z)b1 + . . .+ z8A(z)b8 mod g(z) (1)

GOPF_ADDGOPF_DEG

mul_r_reg

mul_done

overflow

   ... ...    
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Fig. 4. Goppa field polynomial multiplier for computing multiplication over
GF (216)[z]/g(z).

have to compute and store both of them. Second, the degree
of the dividend polynomial could be as large as 10 which
actually exceeds the maximum capacity of operand size, we
have to adapt our polynomial divider to such case.

To solve the first problem that both quotient and remainder
should be computed, the schoolbook approach — long division
is applied. Let the dividend polynomial be A(z), divisor
polynomial be B(z), the resulting quotient and remainder
be Q(z) and R(z), ldcoeff(·) be the leading coefficient of
a polynomial, deg(·) be the degree of a polynomial, then
Algorithm 5 depicts the control flow for calculating the results
of polynomial division such that A(z) = Q(z) ·B(z) +R(z)
where deg(Q(z)) = deg(A(z))−deg(B(z)) and deg(R(z)) <
deg(B(z)). Step 5 is the most critical operation to reduce the
divisor A(z) by calculating A(z) = A(z)+ ldcoeff(B(z))−1 ·
ldcoeff(A(z)) · zdeg(A(z))−deg(B(z)) · B(z). This step can be
further split into three substeps — α, β and γ shown in Eq. (3).

α =ldcoeff(B(z))−1

β =α · ldcoeff(A(z)) (3)

γ =β · zdeg(A(z))−deg(B(z)) +A(z)

The second problem is about the maximum length of the
operand. This worst case comes when the dividend is the Gop-
pa irreducible polynomial g(z) = z9 + g8z

8 + . . .+ g0 where
145-bits register is required to hold such value. However, it can
be observed that by Eq. (3), the shift operation moves in the
unit of 16 bits and this indicates when right shifting the 144-
bit polynomial B(z) for eliminating the leading coefficient 1
of g(z), one needs a 160-bit register to hold the complete

Algorithm 5: Control Flow of Polynomial Division A(z)÷
B(z)

Input: dividend polynomial A(z) and divisor polynomial
B(z)

Output: quotient polynomial Q(z) and remainder
polynomial R(z)

1 Initialize quotient Q(z) = 0, remainder R(z) = A(z),
deg(A(z)) = 0 and deg(B(z)) = 0

2 while deg(A(z)) ≥ deg(B(z)) do
3 Calculate polynomial degree deg(A(z)) and

deg(B(z))
4 P (z) =

ldcoeff(B(z))−1 · ldcoeff(A(z)) · zdeg(A(z))−deg(B(z))

5 A(z) = A(z) + P (z)B(z)
6 R(z) = R(z) + P (z)B(z)
7 Q(z) = Q(z) + P (z)

8 return quotient Q(z) and remainder R(z)

result. By default we use 144-bit registers to keep data and
therefore 160-bit register is a waste of register utilities. We
find through our analysis that 160-bit register is not necessary
due to the nature of polynomial division. Let the 166-bit
dividend polynomial be A(z) = g(z) = z9+g8z

t−1+. . .+g0,
then according to Eq. (3), the divisor polynomial B(z) mul-
tiplies by ldcoeff(B(z))−1 · ldcoeff(A(z)) and then shifts by
z9−deg(B(z)). Note that after this multiplication and shift, the
leading coefficient term of B(z) changes to 1, denoted as
B′(z) = z9+

∑i=8
i=0 b

′
i(z). This leads to the leading coefficient

of the addition g′(z) = g(z) + B′(z) equal zero and thus we
do not necessarily need 160 bits register to calculate g′(z)
because in the end, the leading coefficient term of g′(z) must
be zero and thus we simply omit it.

The architecture of the proposed Goppa field polynomial
divider can be found in Fig. 5. The divider initializes itself
to state PRE and then moves to state DEGREE to calculate
the polynomial degree of dividend A(z) and divisor B(z)
using the module GOPF DEG. Once the degrees are obtained,
two things are simultaneously done in state LDCOEFF: One
is to compute ldcoeff(B(z))−1 · ldcoeff(A(z)) in the partial
product, the other is to prepare for B(z) · zdeg(A(z))−deg(B(z))

by right shifting B(z) with 16 × (deg(A(z)) − degB(z)))
bits. Next the divider runs into state MAC to compute Eq. (3)
using the MAC array in which we set the 16-bit multipli-
cation operand to ldcoeff(B(z))−1 · ldcoeff(A(z)), the 144-
bit multiplication operand to B(z)zdeg(A(z)−degB(z)) and the
144-bit addition operand to A(z). Finally, the result from this
MAC array updates the register A(z) and the logic control
runs back again into DEGREE to re-compute the degree of
the newly generated A(z). Afterwards, the state proceeds
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Fig. 5. Goppa field polynomial divider over GF (216)/g(z).

repeatedly among DEGREE, LDCOEFF and MAC until the
degree of A(z) is smaller than that of B(z).

