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Abstract

We present a new non-malleable commitment protocol. Our protocol has the following features:

• The protocol has only three rounds of interaction. Pass (TCC 2013) showed an impossibility result for a
two-round non-malleable commitment scheme w.r.t. a black-box reduction to any “standard" intractability
reduction. Thus, this resolves the round complexity of non-malleable commitments at least w.r.t. black-
box security reductions. Our construction is secure as per the standard notion of non-malleability w.r.t.
commitment.

• Our protocol is truly efficient. In our basic protocol, the entire computation of the committer is dominated
by just three invocations of a non-interactive statically binding commitment scheme, while, the receiver
computation (in the commitment stage) is limited to just sampling a random string. Unlike many previous
works, we directly construct a protocol for large tags and hence avoid any non-malleability amplification
steps.

• Our protocol is based on a black-box use of any non-interactive statistically binding commitment scheme.
Such schemes, in turn, can be based on any one-way permutations (or one-way functions at the cost of an ex-
tra initialization round). Previously, the best known black-box construction of non-malleable commitments
required a larger (constant) number of rounds.

• Our construction is public-coin and makes use of only black-box simulation. Prior to our work, no public-
coin constant round non-malleable commitment schemes were known based on black-box simulation.

Our techniques depart significantly from the techniques used previously to construct non-malleable commit-
ment schemes. As a main technical tool, we rely on non-malleable codes in the split state model. Our proofs of
security are purely combinatorial in nature.
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1 Introduction
Man-in-the-middle (MIM) attacks are one of the most basic attacks in cryptography. The notion of non-malleable
commitments was introduced in a seminal work of Dolev, Dwork and Naor [DDN91] as a countermeasure against
such attacks. Since their introduction, non-malleable commitments have proven to be capable of preventing MIM
attacks in a variety of settings. Non-malleability lies at the heart of secure protocol composition, it allows for round-
efficient secure multi-party computation and gives applications to areas as diverse as position based cryptography
[CGMO09].

A commitment scheme is a useful two party protocol which allows a committer, C, to send a representation of
his message v, Com(v; r) to a receiver, R, in such a way so that 1) R learns nothing about v until C chooses to open
his commitment and 2) C is bound to v and cannot open Com(v) to any value v′ 6= v. A commitment scheme is
non-malleable if for every message v, no MIM adversary, intercepting a commitment Com(v; r) and modifying it
at will, is able to efficiently generate a commitment Com(ṽ; r̃) to a related message ṽ. Interest in non-malleable
commitments is motivated both by the central role that they play in securing protocols under composition (see
for example [CLOS02, LPV09]) and by the unfortunate reality that many widely used commitment schemes are
actually highly malleable. Indeed, man-in-the-middle (MIM) attacks occur quite naturally when multiple concurrent
executions of protocols are allowed, and can be quite devastating.

Since their conceptualization by Dolev, Dwork and Naor [DDN91], non-malleable commitments have been stud-
ied extensively, and, with increasing success in terms of characterizing their round complexity. [DDN91] gave
a construction of non-malleable commitments which requires O(log λ) rounds, where λ is the security parame-
ter. Barak [Bar02] gave a constant round construction based on non-black-box simulation (which was further im-
proved by Pass and Rosen [PR05b]). More recently, constant round protocols for non-malleable commitment with
a black-box proof of security are given by Goyal [Goy11] and Lin and Pass [LP11]. Other constructions include
[PR05a, LP09, LPV08, PPV08, PW10, Wee10, GLOV12]. The current state of art is represented by a construction
of Goyal, Richelson, Rosen and Vald [GRRV14] whose scheme requires only four rounds of interaction. On the neg-
ative side, Pass [Pas13] showed that two-round non-malleable commitments cannot exists w.r.t. black-box proofs of
security based on any “standard" intractability assumption. The lower bound of Pass holds even if the construction
uses the underlying assumption in a non-black-box way. Thus, the main remaining open problem in the study of
round complexity of non-malleable commitments is

Do there exist non-malleable commitments with only three rounds of interaction?

