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Abstract

We present a new non-malleable commitment protocol. Our protocol has the following features:

• The protocol has only three rounds of interaction. Pass (TCC 2013) showed an impossibility result
for a two-round non-malleable commitment scheme w.r.t. a black-box reduction to any “standard"
intractability reduction. Thus, this resolves the round complexity of non-malleable commitment at least
w.r.t. black-box security reductions. Our construction is secure as per the standard notion of non-
malleability w.r.t. commitment.

• Our protocol is truly efficient. In our basic protocol, the entire computation of the committer is domi-
nated by just three invocations of a non-interactive statically binding commitment scheme, while, the re-
ceiver computation (in the commitment stage) is limited to just sampling a random string. Unlike many
previous works, we directly construct a protocol for large tags and hence avoid any non-malleability
amplification steps.

• Our protocol is based on a black-box use of any non-interactive statistically binding commitment
scheme. Such schemes, in turn, can be based on any one-to-one one-way function (or any one-way
function at the cost of an extra initialization round). Previously, the best known black-box construction
of non-malleable commitments required a larger (constant) number of rounds.

• Our construction is public-coin and makes use of only black-box simulation. Prior to our work, no
public-coin constant round non-malleable commitment schemes were known based on black-box simu-
lation.

Our techniques depart significantly from the techniques used previously to construct non-malleable com-
mitment schemes. As a main technical tool, we rely on non-malleable codes in the split state model. Our
proofs of security are purely combinatorial in nature.

In addition, we also present a simple construction of constant round non-malleable commitments from any
one-way function. While this result is not new, the main feature is its simplicity compared to any previous
construction of non-malleable commitments (in any number of rounds). We believe the construction is simple
enough to be covered in a graduate level course on cryptography. The construction uses non-malleable codes
in the split state model in a black-box way.
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1 Introduction

Man-in-the-middle (MIM) attacks are one of the most basic attacks in cryptography. The notion of non-malleable
commitments was introduced in a seminal work of Dolev, Dwork and Naor [DDN91] as a countermeasure against
such adversaries. Since their introduction, non-malleable commitments have proven to be capable of preventing
MIM attacks in a variety of settings. Non-malleability lies at the heart of secure protocol composition, it allows
for round-efficient secure multi-party computation and gives applications to areas as diverse as position based
cryptography [CGMO09].

A commitment scheme is a useful two party protocol which allows a committer, C, to send a representation
of his message v, Com(v; r) to a receiver, R, in such a way so that 1) R learns nothing about v until C chooses
to open his commitment and 2) C is bound to v; he cannot open Com(v) to any value v′ 6= v. A commitment
scheme is non-malleable if for every message v, no MIM adversary, intercepting a commitment Com(v; r) and
modifying it at will, is able to efficiently generate a commitment Com(ṽ; r̃) to a related message ṽ. Interest
in non-malleable commitments is motivated both by the central role that they play in securing protocols under
composition [CLOS02, LPV09] and by the unfortunate reality that many widely used commitment schemes
are actually highly malleable. Indeed, man-in-the-middle (MIM) attacks occur quite naturally when multiple
concurrent executions of protocols are allowed, and can be quite devastating.

Since their conception, non-malleable commitment has been studied extensively, and, with increasing success
in terms of characterizing its round complexity. The original construction of [DDN91] gave a protocol with log-
arithmically many rounds. Barak [Bar02] gave a constant round construction based on non-black-box simulation
(which was further improved by Pass and Rosen [PR05b]). More recently, constant round protocols for non-
malleable commitment with black-box proofs of security were given by Goyal [Goy11] and Lin and Pass [LP11].
Other constructions include [PR05a, LP09, LPV08, PPV08, PW10, Wee10, GLOV12]. The current state of art
is represented by the work of Goyal, Richelson, Rosen and Vald [GRRV14] whose scheme requires only four
rounds of interaction. On the negative side, Pass [Pas13] showed that two-round non-malleable commitments
cannot exists w.r.t. black-box proofs of security based on any “standard" intractability assumption. The lower
bound of Pass holds even if the construction uses the underlying assumption in a non-black-box way. Thus, the
main remaining open problem regarding the round complexity of non-malleable commitment is

Does there exist a protocol for non-malleable commitment with only three rounds of interaction?

In this work we present a three round protocol, thus giving a positive answer to the above question.

Zero-Knowldge: A Barrier to Three-Round Non-Malleable Commitment. Almost all previous schemes
invoke some sort of proof of consistency. These are usually critical to the proofs of non-malleability, as without
consistency one runs into a host of “selective ⊥ attacks” (where the MIM plays in such a way so that whether
or not his commitment is valid, depends on the value inside the commitment he receives) which are difficult
to rule out. Generally, zero-knowledge is used for this purpose. For example, the recent works of [GRRV14,
BGR+15] use a three round “commit-and-prove” sigma protocol along with a GMW-style zero-knowledge proof
of correctness [GMW87]. They then use the Feige-Shamir paradigm [FS90] in order to parallelize their protocol
down to four rounds.

Zero-knowledge, however, is known to require 4-rounds [GK96] (at least w.r.t. black-box simulation), so if
we hope to get three round non-malleable commitment, we must overcome our dependency on zero-knowledge.
The main observation which makes this possible is that using zero-knowledge to prove consistency is actually
overkill. We do not need to be certain that M has played honestly; we only require that whether M has played
honestly or not, cannot depend on C’s commitment v. Capitalizing on this observation, however, is challenging
and requires new ideas and a new protocol. Indeed, if we simply remove the zero-knowledge from [GRRV14],
the resulting protocol is subject to easy mauling attacks (see the Appendix).
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We also point out that also that zero-knowledge is usually the most computationally expensive component
in protocols for non-malleable commitment. Indeed, all previous schemes for non-malleable commitment are
considerably slower than their ordinary statically binding counterparts.

Our Contributions. We present a new construction of non-malleable commitment which has the following
features:

• The protocol has only three rounds of interaction. Pass [Pas13] showed that two-round non-malleable
commitments unfortunately cannot exists w.r.t. black-box proofs of security based on any “standard"
intractability assumption. The lower bound of Pass holds even if the construction uses the underlying
assumption in a non-black-box way. Thus, this resolves the round complexity of non-malleable commit-
ments at least w.r.t. black-box security reductions. Our construction is secure as per the standard notion of
non-malleability w.r.t. commitment.

• Our protocol is simple and truly efficient. In our basic protocol, the entire computation of the committer
is dominated by just three invocations of a non-interactive statically binding commitment scheme, while,
the receiver computation (in the commitment stage) is limited to just sampling a random string. The
decommitment stage is equally basic: the committer would send the openings of these commitments,
while, the receiver would be required to check these openings for correctness and perform some simple
computations. The protocol is easy to describe, the main complexity lies in the analysis rather than the
construction.

In several previous works (including [GRRV14, BGR+15]), first a non-malleable commitment scheme for
“small" tags is constructed. Then, a scheme for large tags is obtained using non-malleability amplification
[DDN91, LP09]. This adds a significant multiplicative overhead to the computation of each party: the
multiplicative overhead is typically related to the number of bits in the large tags. Unlike these previous
works, our basic protocol works directly with large tags, and hence, we avoid any expensive amplification
steps. Our basic protocol provides security only against synchronizing adversaries. Extension to non-
synchronizing adversaries is addressed later, though still with a three round protocol.

• Our protocol is based on black-box use of any non-interactive statistically binding commitment scheme.
Such schemes, in turn, can be based on any one-to-one, one-way function, or, at the cost of an extra initial-
ization round, any one-way function. Previously, the best known black-box construction of non-malleable
commitments required a larger constant number of rounds [GLOV12, KMO14]. Furthermore, the previous
constructions, even though black-box, were significantly less efficient [GLOV12, LP12, KMO14, Kiy14].
For example, the construction of Goyal et al [GLOV12] used “MPC in the head techniques" of Ishai et. al
[IKOS07].

• Our construction is public-coin and makes use of only black-box simulation. Prior to our work, no public-
coin constant round non-malleable commitment schemes were known based on black-box simulation. The
structure of our basic protocol is arguably “as basic as it can be": C sends a single commitment to some
string, the receiver sends a random challenge, and, in the final round, sender sends another string (but
doesn’t send any opening).

• Finally, we present a simple — in fact, almost elementary — construction of a constant-round non-
malleable commitment scheme using split state non-malleable codes. This construction can be based on
any one-way function. While such a construction is not new, the main feature is its simplicity over any
previous construction: it has a simple “commit-and-prove” structure and can be be based on any split state
non-malleable code (without any additional properties). The reduction makes a standard use of adaptive
security, and may be of independent interest. We believe that this protocol is simple enough to be included
in a graduate level textbook on cryptography or be taught in a graduate level cryptography course.
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Starting Technical Idea. Our key technical tool will be non-malleable codes in the split-state model [DPW10,
DKO13]. We will use these codes in conjunction with a techniques introduced by Goyal et. al. [GRRV14]. Non-
malleable codes in the split-state model are codes whose codewords are pairs (L,R) ∈ L×R, and the tampering
function family is

Fsplit =
{

(f, g)
∣∣f : L → L, g : R → R

}
.

That is, one encodes a message by breaking it into two states, and is ensured that non-malleability holds as
long as the adversary tampers each state separately. Several recent and exciting works [DKO13, ADL14, CZ14,
ADKO15, CGL15] establish a connection between split-state non-malleable codes and various types of random-
ness extractors. Thus, split-state non-malleable codes allow us to harness deep theorems from the extensive
randomness extraction literature and direct them towards the seemingly unrelated area of cryptographic non-
malleability.

As a first attempt towards constructing non-malleable commitments, consider the protocol where the com-
mitter C simply commits separately to L and R? This does not work as the underlying commitment scheme may
have some homomorphic properties allowing the MIM to maul L and R “jointly". Our starting idea is as follows.
Let us focus our attention on synchronizing adversaries1. C encodes the message v as L and R, and, in the first
round, sends a commitment Com(L) to L. The receiver responds back with an acknowledgement message, at
which point C sends R in the clear. This scheme does seem to have some non-malleability features. In the first
round, the MIM must maul Com(L) into Com(L̃) without knowledge of R, while in the final round, the MIM
receives R and must produce R̃ given only Com(L) (rather than L itself). While this is indeed our starting point,
this intuition turns out to be not sound (see Appendix for an “explicit" attack). Our basic protocol is quite simple
and is given below.

• Committer’s Input: A value v to commit to.

• 1. C → R: C chooses (L,R) ← Enc(v) where L is viewed as a field element in Zq; C also draws r ← Zq
at random and sends Com(L ◦ r) to R where Com is a non-interactive, statistically binding commitment
scheme.

• 2. R → C: R chooses a random α← Z∗q and sends it to C.

• 3. C → R: C sends a = rα+ L and R toR.

• Decommitment: To decommit, C decommits to the commitment in 1.

Intuitively, C commits to a polynomial-based 2-out-of-2 secret sharing of L in the first round, and in the third
round sends R along with one share. The same polynomial based commit-and-reveal mechanism is used in
[GRRV14], but no non-malleable codes are used and so a zero-knowledge proof of consistency is needed.

To prove security of the above protocol, we must reduce any “successful" mauling attack to a mauling attack
on the underlying non-malleable code. The adversary for the non-malleable codes (i.e., a split-state tampering
function pair (f, g)) would have to run the left execution (with the MIM) using the given L and R and extract L̃
and R̃ from the right execution. If MIM successfully mauls the commitment scheme, then the extracted L̃ and R̃
would decode to ṽ which is related to C’s committed value v represented by L and R. This would presumably
contradict the security of the non-malleable code. However one must keep in mind that (f, g) must be split-
state and so neither function is allowed to see L and R at once. Hence, it cannot simply run our non-malleable
commitment protocol, and extract the tampered L̃ and R̃.

To complete the proof of security, we need to construct split-state (f, g) (which can use the MIM and the
distinguisher for our protocol internally) so that f outputs L̃ using only L and likewise g outputs R̃ using only R.
Therefore f and g cannot complete the protocol execution with MIM to extract the tampered code (since each

1Roughly, this means that the MIM sends the i-th round message on the right immediately after getting the i-th round message in the
left interaction.
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will be missing one of L and R)! Thus, the idea of reducing the security of our construction to the security of
non-malleable codes (in the split-state model) seems like a non-starter. This is the key technical challenge we
encounter in our proof of non-malleability.

Our proof strategy, at a very high level is to have f(L) and g(R) execute independent interactions with MIM,
and output L̃ and R̃, respectively. This, however, leads to L̃ and R̃ being extracted from two different protocol
transcripts, and so there is no clear way to relate the extracted values back to MIM’s mauled commitment ṽ. We
then show that there exists a single protocol transcript (from the correct distribution) such that the left execution in
that transcript is completed using L and R, and the right uses L̃ and R̃. Thus, if MIM is successful in mauling the
commitment scheme, then (f, g) is split-state and succeeds in mauling the non-malleable code. A more precise
technical overview is given later in this section.

We are not able to make the above argument go through based on standard split-state non-malleable codes.
We need need the following additional properties described informally below. See Section 3 for a more precise
description.

1. The code must be an augmented split-state non-malleable code [AAG+16]. This means that the distin-
guisher for the non-malleable code is given R as input, in addition to the tampered decoded message.

2. We need the code to be conditionally non-malleable. Intuitively, this means that non-malleability holds
when L is chosen randomly along with (and independently from) the tampering functions (f, g), and R is
chosen randomly in the tampering experiment. This is in contrast to the usual security game where (f, g)
are fixed and then (L,R) are both drawn during the tampering experiment. We define this new property
formally in Section 3.1.

3. The code must satisfy what we call the simulatable right state property. Roughly speaking, this means that
given a random L, the sets {R : Dec(L,R) = v} and {R : Dec(L,R) = v′} should be indistinguishable for
all v, v′. See Section 3.2 for more details.

Our construction is based on the recent split state non-malleable code of Aggarwal et. al [ADL14]. It turns
out that the code in [ADL14] already satisfies the first two of the above properties. We then present a modifica-
tion to add the simulatable right state property. Note that the code of [ADL14] is purely information theoretic,
and, in comparison to cryptographic objects (such as commitments or one-way functions), very efficient. En-
coding and decoding simply requires sampling random vectors and taking their inner product, etc. To add the
strong hiding property, we add a commitment and a symmetric encryption to the encoding and decoding proce-
dures. Thus, our overall basic protocol has computation which is dominated by three invocations of a statistically
binding commitment scheme (or rather two invocation of a statistically binding commitment and one symmetric
encryption).