It is worth mentioning that the design of the divider is more
complex than that of the multiplier because the MAC array
shared by the divider does more than scalar multiplication
with addition: It also has to do GF (216) multiplication and
inversion, as mentioned previously in Eq. (3). Nevertheless, we
do not require additional computational resources but instead
revise the MAC array to fulfil these operations. Fig. 6 depicts
the three modes used to do GF (216) inversion, GF (216)
multiplication and scalar multiplication with addition. In the
first mode, the MAC array inputs ldcoeff(B(z)) ∈ GF (216)
and output its inverse. As discussed in Section II D.2, inverse
can be done with one GF (216) multiplier and hence we
utilize a single MAC module in the MAC array to serve as
the multiplier and leave the other peripherals including the
squaring block and the control logic part outside. Note that
inverse is much more time-consuming than multiplication (See
Table III) but we compute it for only once and store it in
the register inv r reg. Next time when the divider recalls the
inverse, the result can be directly retrieved from this register.
This method is valid because the input of inverse — B(z)
remains constant during the process of division and thus the
result ldcoeff(B(z))−1 also remains unchanged. In the second
mode, we again exploit a single MAC to do multiplication like
ldcoeff(B(z))−1 · ldcoeff(A(z)). The third mode is the same
as used in polynomial multiplication.

5) Goppa Field Polynomial Evaluator: When the error
locator polynomial, also called sigma polynomial σ(z), is
obtained by the syndrome decoding i.e. Algorithm 1, the last
remaining step is to retrieve the error vector from it. This
process is actually to fist find all roots ∈ L = (α0, . . . , α2m−1)
of polynomial σ(z) and then map these roots to the er-
ror pattern, e.g. determine the set of error locations/indices
B = {i|σ(αi) = 0}. Then the error pattern/vector e =
(e0, . . . , en−1) is defined by ei = 1 for i ∈ B and ei = 0

Inv
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Fig. 6. Three different working modes of the MAC array inside the Goppa
field polynomial divider — α mode computes GF (216) inverse, β mode
computes GF (216) multiplication and γ mode computes scalar multiplication
with addition. The data path highlighted in black indicates it is enabled, the
data path in gray indicates it is disabled for connection.

elsewhere. The proposed polynomial evaluator is such a mod-
ule to compute the set B.

We first plan to implement the Berlekamp trace method [3],
[16] known to be the fastest root finding algorithm for finite
field polynomials. However, the Berlekamp’s algorithm direct-
ly returns the roots but without their indices which is crucial to
recover the error pattern. If we use the Berlekamp’s algorithm,
one has to solve discrete logarithm problem to retrieve these
indices for which no efficient classical algorithms can do in
polynomial time. Instead, the exhaust search could be more
advantageous for obtaining those indices. More specifically,
the exhaust search evaluates one by one all 216 elements αi of
the support L to retrieve the desired 9 roots with their indices i
such that σ(αi) = 0. In practice, we have analyzed two exhaust
search algorithms: Horner’s scheme [27] and Chien search
[5]. It appears Chien search is more suitable for hardware
implementations due to its considerably fast speed and much
smaller memory overhead.

To explain how Chien search works, we first fix up the
support L = {α, α2, . . . , α2m−1, 0} where α is a primitive
element over GF (2m). Then the following relationship exists:

σ(αi) = σ0 + σ1(α
i) + σ2(α

i)2 + . . .+ σt(α
i)t

= γ0,i + γ1,i + γ2,i + . . .+ γt,i (4)

σ(αi+1) = σ0 + σ1(α
i+1) + σ2(α

i+1)2 + . . .+ σt(α
i+1)t

= γ0,i + γ1,iα+ γ2,iα
2 + . . .+ γt,iα

t (5)
= γ0,i+1 + γ1,i+1 + γ2,i+1 + . . .+ γt,i+1

Putting it in another way, if each term γj,i of σ(αi) is
known, then the terms γj,i+1 of its consecutive σ(αi+1) can
be computed as γj,i+1 = γj,i · αj where 0 ≤ j ≤ t
and 0 ≤ i ≤ 2m − 1. Note that all t terms γj,i+1 can
be computed simultaneously and therefore allows for a fast
hardware implementation. On the other hand, Chien search
is also very memory efficient because we solely store the
initial σ(α0) =

∑t
0 σi and the constant vector (α, α2, . . . , αt),

Eq. (5) iteratively calculates all the remaining series σ(αi), i ̸=
0. Comparatively, Horner scheme requires to store the entire
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Fig. 7. Goppa field polynomial evaluator for σ(z). The indices of the roots
of sigma polynomial are recorded in eval r reg.

L set of 2m GF (2m) elements, which is a costly memory
requirement in our parameter setup with m = 16.

Fig. 7 depicts the Goppa field polynomial evaluator using
Chein search. This evaluator evaluates one support element in
three cycles. In the first cycle (state MUL), the MAC array
outputs all 9 terms γj,i of σ(αi). In the second cycle (state
ADD), these terms are summed up and stored into the 16-bit
register — tmp reg. Finally in state RECORD, the tmp reg is
evaluated to determine whether the input support element is
the root of σ(z) and if it is, the index of this element should be
recorded to the 144-bit shift register — eval r reg. eval r reg
is split into 9 sections and each is 16 bits because at most 9
roots exist and the indices of roots range from 0 to 65535 (16
bits). When the root is found, the index is then stored to the
leftmost section and the other sections would shift right 16
bits simultaneously. In this way, we could compress the error
pattern e by recording all the root indices into one 144-bit
register. We also make a slight improvement to the previous
implementation of Chein search [11] where we observe that
the first term γ0,i of the series (σ(α), σ(α2), . . .) remains
constant during the iterations, e.g. σ0 = γ0,1 = γ0,2 = . . ..
Therefore, it is unnecessary to implement another multiplier
to calculate γ0,i, 0 ≤ i ≤ 216−1 but instead to keep γ0,i = σ0

in the register. It is also worth stating that the MAC array
we have designed is still applicable in the Chein search,
but this time the working mode of the MAC array in the
polynomial evaluator, different from the modes used in the
previous modules, is purely the parallelized operation of 9
GF (216) multiplications. This operation inputs the 144-bit
vector (σ1, σ2, . . . , σ9) and (α, α2, . . . , α9) and then outputs
(σ1α, σ2α

2, . . . , σ9α
9) to update the vector (σ1, σ2, . . . , σ9).