Zero-Knowldge: A Barrier to Three-Round Non-Malleable Commitment. Almost all previous schemes in-
voke some sort of proof of consistency. Such proofs are usually critical to the proofs of non-malleability, as without
consistency one runs into a host of “selective ⊥ attacks” (where the MIM plays in such a way so that whether or
not his commitment is valid, depends on the value inside the commitment he receives) which are difficult to rule
out. Generally, zero-knowledge is used for this purpose; for example the recent works of [GRRV14, BGR+15] use
the Feige-Shamir paradigm in order to parallelize their proof of consistency down to four rounds. However, zero-
knowledge w.r.t. black-box simulation is known to require 4-rounds [GK96], so if one hopes to obtain three-round
non-malleable commitment, one must do so without zero-knowledge. Furthermore, zero-knowledge is computa-
tionally expensive and any non-malleable commitment which contains zero-knowledge as a subprotocol is libel to
be significantly slower when compared to the computation required for an ordinary statically binding commitment.
This is indeed true of the recent protocols of [GRRV14, BGR+15].

Our Contributions. We present a new construction of non-malleable commitments which has the following fea-
tures:

• The protocol has only three rounds of interaction. Pass [Pas13] showed that two-round non-malleable com-
mitments unfortunately cannot exists w.r.t. black-box proofs of security based on any “standard" intractability
assumption. The lower bound of Pass holds even if the construction uses the underlying assumption in a
non-black-box way. Thus, this resolves the round complexity of non-malleable commitments at least w.r.t.
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black-box security reductions. Our construction is secure as per the standard notion of non-malleability w.r.t.
commitment.

• Our protocol simple and truly efficient. In our basic protocol, the entire computation of the committer is domi-
nated by just three invocations of a non-interactive statically binding commitment scheme, while, the receiver
computation (in the commitment stage) is limited to just sampling a random string. The decommitment stage
is equally basic: the committer would send the openings of these commitments, while, the receiver would
be required to check these openings for correctness and perform some simple computations. The protocol is
simple to describe, the main complexity lies in the analysis rather than the construction.

In several previous works (including [GRRV14, BGR+15]), first a non-malleable commitment scheme for
“small" tags is constructed. Then, a scheme for large tags is obtained by using non-malleability amplification
[DDN91, LP09]. This adds a significant multiplicative overhead to the computation of each party: the mul-
tiplicative overhead is typically related to the number of bits in the large tags. Unlike these previous works,
our basic protocol works directly with large tags, and hence, we avoid any expensive non-amplification steps.
Our basic protocol provides security only against synchronizing adversaries. Extension to non-synchronizing
adversaries is addressed later, still with a three round protocol.

• Our protocol is based on a black-box use of any non-interactive statistically binding commitment scheme.
Such schemes, in turn, can be based on any one-way permutation, or, at the cost of an extra initialization round,
any one-way function. Previously, the best known black-box construction of non-malleable commitments
required a larger constant number of rounds [GLOV12, KMO14]. Furthermore, the previous constructions,
even though black-box, were significantly less efficient [GLOV12, LP12, KMO14, Kiy14]. For example, the
construction of Goyal et al [GLOV12] used “MPC in the head techniques" of Ishai et. al [IKOS07].

• Our construction is public-coin and makes use of only black-box simulation. Prior to our work, no public-
coin constant round non-malleable commitment schemes were known based on black-box simulation. The
structure of our basic protocol is arguably “as basic as it can be": the sender sends a single commitment to
some string, the receiver sends a random challenge, and, in the final round, sender sends another string (but
doesn’t send any opening).

Key Technical Idea − Using Split-State Non-Malleable Codes. Our key technical tool will be non-malleable
codes in the split state model [DPW10, DKO13]. Very informally, non-malleable codes in the split state model
allow one to encode a message m into Enc(m) = (L,R) and be assured that if an adversary uses functions (f, g)
to tamper (L,R) into (L̃, R̃) =

(
f(L), g(R)

)
, the decoded value m̃ = Dec(L̃, R̃) will either be equal to m (in, for

example, the case when f = g = I are the identity function), or will be independent from m.
As a first attempt towards constructing non-malleable commitments, what if the sender separately commits to

L and R? This is indeed a non-starter since the underlying commitment scheme may have some homomorphic
properties allowing the receiver to maul L and R “jointly". Our starting idea is as follows. Let us focus our attention
to synchronizing adversaries1. The committer encodes the message m as L and R, and, in the first round, the
committer sends a commitment com(L) to L. The receiver responds back with a simple acknowledgement message.
Finally, the committer sendsR in clear. Very roughly, the scheme does seem to have some non-malleability features.
In the first round, the MIM could maul com(L) into com(L̃) without the knowledge of R. In the final round, the
MIM receives R and is required to produce R̃. It seems that this mauling must be done independent of L since only
com(L) is available to MIM (rather than L itself). While this is indeed our starting point, this intuition turns out to
be not sound and more work will be required. Our basic protocol is quite simple and is given below.