C M R
Com(L),Com(r) Com(L̃),Com(r̃)

α← Z∗
q α̃← Z∗

q

a = rα+ L, R ã = r̃α̃+ L̃, R̃

Figure 1: Protocol with Man-in-the-Middle
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Overview of the Proof of Non-Malleability. Our protocol (under a man-in-the-middle attack) is given in
Figure 1. For the time being, think of (L,R) ← Enc(v) where L,R ∈ Zq, v is the value to which C wishes to
commit and (Enc,Dec) is a generic split-state non-malleable code. We will point out where each of the three
above additional properties on (Enc,Dec) is needed. The first is easy to see. The distinguisher for non-malleable
commitment gets the transcript (which contains R in the clear) as well as the decommitment ṽ, so we need
(Enc,Dec) to be augmented non-malleable.

As mentioned above, we prove non-malleability by reducing any mauling attack to a tampering function (f, g)
which mauls the underlying code. This must be done carefully as on the one hand, we need to ensure that f and
g tamper v correctly to M’s commitment ṽ, on the other hand, (f, g) must be split-state, and so cannot naïvely
run MIM using both L and R.

Both functions will obtain their output using the third message. They share a partial transcript consisting of
the first two messages and the value a. Though this information contains L and so it shouldn’t be given to g, L is
computationally hidden so we will be able to hybrid it away later. f(L) extracts L̃ by choosing a random value
R$ and sending (a,R$), receiving (ã$, ·); then it rewinds M and asks another random challenge β̃ on the right,
it receives β on the left and sends (b,R$) where b = (a − L)

(
β/α

)
+ L, and receives (b̃, ·). It outputs L̃, the

constant term on the line spanned by
{

(α̃, ã$), (β̃, b̃)
}

. g(R) also shares the random value R$ and so can compute
ã$. g(R) rewinds M and sends (a,R) on the left and receives (ã, R̃) on the right. If ã = ã$, g(R) outputs R̃,
otherwise it outputs ⊥.

Note that for (f, g) to succeed in extracting (L̃, R̃), it must be that the answer ã$ M provides when given the
random R$ is equal to the ã he provides given R. This will follow from the right state simulatability of (Enc,Dec).
Given this property, we can show that the chance that M answers correctly (i.e., consistently with the linear map
he committed to in the first round) given R$ is about the same as the chance he answers correctly given R. So
either both are incorrect with high probability, in which case M is always committing to ṽ = ⊥ and so cannot be
mauling; or else both ã$ and ã are correct with non-negligible probability. In this case, we can show that (f, g)
succeed in extracting correct (L̃, R̃) with non-negligible probability. One subtle point is that (f, g) are defined
using L. This means that even after we hybrid this dependence away, the mauling experiment for the resulting
tampering functions will have L fixed. This is why we need (Enc,Dec) to be conditionally non-malleable.

Extension to non-synchronizing adversaries. While in some applications, security against synchronizing ad-
versaries is all one needs (e.g., constructing round efficient multi-party computation), in others, non-malleability
against arbitrary schedulings is required. Our basic protocol only provides security against synchronizing ad-
versaries, and actually is susceptible to selective bot attacks against general schedulings. Since our protocol has
only three rounds, we can enumerate over all possible schedulings and check that the only other potentially prob-
lematic scheduling is the sequential one where the left execution finishes entirely even before the right execution
starts.

To extend to non-synchronizing adversaries, we make our protocol extractable by running a 3-round ex-
tractable (malleable) commitment scheme in parallel to our basic protocol (we do not need any “proofs of consis-
tency" between the two parallel executions). Extraction immediately yields non-malleability against a sequential
adversary as we may rewind M and extract his commitment without having to rewind the honest committer.
The main technical challenge for this portion is proving non-malleability against a synchronizing adversary; i.e.,
that the extractable commitment doesn’t “interfere” with the basic protocol’s synchronizing non-malleability. To
achieve this, we will use an extractable commitment scheme such that extraction requires two rewindings instead
of just one. This is inspired by a technique from the constant round protocol of Lin and Pass [LP11]. Our final
protocol requires significantly more invocations of the underlying commitment scheme, however we stress that
even so, it is significantly more efficient than any of the prior ones schemes in the literature (on top of requiring
only 3-rounds of interaction). This protocol is described in Section 7.
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A simple constant-round non-malleable commitment scheme from any one-way function. We now briefly
discuss the ideas behind our simplest protocol. This protocol, and its proof, use only elementary techniques and
are simple enough to be included in a graduate level course in cryptography.

The protocol has a simple “commit-and-prove” structure where commitments are executed using Naor’s
commitment [Nao91]. Recall that Naor’s commitment uses a random string ρ sent by the receiver. If ρ has a
special form, then the commitment is “equivocal” and can be opened to both 0 and 1; otherwise it is statistically
binding. Let us denote this commitment by comρ. In out protocol ρ is obtained by simulatable coin-flipping.

Informally, the protocol between the committer C and receiverR is as follows:

1. Sample ρ with coin-tossing: C commits to a random string ρ′ and sends it to the receiver — this can be
done using standard 2-round Naor’s commitment. R responds with a random string ρ′′. C sends ρ = ρ′⊕ρ′′
toR and proves in (constant round) zero-knowledge that ρ is indeed correct. Parse ρ = ρ1‖ρ2‖ρ3.

2. Commit the first state: C encodes the message m (and identity id) using a standard split-state non-
malleable code to obtain two states (L,R). It then commits to L using ρ1 as the first message of Naor:
c1 = comρ1(L).

3. Start a proof of consistency. Before sending the second state, C and R start a zero-knowledge proof-of-
knowledge of “consistency” in which the statement to be proven is decided in the last step.

This is done by using the (standard) Feige-Shamir ZK protocol [FS89] which has constant rounds. Parties
exchange all but the last message of this ZK protocol. Each commitment of this ZK protocol is imple-
mented using a unique part of ρ2 (as first message of Naor).

4. Send second state and finish the proof. C now just need to send the second state R and prove that it
is consistent with the value in c1. We do this slightly differently: C commits to R using the third part
ρ3, i.e., c2 = comρ3(R) and proves that (c1, c2) are commitments to consistent states by sending the last
message of the proof. It then opens c2 to R by sending appropriate decommitment. R simply checks that
the opening of c2 to R is valid and the proof verifies before accepting the commitment.

The proof crucially relies on the fact that Naor’s commitment is equivocal if ρ can be set appropriately.
Specifically, we first “cheat” in the first step where ρ is set to be the special string which allows equivocation.
This is done by using the simulator of zero-knowledge proof in the first step. For now, assume that the adversary
is synchronous. This step ensures that there is no information about the states in the commitments or the proof
transcripts.

We now construct split state functions by relying on the equivocality of Naor’s commitment. Specifically, our
functions will share the same random tape φ and will be denoted by (fφ, gφ) for every φ. They will both sample
a transcript using random values for the states (instead of actual L and R) up to the point where last message is to
be sent. At this point, they will output corrupted states differently, as follows.

The function fφ, upon receiving L, will use the equivocality of com w.r.t. strings ρ1, ρ2, ρ3 to find appropriate
randomness that is consistent with L and the transcript and construct a “honest committer” algorithm. It will then
extract L̃ from this machine by rewinding in the proof-of-knowledge part. During rewidings, it suffices to use
random (incorrect) values for R; it can be shown that as long as correct L is used in the extraction, we will obtain
an appropriately distributed value for L̃ on right.

The function gφ, upon receiving R, will compute the last message of the proof just like function fφ. However,
it will open c2 to the correct value R and feed it to MIM. If it receives a valid last message on the right with a
state R̃, it will output that state (and ⊥) otherwise.

We remark that even though the transcripts and the commitments generated in the description of (fφ, gφ) are
not binding, the proof ensures that the values output by them are distributed appropriately as long as correct states
are given to them as input. The asynchronous adversary is handled using a simple scheduling argument (without
relying on non-malleable code). We present the full protocol and proof in Section 8.
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2 Preliminaries

We use λ for the security parameter and negl(λ) or negl for a function which tends to zero faster than λ−k for any
constant k. We say that two probability distributions X and Y are computationally indistinguishable, and write
X ≈c Y if for all probabilistic polynomial time (PPT) distinguishers D,∣∣∣Prx←X

(
D(x) = 1

)
− Pry←Y

(
D(y) = 1

)∣∣∣ = negl.

2.1 Cryptographic Building Blocks

Symmetric Key Encryption. A symmetric key encryption scheme is a tuple of algorithms (G,E,D): the key
generation algorithm G takes input 1λ and outputs a private key k; the encryption algorithm E takes a key k, a
plaintext message msg and randomness r as input and produces a ciphertext ct = Ek(msg; r); and decryption
takes a key k and a ciphertext ct and outputs msg = Dk(ct). We require

• Correctness: For any message msg, the process: k ← G(1λ), ct ← Ek(msg), msg′ = Dk(ct) outputs
msg′ = msg with probability 1.

• Semantic Security: For any messages msg,msg′, we have{
ct : k ← G(1λ), ct← Ek(msg)

}
≈c

{
ct′ : k ← G(1λ), ct′ ← Ek(msg′)

}
.

It is known how to construct symmetric key encryption schemes from any one-way function.

Commitment Schemes. A commitment scheme, 〈C,R〉 is a two-phase, two party protocol between a commit-
ter C and a receiver R. In the commit phase, C uses secret input v and interacts with R who uses no input. Let
z = Com(v; r) denote R’s view after the commit phase. Let (w, v) = Decom(z, v, r) denote R’s view after
the decommit phase, whichR either accepts or rejects. We say that 〈C,R〉 is a statistically binding commitment
scheme if the following properties hold:

• Correctness: If parties follow the protocol, then R(z, w, v) = 1;

• Binding: With high probability over R’s randomness, there does not exist a (w′, v′) with v′ 6= v such that
R(z, w′, v′) = 1;

• Hiding: For all v, v′,
{

Com(v; r)
}
r
≈c
{

Com(v′; r′)
}
r′

.

It is known how to construct a non-interactive, perfectly binding commitment scheme from any one-way permu-
tation [Blu81]. Alternatively, any one-way function can be used to construct a two-round, statistically binding
commitment scheme, where the binding property holds with high probability overR’s randomness [Nao91].

Id-based Commitment Scheme. Following [PR05b, DDN91], we consider id-based commitment schemes
where, in addition to the security parameter, the committer and the receiver also receive an identity id ∈ {0, 1}λ
as common input.

2.2 Non-malleable commitments

Non-malleable commitment is defined using the real/ideal paradigm. In the real interaction, there is a man-in-
the-middle adversary M interacting with a committer, C, in the left session a receiver R in the right. We denote
the various quantities associated with the right interaction as “tilde’d” versions of their left counterparts. So for
example, C commits to v in the left interaction while M commits to ṽ in the right. Let MIMv denote a random
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variable that describes (VIEW, ṽ), consisting of M’s view in the experiment and the value M commits to in the
right interaction, given that C has committed to v in the left interaction. The ideal interaction is the same, except
that C commits to an arbitrary fixed value, say 0, on the left. Let MIM0 be the random variable describing
(VIEW, ṽ) in this interaction. We will use id-based commitment schemes and we force M to use an identity ĩd on
the right which is distinct from id used on the left. We enforce this by stipulating that MIMv and MIM0 output
the special symbol ⊥id when M has used the same identity on the right which he has received on the left. This is
analogous to the uninteresting case when M is simply acting as a channel, forwarding messages from C toR and
back. We let MIMv(y) and MIM0(y) be the distributions where M gets a string y as auxiliary input.

Definition 1 (Non-Malleable Commitments). A commitment scheme 〈C,R〉 is non-malleable if for every PPT
man-in-the-middle adversary M, and for all v, we have

{
MIMv(y)

}
y∈{0,1}∗ ≈c

{
MIM0(y)

}
y∈{0,1}∗ .

On the Presence of Identities. In the real world, nothing can be done to prevent a MIM from simply acting
as a channel between C and R, forwarding messages back and forth. Therefore, the most basic definition of
non-malleable commitment requires that the MIM cannot distinguish whether he is in the real or ideal world,
even when he is given his committed value on the right, as long as he is doing something (anything) other than
copying. [DDN91] noticed that this is equivalent to requiring every committer to have a public identity and
forcing the MIM to use an identity which is distinct from C’s. This observation has persisted ever since, so non-
malleable commitment is usually defined with respect to identities. The equivalence is based on the following
observation: C can choose his identity to be the public verification key for a signature and send a signature of the
entire transcript in the last round. The security of the signature scheme then ensures that either M has copied C’s
identity, in which case he cannot produce a valid signature unless he has copied every message as well, or he has
used a distinct identity.

2.3 Non-Malleable Codes

A coding scheme is a pair of functions (Enc,Dec) where Enc :M→ C and Dec : C → M for a message space
M and codeword space C. It should be the case that Dec ◦ Enc(m) = m for all m ∈ M with high probability
over the randomness of Enc (it needn’t be the case that Enc is randomized at all, in which case correctness
requires Dec◦Enc(m) = m with probability 1). Historically, coding schemes are usually designed in order to be
resilient to some form of tampering. In their important 2010 paper Dziembowski, Pietrzak and Wichs [DPW10]
introduced non-malleable codes which are codes with strong security in the presence of tampering. Informally,
for a family F ⊂ {f : C → C}, we say that (Enc,Dec) is non-malleable with respect to F if for all f ∈ F , the
tamper distribution

(
Dec ◦ f ◦ Enc

)
(m) (over the randomness of Enc) outputs m̃ which is either equal to m if f

copying or else is independent of m. In this work we are interested in split-state non-malleable codes.
Let (Enc,Dec) be a split state coding scheme so Enc :M→ L×R and let

Fsplit =
{

(f, g)
∣∣f : L → L, g : R → R

}
be the set of split-state tampering functions.

Definition 2 (Tampering Distribution). Fix m ∈ M, (f, g) ∈ Fsplit. The tampering distribution, denoted
Tm,f,g is: draw (L,R)← Enc(m), set (L̃, R̃) =

(
f(L), g(R)

)
and output m̃ = Dec(L̃, R̃).

Definition 3 (Simulatable Distribution). Let {Dm}m∈M be a family of distributions onM indexed by m. We
say that {Dm} is ε−simulatable if there exists a distribution S onM∪{same} such that ∆(Dm, Sm) < ε for all
m, where Sm is the distribution onM induced by drawing m̃← S and outputting m if m̃ = same, m̃ if not.

Definition 4 (Split-State Non-Malleable Code). We say that (Enc,Dec) is ε−non-malleable against Fsplit if for
all (f, g) ∈ Fsplit, {Tm,f,g}m is ε−simulatable.