Note that the positions of the error pattern are required to be

permuted by multiplying P−1 (See step 4, Algorithm 3). In
this context, we decide to merge this permutation with the root
finding. As a side effect, the inverse permutation matrix P−1

with 216 × 216 bits should be stored, which is too large to be
accepted. To solve this, we implement P−1 as a look-up table
in which the one-on-one permutation mapping is stored and
thus the memory reduces to 216 × 16 bits.

6) Others: Beside the instructions we have introduced
above, there are still some others ALU instructions including
DEG, RSHIFT, UNSCRAMBLE and SPLIT. DEG is used to
calculate the degree of the polynomial and in our implementa-
tion this function is achieved by linear shift register. RSHIFT
is the right shift of the polynomial by 16 bits. UNSCRAMBLE
is for matrix-vector multiplication S−1c, the second step in
decryption (See Algorithm 3). This instruction executes by
scanning each bit position of the vector c and summing up
those columns of S−1 corresponding to the non-zero bit
position of c. These four operations are simple and we now
focus on the SPLIT operation.

In step 5, Algorithm 1, one needs to calculate the square root
over GF (2m)[z]/g(z), e.g. d(x) =

√
T (z) + z mod g(z).

This is, in fact, an instance of a special-case square root and
can be done easily if the modulus g(z) and T (z)+ z are split
into the following format:

g(z) = g20(z) + zg21(z), T (z) + z = T 2
0 (z) + zT 2

1 (z) (6)

Then the square root
√
T (z) + z mod g(z) is given by

T0(z)+g0(z)g
−1
1 (z)T1(z) [13], [26]. Hence to get this square

root, we must implement the split operation (Eq. (6)) in the
ALU. As Risse interprets in his paper [26], the split operation
is accomplished first by splitting g(z) or T (z) + z into even
odd parts (even and odd being a reference to the degree of
each term) and then get the square root of the even part and
odd part through a linear mapping. To clarify this point, we
split g(z) = z9 +

∑8
i=0 giz

i for an instance. The even part
and odd part are described as follows:

geven(z) = g0 + g2z
2 + g4z

4 + g6z
6 + g8z

8

= (
√
g0 +

√
g2z +

√
g4z

2 +
√
g6z

3 +
√
g8z

4)2

= g0(z)
2 (7)

godd(z) = g1z + g3z
3 + g5z

5 + g7z
7 + z9

= z(
√
g1 +

√
g3z +

√
g5z

2 +
√
g7z

3 + z4)2

= zg1(z)
2 (8)

As we know, squaring any element over GF (2m) is a linear
mapping, the inverse of this linear mapping yields the square
root of elements over this particular GF (2m). In our design,
we pre-compute such inverse matrix (16 × 16 binary entries)
and implement it inside our GOPF SPLIT module to compute√
gi, 0 ≤ i ≤ 8.

E. PRNG

Pseudo Random Number Generator (PRNG) is specifically
designed to generate a sequence of random numbers for CFS
signature scheme because in CFS scheme, the mechanism of
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signature is the trials and errors for decoding and therefore un-
repeated sequences of numbers are demanded. In this work, we
apply LCG (Linear Congruent Generator) structure to produce
pseudo-randomized numbers since it is easily implemented
and fast on hardware.

LCG is defined by the recurrence relation:

Xn+1 = (aXn + c) mod m (9)

where X is the sequence of pseudorandom values and a, c,m
are the LCG parameters. In order to obtain a good LCG
design which is capable of producing pseudo random numbers
that can pass formal tests for randomness, one should pay
extremely attention to the choice of the parameters a, c,m.
In our work, we set a = 1103515245, c = 12345,m = 232

and output 30th bit − 16th bit of X . This set of parameters
is in common use and adopted by C99/C11 as ISO/IEC 9899
suggests.

The structure of LCG-based PRNG is illustrated in Fig. 8.
PRNG works in two modes: On the one hand, the cryptopro-
cessor updates the seed of the random sequence by rewriting
the seed reg. On the other hand, LCG starts to output the
random number stored in prng r reg by calculating Eq. (9)
and then updates the seed reg with the 30th bit − 16th bit of
X . It is worth mentioning that the 64-bit output from the 32-
bit integer multiplier needs a modulus operation — mod232

and thus we just truncated the highest 32 bits and preserve the
lowest 32 bit. The 32-bit multiplier itself is 5-stage pipelined
and constructed using Karatsuba algorithm [36] to optimize the
area. Karatsuba algorithm requires three 16-bit multipliers and
we implement these multipliers by exploiting the existing DSP
resources from Xilinx FPGA platform to boost performance.