• Committer’s Input: A value v to commit to.

• 1. C → R: C chooses (L,R) ← Enc(v) where L is viewed as a field element in Zq; C also draws r ←
Zq at random and sends Com(L),Com(r) to R where Com is Blum’s non-interactive, perfectly binding
commitment scheme.

1Roughly, this means that the MIM sends the i-th round message on the right immediately after getting the i-th round message in the left
interaction.
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• 2. R → C: R chooses a random α← Zq and sends it to C.

• 3. C → R: C sends a = rα+ L and R toR.

• Decommitment: To decommit, C decommits to both commitments in 1.

To prove security of this protocol, the key challenge would be to reduce any “successful" mauling attack on
our protocol to a mauling attack on the underlying non-malleable code. Our adversary for the non-malleable codes
would have to work as follows. At a very high level, the adversary would run the left execution (with the MIM)
using the given L and R. From the right execution, it would somehow extract L̃ and R̃. If MIM was successful in
mauling our non-malleable commitment protocol, this guarantees that the extracted L̃ and R̃ decodes to a message
m̃ which is related to the message m represented by L and R. This would presumably contradict the security of the
non-malleable code. However one must keep in mind that the adversary we build for non-malleable codes in the
split state model does not get to see L and R at once. Hence, it can’t simply run our non-malleable commitment
protocol, and, extract the tampered L̃ and R̃.

To complete the proof of security, we would need to construct split state functions f and g (which can use the
MIM and the distinguisher for our protocol internally). f(L) and g(R) would have to output L̃ and R̃ respectively.
However note that neither f nor g can complete the protocol execution with MIM to extract the tampered code (since
they will be missing either L or R)!

Thus, the idea of reducing the security of our construction to the security of non-malleable codes (in the split
state model) seems like a non-starter. This would be the key technical challenge we encounter in our proof of
non-malleability.

Our proof strategy, at a very high level would be execute f(L) and g(R) independent as required, and output L̃
and R̃ respectively. This would lead to L̃ and R̃ being extracted from two different protocol transcripts. However,
then we show that there would exist a single protocol transcript (from the correct distribution) such that the left
execution in that transcript was completed using L and R, and, the MIM completes the right execution using L̃ and
R̃. Thus, if MIM was successful in mauling our protocol, f and g were successful in mauling the non-malleable
code in the split state model.

Indeed, we are not able to make the above argument go through based on standard split-state non-malleable
codes. We need need the following additional properties described below very informally. A more formal description
can be found in Section 3:

1. The code must be an augmented split state non-malleable code [AAG+16]. Very informally, this means that
the distinguisher for the non-malleable code is also given R as input (in addition to the decoded message m̃).

2. We need the non-malleable code to be conditionally secure as well. This is a new property we define in
our paper. This property in particular implies that the non-malleable code is secure even under leakage of
logarithmic many bits from L (but the exact definition is different). The details of this property are given in
section 3.

3. The code must satisfy what we call as the simulatable right state property. Informally this means the following.
For a particular L, sample R1, R2, . . . , Rn s.t. (L,Ri) decodes to the same message m for all i. Then even
given R1, R2, . . . , Rn (but not L), an adversary gets no advantage in guessing m.

Our construction is based on the recent split state non-malleable code of Aggarwal et. al [ADL14]. It turns out
that the code in [ADL14] already satisfies the first two of the above properties. We then present a modification to add
the strong hiding property. Note that the code of Agarwal et. al is purely information theoretic, and, in comparison
to cryptographic objects (such as commitments or one-way functions), very efficient. Encoding and decoding simply
requires sampling random vectors and taking their inner product, etc. To add the strong hiding property, we add a
commitment and a symmetric encryption to the encoding and decoding procedures. Thus, our overall basic protocol
has computation which is dominated by about three invocations of a statistically binding commitment scheme (or
rather two invocation of a statistically binding commitment and one symmetric encryption to be more precise)2.