8



The Non-Malleable Code of [ADL14]. The code of [ADL14] maps m ∈ M into (L,R) where L,R ∈ Znp are
random subject to the condition that 〈L,R〉 ∈ Hm ⊂ Zp (p is a prime much larger than |M|, and the {Hm}m∈M
are carefully chosen disjoint subsets of Zp). Non-malleability follows from an extensive analysis of the inner
product function which makes heavy use of its properties as a randomness extractor. For any (f, g) ∈ Fsplit and
x ∈ Zp, the following random process is considered: choose L,R ∈ Znp randomly such that 〈L,R〉 = x, set
(L̃, R̃) =

(
f(L), g(R)

)
, and output x̃ = 〈L̃, R̃〉. The main lemma of [ADL14] says that x̃ is either 1) independent

of x, or 2) of the form x̃ = ax+b for some a, b ∈ Zp which depend only on (f, g). Non-malleability in [ADL14]
then follows from the design of affine evasive sets as the {Hm}m. This aspect of their construction is very elegant
but as we will not need to change their {Hm}m, we do not discuss this portion further. The interested reader
should see [ADL14] for more information. We note that the earlier work of [DKO13] used essentially the same
outline in order to give a non-malleable code for one bit messages. Their construction is also very elegant and is
much simpler: they use H0 = {0} and H1 = Zp − {0}.

2.4 Augmented Non-Malleable Codes

Very recently Aggarwal et al. [AAG+16] proved that the [ADL14] construction is non-malleable even when the
tamper distribution outputs m̃ along with one of the states. Their proof looks at the randomized process: choose
L,R ∈ Znp randomly such that 〈L,R〉 = x, set (L̃, R̃) =

(
f(L), g(R)

)
and output (R, x̃) where x̃ = 〈L̃, R̃〉. The

same randomness extraction properties of the inner product function used in [ADL14] show that even conditioned
on R, x̃ is either independent of x or else x̃ = ax + b for a, b ∈ Zp which depend only on (f, g). They call this
stronger notion augmented non-malleability.

Definition 5 (Augmented Tampering Distribution). Fixm ∈M and (f, g) ∈ Fsplit. The augmented tampering
distribution, denoted Vm,f,g is: draw (L,R) ← Enc(m), set (L̃, R̃) =

(
f(L), g(R)

)
and output (R, m̃) where

m̃ = Dec(L̃, R̃).

We use the letter V for “view”: the output of the augmented tampering distribution will be basically what the
MIM sees during a mauling attack on our non-malleable commitment scheme.

Definition 6 (Augmented Simulatable Distribution). Let {Dm}m∈M be a family of distributions on R ×M
indexed by m, where R is an arbitrary set. We say that {Dm} is ε−augmented simulatable if there exists a
distribution S on R × (M∪ {same}) such that ∆(Dm,Sm) < ε for all m, where Sm is the distribution onM
induced by drawing (R, m̃)← S and outputting (R,m) if m̃ = same, (R, m̃) if not.

Definition 7 (Augmented Non-Malleable Code). We say that (Enc,Dec) is ε−augmented non-malleable against
Fsplit if for all (f, g) ∈ Fsplit, {Vm,f,g}m is ε−augmented simulatable.

Before moving on, we remark that the proof in [AAG+16] actually shows something slightly stronger. Let us
think of the randomized process above as drawing L← Znp at random and then drawing R← {v ∈ Znp : 〈L,v〉 =

x}, computing (L̃, R̃) and outputting (R, x̃). The analysis of [AAG+16] does not actually require L to be uniform
in Znp and works whenever L has sufficient min-entropy. In particular, given n, p,M, {Hm}m as in [ADL14] and
any sufficiently large L ⊂ Znp , define the coding scheme:

• EncL(m): choose L← L and R← Znp randomly such that 〈L,R〉 ∈ Hm.

• Dec(L,R): if 〈L,R〉 ∈ Hm, output m, otherwise output ⊥.

Claim 1. For all M, there exist n, p = poly(|M|, λ) such that for all L ⊂ Znp of size at least |L| ≥ pηn,
(EncL,Dec) is 2−Ω(λ)−augmented non-malleable, where 1− η = c log−6 p for an absolute constant c > 0.

Moreover, the simulator for (EncL,Dec) is identical to the simulator for (Enc,Dec) except that it draws L ← L
instead of L ← Znp . Claim 1 follows from the proof of the main theorem in [AAG+16]; as pointed out to us by
Aggarwal in a personal communication [Agg].
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3 New Constructions of Non-Malleable Codes

3.1 Conditional Augmented Non-Malleable Codes

Let (Enc,Dec) be a split-state code with codeword space L × R. In proving that our commitment scheme is
non-malleable, we will need to choose a random L ∈ L and be ensured that the augmented tampering distribution
is independent of m even conditioned on L. We define information theoretic and computational variants of these
codes.

Definition 8 (Conditional Augmented Tampering Distribution). Fix m ∈M, (f, g) ∈ Fsplit, and L ∈ L. The
conditional augmented tampering distribution, VL

m,f,g is: draw R ← Enc(m|L) = {R′ ∈ R : Dec(L,R′) = m},
set (L̃, R̃) =

(
f(L), g(R)

)
and output (R, m̃) where m̃ = Dec(L̃, R̃).

Definition 9 (Conditional Augmented Simulatable Distribution). Let
{
DL
m

}
m,L

be a family of distributions

on R × M indexed by m ∈ M and L ∈ L, where L and R are arbitrary sets. We say that
{
DL
m

}
m,L

is

ε−conditionally augmented simulatable if there exists a family of distributions
{
SL
}
L

on R ×
(
M∪ {same}

)
such that for all (computationally unbounded) distinguishers D,

PrL

[
∃m ∈M st

∣∣∣Pr(R,m̃)←DL
m

(
D(R, m̃) = 1

)
− Pr(R,m̃)←SLm

(
D(R, m̃) = 1

)∣∣∣ > ε

]
< ε.

where the probability is over L ← L drawn uniformly and where SLm draws (R, m̃) ← SL and outputs (R,m)
if m̃ = same, (R, m̃) if not. We say {DL

m}m,L is computationally conditionally augmented simulatable if for all
PPT distinguishers D and non-negligible δ > 0, there exist simulators

{
SL
}
L

such that

PrL

[
∃m ∈M st

∣∣∣Pr(R,m̃)←DL
m

(
D(R, m̃) = 1

)
− Pr(R,m̃)←SLm

(
D(R, m̃) = 1

)∣∣∣ > δ

]
= negl.

Definition 10 (Conditional Augmented Non-Malleable Code). We say that (Enc,Dec) is ε−conditionally aug-
mented non-malleable (resp. computationally conditionally augmented non-malleable) against Fsplit if for all
(f, g) ∈ Fsplit,

{
VL
m,f,g

}
m,L

is ε−conditionally augmented simulatable (resp. computationally conditionally
augmented simulatable).

We use a simple probability argument to show that the code from [ADL14] is conditionally augmented non-
malleable. This is reminiscent of the way in which one argues that a sufficiently good two-source extractor is
also a strong two-source extractor.

Claim 2. The code (Enc,Dec) of [ADL14] is ε′−conditionally augmented non-malleable for some negligible
quantity ε′ > 0.

Proof. Given (f, g) ∈ Fsplit, the simulator Sf,g guaranteed by the augmented non-malleability of (Enc,Dec)
behaves as follows: draw L,R ← Znp , set (L̃, R̃) =

(
f(L), g(R)

)
and output

(
R, 〈L̃, R̃〉

)
unless 〈L̃, R̃〉 = 〈L,R〉,

in which case output (R, same). We define the family {SLf,g}L of simulators similarly: SLf,g draws R ← Znp at
random and outputs

(
R, 〈L̃, R̃〉

)
or (R, same) according to whether 〈L̃, R̃〉 is distinct from or equal to 〈L,R〉. For

a distinguisher D, let

LD
bad =

{
L ∈ Znp : ∃m ∈M st

∣∣∣Pr
(
D(VL

m,f,g) = 1
)
− Pr

(
D(SLm,f,g) = 1

)∣∣∣ > ε′
}
,

where ε′ > ζ = p−(1−η)n for 1− η = c log−6 p for an absolute constant c > 0. If |LD
bad| < ζpn then we are done

so assume |LD
bad| ≥ ζpn. By Claim 1, the restricted code (EncL

D
bad ,Dec) is 2−Ω(λ)−augmented non-malleable

with simulator SL
D
bad

f,g identical to that for (Enc,Dec) except that the initial choices of L,R are L← Lbad, R← Znp .
However, this is a contradiction since by definition of LD

bad, SLf,g does not simulate
{
VL
m,f,g

}
m

.
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3.2 Adding the Hiding Property

We will also need our non-malleable code to have a computational hiding property resembling semantic security
in order to rule out selective ⊥ attacks. We formalize the property we need using a game between a challenger C
and a PPT adversary A, parametrized by N = poly(λ), a message m ∈M and a distribution Dhid onR.

• C draws L← L, b← {0, 1}, sends R1, . . . ,RN to A where Ri ← Enc(m|L) if b = 0; Ri ← Dhid if b = 1.

• A outputs b′ and wins if b′ = b.

Definition 11 (Codes with Simulatable State). We say that a split-state code (Enc,Dec) has simulatable right
state if there is a distribution Dhid onR such that for all PPTA, N = poly(λ), and m ∈M, the probability that
A wins the above game is at most 1/2 + negl.

Hiding Game Variant. We will use another game parametrized by polynomials N,N ′ = poly(λ). In this
gameA sends C two messagesm,m′ ∈M, C draws a secret L← L and sendsA the tuple

(
R, {R1}, . . . , {RN}

)
where R ← Enc(m|L) and each set has N ′ elements. Moreover, Ri ← Enc(m′|L) for all Ri ∈ {Ri} and all
i = 1, . . . , N except for one random i∗ for which Ri∗ ← Enc(m|L) for all Ri∗ ∈ {Ri∗}; A tries to guess i∗. If
(Enc,Dec) has simulatable right state then a PPT adversary A can guess i∗ with probability at most 1/N + negl.

Construction. Let (Enc0,Dec0) be an ε−conditional augmented non-malleable code. Let (G,E,D) be a
symmetric key encryption scheme, and let (Com,Decom) be a non-interactive, perfectly binding commitment
scheme. The new coding scheme, (Enc,Dec) is defined as follows.

• Enc(m): Draw (L0,R0) ← Enc0(m), k ← G(1λ), σ ← $, and c ← Ek(R0). Set z = Com(k, σ) and output
(L,R) where L =

(
L0, (k, σ)

)
, R = (c, z).

• Dec(L,R): If either L,R = ⊥com output ⊥com. Otherwise, parse L =
(
L0, (k, σ)

)
and R = (c, z), check that

Decom(z) = (k, σ). If so set R0 = Dk(c), output Dec0(L0,R0); if not output ⊥com.

Claim 3. (Enc,Dec) has simulatable right state.

Proof. Define three challengers C0, C1, C2 for the above hiding game, played with some fixed m ∈ M. Each
challenger draws L =

(
L0, (k, σ)

)
← L and for i = 1, . . . , N

• C0 sets Ri = (ci, z) where z = Com(k, σ) and ci ← Ek(R0) for some R0 with Dec0(L0,R0) = m.

• C1 sets Ri = (ci, z) where z = Com(0) and ci ← Ek(R0).

• C2 sets Ri = (ci, z) where z = Com(0) and ci ← Ek′(0), where k′ ← G(1λ).

Note that C0 draws each Ri from Enc(m|L), whereas C2 draws Ri from a distribution which is independent of m
and L; call this distribution Dhid. Moreover, A cannot distinguish between his interaction with C0 and C1 by the
hiding of Com. Likewise, he cannot distinguish between his interaction with C1 and C2 by semantic security.

Lemma 1. (Enc,Dec) is computationally conditionally augmented non-malleable against

Fpoly
split =

{
(f, g) ∈ Fsplit : f and g polytime

}
.

Lemma 1 is proven in full in Section 6. In the remainder of this section we give a high-level overview.
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Proof Idea. Fix (f, g) ∈ Fpoly
split . We describe a family of simulators for

{
VL
m,f,g

}
m,L

. SLf,g will be one of
two distributions depending on L. The first simply draws R ← Dhid and outputs (R,⊥com). This will simulate{
VL
m,f,g

}
m

whenever pL,m is small for all m ∈ M where pL,m is shorthand for Pr(R,m̃)←VL
m,f,g

(
m̃ 6= ⊥com

)
. In

other words, if (f, g) always tampers to ⊥com, then non-malleability follows from right state simulatability.
On the other hand, if pL,m is large for allm ∈M then VL

m,f,g is identical to VL0
m,f0,g0

, a conditional augmented
tampering distribution of (Enc0,Dec0), for some tampering functions (f0, g0) ∈ Fsplit which are related to (f, g).
In this case, we can use SL0f0,g0 to construct SLf,g.

The final piece of the proof involves ruling out selective bot attacks. We show that if the likelihood of (f, g)
tampering to ⊥com depends on the encoded message (i.e., if pL,m is significantly larger than pL,m′ for some
m,m′), then (f, g) can be used to win the above hiding game with non-negligible advantage. Since f and g are
polytime, either pL,m is small for all m, or pL,m is large for all m and so we are in one of the cases above.

The first point (when pL,m is small for all m ∈ M) is relatively straightforward, but we expand a bit on the
second and third points. The functions (f0, g0) are defined as follows.

• Random Choices: Draw k ← G(1λ), σ ← $, c$ ← Ek(0), set z = Com(k, σ), and (·, z̃$) = g(c$, z).

• f0(L0): Compute
(
L̃0, (k̃, σ̃)

)
= f

(
L0, (k, σ)

)
. Output L̃0.

• g0(R0): Draw c ← Ek(R0) and set (c̃, z̃) = g(c, z). If z̃ 6= z̃$, output ⊥com. Otherwise, use superpolyno-
mial time to break open z̃ and recover the pair (k̃′, σ̃′). Output R̃0 = Dk̃′(c̃).

Remark. Note that g0 above does not run in polynomial time. It is possible to change the construction and get
the proof to work using polynomial time (f0, g0), however the proof would become longer and more difficult.

The main observation is that whenever (L, c$) are such that Decom(z̃$) = (k̃, σ̃), the distributions VL
m,f,g and

VL0
m,f0,g0

are the same (up to encrypting the right state output by VL0
m,f0,g0

). In this case, we can simulate VL
m,f,g

using SL0f0,g0 , so it suffices to show that c$ exists such that Decom(z̃$) = (k̃, σ̃). This follows from the semantic
security of (G,E,D) as (c$, z) and R = (c, z)← Enc(m|L) differ only in their encrypted values.

We prove the claim of the third point above, that pL,m and pL,m′ cannot differ very much, as it exhibbits a type
of argument which will be very useful to us in the rest of the paper.