IV. EXPERIMENTS AND RESULTS

We present our Niederreiter cryptoprocessor implementation
results in reconfigurable hardware — Xilinx Vertex-6 device.
The most recent hardware implementation is from Heyse [11],
we first compare and analysis our work with theirs. Then

TABLE IV
DETAILED FPGA IMPLEMENTATION RESULTS COMPARED WITH [11] FOR

ROUGHLY 80-BIT SECURITY

Aspect (Virtex6-VLX240) Niederreiter [11] This work
Slices 3,887 (10%) 4,254 (11%)
LUTs 9,409 (6%) 10,718 (7%)
FFs 12,861 (4%) 8,624 (2%)
BRAMs 9 (2%) 299 (71%)
Frequency 250 MHz 250 MHz
Re-calculate Syn(z) — 74 cycles
Undo Scrambling c · S−1 297 cycles 152 cycles
Compute T = Syn(z)−1 4,310 cycles 1,035 cycles
Solve Equation 4,854 cycles 736 cycles
Test Decodibility — 1,101 cycles
Find Roots 4,096 cycles 196,618 cycles
Others 283 cycles —
Total Delay (Dec) 58.78 µs 798.57 µs
Total Delay (Sig λ = 3) — 14.07 s

we focus on the CFS signature producing of the Niederreiter
cryptosystem and compare our work with some other exist-
ing software implementation on PC given that no complete
hardware implementation is available in the literature. Finally
we give an overview of existing asymmetric cryptosystem
implementations with quantum-computing resistance or non
quantum-computing resistance on similar platforms and com-
pare them to our results. All our results are obtained post
place-and-route (PAR) from a Xilinx Virtex-6 XC6VLX240T
FPGA using Xilinx ISE 13.2.

In Table IV, we provide with detailed comparing informa-
tion between our work and Heyse’s [11]. In [11], encryp-
tion and decryption are two sperate designs for the sake of
less memory footprints and a more compact critical path.
On the contrary, our design is a unified architecture for
all cryptographic operations including encryption, decryption,
signature and verification. Due to the significant large public
key size resulting from our parameter selection, the memory
consumption of our design is much larger than that of [11], i.e.
9 Mb vs 0.580 Mb. On the other hand, our design can perform
signature scheme but [11] cannot. In terms of the encryption
time, [11] outperforms ours with a factor of 13.58. However,
this advantage relies mostly on the timing performance of the
root finding: In [11], they only have to find 23 roots out
of all 2048 candidates whereas we need to exhaust 55536
GF (216) elements before retrieving all 9 roots of σ(z). In
addition, it takes two clock cycles to evaluate a single element
of the support L [11], our work requires three clocks because
the permutation matrix P is much larger and an extra one
clock is used for multiple staged addressing, as mention in
Appendix A. The total delay of signature producing is obtained
according to the average number of Goppa code decoding
since the CFS signature scheme is actually a probabilistic
algorithm and signature time varies for each run. We measure
the running time of 1,000 signatures and use the average
number of decoding E = 1134855 as the iteration number
to compute the signature time.

The signature performance of our cryptoprocessor compared
with other software implementation is shown in Table VI. Our
cryptoprocessor can issue signatures of three security levels
(54 bits, 69 bits, 75 bits) with 4.61 seconds, 9.37 seconds
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TABLE V
PERFORMANCE COMPARISON OF OUR NIEDERREITER CRYPTOPROCESSOR IMPLEMENTATIONS WITH OTHER PUBLIC KEY SCHEMES FOR 80-BIT SECURITY

Scheme Application QC
Resisted Platform Frequency

(MHz)
Time
(µs) Slices/LUTs/FFs BRAMs/DSPs

This work

Enc.

Yes Virtex6-VLX240T 250

1.41

4, 254/10, 718/8, 624 299/3
Dec. 798.57
Sig.X 1.407× 107

Ver. 18.44

Niederreiter [11] Enc. Yes Virtex6-LX240T 300 0.66 315/926/875 17/0
Dec. 250 58.78 3, 887/9, 409/12, 861 9/0

McEliece [32] Enc. Yes Virtex5-LX110T 163 500
14, 537/− /− 75/0Dec 1400

McEliece [12] Enc. Yes Virtex6-VLX240T 351 13.66 2, 920/14, 426/8, 856 0/0
Dec. 191 85.79 17, 120/46, 515/46, 249 0/0

NTRU [15] Enc. Yes VirtexE-1600E 62.3 1.54
14, 352/5, 160/27, 292 0/1Dec. 1.41

Ring-LWE [29]∗ Enc. Yes Virtex6-LX75T 313 20.1 −/1, 349/860 2/1Dec. 278 9.1

RSA-1024 [34] Enc. No Virtex5-VLX30T 450 1520 3, 237/− /− 5/17Dec.

ECC-163 [28] Enc. No Virtex-4 45.5 12.1 12, 430/− /− 0/0Dec.

ECC-163 [25] Enc. No Virtex5-VLX85T 167 8.6 3, 446/10, 176/− 0/0Dec.

∗ [29] is assumed to achieve around 128-bit security whereas the other references listed here are assumed to achieve roughly 80-bit security.

and 14.07 seconds. Note that the parameter set (218, 18, 9, 3)
Landais et al. [17] have implemented is slightly more secure
than (216, 16, 9, 3) of ours (274.9 vs 283.4) but this larger
parameter set does not affect timing performance. This is
because for issuing a signature, larger m = 18 indicates a
four times larger public key size which roughly increases the
total timing delay of root finding by four. However, the root
finding is done for only once and takes very few proportion
(0.00568%) of the total signature time. According to our
estimation formula (Eq. (10), Appendix A), the run time is
approximately 5.18% longer if we re-implement (218, 18, 9, 3).
As aforementioned though, we cannot directly implement their
parameters at this moment because this extremely large public
key size has already been beyond the maximum limit of block
RAM resources on Viertex-6.