2We note that the two commitments which the committer sends to the receiver in our protocol in the first round can, in fact, be combined
in a single commitment
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Extension to non-synchronizing adversaries. While in some applications, security against synchronizing ad-
versaries is all one needs (e.g., constructing round efficient multi-party computation), in others, non-malleability
against arbitrary schedulings is required. Our basic protocol only provides security again synchronizing adversaries,
and since our protocol has only three rounds, it is easy to see that the only other potentially problematic scheduling
is the sequential one where the left execution finishes entirely even before the right execution starts.

To extend to non-synchronizing adversaries, we make our protocol extractable by running a 3-round extractable
(malleable) commitment scheme in parallel to our basic protocol (without adding any “proofs of consistency" of the
two parallel executions). Extraction immediately yields non-malleability against a sequential adversary as we may
rewind M and extract his commitment without having to rewind the honest committer. The main technical challenge
for this portion is proving non-malleability against a synchronizing adversary; i.e., that the extractable commitment
doesn’t “interfere” with the basic protocol. To achieve this, we will use an extractable commitment scheme such that
extracting from this scheme requires a larger number of rewindings compared to our basic protocol. This is inspired
by a technique from the constant round protocol of Lin and Pass [LP11]. Our final protocol, however, requires
significantly more invocations of the underlying commitment scheme, however we stress that even the extended
protocol is significantly more efficient than any of the prior ones known in the literature (besides requiring only
3-rounds of interaction). This protocol is described in more detail in Section E.

2 Preliminaries
We use λ for the security parameter and negl(λ) or negl for a function which tends to zero faster than λ−k for any
constant k. We have moved most of our preliminaries to the appendix, so see Appendix 2 for notes on the basic
cryptographic building blocks we will use as well as basic definitions relating to non-malleable commitment and
non-malleable codes.

3 New Constructions of Non-Malleable Codes
3.1 Conditional Augmented Non-Malleable Codes
Let (Enc,Dec) be a split-state code with codeword space L × R. In proving that our commitment scheme is non-
malleable, we will need to choose a random L ∈ L and be ensured that the augmented tampering distribution is
independent of m even conditioned on L. We define information theoretic and computational variants of these
codes.

Definition 1 (Conditional Augmented Tampering Distribution). Fix m ∈ M, (f, g) ∈ Fsplit, and L ∈ L. The
conditional augmented tampering distribution, VL

m,f,g is defined by the following process: draw R ← Enc(m|L) =

{R′ ∈ R : Dec(L,R′) = m}, set (L̃, R̃) =
(
f(L), g(R)

)
and output (R, m̃) where m̃ = Dec(L̃, R̃).

Definition 2 (Conditional Augmented Simulatable Distribution). Let
{
DL
m

}
m,L

be a family of distributions on

R×M indexed by m ∈M and L ∈ L, where L andR are arbitrary sets. We say that
{
DL
m

}
m,L

is ε−conditionally
augmented simulatable if there exists a family of distributions

{
SL
}
L

onR×
(
M∪ {same}

)
which such that

PrL

[
∆
(
DL
m,S

L
m

)
< ε ∀m ∈M

]
≥ 1− ε,

where the probability is over L ← L drawn uniformly and where SLm draws (R, m̃) ← SL and outputs (R,m) if
m̃ = same, (R, m̃) if not. We say {Dm}m is computationally conditionally augmented simulatable if for all PPT
distinguishers D and non-negligible δ > 0,

PrL

[
∃m ∈M st

∣∣∣Pr(R,m̃)←DL
m

(
D(R, m̃) = 1

)
− Pr(R,m̃)←SLm

(
D(R, m̃) = 1

)∣∣∣ > δ

]
= negl.

Definition 3 (Conditional Augmented Non-Malleable Code). We say that (Enc,Dec) is ε−conditionally aug-
mented non-malleable (resp. computationally conditionally augmented non-malleable) against Fsplit if for all
(f, g) ∈ Fsplit,

{
VL
m,f,g

}
m,L

is ε−conditionally augmented simulatable (resp. computationally conditionally aug-
mented simulatable).
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The following claim is implicit in the recent work of [AAG+16, Agg] which builds on [ADL14]. The proof is given
in Appendix B.

Claim 1. The code (Enc,Dec) of [ADL14] is ε′−conditionally augmented non-malleable for some negligible quan-
tity ε′ = ε′(λ) > 0.