The Hiding Machine. We mention here one technique which will be very useful to us moving forward. The
cryptography we have inserted into the right side of our code gives us a way to rule out certain tampering behavior
via reductions to computational security. We refer to such arguments as “the hiding machine”. At its core, the
hiding machine is just a reduction to one of the hiding games above but there are many moving parts and so things
often get quite complicated. Claim 4 below is a particularly simple example of the hiding machine in action and
makes for a good first encounter. In general, the hiding machine is useful in ruling out various selective bot
attacks.

Claim 4. For any m,m′ ∈ M, (f, g) ∈ Fpoly
split and non-negligible ξ > 0 we have PrL

[∣∣pL,m − pL,m′
∣∣ > ξ

]
=

negl.

Proof. Fix m,m′ ∈ M, (f, g) ∈ Fpoly
split and non-negligible ξ = ξ(λ) > 0. Let BAD be the set of L ∈ L such

that pL,m > ξ + pL,m′ , and suppose for contradiction that there is a non-negligible ξ′ = ξ′(λ) > 0 such that
PrL
[
L ∈ BAD

]
≥ ξ′. Fix N = 3/(ξξ′), N ′ = Ω(λξ−2) and consider the PPT adversary A who plays the

(N,N ′)−way hiding game for (Enc,Dec) against a challenger C as follows.

• A sends m,m′ to C and receives
(
R, {R1}, . . . , {RN}

)
.

• A computes (c̃, z̃) = g(R) and (c̃i, z̃i) = g(Ri) for each i = 1, . . . , N and Ri ∈ {Ri}.
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• For i = 1, . . . , N , A sets pi = PrRi∈{Ri}
(
z̃i = z̃

)
and outputs i∗ such that pi∗ is maximal.

Note that if the random secret L ∈ L chosen by C is in BAD then Decom(z̃) = (k̃, σ̃) with probability at least
ξ, where f(L) =

(
L̃0, (k̃, σ̃)

)
. If Decom(z̃) = (k̃, σ̃), then for each i and Ri ∈ {Ri}, Dec(L̃, R̃i) 6= ⊥com if and

only if z̃i = z̃. In this case, pi approximates pL,mi where mi = m′ if i 6= i∗ and mi∗ = m. Therefore,

pi∗ ≥ pL,m −
ξ

3
> pL,m′ + ξ − ξ

3
≥ pi +

ξ

3
,

for all i 6= i∗. We have used the Chernoff-Hoeffding bound, facilitated by our choice of large N ′. So we see that

Pr
(
A wins

)
≥ Pr

(
L ∈ BAD

)
Pr
(
Decom(z̃) = (k̃, σ̃)

∣∣L ∈ BAD
)
(1− negl) = ξξ′ − negl >

2

N
,

and so A breaks the right state simulatability of (Enc,Dec).

4 The Basic Protocol

The protocol is shown in Figure 2.

Setup: Let Com be a non-interactive, perfectly binding commitment scheme. Let (Enc,Dec) be a
computational, conditional, augmented non-malleable code. Fix a large prime q. Let id ∈ {0, 1}λ be C’s identity.

Commiter’s Private Input: v ∈M〈C,R〉synch to be committed to.

Commit Phase:

1. C → R: Set m = v ◦ id and draw (L,R)← Enc(m), where L ∈ L ⊂ Zq. Choose random r ∈ Zq and
send Com(L ◦ r) toR.

2. R → C: Send random challenge α ∈ Z∗q .

3. C → R: Send response a = rα+ L ∈ Zq and also send R.

Decommit Phase:

1. C → R: Open the commitment sent in step 1. Let L′ ◦ r′ ∈ Zq be the decommitted value.

Receiver’s Output: If L′ and r′ do not satisfy r′α+ L′ = a then output the special symbol ⊥inc. Otherwise,
compute m′ = Dec(L′,R) and parse m′ = v′ ◦ id′. Output v′ if id′ = id, ⊥id if not.

Figure 2: Non-malleable commitment scheme 〈C,R〉synch.

Claim 5. 〈C,R〉synch is a perfectly binding commitment scheme.

Proof Sketch. Perfect binding follows immediately from the perfect binding of Com. Computational hiding
follows in a straightforward fashion from the hiding of Com and the well known fact that any split-state non-
malleable code is also a 2-out-of-2 secret sharing scheme.

Theorem 1. 〈C,R〉synch is non-malleable against a synchronizing adversary.
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A Hiding Game For 〈C,R〉synch. Before proving Theorem 1, we specify a hiding game for 〈C,R〉synch, anal-
ogous to the hiding game for (Enc,Dec). Consider the following interaction between a challenger C and a PPT
adversary A.

• Partial Transcript: C chooses L ← L, r ← Zq and sends ComL =
(
Com(L),Com(r)

)
to A, A returns

α ∈ Zq and receives a = rα+ L from C.

• Message Choice: A chooses m,m′ ∈M and sends them to C.

• Challenge Message: C chooses b ← {0, 1} and sends the pair (R0,R1) to A where Rb ← Enc(m|L) and
R1−b ← Enc(m′|L).

• Guess: A outputs a guess b′ ∈ {0, 1} and wins if b′ = b.

Just as for the hiding game of the code (Enc,Dec), we will usually use an (N,N ′)−way variant of the above
game, where the challenge message is

(
R, {R1}, . . . , {RN}

)
where R ← Enc(m|L), each #{Ri} = N ′, and

also Ri ← Enc(m′|L) for all Ri ∈ {Ri} and all i except for a random i∗, for which Ri∗ ← Enc(m|L) for all
Ri∗ ∈ {Ri∗}. In the (N,N ′)−way variant, A wins if he guesses i∗.

Claim 6. If Com is computationally hiding and (Enc,Dec) has the hiding property then for all PPT adversaries
A, the probability that A wins the above game (resp. its (N,N ′)−way variant) is at most 1/2 + negl (resp.
1/N + negl).

5 Proof of Non-Malleability (Theorem 1)

5.1 Notation

Transcripts. Suppose a PPT man-in-the-middle, M, participates in two protocol executions. We denote the
transcript of M’s view with the letter T. So

T =
(
id, ĩd,Com(L),Com(r),Com(L̃),Com(r̃), α̃, α, a,R, ã, R̃

)
.

We write ComL for Com(L) and Com(r). Note ComL specifies a linear polynomial ϕ(x) = rx + L which
C uses to answer M’s query α. We will usually write a transcript T more consicely as T =

(
ComL, α̃, a,R

)
,

surpressing C’s identity id and the quantities which are outputs of M. Since without loss of generality M is
deterministic, these values uniquely define a full transcript.

Partial Transcripts. We also will find it useful to speak of partial transcripts, as this will let us isolate certain
random choices made during the execution of T. We use τ to denote the partial transcript where C’s value R
remains unspecified. We write τ consicely as τ = (ComL, α̃, a). Note that M’s third message is not specified
given τ , however τ extends to a full transcript T once R is chosen. We write this full transcript T(τ,R).

The Distribution Mτ
m and Distinguisher Dτ . Our goal is to use a MIM who breaks the non-malleability of

〈C,R〉synch to violate the security of the code (Enc,Dec). In order to do this we make some notational changes
which syntactically relate M to the code’s non-malleability game. By definition, if M breaks the non-malleability
of 〈C,R〉synch then there exists v ∈ M〈C,R〉synch , a PPT distinguisher D, and non-negligible δ = δ(λ) > 0 such
that ∣∣∣∣Pr(T,ṽ)←MIMv

(
D(T, ṽ) = 1

)
− Pr(T,ṽ)←MIM0

(
D(T, ṽ) = 1

)∣∣∣∣ = δ. (1)

Letm = v◦ id,m′ = 0◦ id and m̃ = ṽ◦ ĩd. Som,m′ ∈M are the messages encoded during the left executions of
〈C,R〉synch in the real/ideal world, and m̃ ∈M is the message encoded on the right. For a given partial transcript
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τ =
(
ComL, α̃, a

)
, let Mτ

m be the distribution which draws R← Enc(m|L) and outputs (R, m̃), where m̃ is M’s
encoded message in T(τ,R). Let Dτ be the PPT distinguisher which on input (R, m̃), sets T = T(τ,R), parses
m̃ = ṽ ◦ ĩd′ and outputs D(T, ṽ). With these notational changes in place, (1) gives

Prτ

[∣∣∣∣Pr(R,m̃)←Mτ
m

(
Dτ
(
R, m̃

)
= 1
)
− Pr(R,m̃)←Mτ

m′

(
Dτ
(
R, m̃

)
= 1
)∣∣∣∣ ≥ δ

2

]
≥ δ

2
. (2)

Note that since M is required to produce a commitment using a tag ĩd 6= id, when (R, m̃) is drawn from Mτ
m or

Mτ
m′ , we will always have m̃ /∈ {m,m′}.

Definition 12 (Malleable Partial Transcripts). For m,m′ ∈M, write τ ∈ MAULm,m′ if∣∣∣Pr(R,m̃)←Mτ
m

(
Dτ
(
R, m̃

)
= 1
)
− Pr(R,m̃)←Mτ

m′

(
Dτ
(
R, m̃

)
= 1
)∣∣∣ ≥ δ/2.

So if M breaks the non-malleability of 〈C,R〉synch, there exist m,m′ ∈ M such that Prτ
[
τ ∈ MAULm,m′

]
≥

δ/2.

5.2 Proof Overview

At this point, we go through the proof at a high level, in order to highlight the key ideas. As mentioned in the
intro, our approach is to use an M who mauls 〈C,R〉synch to construct polynomial time split state tampering
functions (f, g) ∈ Fpoly

split which maul the code (Enc,Dec). In fact, we will construct an efficiently samplable dis-

tribution Dsplit on Fpoly
split such that with non-negligible probability over (f, g)← Dsplit, (f, g) mauls (Enc,Dec).

We proceed in two steps. First, we use M to define an efficiently samplable distribution DM which outputs poly-
time (f, g) which maul (Enc,Dec) but are not split-state. Then we show that DM is indistinguishable from a
distribution Dsplit on Fpoly

split .

The functions (f, g) output by DM share a partial transcript τ =
(
ComL, α̃, a

)
and R$ ← Enc(m∗|L) for

some arbitrary fixed m∗ ∈ M. This defines a full transcript T = T(τ,R$), let ã$ be M’s response in the third
message of T. Given L, f extracts a candidate L̃ from M by rewinding M and asking a new challenge β̃, answering
with (b,R$) on the left, where b is computed using L and the point (α, a) from τ . Defining g(R) is simpler: it
sends (a,R) to M receiving (ã, R̃), if ã = ã$ it outputs R̃, if not it outputs ⊥inc.

Clearly, (f, g) are not split-state as the randomness (τ,R$) =
(
ComL, α̃, a,R$

)
shared by both functions

depends on L. However, (τ,R$) only depends on information which computationally hides L, and we show in
Section 5.5 that indeed DM ≈c Dsplit where (f, g) output by Dsplit are defined using bogus randomness (τ,R$)
drawn from some distribution independent of L.

It is much harder to show that with non-negligible probability, (f, g)← DM mauls (Enc,Dec). There are two
main issues, which correspond exactly to the two additional properties we need from our non-malleable code.
The first is that the tampered value output by (f, g) can only be equal to M’s committed value if M’s response
ã$ in T(τ,R$) is correct. For this, we use the right state simulatability of (Enc,Dec). Since the only difference
between R$ and the real right state R is that (L,R$) is an encoding of m∗ while (L,R) is an encoding of m, we
can show that ã$ is correct with roughly the same probability that ã is. This portion of our proof is in Section 5.3.
We then find ourselves in one of two cases. Either the probability of correctness is large for both, or it is small
for both in which case M is always committing to ⊥inc. In the second case, he is not mauling. In the first case
we show that (f, g) output M’s committed value with non-negligible probability that is independent of whether
M is mauling or not. It follows that if M mauls 〈C,R〉synch with non-negligible probability, then (f, g) mauls
(Enc,Dec) with related non-negligible probability. This part of our proof is in Section 5.4.

The second issue is that (f, g) are defined using τ which contains L. This means that the mauling ex-
periment for (f, g) given a message m is conditional: draw R ← Enc(m|L) where L is as in τ , compute
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(L̃, R̃) =
(
f(L), g(R)

)
and output m̃ = Dec(L̃, R̃). This is in contrast to the usual security game for non-

malleable codes where (f, g) are fixed and then (L,R) ← Enc(m) are both drawn during the tampering experi-
ment, and it explains our need for starting with (Enc,Dec) which are conditionally augmented non-malleable.

5.3 Ruling out Selective ⊥inc Attacks

Recall that ṽ = ⊥inc when M’s response ã is incorrect. In this section we use the shorthand

pτ,m = Pr(R,m̃)←Mτ
m

(
ṽ 6= ⊥inc

)
and we will prove that if M is mauling then he is doing so by answering correctly. The main lemma of this section
is the following.

Lemma 2. Suppose M breaks the non-malleability of 〈C,R〉synch with non-negligible probability δ. Then there
exist m,m′ ∈M and non-negligible δ′ > 0 such that for all m∗ ∈M

Prτ

[
τ ∈ MAULm,m′ & pτ,m∗ ≥ δ′

]
≥ δ

4
− negl.

Lemma 2 follows immediately from (2) and Claims 7 and 8 which rule out two separate types of mauling behav-
ior.

Claim 7. For all m,m′ ∈M and non-negligible ξ > 0 we have:

Prτ

[∣∣∣pτ,m − pτ,m′
∣∣∣ > ξ

]
= negl.

Proof. We utilize the hiding machine. Fix m,m′ ∈ M and non-negligible ξ > 0. Let BAD be the set of partial
transcripts τ for which pτ,m > ξ + pτ,m′ and suppose for contradiction that there is some non-negligible ξ′ > 0
such that Pr

(
τ ∈ BAD

)
≥ ξ′. Set N = 4/(ξξ′), N ′ = Ω

(
λξ−2

)
and consider the PPT adversary A who

interacts with C in the (N,N ′)−way hiding game for 〈C,R〉synch as follows.

• A instantiates M. Upon receiving ComL from C, it plays the first two rounds of 〈C,R〉synch with M, giving
input ComL and uniform α̃ and receiving α in the second round of the left interaction. A sends α to C and
receives a. This defines a partial transcript τ =

(
ComL, α̃, a

)
.

• A sends (m,m′) to C and receives challenge
(
R, {R1}, . . . , {RN}

)
. A forwards (a,R) to M and receives

(ã, R̃). This defines a full transcript T = T(τ,R). Moreover, for all i = 1, . . . , N and Ri ∈ {Ri}, A sends
(a,Ri) to M and receives (ãi, R̃i), defining transcripts {Ti} for i = 1, . . . , N , where Ti = T(τ,Ri).

• A computes pi = PrRi∈{Ri}
(
ãi = ã

)
, and outputs i∗ such that pi∗ is maximal.