Table V overviews this work compared with published FP-
GA implementations of code-based (McEliece, Niederreiter),
lattice-based (NTRU, Ring-LWE), and standard public key
schemes (RSA, ECC) on the basis of around or above 80-
bit security. Our design is the first prototypical architecture

TABLE VI
OUR FPGA PERFORMANCE COMPARED WITH SOFTWARE

IMPLEMENTATION FOR CFS SIGNATURE SCHEME

Scheme (n,m, t, λ) Platform Frequency Time

This work
(216, 16, 9, 1)

Virtex-6 250 MHz
4.61 s

(216, 16, 9, 2) 9.37 s
(216, 16, 9, 3) 14.07 s

Landais [17] (218, 18, 9, 3) Xeon-W3670 3.2 GHz 14.70 s
(218, 18, 9, 4) 19.61 s

Courtois [6] (216, 16, 9, 1) N/A 1 GHz 10 s

for a unified solution of encryption, decryption, signature
and verification for the code-based cryptosystem. The current
results show that encryption and verification can be done very
fast. On the contrary, we have to significantly increase the
size of the public key Ĥ and the support L in order to
issue signatures, which in return results to a much longer
decryption time when compared with [11]. On the other hand,
the implementations of the lattice-based cryptosystem [15],
[29] appear to offer a better time/area trade off. This is
an important reason that lattice-based cryptography is now
regarded as the most promising candidate for post-quantum
cryptography. Nevertheless, as Bernstein suggests in his paper
[2], NTRU will be patented until 2017, and Ring-LWE is less
attractive than the McEliece cryptosystem for users concerned
with the length and depth of cryptanalytic scrutiny. Moreover,
[12] implements the McEliece using QC-MDPC code instead
of the classical binary Goppa code to significantly reduce
memory usage while maintaining the security level. Their
results are even comparable to the Niederreiter implementation
[11]. All these observations indicate a very promising trend
of better area/time tradeoff for the code-based cryptography
in the future.

V. CONCLUSION AND FUTURE WORK

In this work we presented a new implementation for the
Niederreiter cryptosystem on Xilinx Virtex-6 FPGAs. Our
implementation is primarily designed for a generic architec-
ture for all basic cryptographic operations including encrypt-
ing/decrypting data and signing/verifying signatures. Current
Niederreiter implementations focus on encryption/decryption
but leave the signature issuing aside since signing a signature
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is complicated and difficult to be integrated. We analyzed the
common things between decryption and signature, proposed
a new secure parameter selection method, and designed a
unified processor architecture for it. Finally we evaluated the
performance of our design compared with other cryptosystem
implementations for the corresponding platforms. The results
showed that it is indeed possible to completely realize the
Niederreiter signature scheme under which signature issuing
and data encryption co-exist well without redesign of circuits
on reconfigurable hardware with acceptable time/area trade-
offs.

Despite its acceptable features, our prototypical crypto-
processor does not have the function to convert any binary
stream of plaintext into the form of constant weight words
at the very first step of data encryption and convert it back
at the end of data decryption, though it requires very few
clock cycles to complete. Constant weight means that the
Niederreiter cryptosystem requires the number of ‘1’ in the
plaintext must be smaller than or equal to t. [11] proposed
to adapt the constant weight coding/decoding method from
[30] for embedded system applications. However, we find such
method is not applicable for large n because their design
maintains a n× t lookup table to encode input messages into
constant weight words and this table is too large to be accepted
on Xilinx FPGAs when using large parameter set like ours.
We plan to optimize this constant weight encoder by reducing
memory overhead in future.
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APPENDIX

A. Proposed Run Time Evaluation

In this section we explain the proposed run time formula
for the Niederreiter scheme evaluation. The run time of the
encryption and verification is negligible and thus we focus on
the average run time of decryption and signature. Decryption
is principally about the syndrome decoding of Goppa code
(Algorithm 1), which can be decomposed into three main
parts:
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1) Obtain the inverse of the syndrome s(z).
2) Solve the equation d(z)b(z) ≡ a(z) mod g(z) to get

σ(z).
3) Find all roots of σ(z). For signature producing, one has

to additionally apply the divisibility test.
Inverse of s(z) is done by extended Euclidean algorithm

requiring about t polynomial multiplications and t polynomial
divisions. The equation d(z)b(z) ≡ a(z) mod g(z) can be
solved by a half extended Euclidean algorithm with about t
polynomial multiplications and t

2 polynomial divisions. The
divisibility test consists of m polynomial divisions and the root
search takes n · t GF (2m) multiplications. Assume that one
polynomial multiplication takes t2 GF (2m) multiplications
and one polynomial division takes t2

2 GF (2m) multiplications,
then the following formula describes the average run time
of the Niederreiter cryptosystem (counted in the number of
GF (2m) multiplications):

RunTime ≈ θ(
11

4
t3+nt)+(1−θ)(

11

4
t3+mt2)t!+nt (10)

Where θ is the probability that data decryption takes place and
we set it to be 0.5 in Table I.