3.2 Adding the Hiding Property
We will also need our non-malleable code to have a computational hiding property resembling semantic security in
order to rule out selective ⊥ attacks. Essentially we need there to exist a distribution Dhid onR such that for almost
all L ∈ L, Dhid is indistinguishable from Enc(m|L) for all m ∈ M. We formalize this using a game between a
challenger C and a PPT adversary A, parametrized by N = poly(λ), a message m ∈ M and a distribution Dhid on
R.

• C draws L ← L and b ← {0, 1}. C sends R1, . . . ,RN to A where Ri ← Enc(m|L) if b = 0 and Ri ← Dhid if
b = 1.

• A outputs b′ and wins if b′ = b.

Definition 4 (Codes with Simulatable State). We say that a split-state code (Enc,Dec) has a simulatable right
state if there is a distribution Dhid onR such that for all PPT A, N = poly(λ), and m ∈M, the probability that A
wins the above game is at most 1/2 + negl.

Construction. Let (Enc0,Dec0) be an ε−conditional augmented non-malleable code. Let (G,E,D) be a sym-
metric key encryption scheme, and let (Com,Decom) be Blum’s non-interactive, perfectly binding commitment
scheme. The new coding scheme, (Enc,Dec) is defined as follows.

• Enc(m): Draw (L0,R0) ← Enc0(m), k ← G(1λ), σ ← $, and c ← Ek(R0). Set z = Com(k, σ) and output
(L,R) where L =

(
L0, (k, σ)

)
and R = (c, z).

• Dec(L,R): If either L,R = ⊥com output ⊥com. Otherwise, parse L =
(
L0, (k, σ)

)
and R = (c, z), check that

Decom(z) = (k, σ). If so set R0 = Dk(c), output Dec0(L0,R0), if not output ⊥com.

Claim 2. (Enc,Dec) has simulatable right state.

Proof. Define three challengers C0, C1, C2 for the above hiding game, played with some fixed m ∈ M. Each
challenger draws L =

(
L0, (k, σ)

)
← L and for i = 1, . . . , N

• C0 sets Ri = (ci, z) where z = Com(k, σ) and ci ← Ek(R0) for some R0 with Dec0(L0,R0) = m.

• C1 sets Ri = (ci, z) where z = Com(0) and ci ← Ek(R0).

• C2 sets Ri = (ci, z) where z = Com(0) and ci ← $ is random.

Note that C0 draws each Ri from Enc(m|L), whereas C2 draws Ri from Dhid. Furthermore, A cannot distinguish
between his interaction with C0 and C1 by the hiding of Com. Likewise, he cannot distinguish between his interaction
with C1 and C2 by the random ciphertext property of (G,E,D).

Hiding Game Variant. We will use another game parametrized by polynomials N,N ′ = poly(λ). In this game
A sends C two messages m,m′ ∈ M, C draws a secret L ← L and sends A the tuple

(
R, {R1}, . . . , {RN}

)
where

R ← Enc(m|L) and each set has N ′ elements. Moreover, Ri ← Enc(m′|L) for all Ri ∈ {Ri} and all i = 1, . . . , N
except for one random i∗ for which Ri∗ ← Enc(m|L) for all Ri∗ ∈ {Ri∗}; A tries to guess i∗. If (Enc,Dec) has
simulatable right state then it is straightforward to show that any PPT adversary A can guess i∗ with probability at
most 1/N + negl.

Lemma 1. If (G,E,D) is a semantically secure private key encryption scheme with the random ciphertext property,
Com is a perfectly binding non-interactive commitment scheme and (Enc0,Dec0) is ε−conditionally augmented
non-malleable against Fsplit for negligible ε > 0, then (Enc,Dec) is computationally conditionally augmented
non-malleable against Fpoly

split .
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Proof Idea. Fix (f, g) ∈ Fpoly
split . We must describe a family of simulators for

{
VL
m,f,g

}
m,L

. SLf,g will be one of
two distributions depending on L. The first simply draws R ← Dhid and outputs (R,⊥com). This will simulate{
VL
m,f,g

}
m

whenever pL,m is small for all m ∈ M where pL,m is shorthand for Pr(R,m̃)←VL
m,f,g

(
m̃ 6= ⊥com

)
. If

there exists m ∈ M it can be shown that pL,m for all m ∈ M (Claim 8). This means that VL
m,f,g can be related to

a conditional augmented tampering distribution VL0
m,f0,g0

on (Enc0,Dec0) for tampering functions (f0, g0) ∈ Fsplit

related to (f, g). We use SL0f0,g0 to construct SLf,g. The formal proof is in Appendix C, we describe the functions
(f0, g0) here.