Note that if τ ∈ BAD, then M’s response ã in T is correct with probability at least ξ. Moreover, if ã is correct
then ṽ 6= ⊥inc in Ti if and only if ãi = ã. Therefore, conditioned on τ ∈ BAD and ã being correct, we see that

pi∗ ≥ pτ,m −
ξ

3
> pτ,m′ + ξ − ξ

3
≥ pi +

ξ

3
,

for all i 6= i∗ with probability at least 1 − 2−Ω(λ). We have used the Chernoff-Hoeffding bound, made possible
by our choice of large enough N ′. We conclude that

Pr
(
A wins

)
≥ ξξ′(1− negl) >

2

N
,

which violates the security of the hiding game for 〈C,R〉synch.
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Claim 8. Let δ = δ(λ) > 0 be as the statement of Lemma 2. For all m,m′ ∈M, we have:

Prτ

[
τ ∈ MAULm,m′ & pτ,m < λ−2δ3

]
≤ δ

4
.

Proof. This is another invocation of the hiding machine. Fix m,m′ ∈ M, let BAD′ be the partial transcripts
τ ∈ MAULm,m′ such that pτ,m < λ−2δ3, and suppose for contradiction that Prτ

[
τ ∈ BAD′

]
> δ/4. For almost

all τ ∈ BAD′ (in particular, for all τ ∈ BAD′ except for those for which Claim 7 does not hold), we have:

δ

2
≤

∣∣∣∣Pr(R,m̃)←Mτ
m

(
Dτ (R, m̃) = 1

)
− Pr(R,m̃)←Mτ

m′

(
Dτ (R, m̃) = 1

)∣∣∣∣
≤

∣∣∣∣PrMτ
m

(
Dτ (R, m̃) = 1 & ṽ = ⊥inc

)
− PrMτ

m′

(
Dτ (R, m̃) = 1 & ṽ = ⊥inc

)∣∣∣∣+ pτ,m + pτ,m′

<

∣∣∣∣PrMτ
m

(
Dτ (R,⊥inc) = 1

∣∣ṽ = ⊥inc

)
− PrMτ

m′

(
Dτ (R,⊥inc) = 1

∣∣ṽ = ⊥inc

)∣∣∣∣+ 3λ−2δ3 + negl.

Now, set N = 17/δ, N ′ = Ω(λδ−2) and consider the A who plays the hiding game against C as follows.

• A instantiates M and obtains partial transcript τ . A sends m,m′, receives
(
R, {R1}, . . . , {RN}

)
, and sets

Ti = T(τ,Ri), for all Ri ∈ {Ri}.

• A computes pi = PrRi∈{Ri}
(
Dτ (Ri,⊥inc) = 1

)
and outputs i∗ such that pi∗ is maximal.

If τ ∈ BAD′ then with probability at least 1/2, M will answer incorrectly in every Ti ∈ {Ti} for all i, and
so M’s commitment in every Ti is to ⊥inc. Conditioned on every commitment being to ⊥inc, pi approximates
Pr(R,m̃)←Mτ

mi

(
Dτ (R,⊥inc) = 1

∣∣ṽ = ⊥inc

)
where mi∗ = m and mi = m′ when i 6= i∗. In this case, we have by

Chernoff-Hoeffding,

pi∗ ≥ Pr(R,m̃)←Mτ
m

(
Dτ (R,⊥inc) = 1

∣∣ṽ = ⊥inc

)
−δ

9
> Pr(R,m̃)←Mτ

m′

(
Dτ (R,⊥inc) = 1

∣∣ṽ = ⊥inc

)
+

2δ

9
≥ pi+

δ

9
,

for all i 6= i∗ with probability 1− 2−Ω(λ). And so Pr
(
A wins

)
≥ δ

8 − negl > 2
N , which violates the security of

the hiding game for 〈C,R〉synch.

5.4 The Distribution DM

We now use M to define a polynomial time sampleable distribution,DM, which outputs a tampering function pair
(f, g), as follows.

• Random Choices: Instantiate M and play the first two rounds of 〈C,R〉synch, obtaining a partial transcript
τ =

(
ComL, α̃, a

)
where a = ϕ(α) and ϕ(x) is the linear map specified by ComL. Draw R$ ←

Enc(m∗|L) for some arbitrary fixed m∗ ∈ M and let ã$ be M’s response in the full transcript T(τ,R$).
Finally draw β̃ ← Zq.

• fτ,R$,β̃
(L): Let ϕ(x) be the unique linear function with constant term L and ϕ(α) = a.

– rewind M back to the second message of the right interaction and ask β̃, receive β on the left;

– send (b,R$) where b = ϕ(β) and receive (b̃, ·) on the right;

– output L̃, the constant term of the line spanned by
{

(α̃, ã$), (β̃, b̃)
}

.

• gτ,R$
(R): Let (ã, R̃) be M’s final message in T(τ,R). If ã = ã$ output R̃, otherwise ⊥inc.
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• Output: (f, g) = (fτ,R$,β̃
, gτ,R$

).

Notice (f, g) output by DM are not split-state as the randomness (τ,R$) shared by both f and g depends on L.
Nonetheless, we show in Section 5.5 below that DM ≈c Dsplit, a distribution on Fpoly

split . Combined with the next
lemma, this shows that 〈C,R〉synch is non-malleable: an M which breaks the non-malleability of 〈C,R〉synch can
be used to construct a distribution Dsplit on Fpoly

split which breaks the security of the code (Enc,Dec).

Lemma 3. Let δ, δ′ > 0 be as in the statement of Lemma 2. If M breaks the non-malleability of 〈C,R〉 then there
exist m,m′ ∈M such that

PrL,(f,g)

[∣∣∣∣Pr(R,m̃)←VL
m,f,g

(
Dτ (R, m̃) = 1

)
− Pr(R,m̃)←VL

m′,f,g

(
Dτ (R, m̃)) = 1

)∣∣∣∣ > δ

2

]
>

(δδ′)3

256
− negl,

where the outer probability is over L← L and (f, g) = (fτ,R$,β̃
, gτ,R$

)← DM, where τ = (ComL, α̃, a)

Proof Idea. The randomness needed in order to draw (f, g) ← DM consists of a random partial transcript
τ =

(
ComL, α̃, a

)
, R$ ← Enc(m∗|L) and β̃ ← Zq. Given these choices, the distributions VL

m,f,g and Mτ
m

are very similar: both draw R ← Enc(m|L) and output (R, m̃). We prove Lemma 3 by showing that whenver(
τ,R$, β̃

)
is such that M’s response ã$ is correct, VL

m,f,g and Mτ
m are actually identical for all m ∈ M. The

proof then follows from the observation that ã$ is correct with non-negligible probability, which uses Lemma 2
and the right state simulatability of (Enc,Dec).

Proof of Lemma 3. For randomness (τ,R$) =
(
ComL, α̃, rα+L,R$

)
, say the “extraction event”, denoted EXT,

occurs whenever ã$ is correct in T(τ,R$), and

Prβ̃

(
b̃ correct in T

(
ComL, β̃, rβ + L,R$

))
≥ (δδ′)2

32
.

If M mauls 〈C,R〉synch then there exist messages m,m′ ∈M such that

Prτ,R$

(
τ ∈ MAULm,m′ & EXT

)
≥ δδ′

4
− δδ′

8
− negl =

δδ′

8
− negl,

using Lemma 2 and Bayes’ theorem. If ã$ is correct then g(R) identifies when M is committing to ⊥inc on the
right (ã is correct if and only if ã = ã$), and so outputs the correct R̃. Moreover, if ã$ and b̃ are correct then f(L)
outputs the correct L̃. So we see that when τ ∈ MAULm,m′ and EXT occurs and b̃ is correct (all of which happen
with probability at least (δδ′)3/256− negl), then VL

m,f,g ≡ Mτ
m for all m ∈M and so since τ ∈ MAULm,m′ ,∣∣∣∣Pr

(
Dτ (VL

m,f,g) = 1
)
− Pr

(
Dτ (VL

m′,f,g) = 1
)∣∣∣∣ > δ

2
.

5.5 A Hybrid Argument to Prove DM ≈c Dsplit

Note that the distribution DM from the previous section does not output split state (f, g) as the randomness
(τ,R$) =

(
Com(L),Com(r), α̃, a,R$

)
shared between f and g depends in three ways on L: 1) τ contains a

commitment to L, 2) a = rα + L, and 3) R$ ← Enc(m∗|L). We show in this section, however, that DM is
computationally indistinguishable from a polynomial time sampleable distributionDsplit on Fpoly

split . This, together
with Lemma 3, completes the proof that 〈C,R〉synch is non-malleable.

D0 = DM − This is the distribution defined above. It draws L ← L, a and also random partial transcript
τ =

(
Com(L),Com(r), α̃, a) where a = rα+ L, R$ ← Enc(m∗|L) and outputs (f0, g0) = (fτ,R$

, gτ,R$
).
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D1 − This distribution outputs functions (f1, g1) which behave exactly like (f0, g0) except that they are seeded
with (τ,R$) =

(
Com(L),Com(r), α̃, a,R$

)
, where a← Zq is random instead of equal to rα+ L.

D2 − This outputs (f2, g2) which, again, differ from (f1, g1) only in their shared randomness. This time
(τ,R$) =

(
Com(0),Com(r), α̃, a,R$

)
, where a ∈ Zq is random. Now the only dependence on L is that

R$ ← Enc(m∗|L).

D3 = Dsplit − This outputs (f3, g3) which are the same as (f2, g2) except that R$ ← Dhid, the distribution onR
guaranteed by the right state simulatability of (Enc,Dec). Since (τ,R$) no longer depends on L, (f3, g3) ∈ Fpoly

split .

Claim 9. D0 ≈c D1 ≈c D2 ≈c D3.

Proof. The first two indistinguishabilities follow from the hiding of Com. For the first, consider an adversary
A who interacts with a challenger C in the hiding game by choosing r0, r1 ∈ Zq at random and sending (r0, r1)
to C, receiving a commitment z = Com(rb) for a random b ∈ {0, 1}. Then A draws L ← L and α̃ ← Zq at
random and sends

(
Com(L), z

)
and α̃ to M (corresponding to the first message of the left interaction and the

second message of the right interaction), receiving α as the second message on the left. A sets a = r0α + L,
draws R$ ← Enc(m$|L) and outputs

(
Com(L), z, α̃, a,R$

)
. If b = 0 then A’s output is distributed according to

D0, while if b = 1, A’s output is distributed like D1. This proves that D0 ≈c D1; D1 ≈c D2 follows even more
readily. Finally, D2 ≈c D3 follows from the hiding property of (Enc,Dec).

It follows from Lemma 3 and Claim 9 that if M breaks the non-malleability of 〈C,R〉 then there existm,m′ ∈M
and non-negligible δ, δ′ > 0 such that

PrL,(f,g)

[∣∣∣∣Pr(R,m̃)←VL
m,f,g

(
Dτ (R, m̃) = 1

)
− Pr(R,m̃)←VL

m′,f,g

(
Dτ (R, m̃) = 1

)∣∣∣∣ > δ

2

]
>

(δδ′)3

256
− negl,

where the outer probability is over L ← L and (f, g) ← Dsplit, drawn independently. This breaks the computa-
tional conditional augmented non-malleability of (Enc,Dec), thus completing our proof of Theorem 1.

6 Constructing Codes with Simulatable Right State (Proof of Lemma 1)

Lemma 1 (Restated). (Enc,Dec) is computationally conditionally augmented non-malleable against

Fpoly
split =

{
(f, g) ∈ Fsplit : f and g polytime

}
.

Fix (f, g) ∈ Fpoly
split and non-negligible δ = δ(λ) > 0 (every δ in this section refers to this choice). We must

describe simulators
{
SLf,g

}
L

such that for all PPT distinguishers D, PrL
[
Ef,g

]
< 2δ + λ−2δ4 + negl, where Ef,g

is the event

∃m ∈M st
∣∣∣Pr(R,m̃)←VL

m,f,g

(
D(R, m̃) = 1

)
− Pr(R,m̃)←SLm,f,g

(
D(R, m̃) = 1

)∣∣∣ > δ.

We address the three points of the high level proof in Section 3.2 in reverse order. Recall, we already proved
Claim 4. Just as in Section 3.2 we use the shorthand pL,m for Pr(R,m̃)←VL

m,f,g

(
m̃ 6= ⊥com

)
.
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Claim 4 (Restated). For any m,m′ ∈M, (f, g) ∈ Fpoly
split and non-negligible ξ = ξ(λ) > 0 we have

PrL

[∣∣pL,m − pL,m′
∣∣ > ξ

]
= negl.

Now, fix any m∗ ∈ M and define LVALID =
{
L ∈ L : pL,m∗ ≥ λ−2δ3

}
, and LBOT = L \ LVALID. We

treat the cases L ∈ LVALID and L ∈ LBOT separately, beginning with L ∈ LVALID. We use (f, g) to construct
(f0, g0) which tampers (Enc0,Dec0). We will then use SL0f0,g0 whose existence is guaranteed by the conditional
non-malleability of (Enc0,Dec0), to construct SLf,g. Whenever L ∈ LVALID, SLf,g will simulate

{
VL
m,f,g

}
m

. The
construction of (f0, g0) is as follows.

• Random Choices: Draw k ← G(1λ), σ ← $, c$ ← Ek(0), set z = Com(k, σ), and (·, z̃$) = g(c$, z).

• f0(L0): Compute
(
L̃0, (k̃, σ̃)

)
= f

(
L0, (k, σ)

)
. Output L̃0.

• g0(R0): Draw c ← Ek(R0) and set (c̃, z̃) = g(c, z). If z̃ 6= z̃$, output ⊥com. Otherwise, use superpolyno-
mial time to break open z̃ and recover the pair (k̃′, σ̃′). Output R̃0 = Dk̃′(c̃).

Define SLf,g as follows: parse L =
(
L0, (k, σ)

)
and draw c$ ← Ek(0) such that Decom(z̃$) = (k̃, σ̃), where

(·, z̃$) = g
(
c$,Com(k, σ)

)
and

(
L̃0, (k̃, σ̃)

)
= f(L) (we prove in Claim 10 below that such c$ exist with high

probability when L ∈ LVALID); this defines (f0, g0) ∈ Fsplit. Draw (R0, m̃) ← SL0f0,g0 , c ← Ek(R0) and output
(R, m̃) where R =

(
c,Com(k, σ)

)
.

Claim 10. For any PPT distinguisher D, PrL
[
L ∈ LVALID & Ef,g

]
< δ + negl.