B. Instruction Format

All instructions of the cryptoprocessor are listed in Table
VII. They are categorized into four groups: data transfer,
arithmetic and logic, random number generation and trans-
fer of control. The most fundamental type of the proposed
machine instruction is the data transfer instruction. In our
cases, we specify the following rules: First, the location of
the source and destination operands must be either registers to
memory or memory to registers. Second, the length of data to
be transferred is 144 bits because the algebraical decoding
of Goppa code, which is the most critical process of the
Niederreiter cryptosystem, handles 144-bit polynomials. Third,
the addressing modes for each operand include immediate,
direct and register. Immediate addressing (MOV #imm R[x])
is the simplest form of addressing, in which the operand
value imm is present in the instruction and then moves into
register R[x]. With direct addressing (MOV R[x] @addr, MOV
R[x] R[y], MOV R[x] IDX[y], the processor can transfer
data directly between memory and registers, or registers and
registers. Indirect addressing (MOV @IDX[y] R[x], MOV R[x]
@IDX[y]) is necessary because in CFS signature scheme, the
pseudo random number generator (PRNG) randomly outputs
the memory address and one cannot obtain it during the period
of instruction decoding and therefore, the processor must first
store the address in registers and then address the memory
according to the value stored in the registers.

The cryptoprocessor provides the basic arithmetic oper-
ations of polynomial addition, multiplication, division and
GF (216) inversion. Moreover, extra useful instructions includ-
ing DEG, SPLIT, RSHIFT, UNSCRAMBLE, and EVAL are
particularly implemented for decoding Goppa Code. Details
of these instructions are discussed in Section III D.

Two instructions related to random number generation are
PRNG #imm R[x] and PRNG R[x]. The first one is to update

the seed of the PRNG with imm and the second is to start the
PRNG and output the random number to register R[x].

For all of the operation types discussed so far, the nex-
t instruction to be performed is the one that immediately
follows the current instruction. However, in practical use
of the Niederreiter cryptosystem, it is essential to execute
instructions more than once and most likely many thousands
of times to significantly reduce memory footprint. In addition,
the Niederreiter cryptosystem involves some decision making.
For instance, in syndrome decoding (see step 1 and step 6,
Algorithm 1), one needs a while-loop structure to find the
inverse of a polynomial and to solve the equation d(x)b(x) ≡
a(x) mod g(x). To fulfil these two requirements mentioned
above, we design two branch instructions, also called jump
instructions which have as one of its operands the address
of the next instruction to be executed. One is the conditional
branch instruction and symbolized as JRE IDX[x] @label. The
other is the unconditional branch instruction and symbolized
as JMP @label.

42 41 ... 38 37 36 35 34 ... 19 18 17 16 15 ... 0

Instruction 

Type
Operand 

Type
Operand 

Value

Operand 

Type

Operand 

Value

Instruction format 

(Normal Mode)

Instruction format 

(Jump Mode)

42 41 ... 38 37 36 35 34 ... 19 18 17 16 15 ... 0

Instruction type Register No. Jump Address

opr_code src_code dst_code

opr_code src_code dst_code

[42:38] [37:19] [18:0]

[42:38] [37:35] [18:16][34:19] [15:0]

Fig. 9. Two instruction modes used in our design.

To translate all existing operations mentioned in Table VII
into binaries for our processor to proceed, the length of the
proposed instructions sets to be 43 bits and has three segments:
opr code (5 bits), src code (19 bits) and dst code (19 bits).
opr code indicates the operand type executed by the processor.
src code and dst code store the first operand and the second
operand respectively. After the execution of the instruction, the
result is written back to the second operand. In other words,
dst code plays a dual role — On the one hand, it stores the
second operand prepared for processing, on the other hand,
it also stores the result obtained after processing. In Fig. 9,
we list the instruction formats with two modes used in our
design. One is called normal mode for sequential execution
of instructions, including MOV, ADD, INV, MUL, DIV, SPLIT,
DEG, RSHIFT, EVAL, PRNG, IDX and the other is called jump
mode including JMP, JRE. The first 5 bits in the instruction
word distinguish different operation types (See Table VIII).
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TABLE VII
EXTENDABLE INSTRUCTION SET OF THE ASIP

Type Instruction Illustration Latency
(cycles)

Example

Data Transfer

MOV @IDX[y] R[x] Move data from external memory (ad-
dr=IDX[y]) to register R[x]

8 ’MOV @IDX0 R1’ means to move data from
external memory at addr=IDX0 to register R1

MOV R[x] @addr Move data from register R[x] to external
memory

4 ’MOV R[x] @4’ means to move data at
register R[x] to external memory at addr=4

MOV #imm R[x] Move an immediate data to register 4 ’MOV #11111111 R2’ means to move
11111111 to register R2

MOV R[x] R[y] Move data from register R[x] to register
R[y]

4 ’MOV R2 R0’ means to move data at reg R2
to reg R0

MOV R[x] @IDX[y] Move data from R[x] to external memory
(addr=IDX[y])

5 ’MOV R0 @IDX0’ means to move data R0
to external memory at addr=IDX0

MOV R[x] IDX[y] Move R[x] into IDX[y] 4 ’MOV R13 IDX1’ means to move data at
R13 to IDX1

Arithmetic and
Logic

ADD R[x] R[y] R[y]′ = R[x] + R[y] 7 ’ADD R0 R2’ means to add R0 and R2 and
stor ethe result into R2

INV R[x] R[y] R[y]′ = R[x]−1 34 ’INV R0 R0’ means to calcuate the inverse
of R0 and store the result into R0

MUL R[x] R[y] R[y]′ = R[x] · R[y] mod g(z) ≤ 89 ’MUL R2 R2’ means to multiply R2 by R2
and store the result into R2

DIV R[x] R[y] R[x]′ = R[x]/R[y] , R[y]′ =
R[x] mod R[y]

≤ 69 ’DIV R2 R3’ means to divide R2 by R3 and
then store quotient to R2 and remainder to
R3

SPLIT R[x] R[y] Split R[x] such that R[x] = R[x]′2 +
zR[y]′2

26 ’SPLIT R2 R3’ means to calculate R2 and
R3 such that R2 = R22 + z ∗ R32

DEG R[x] R[y] R[y] = degree(R[x]) ≤ 17 ’DEG R2 R3’ means to calculate deg(R2) and
store it in R3

RSHIFT R[x] R[y] right shift R[x] and store it in (R[x],R[y]) 7 ’RSHIFT R2 R3’ means to right shift R2 and
store the MSB part in R2 and the remaining
part in R3

UNSCRAMBLE R[x] R[y] R[y] = S−1R[x] 152 ’UNSCRAMBLE R2 R3’ means to unscram-
ble the ciphertext R[x] by multiplying the
matrix S−1 and store the result in R3

EVAL R[x] R[y] R[y]′ = R[x](R[y]) 68 ‘EVAL R2 R3’ means to evaluate R2 by
substituting the unknowns with R3

Random Number
Generation

PRNG #imm R[x] Update PRNG using imm as its seed 6 ’PRNG 32 R2’ means to update PRNG with
seed=32 and update R2=32

PRNG R[x] Start PRNG and transfer the random num-
ber into R[x]

6 ’PRNG R20’ means to generate random num-
ber and move it into R20

Transfer of Control

JMP @label Unconditional jump to label 6 ’JMP@4’ means to jump to program at line
4 unconditionally

JRE IDX[x] @label If IDX[x] is bigger than R7, then jump to
label line

9 ’JRE IDX2 @1’ means to jump to program
at line 1 if IDX2 > R31

IDX[x]++ IDX[x]′ = IDX[x] + 1 4 ’IDX1++’ means to update IDX1 by adding
’1’

IDX[x]−− IDX[x]′ = IDX[x] − 1 4 ’IDX2−−’ means to update IDX2 by sub-
tracting ’1’

HALT Halt the ASIP 1 —

In normal mode, for each instruction, two operands are
required (For single operand instructions like INV, DEG, only
dst code is used.) — They can be

1) both registers
2) one register and one memory block
3) one immediate data and one register

3-bits of operand type in our instruction format is left for
distinguishing different operand types (Table VIII).

Jump mode works for JMP and JNZ only. For JMP, the
src code is left blank but the dst code records the destination
address which your program should jump to. For JRE, the
src code is used to indicate which SPRF register compares
with GPRF register R7 and the dst code records the destina-
tion address.

C. Register Files

  ...  ...

144 bits

16 bits

...  ...

144 bits

16 bits

DATA

Represent polynomials  Represent 16 bit integers

Fig. 10. Two types of data represented in registers and memory. When
interpreting polynomials, the leftmost part is the polynomial coefficient with
the lowest degree and the rightmost part holds the highest. On the other hand,
when representing integers, the rightmost part holds the valid value while the
remaining part becomes invalid.

In the Niederreiter cryptosystem, the computation is mainly
about the polynomials arithmetic over GF (2m) and thus
GPRF (Fig. 11) is used to store these polynomials. According
to our parameter selection, the polynomials are over GF (216)
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R0

R1

R6

R7

Register Files

bus2_r_dat

bus1_r_dat

bus1_w_dat

gprf_typ_sel

M
U
X

bus1_r_dat

alu_r_dat

dat_ram_dat

R5

R4

R3

R2

Decoder

Fig. 11. GPRF module. It consists of 8 × 144-bit registers with two
read ports (bus1 r dat and bus2 r dat) and one write port (gprf w dat).
Two read ports — bus1 r dat and bus2 r dat are implemented because
the majority proportion of instruction execution of our program relates
to ALU arithmetic operations and for most of the time, ALU is fed up
with two registers as its inputs and thus it is more timing efficient to
have two independent read ports to transfer data to ALU.

Register Files

sprf_r_dat

sprf_w_dat

gprf_typ_sel

M
U

X

bus1_r_dat

MUX

1        -1

sprf_r_dat

R0

R1

Decoder

Fig. 12. SPRF module. It consists of 2 registers with one read port
(sprf r dat) and one write port (sprf w dat) for reading and writing.
Additionally, GPRF can increase or decrease its values by adding 1
or subtracting 1. This operation is essential because in Niederreiter
cryptosystem, decodability test and root finding are programmed in for-
loop and the loop index is exactly kept and updated in SPRF.

TABLE VIII
BINARY INTERPRETATION OF THE ASSEMBLY CODES PROPOSED

opr code (5 bits) Binaries
MOV 00001
ADD 00010
SUB 00011
MUL 00100
DIV 00101

PRNG 00110
SPLIT 00110
DEG 00110

RSHIFT 00110
EVAL 00110
IDX 00111
INV 01000

HALT 00000
JMP 10000
JRE 10001

operand type of src code/dst code (3 bits) Binaries
register (gprf/sprf) 000

memory 001
immediate data 010

gprf mod register 100
indirect sprf register 101

and have degree of 9, which indicates that the data width of
the GPRF should be 16× 9 = 144 bits. Additionally, integer
numbers such as memory addresses, polynomial degrees and
random numbers are also required and must be presented in
the GPRFs. In order to solve this, we unify the way in which
both types of data are represented shown in Fig. 10. On the
other hand, SPRF (Fig. 11) is designed to be a much smaller
register file compared with GPRF (2 registers vs 8 registers)
but capable of handling for-loop structure in our program. In
our instruction set, GPRF refers exactly to R[x], 0 ≤ x ≤ 7
and SPRF to IDX[x], 0 ≤ x ≤ 1.