Proof. Assume LVALID comprises at least a δ−fraction of L; if not we are done. Note that as c$ is such that
Decom(z̃$) = (k̃, σ̃), tampering with (f0, g0) is the same as tampering with (f, g). Indeed, (R, m̃) ← VL

m,f,g

has m̃ = ⊥com if and only if Decom(z̃) 6= (k̃, σ̃), or equivalently, since Com is perfectly binding, if z̃ 6= z̃$.
Moreover, if m̃ 6= ⊥com then g(R) =

(
Ek̃(g(R0)), z̃

)
. It follows that VL

m,f,g is identical to the distribution: draw
(R0, m̃) ← VL0

m,f0,g0
, set R =

(
Ek(R0),Com(k, σ)

)
and output (R, m̃). So whenever there exists a c$ such that

Decom(z̃$) = (k̃, σ̃) we have,

PrL
[
Ef,g

]
≤ PrL

[
∃m st ∆

(
VL0
m,f0,g0

, SL0m,f0,g0
)
> δ
]
< negl,

as (Enc0,Dec0) is ε−conditionally augmented non-malleable for negligible ε. Finally, we show that for al-
most all L ∈ LVALID, there exists c$ st Decom(z̃$) = (k̃, σ̃). In fact, Decom(z̃$) = (k̃, σ̃) holds for a
non-negligible fraction of c$: Prc$

[
Decom(z̃$) = (k̃, σ̃)

∣∣L ∈ LVALID] ≥ λ−2δ4 − negl. This follows im-
mediately from the definition of LVALID and semantic security. Indeed, conditioned on L ∈ LVALID, we have that
PrR←Enc(m∗|L)

(
Decom(z̃) = (k̃, σ̃)

)
≥ λ−2δ3, and the only difference between R = (c, z) ← Enc(m∗|L) and

(c$, z) is their encrypted values. This intuition can be formalized easily using the hiding machine. We complete
the proof of Claim 10 by collecting our observations:

PrL
[
L ∈ LVALID & Ef,g

]
≤ PrL

[
L ∈ LVALID

∣∣|LVALID| < δ|L|
]

+ PrL
[
Ef,g

∣∣∃ c$ : Decom(z̃$) = (k̃, σ̃)
]

+ PrL
[
Decom(z̃$) 6= (k̃, σ̃) ∀ c$

∣∣L ∈ LVALID & |LVALID| ≥ δ|L|
]

< δ + negl.

When L ∈ LBOT, (f, g) is almost always tampering to ⊥com. In this case, computational conditional augmented
non-malleability follows from right state simulatability. We define

{
SLf,g

}
L

simply: SLf,g draws R ← Dhid (the
right state simulator) and outputs (R,⊥com).
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Claim 11. For any PPT distinguisher D, PrL
[
L ∈ LBOT & Ef,g

]
< δ.

Proof. We use the hiding machine. Set BAD to be the set of L ∈ LBOT for which Ef,g occurs. Unless L is in the
negligible fraction of L for which Claim 4 does not hold, pL,m < 2λ−2δ3 (using Claim 4 with ξ = λ−2δ3). For
such L, we have

Pr(R,m̃)←VL
m,f,g

(
D(R, m̃) = 1

∣∣m̃ = ⊥com

)
≥ Pr(R,m̃)←VL

m,f,g

(
D(R, m̃) = 1

)
− 2λ−2δ3

> Pr(R,m̃)←SLm,f,g

(
D(R, m̃) = 1

)
+ δ − 2λ−2δ3

> Pr(R,m̃)←SLm,f,g

(
D(R, m̃) = 1

)
+
δ

2
,

for some m ∈ M. Assume for contradiction that PrL
[
L ∈ BAD

]
≥ δ. Fix N = 5/δ, N ′ = Ω(λδ−2) and

consider the PPT adversary A who plays with challenger C as follows.

• C chooses L ← L, i∗ ← {1, . . . , N}, sends
(
{R1}, . . . , {RN}

)
to A where Ri ← Dhid for all i 6= i∗,

Ri ∈ {Ri}; and Ri∗ ← Enc(m|L) for all Ri∗ ∈ {Ri∗}.

• A receives
(
{R1}, . . . , {RN}

)
and for i = 1, . . . , N , sets pi = PrRi∈{Ri}

(
D(R,⊥com) = 1

)
and outputs

i∗ such that pi∗ is maximal.

If L ∈ L chosen by C is in BAD and such that Claim 4 holds then the expected number of (i,Ri) such that
i ∈ {1, . . . , N}, Ri ∈ {Ri}, and m̃i 6= ⊥com is at most 2λ−2δ3NN ′ < 1/2, where m̃i = Dec(L̃, R̃i). With
probability at least 1/2 there exist no such (i,Ri). In this case we have

pi∗ ≥ Pr(R,m̃)←VL
m,f,g

(
D(R, m̃) = 1

∣∣m̃ = ⊥com

)
− δ

6
> Pr(R,m̃)←SLf,g

(
D(R, m̃) = 1

)
+
δ

2
− δ

6
≥ pi +

δ

6
,

for all i 6= i∗. So we see that

Pr
(
A wins

)
≥ Pr

(
L ∈ BAD

)
Pr
(
m̃i = ⊥com ∀ (i,Ri)

∣∣L ∈ BAD
)
− negl ≥ δ

2
− negl >

2

N
,

and so A breaks the right state simulatability of (Enc,Dec).

7 The Extended Protocol

In this section we modify the protocol of Section 4 so it remains non-malleable against a non-synchronizing
adversary. The only non-synchronizing scheduling available to the adversary which is not trivially dealt with
is the sequential scheduling where he lets the left interaction complete before beginning the right. Note this
scheduling could not yeild a mauling attack against an extractable commitment, since the sequential scheduling
allows one to extract M’s commitment without rewinding C. However, our protocol in Section 4 is not extractable.
In this section we make it so, and thus also non-malleable against a sequential adversary, while still maintaining
its non-malleability against a synchronizing adversary.

Let 〈C,R〉synch be the commitment of Section 4 and let 〈C,R〉ext be a (malleable) three round extractable com-
mitment scheme. Our commitment scheme in this section, 〈C,R〉nm commits to v as follows: it uses 〈C,R〉synch
to commit to v while, in parallel, using 〈C,R〉ext to commit to the decommitment information of the first com-
mitment. We prove that this composition enjoys the best of both of its building blocks: it is extractable (and so
non-malleable against a sequential adversary) while still being non-malleable against a synchronizing adversary.
One technical point is that in the proof of synchronizing non-malleability, we need to rewind the protocol one
time, therefore to make our proof go through, we need extraction from 〈C,R〉ext to require two rewinds. The
protocol is shown in Figure 3.
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Setup: Let Com be a non-interactive, perfectly binding commitment scheme. Let (Enc,Dec) be a
computational, conditional, augmented non-malleable code. Fix large primes q and q′. Let id ∈ {0, 1}λ be C’s
identity.

Commiter’s Private Input: v ∈M〈C,R〉synch to be committed to.

Commit Phase:

1. C → R:

• Set m = v ◦ id and draw (L,R)← Enc(m), where L ∈ L ⊂ Zq. Choose random r ← Zq, ω ← $
send Com(L ◦ r;ω) toR.

• Set X = (L ◦ r, ω) ∈ Zq′ , viewed as as a field element; choose a degree λ/2 polynomial
p(x) ∈ Zq′ [x] such that p(0) = X and for i = 1, . . . , λ set Xi = p(i). Choose X0

i ,X
1
i ,X

2
i ∈ Zq′

randomly such that X0
i + X1

i + X2
i = Xi. Send Ybi = Com(Xbi), toR for b ∈ {0, 1, 2}.

2. R → C: Send random challenge α ∈ Z∗q , a random subset S ⊂ {1, . . . , λ} of size λ/10 and ci ∈ {0, 1, 2}
for i /∈ S to C.

3. C → R: Send a = rα+ L, R and Decom(Y0
i ),Decom(Y1

i ),Decom(Y2
i ) for i ∈ S and Decom(Yci

i ) for
i /∈ S.

Decommit Phase:

1. C → R: Open the commitments sent in step 1. Let L′, r′ ∈ Zq and Xbi ∈ {0, 1}poly(λ) be the decommitted
values.

Receiver’s Output: If any of the decommitments sent in step 3 of the commit phase fail, output ⊥. Otherwise,
set X′i = X0

i + X1
i + X2

i , where Xbi are the values decommitted to in the decommitment phase. If any Xbi is ill
formed, set X′i = 0. Use error correction to recover a polynomial f(x) ∈ Zq′ [x] of degree at most λ/2 such that
f(i) = X′i for at least 3λ/4 values of i. If no such f(x) exists, output ⊥. Now check that f(i) = X′i for all
i ∈ S, if not output ⊥. Otherwise, let X = f(0). If X is not a valid decommitment to Com(L ◦ r;ω), sent in step
one output ⊥fail. If L and r do not satisfy rα+ L = a then output ⊥inc. Otherwise, compute m = Dec(L,R) and
parse m = v ◦ id′. Output v if id′ = id, ⊥id if not.

Figure 3: Non-malleable commitment scheme 〈C,R〉nm.

Claim 12. 〈C,R〉nm is a perfectly binding extractable commitment scheme.

Proof Sketch. Perfect binding follows from the perfect binding of Com. Computational hiding follows from the
hiding of Com and the fact that any split-state non-malleable code is also a 2-out-of-2 secret sharing scheme.
Finally, extractability follows from a standard argument about the extractability of the subprotocol we’ve added
to the basic scheme; see [CDMW08] for a similar argument.

Theorem 2. 〈C,R〉nm is non-malleable.

Proof. It suffices to prove that it is non-malleable against a synchronizing adversary as the only other non-trivial
scheduling is the sequential one and non-malleability against a sequential adversary follows from extractability.
We follow the same outline and use the same notation as in the proof of Theorem 1. Recall that if M breaks the
non-malleability of 〈C,R〉nm then there exist m,m′ ∈ M and non-negligible δ > 0 st Prτ

[
τ ∈ MAULm,m′

]
≥
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δ/2, where τ ∈ MAULm,m′ if∣∣∣∣Pr(R,m̃)←Mτ
m

(
Dτ (R, m̃) = 1

)
− Pr(R,m̃)←Mτ

m′

(
Dτ (R, m̃) = 1

)∣∣∣∣ ≥ δ

2
.

The partial transcript τ includes the first two rounds of the right execution and the entire left execution except for
R. As before, τ is completed to a full transcript once R is specified. Note that if M’s commitment ṽ is to ⊥fail,
then M’s first message is bad, either because X̃i = X̃0

i + X̃1
i + X̃2

i are not close enough to the valuations of a
polynomial, or because this polynomial’s constant term is not a valid decommitment of Com(L̃ ◦ r̃;ω). In any
case, M cannot be mauling if ṽ = ⊥fail as C’s commitment on the left is not even defined after the first message.
Also, the proof of Lemma 2 goes through unchanged for this new protocol and so it follows that if M is mauling
with non-negligible probability then he is doing so while also sending the correct value for ã with non-negligible
probability.

This allows us to build a distribution DM on tampering functions which we will use to break the security of
(Enc,Dec). As before (f, g)← DM share a random partial transcript τ and a random R$, let ã$ be M’s response
on the right in the transcript T(τ,R$). f(L) extracts L̃ by rewinding M and asking a new challenge β̃ on the right,
using L and τ to answer on the left. We provide f with the decommitments Decom(Ybi ) so he can answer this
part of M’s query on the left honestly. g(R) completes τ to T(τ,R) and checks whether M’s answer ã is equal
to ã$ or not. If so g(R) = R̃, where R̃ is from M’s final message of T(τ,R). If not g(R) = ⊥inc. The same
proof of Lemma 3 shows that if M breaks the non-malleability of 〈C,R〉nm then there exist m,m′ ∈ M and
non-negligible δ, δ′ > 0 such that

PrL,(f,g)

[∣∣∣∣Pr(R,m̃)←VL
m,f,g

(
Dτ (R, m̃) = 1

)
− Pr(R,m̃)←VL

m′,f,g

(
Dτ (R, m̃) = 1

)∣∣∣∣ > δ

2

]
> δ′, (3)

where the outer probability is over L ← L and (f, g) ← DM using randomness which depends on L. In order
to complete the reduction to the security of (Enc,Dec) we need to exhibbit a distribution Dsplit on split state
tampering function pairs such that

PrL,(f,g)

[∣∣∣∣Pr(R,m̃)←VL
m,f,g

(
Dτ (R, m̃) = 1

)
− Pr(R,m̃)←VL

m′,f,g

(
Dτ (R, m̃) = 1

)∣∣∣∣ > δ

2

]
> δ′, (4)

where the outer probability is over L ← L and (f, g) ← Dsplit drawn independently. In the proof of Theorem 1,
we used a simple hybrid argument to argue that DM ≈c Dsplit and so (4) followed straight from (3). We argue
similarly, except our first hybrid is to change the decommitment information

{
Decom(Ybi )

}
given to f . Instead

of the Ybi being commitments to Xbi such that X0
i + X1

i + X2
i = Xi where Xi = p(i) for a polynomial p(i), we

change Ybi to be commitments to uniformly random Xbi . Note that f rewinds M once and so the output of the
tampering distribution TL

m,f,g is identical after this change is made. Indeed, f uses just two of the three values Xbi
for all i which are not contained in one of the sets S, M queries. Just two out of X0

i ,X
1
i ,X

2
i is random either way.

Moreover, as |S| = λ/10, f uses at most λ/5 valuations of p(i) in the two rewinds and deg(p) = λ/2 > λ/5, so
these values are uniformly random in both cases. The remainder of the hybrid argument goes through exactly as
for the basic protocol.

8 Simple Constant-Round Non-malleable Commitments

In this section, we describe a very simple non-malleable commitment scheme based on standard split-state non-
malleable codes. The scheme has constant rounds and an almost elementary proof. Let us quickly recall the
notation for Naor’s statistically binding commitment scheme[Nao91] based on a pseudorandom generator prg :
{0, 1}λ → {0, 1}3λ (which can be constructed from any one-way function [HILL99]) and Feige-Shamir zero-
knowledge proof-of-knowledge [FS89].
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Naor’s commitment consists of two rounds: first the receiver sends a random string τ of length 3λ; to commit
to a bit b, the sender sends c = comτ (b) as follows: select a uniform seed r ∈ {0, 1}λ and set c = prg(r) if
b = 0, and c = τ ⊕ prg(r) if b = 1. To decommit, or “open” c, the sender simply provides r. The receiver
accepts 0 as the decommitted value if c = prg(r), 1 if c = τ ⊕ prg(r), and rejects otherwise. If τ is not of the
form prg(r) ⊕ prg(r′), which happens with 2−n probability, the scheme is perfectly binding. When we want to
be explicit about the randomness used for commitment we write c = comτ (b; r).