D. Data RAM Management

We propose in this section a new way of organizing the
data memory component to preserver high frequency of the
circuits. Unlike other popular public key cryptosystems, the
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Fig. 13. Internal memory re-arrangement using multiple staged address
decoding, for improving the timing performance of the proposed processor.

Niederreiter cryptosystem requires large memory to store the
public key and some other useful data. Traditional methods to
implement these memory on reconfigurable hardware, espe-
cially when using our parameter selection of the Goppa code,
cannot achieve a considerable circuit frequency for real world
applications. In our design three pieces of BRAMs are used to
implemented the external main memory. The first is the main
one, storing the public key — Ĥ(216×144)/secret key — Goppa
polynomial g(z), and the input plaintext/ciphertext. The other
two are for storing the inverse permutation matrix P−1

(216×216)

and for the unscrambling matrix S−1
(144×144) respectively. The

number of address entries of the first two RAMs is so large
that a direct instantiation of this part as a single BRAM cannot
maintain the high frequency of our design. To improve its
timing performance, we decide to use 33 pieces of 288 Kb
BRAMs together to make up the main memory with an
additional address decoder. We also use a similar architecture
for the matrix P−1.
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Fig. 13 depicts the main memory management in which
three staged address decoding is applied. In the first stage, the
33 BRAMs, each with 2048 addresses, concurrently output 33
possible ways of data. These data are then filtered to 8 ways of
data through multiplexer and decoders. Eventually, the correct
data with the exact address becomes valid in the third stage
after the final 8-to-1 decoder. The experiments have shown
that with this measure, our processor is able to function at the
frequency of 250 MHz on Virtex-6 FPGAs.

E. Example Program

In this section, we introduce some important subroutines
in our instruction memory to demonstrate how these instruc-
tions are organized to achieve data decryption or signature.
These subroutines include XGCD, Modified XGCD and DE-
CODE TEST shown in Fig. 14, 15, 16. The first two are
the key operations in Goppa code decoding. The last is for
signature scheme only.

MOV #0 R7
XGCD: MOV R1 R5
DIV R0 R1
MOV R0 R6
MOV R5 R0
MOV R6 R4
MUL R3 R4
ADD R2 R4
MOV R3 R2
MOV R4 R3
DEG R1 R6
MOV R6 IDX0
JRE IDX0 @XGCD
INV R1 R1
MUL R1 R3//T(z) = s(z)ˆ(-1)

Fig. 14. The subroutine XGCD is for calculating T (z) = s(z)−1 mod
g(z) using extended Euclidean algorithm.

XGCD is used to perform the standard Euclidean algorithm
[7] to obtain the inverse of the syndrome polynomial. Note that
XGCD loop does not terminate at R1 = 1, instead it terminates
at deg(R1) = 0. In other words, we have to calculate the
inverse of R1 before eventually retrieving the correct T (z).
This phenomenon is further described and discussed in detail
by [32].

The subroutine MODIFIED GCD is, first of all, to solve
the equation d(z)b(z) ≡ a(z) mod g(z) in step 4, Algo-
rithm 1 and then to return the sigma polynomial σ(z) =
a2(z) + zb2(z). The extended Euclidean algorithm can be
applied to solve this equation with minor modifications: MOD-
IFIED GCD loop terminates when deg(R1) ≤ 4 for the first
time whereas XGCD does when deg(R1) = 0. The last two
steps of normalization in this subroutine is to correct σ(z) to
be a monic polynomial for adjusting to the 144-bit data width
of our processor.

The subroutine DECODE TEST is used to determine the
validity of σ(z) by checking whether or not z2

m

= z mod
σ(z), mentioned in Section II C. This modular exponentiation
is realized by m times of repeated squarings —MUL R1 R1
with initial value R1 = z.

MOV #4 R7
MODIFIED_XGCD: MOV R1 R5
DIV R0 R1
MOV R0 R6 // q in R6
MOV R5 R0 //update R0,R1
MOV R6 R4 // q in R4
MUL R3 R4
ADD R2 R4
MOV R3 R2
MOV R4 R3 //update R2,R3
DEG R1 R6
MOV R6 IDX0
JRE IDX0 @MODIFIED_XGCD
MUL R1 R1 //alphaˆ2
MUL R3 R3 //betaˆ2
RSHIFT R3 R0 //{R3,R0}=X*betaˆ2
ADD R3 R1 //{R1,R0}=sigma
INV R0 R0
MUL R1 R0 //normalize sigma

Fig. 15. The subroutine MODIFIED GCD is to solve the equation in step
4, Algorithm 1 and then to return the sigma polynomial σ(z).

DECODE_TEST: MUL R1 R1 //squaring
IDX0--
JRE IDX0 @DECODE_TEST
MOV R6 IDX0
MOV @IDX0 R2 //load ’x’ to R1
ADD R2 R1 // Xˆ2m + X
MOV R1 IDX0
JRE IDX0 @DECODEFAILURE

Fig. 16. The subroutine DECODE TEST is used to determine the validity
of σ(z) by checking whether or not z2

m
= z mod σ(z)

In practice, we use 14 instructions for data encryption,
105 for data decryption, 119 for signature release and 16
for signature verification. A single piece of 5 Kb instruction
SRAM is good enough for all these applications with our
parameter selections.