The protocol has the following equivocality property: if τ is of the special form τ = prg(r) ⊕ prg(r′)
then by setting c = prg(r), the committer can open c to both 0 and 1 by sending either r or r′ respectively. A
string s = (s1, . . . , sn) can be committed bit by bit: the receiver selects n strings τ1, . . . , τn, and the sender
sends comτi(si; ri) for every i ∈ [n]. We abuse the notation and denote this commitment to s by comτ (s; r) :=
(comτ1(s1; r1), . . . , comτn(sn; rn)) where τ = (τ1, . . . , τn) and r = (r1, . . . , rn). Equivocality for s is achieved
through equivocality for each si when every τi is of special form. When equivocality is not desired, the same
string, e.g., τ1, can be used for all bits. It will be clear from the context if we want to use a single string for all
bits, or a different one for each bit.

Feige-Shamir zero-knowledge proof-of-knowledge [FS89] will be denoted by Π
FS

. For concreteness, we
use the four round variant of [GRRV14], and denote its messages by (zk1, zk2, zk3, zk4). This protocol has the
property the statement to be proven can be decided in the last round. It is based on the three round protocols
of [Blu86, LS90] and inherits their “special soundness” and “proof-of-knowledge” properties; furthermore, the
second round of the protocol consists of λn2 bit-commitments where n is the number of nodes in the graph
corresponding to the statement being proven. For concreteness, we denote the “knowledge” extractor of Π

FS

by Ext and the zero-knowledge simulator by ZKSim. Without loss of generality, we assume that ExtP
∗
, w.r.t.

any cheating prover P ∗, works by rewinding P ∗ only in last two messages: it rewinds P ∗ until it obtains two
accepting transcripts from which a suitable witness can be obtained; the expected running time of ExtP

∗
is

poly(λ)/p where p is the convincing probability of P ∗ w.r.t. an appropriate zk3.

Our commitment protocol 〈C,R〉. We now describe our protocol for committing messages of length n and
supporting tags of length t where n, t can be arbitrary polynomials in the security parameter λ. Let (Enc,Dec)
be an efficient split-state non-malleable code for messages of length n+ t against the class Fsplit. For simplicity,
we assume that the states are of length `, and tampering functions map from {0, 1}` to {0, 1}`. Let com and Π

FS

be Naor’s commitment and Feige-Shamir protocols respectively as defined above.
The input to the commitment algorithm, C, is a message m ∈ {0, 1}n and an identity id ∈ {0, 1}t. The

protocol proceeds in following stages:

Stage 1. C andR perform a coin-tossing protocol.

(a) R sends a random τ ← {0, 1}3λ (the first message of Naor’s commitment)
(b) C commits to a random string ρ′ i.e., c = comτ (ρ′; r)

(c) R sends a random string ρ′′

(d) C sends ρ′

(e) C proves that: “∃r : c = comτ (ρ′; r)” using protocol Π
FS

.
It uses comτ as the commitment scheme for every commitment in Π

FS
.

The transcript of this execution of Π
FS

is denoted by (zk1, zk2, zk3, zk4).
(f) Define ρ = ρ′ ⊕ ρ′′, and parse ρ := ρ1

∥∥ρFS

∥∥ρ2

Stage 2. C encodes the message m‖id, and commits to the first state using ρ1, i.e.,

(a) (L,R)← Enc(m‖id; v)

(b) Send c1 ← comρ1(L; v1)
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Stage 3. C andR start a fresh execution of Π
FS

where the statement x to be proven is decided in the last round.
LetGx denote the Hamiltonian graph corresponding to x, and q be the number of nodes inGx. Com andR
complete the first three rounds of Π

FS
, denoted (zk′1, zk

′
2, zk

′
3) where every commitment in α′2 is performed

using a unique part of ρFS .2 In the final round, C sends the following:

(a) Commitment to the second state: c2 ← comρ2(R; v2), and

(b) zk′4 which is the last message of Π
FS

proving the following statement x:

“∃(L,R, v1, v2,m) : c1 = comρ1(L; v1) ∧ c2 = comρ2(R; v2) ∧ Dec(L,R) = m‖id.”

Stage 4. Com “opens” c2 to R by sending v2.

To open the commitment, the committer simply reveals v1 (and hence L). The message is recovered by decoding
L and R (available as part of the commitment transcript).

This concludes the description of our commitment scheme. For concreteness, let us note that the size of
ρ1, ρ2 is 3λ` each, size of statement x in 3(b) is 6`λ+ t and its witness has length (6λ+ 2)`+n, q = q(λ, n, t, `)
is a fixed polynomial defined by the NP-reduction from x to Gx, and ρFS has length 3λ · λq2. Strings ρ, ρ′, ρ′′

thus have length 3λ(2`+ λq2) each.

Theorem 3. Protocol 〈C,R〉 is a tag-based statistically-binding commitment scheme that is non-malleable with
respect to commitments for messages and tags of arbitrary polynomial length.

Proof. The scheme is statistically-binding for every efficient committers due to the fact that comτ is statistically
binding and protocol Π

FS
is sound. It is computationally hiding because comρ1 and comρ2 are computationally

hiding and the protocol Π
FS

in stage 4 is zero-knowledge.
We now prove that the scheme is non-malleable w.r.t. commitments. We divide the proof in two parts: in

Section 8.1, lemma 4, we prove that the scheme is non-malleable w.r.t. synchronous strategies; in Section 8.2,
lemma 5, we prove that it is also non-malleable w.r.t. every M who employs any scheduling except synchronous.
It follows that the scheme is non-malleable w.r.t. all adversaries since any successful M must also succeed, with
at least half the advantage, by following one of these strategies.

8.1 Non-malleability against Synchronous Strategies

Proof overview. As discussed earlier, the proof will consider several hybrid experiments and create a situation
where the commitments of man-in-the-middle to the two states can be separated into two tampering functions
which tamper the states independently. This will be done by eventually obtaining a transcript that is statistically
independent of the states, yet extraction of the states can still be performed “faithfully.”

Lemma 4. 〈C,R〉 is non-malleable w.r.t. every synchronous adversary.

Proof. Suppose that the lemma is not true, and there exists a synchronous man-in-the-middle adversary M , an
efficient distinguisher D, and a polynomial p such that for infinitely many values of λ, there exist strings (m,m′)
and a tag id, such that |δλ−δ′λ| ≥ 1/p(n) where δλ := Pr[D(MIMλ,id,z(m)) = 1], δ′λ := Pr[D(MIMλ,id,z(m

′)) =
1] where variable MIMλ,id,z is defined w.r.t. M (and (λ, id, z) plays the role of auxiliary input, specified here
for emphasis).

Fix any such λ,m,m′, id, z. Recall that MIMλ,id,z outputs a pair of the form (α̃,VIEW). Define ελ to
be the probability that distribution MIMλ,id,z(m) outputs a VIEW that is accepting on right, i.e., M makes a

2In more detail, recall that ΠFS consists of λ parallel repetitions of [Blu86, LS90], each of which requires committing a cycle as a
q× q matrix. We view ρFS = {ρi,j,k} where ρi,j,k is of length 3λ and used to commit to (i, j)-th entry of the the matrix in k-th repetition
using the function comρi,j,k , for every i, j ∈ [q], k ∈ [λ]. Also note that the size of x, and hence the value of q is a fixed and a-priori
known polynomial in (λ, n, t, `).
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successful commitment in the right session of VIEW. Define ε′λ analogously w.r.t. m′. By computational hiding
of our scheme, ελ, ε′λ are negligibly close.

We now design a sequence of hybrid experiments where the first hybrid H0 corresponds to sampling from
the distribution MIMλ,id,z(m) and the last hybrid employs properties of non-malleable codes to sample a com-
putationally indistinguishable output without knowing m.

H0: This hybrid is identical to the experiment MIMλ,id,z(m). Specifically, it incorporates machines M and
D internally, and interacts with M by committing m with identity id and simultaneously receiving a com-
mitment from M w.r.t. some identity ĩd. Let VIEW denote the view of M at the end of these executions.
If VIEW is accepting on right, compute the (unique) value m̃ committed by M (by running in exponential
time) and return the output of D(m̃,VIEW).

By construction, VIEW accepts on right with probability ελ, andH0 outputs 1 with probability δλ.

H1: This hybrid is identical to H0 except that it does not extract m̃ in exponential time; instead it applies the
“proof-of-knowledge” extractor to stage-3. We provide the (straightforward) details for future reference.
H1 proceeds as follows:

1. Proceed identically to H0 until the second messages of stage-3 on both sides (zk′3, z̃k
′
3) have been

sent.3 Let st denote the state ofH1 up to this point.

2. Continue the execution from st identically to H0 to finish the last round. Let VIEW be M ’s view. If
VIEW is rejecting on right, or ĩd = id, output D(⊥,VIEW). Otherwise, let x̃ be the statement proven
by M in stage-3 on right. Also let R̃ be the “second state” in the last message on right.

3. Define a “prover” machine P st
L,v1,m,ζ

for proof system Π
FS

as follows. P st
L,v1,m,ζ

is the machine H0

initialized to state st with hardwired values (L, v1,m) and sufficient randomness ζ; it proceeds identi-
cally toH0 from state st but forwards the stage-3 messages on right to an outside verifier. It simulates
the left execution for M internally, by computing the last message as follows: sample a random R so
that it is consistent with L and m‖id, i.e., Dec(L,R) = m‖id, and then use (L, v1,R, v2,m) to send
the last message where v2 is chosen randomly.

4. Run the knowledge-extractor ExtP
st
L,v1,m,ζ to get a witness w̃ which includes opening of commitment

c̃1 to a state L̃. Ignore the rest of the witness, compute m̃ = Dec(L̃, R̃), and output D(m̃,VIEW).

Observe that the distribution of VIEW is identical in H1,H0, and Ext extracts a valid witness, and hence
correct decommitment of c̃1, with probability 1 − negl(λ). The outputs of H1,H0 are thus statistically
close.

The running time ofH1 is expected polynomial as follows: for a state st, let εst denote the probability that
P st
L,v1,m,ζ

proves a statement; then, the expected running time ofH1 is given by∑
st

(
εst · E

[
Run time of ExtP

st
L,v1,m,ζ

])
· Pr[st] =

∑
st εst ·

poly(λ)
εst
· Pr[st] = poly(λ).

H2. This hybrid is identical to the previous hybrid except that in the extraction step, it extracts from the
prover P st

L,v1,m∗,ζ
where m∗ is a random message. Note that this means that during extraction, machine

P st
L,v1,m∗,ζ

will now sample state R∗ that is consistent with L and message m∗‖id (fresh every time), so that
Dec(L,R∗) = m∗‖id.

We prove that H1 and H2 are statistically close as follows. The extraction procedure Ext
P st
L,v1,m

∗,ζ finds
a witness which includes a valid opening of c̃1 with high probability. However, since c̃1 is statistically
binding, and distributed identically in both hybrids, so is the opened state L̃. It follows that the two hybrids
are statistically close. Next, we prove that:

3Since M is synchronous, these messages are sent before the last rounds of both protocols start.
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Claim 13. H2 runs in expected polynomial time.

As noted earlier, the proof of this claim does not follow from standard averaging argument. This is because
the success probabilities of P st

L,v1,m∗,ζ
and P st

L,v1,m,ζ
could be different. We therefore adopt a different

strategy by considering several hybrids to move to a statistically, in fact perfectly, hiding transcript/view
and then revert back. For better readability, we defer the proof of this claim towards the end.

Let us also note that at this point, we have already started to “split off” the extraction procedure for L̃
without the help of R. We will now continue to make small changes until we the extraction of two states
can be completely separated from each other.

H3. This hybrid is identical to the previous hybrid, except that it uses the simulator ZKSim to complete stage
1(e), instead of the real prover algorithm. All other steps are performed as in H2, using honest values:
i.e., the hybrid defines st after stage-2 and completes stages 3 and 4 honestly. If the view is accepting, it
performs extraction as before (using P st

L,v1,m∗,ζ
).

It is straightforward to see that H2 runs in expected polynomial time. This is because M is synchronous
and hence the simulation and extraction steps are not intertwined. Furthermore, due to the zero-knowledge
of Π

FS
, the outputs ofH2,H1 are computationally indistinguishable.

H4: This hybrid is identical to H3 except that it sets ρ to be of the special form which allows equivocation.
More specifically, it selects N = 2` + λq2 pairs of seeds of {(ri0, ri1)}Ni=1 and sets ρ := R1‖ . . . ‖RN
where Ri = prg(ri0)⊕ prg(ri1) for all i ∈ [N ]. H3 performs all other steps exactly as inH3.

Clearly,H3 runs in expected polynomial time. Its output is computationally indistinguishable from that of
H2 due to the pseudorandomness of prg.

Remark. At this stage, the commitments used in H4 (for stages 2, 3, and 4 of the protocol on left) are in
fact perfectly hiding and independent of the underlying message.

H5: This hybrid is actually identical toH3, but we describe it differently using the equivocality property of com.
Roughly speaking, the hybrid will simply sample a transcript randomly without knowing the message or the
states, but then rely on the equivocality to later find randomness consistent with actual states, to compute
the last message. We describe this hybrid in detail, since it will serve as the basis for describing our
tampering functions in the next hybrid.

H5 proceeds as follows:

1. Complete stage-1 exactly as in H3 using ZKSim to set up ρ = R1‖ . . . ‖RN where Ri = prg(ri0) ⊕
prg(ri1) for all i ∈ [N ].

2. Complete stage-2 and first two messages of stage-3 by sending equivocal commitment strings. Specif-
ically, set c1 := prg(r1

0)‖ . . . ‖prg(r`0), zk′2 := prg(r`+1
0 )‖ . . . ‖prg(r`+λq

2

0 ), and c2 := prg(r`+λq
2+1

0 )‖
. . . ‖prg(rN0 ). Let st denote the state of the hybrid at this point. Continue the execution to also com-
plete the third message of stage-3.

3. Complete the last message zk′4 by using appropriate seeds, i.e., obtain (L,R) ← Enc(m‖id), and
define randomness v1, v2 based on the bits of L,R, namely, v1 := (r

L[1]
0 ‖ . . . ‖rL[`]

0 ), and v2 likewise.
This defines the witness w = (L,R, v1, v2,m) for statement x. Next, choose λ random cycles C :=
(C1, . . . , Cλ) and define randomness u so that zk′2 is a commitment to C using u w.r.t. string ρ.4

Complete the last message, zk′4, using (w,C, u).

4. Complete stage-4 by sending v2 as computed above. Let VIEW be M ’s view at this point. If VIEW
rejects on right, output D(⊥,VIEW).

4Informally, for every bit bi,j,k = Ck[i, j], define ui,j,k = ri,j,kbi,j,k
so that u is the collection of all ui,j,k.

27



5. Otherwise, proceed as before: extract a witness from P st
L,v1,m∗,(C,u,ζ′)

where ζ = (C, u, ζ ′) acts as

the randomness. The extracted witness contains L̃ and VIEW contains R̃ in the last message; output
D(m̃,VIEW) where m is obtained by decoding (L̃, R̃)

Using step by step verification, it is easy to see that (m̃,VIEW) is distributed identically in both H5,H4.
It is also easy to check thatH5 runs in expected polynomial time.

Remark: Note that only step 3 above needs access to the message m for completing the last zero-
knowledge message zk′4.

H6: In this hybrid, instead of using m to compute the last zero-knowledge message zk′4, we use states of a
random message. All other steps are still performed using correct states (L,R). Formally, H6 starts by
sampling two encodings: (L,R) ← Enc(m‖id) and (L̂, R̂) ← Enc(m̂‖id) where m̂ is chosen randomly. It
then proceeds as follows:

1. Proceed identically toH4 up to the first three messages of stage-3
2. Obtain randomness v̂1, v̂2 w.r.t. L̂, R̂ as before to define the witness ŵ = (L̂, v̂1, R̂, v̂2, m̂). Compute

message zk′4 using (ŵ, C, u) as in the previous hybrid and finish stage-3.
3. Finish stage-4 using the correct states as in the previous hybrid. I.e., find randomness v1, v2 w.r.t.

L,R and send v2 in stage-4. Let VIEW∗ denote M ’s view at this point.
4. If VIEW∗ is accepting on right, extract L̃ from P st

L,v1,m∗,(C,u,ζ′)
as before and use D to return the

output.

The only difference between two hybrids is in the computation of zk′4. However, zk′4 is independent of the
underlying “witness” due to the perfect-hiding property of underlying equivocal commitments. Therefore
H6,H5 are statistically close.

H7: In this hybrid we first define a family of tampering functions which use H6 internally. Observe that H6

does not use (L,R) until the last message (which consists of zk′4, and v2). Furthermore, it computes R̃
without the knowledge of L and, likewise, extracts L̃ without the knowledge of R. Therefore, we already
have the ability to perform extraction (or “tampering”) individually. With this observation, we define the
following family Fsplit of tampering functions.

Let Φ denote the set of all possible random tapes for hybrid H6. Define F = {(fφ, gφ)}φ∈Φ where fφ, gφ
are defined below (we define gφ first):

1. Function gφ : {0, 1}` → {0, 1}` takes as input a state R. It proceeds exactly asH6 with randomness
φ up to the completion of stage-4 where VIEW∗ is obtained. Let R̃ denote the state opened by M in
stage-4 on right. Output R̃.

2. Function fφ : {0, 1}` → {0, 1}` takes as input a state s1. It proceeds exactly asH6 with randomness
φ up to the completion of stage-3. It does not complete stage-4; instead, it directly runs the extractor
exactly asH6, and outputs the first component of the extracted witness, denoted L̃.

We now describe H7 using functions in F . Specifically, H7, samples states (L, R) ← Enc(m‖id), and
proceeds identically to H6 with fresh randomness φ and state R to obtain VIEW∗. However, H6 does not
run the extractor directly. Instead, if VIEW∗ is accepting, it computes

L̃ = fφ(L), R̃ = gφ(R), m̃‖ĩd = Dec(L̃, R̃),

and outputs D(m̃,VIEW∗) if ĩd 6= id. Otherwise it outputs D(⊥,VIEW∗).

By construction, H6,H7 are identical. Let δ(7)
λ denote the probability that H7 outputs 1. We have that

|δ(7)
λ − δλ| ≤ negl(λ). We claim that δ(7)

λ is independent of m. We prove this by obtaining an explicit
expression for δ(7)

λ using the non-malleability of the code.
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Let us fix some notation. Observe that fixing a random tape φ, completely fixes variable VIEW∗ sam-
pled above. Therefore, we will write VIEW∗φ to refer to VIEW∗ corresponding to φ. Let A denote the
set of VIEW∗ that are “accepting” on right. Note that we have already argued that VIEW∗ is indepen-
dent of the message m. Therefore, Pr[φ ∈ A] is also independent of m. Also observe that sampling of
m̃‖ĩd in H7 w.r.t. tape φ is identical to sampling from the “tampered distribution” Tm‖id,fφ,gφ and this
distribution is simulatable, i.e., there exists negligible function neglφ and a simulator Simfφ,gφ such that

∆(Tm‖id,fφ,gφ ,Copy
(m‖id)
Simfφ,gφ

) = neglφ(λ) where Copy
(m‖id)
Simfφ,gφ

samples m̃ ← Simfφ,gφ and outputs m‖id
if m̃ = same and m̃ otherwise.

We have,

δ
(7)
λ =

∑
φ∈A

Pr

[
D(m̃,VIEW∗φ) = 1

∣∣∣∣∣ m̃‖ĩd← Tm‖id,fφ,gφ
if ĩd = id set m̃ := ⊥

]
· Pr[φ] +

∑
φ/∈A

Pr
[
D(⊥,VIEW∗φ) = 1

]
· Pr[φ]

︸ ︷︷ ︸
=p (independent of m)

=
∑
φ∈A

Pr

[
D(m̃,VIEW∗φ) = 1

∣∣∣∣∣ m̃‖ĩd← Copy
(m‖id)
Simfφ,gφ

if ĩd = id set m̃ := ⊥

]
· Pr[φ] +

∑
φ∈A
±neglφ · Pr[φ] + p

=
∑
φ∈A

Pr

D(m̃,VIEW∗φ) = 1

∣∣∣∣∣
β ← Simfφ,gφ

if β = same set m̃ := ⊥
else m̃ := β[1 . . . n]

 · Pr[φ] +
∑
φ∈A
±neglφ · Pr[φ]︸ ︷︷ ︸
=negligible

+p

= value independent of m.

Now consider the case of m′ and the variable δ′λ w.r.t. MIMλ,id,z(m
′). Using the same argument as above,

we can conclude that MIMλ,id,z(m
′) is also computationally indistinguishable from hybrid H7. Therefore,

|δ′λ − δ
(7)
λ | ≤ negl(λ) and hence |δλ − δ′λ| ≤ 4negl(λ) which is a contradiction.

Proof of claim 13. To prove that H2 runs in expected polynomial time, we have to consider a series of hybrid
experiments to obtain statistically independent transcripts. At this point, we can calculate the running time in
a standard manner since there would be no difference in success probabilities when we switch m to m∗ in the
prover machine. We now provide a sketch of the hybrids (since they are very similar to our previous hybrids).

Consider the following sequence of hybrids:

H1:1. Identical to H1 except that it uses ZKSim to complete stage 1(e). Note that H1:1 is expected polyno-
mial time; furthermore, the extracted witness and in particular its first component L̃ is computationally
indistinguishable fromH1. (Note that M is still synchronous)

H1:2. Identical to H1:1 except that we switch the strings ρ to be of the special form. (This is done in the same
manner as hybrid H4 and we rely on the security of prg). Note that at this point the transcripts are inde-
pendent of the underlying witness. (SeeH5 for a detailed explanation)

H1:3. Identical to H1:2 except that the extraction is now performed using the prover machine P st
L,v1,m∗,ζ

where
m∗ is a random message.

We claim that H1:3 runs in expected polynomial time. Let εst denote the success probability of prover
P st
L,v1,m,ζ

(in the previous hybrid). Observe that the two hybrids define the same distribution on states st.
The only difference between P st

L,v1,m,ζ
and P st

L,v1,m∗,ζ
is that they compute the last zero-knowledge message

zk′4 (of stage-3) using a different witness. However, since the protocol transcript hides the witness perfectly,
we have that for every st, εst = ε∗st where ε∗st is the success probability of P st

L,v1,m∗,ζ
. The running time of
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H1:3 is thus given by
∑

st

(
εst · E

[
Run time of ExtP

st
L,v1,m

∗,ζ
])
· Pr[st] =

∑
st εst ·

poly(λ)
ε∗st
· Pr[st] =

poly(λ).

Note that we have already switched to the prover P st
L,v1,m∗,ζ

. Now we simply reverse the hybrids: in H1:4 we
switch back to using a normal string ρ, and in H1:5 we start using the real prover algorithm instead of ZKSim
(details are straightforward). Observe thatH1:4 = H2, and hence the claim. �

8.2 Non-malleability against Asynchronous Strategies

Lemma 5. 〈C,R〉 is non-malleable w.r.t. every asynchronous adversary.

Proof. We now consider an asynchronous adversary who follows any strategy different from the synchronous.
We perform a case by case analysis, depending upon the schedule of the adversary, and show that each case either
reduces to the synchronous case, or it is trivially non-malleable due to the hiding and extractability properties
of the scheme. Specifically, there are three representative cases, as described below (and depicted pictorially in
figure 4):5

left

·
·
·

m
12

right

·
·
·
·
m̃11

m̃
12

(Case 1)

left

·
·
m

8

·
·

m
12

right

·
·
·
m̃11

m̃
12

(Case 2)

left

·
·
m

7

m8

·
m12

right

·
·
m̃11

m̃
12

(Case 3)

Figure 4: Representative schedules for an asynchronous adversary for proof of lemma 5.

Case 1: The last two messages on right appear after all messages on left.

This case is trivially non-malleable due to the hiding of left side commitment since s̃1 on right can be
extracted without rewinding the left protocol to obtain the committed message m̃.

Note: If the last message on right, m̃12, appears after the left protocol ends, then also the protocol is non-
malleable since M has committed to his message before the message on left has been fixed. Therefore, in
the following cases, we only need to consider the case when m̃12 is synchronous with m12.

Case 2: The last two messages on right appear after stage-1 Π
FS

on left.

This case is handled the same way as the synchronous case. Specifically, since the extraction on right still
does not interfere with simulation on left, the proof for this case goes through exactly as for the synchronous
case.

Case 3: The non-malleability for this case also follows from hiding of left side commitment, because the last
two message on right “completely contain” the stage-3 and 4 of left protocol. Therefore, rewinding on right
will completely rewind this stage (past the first message) and hence computational hiding of left protocol
is maintained. We provide a proof sketch.

5Before reading the cases/figure, let us note that the messages of the left protocol are denoted by m1, . . . ,m12 where m8 denotes the
end of stage-1 as well as 2 (since both messages are sent together), and m7 is the challenge for stage-1 ΠFS on left. The corresponding
messages on right are denoted by m̃1, . . . , m̃12.
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As in proof of lemma 4, fix λ,M,D, z and values ελ, δλ, δ′λ for one of infinitely many λ such that ελ
(the probability of a successful commitment on right) is a inverse polynomial so is the difference between
δλ, δ

′
λ. We perform extraction for this λ and violate hiding of stage-4 commitment (which is actually a ZK

protocol but can be viewed as a commitment to m (or m′) through commitment to its first state and the
second state given in plain) for this λ.

Consider a machine D′ which internally incorporates M and D and has been initialized up to the point
where it awaits m̃11 on right (see fig. 4). It gets a commitment from outside (to either m or m′) and
forwards it internally to M . If M fails on right, D′ outputs a random bit as the guess. Otherwise, D′

proceeds for extraction (from the last two messages)—while completing the left side execution using a
random message whenever needed.

Let ε∗λ denote the probability that M makes a successful commitment on right when the left side is com-
pleted with a random message m∗. Clearly, ελ, ε∗λ are negligibly close. Note that by our assumption, ελ is
an inverse polynomial, and therefore so must be ε∗λ. After extraction, D′ outputs whatever D would.

The expected running time of D′ is dominated by the term ελ · poly(λ)
ε∗λ

; which is bounded by a polynomial
due to our assumptions on ελ, ε∗λ. It is clear that in this case the value is extracted with probability 1 −
negl(λ) and the output is the same as that of D in the real execution with m (resp. m′). Therefore D′

breaks hiding if D breaks non-malleability.
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A Failed Attempts: Selective ⊥ Attacks

We describe a few “false starts” which exemplify the difficulty in attaining three round non-malleable com-
mitment. We restrict our attention to mauling attacks which could be ruled out with a zero-knowledge proof
of correctness as other attacks have already been addressed in prior work. We leave out the identities for this
discussion. To start with (and disregarding the lower bound of [Pas13]), consider the non-interactive “encode-
then-encrypt” protocol where C commits to v by drawing (L,R)← Enc(v) and sending Com(L),Com(R) toR.
One might hope that committing separately to the states would allow us to argue that in any mauling attack, the
PPT M must treat the states individually and so non-malleability would follow from that of the code. This intu-
ition does not work as Com possesses no non-malleability guarantees, and so we cannot rule out the possibility
that M will maul (L,R) jointly to (L̃, R̃), an encoding of say v + 1.

Consider instead the scheme where C sends Com(L) in the first round, R checks back with an acknowl-
edgement message, then C sends R. This protocol seems like it should be non-malleable: M is forced to maul
L to L̃ before he sees R, and the hiding of Com should ensure that M is mauling R without knowledge of L.
However, this intuition turns out not to be sound. Given any non-malleable code (Enc0,Dec0), consider the
pathological non-malleable code where Enc(m) samples (L0,R0) ← Enc0(m) and outputs L = (L0, σ) and
R = (R0, z) where σ, z ← $; Dec(L,R) = Dec0(L0,R0) unless z is a commitment to the message (L0, σ) using
randomness σ, in which case Dec(L,R) = Dec0(L0,R0)+1. It is easy to show that (Enc,Dec) is non-malleable if
(Enc0,Dec0) is. But now if the above protocol is instantiated on top of such a code, M can maul Com

(
(L0, σ); τ

)
to z̃ = Com

(
(L0, σ̃); σ̃

)
(this mauling is happening under the Com so M needn’t know σ̃ to perform such an

attack), then M can maul (R0, z) to (R0, z̃). M has successfully committed to v+ 1. It is important to force M to
demonstrate knowledge of L in the third round.

Finally, consider a version of our protocol but without any non-malleable codes. In this scheme C sends
Com(v) and Com(r) for a random r ← Zq, R sends a random α← Zq and C answers with rα+ v. This is the
main subprotocol from the [GRRV14] scheme but with the zero-knowledge proof of consistency removed. Also
forget about the copying attack available to M in this discussion as this can be prevented using non-malleability
amplification. Still, M has the following selective ⊥ attack available. Upon receiving Com(v), Com(r) M
produces Com(ṽ), Com(v) on the right, where ṽ is the (unrelated) value to which he wants to commit. He
disregards the remainder of the left protocol. Upon receiving α̃, M answers with α̃ + ṽ. If v = 1, then M has
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successfully committed to ṽ; if v 6= 1, he has committed to ⊥. Such selective ⊥ attacks seem to be available to
M in any protocol in which C’s message is fully specified in the first round.
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