• Random Choices: Draw k ← G(1λ), σ ← $, set z = Com(k, σ), and draw c$ ← Ek(0). Set (·, z̃$) =
g(c$, z). Save the values (k, σ, z, z̃$).

• f0(L0): Compute
(
L̃0, (k̃, σ̃)

)
= f

(
L0, (k, σ)

)
. Output L̃0.

• g0(R0): Draw c← Ek(R0) and set (c̃, z̃) = g(c, z). If z̃ 6= z̃$, output ⊥com. Otherwise, use superpolynomial
time to break open z̃ and recover the pair (k̃′, σ̃′). Output R̃0 = Dk̃′(c̃).

The main observation is that whenever (L, c$) are such that

Decom(z̃$) = (k̃, σ̃),

where
(
·, (k̃, σ̃)

)
= f(L) and (·, z̃$) = g(R), the conditional augmented tampering distributions VL

m,f,g and VL0
m,f0,g0

are the same (up to encrypting the right state output by VL0
m,f0,g0

). In this case, we can simulate VL
m,f,g using SL0f0,g0 ,

so it suffices to show that c$ exists such that Decom(z̃$) = (k̃, σ̃). This follows from the semantic security of
(G,E,D) as (c$, z) and R← Enc(m|L) differ only in their encrypted value, and pL,m is not too small.

4 The Basic Protocol
The protocol is shown in Figure 1.

Setup: Let Com be a non-interactive, perfectly binding commitment scheme. Let (Enc,Dec) be a conditional
non-malleable code with indistinguishable views. Fix a large prime q. Let id ∈ {0, 1}λ be C’s identity.

Commiter’s Private Input: v ∈M〈C,R〉 to be committed to.

Commit Phase:

1. C→ R: Set m = v ◦ id and draw (L,R)← Enc(m), where L ∈ L ⊂ Zq. Choose random r ∈ Zq and send
Com(L), Com(r) to R.

2. R→ C: Send random challenge α ∈ Zq.

3. C→ R: Send response a = rα+ L ∈ Zq and also send R.

Decommit Phase:

1. C→ R: Open the commitments sent in step 1. Let L′, r′ ∈ Zq be the decommitted values.

Receiver’s Output: If L′ and r′ do not satisfy r′α+ L′ = a then output the special symbol ⊥inc. Otherwise,
compute m′ = Dec(L′,R) and parse m′ = v′ ◦ id′. Output v′ if id′ = id, ⊥id if not.

Figure 1: Non-malleable commitment scheme 〈C,R〉.
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Claim 3. 〈C,R〉 is a perfectly binding commitment scheme.

Proof Sketch. Perfect binding follows immediately from the perfect binding of Com. Computational hiding follows
in a straightforward fashion from the hiding of Com and the well known fact that any split-state non-malleable code
is also a 2-out-of-2 secret sharing scheme.

Theorem 1. 〈C,R〉 is non-malleable against a synchronizing adversary.

5 Proof of Non-Malleability (Theorem 1)
5.1 Notation and Proof Overview
Transcripts. Suppose a PPT man-in-the-middle, M, participates in two protocol executions. We denote the tran-
script of M’s view with the letter T. So

T =
(
id, ĩd,Com(L),Com(r),Com(L̃),Com(r̃), α̃, α, a,R, ã, R̃

)
.

We write ComL as shorthand for Com(L) and Com(r). Note that ComL specifies a linear polynomial ϕ(x) = rx+
L which C uses to answer M’s query α. We will usually write a transcript T more consicely as T =

(
ComL, α̃, a,R

)
,

surpressing C’s identity id and the quantities which are outputs of M. Since without loss of generality M is deter-
ministic, these values uniquely define a full transcript.

Partial Transcripts. We also will find it useful to speak of partial transcripts, as this will let us isolate certain
random choices made during the execution of T. We use τ to denote the partial transcript where C’s value R is
unspecified. We write τ consicely as τ = (ComL, α̃, a). Note that M’s third message is not specified given τ ,
however τ extends to a full transcript T once R is chosen. We write this full transcript T(τ,R).

Proof Overview. Before continuing, we go though the proof at a high level. As mentioned in the intro, our
main idea is to use an M who mauls 〈C,R〉 to construct split state tampering functions (f, g) which maul the code
(Enc,Dec). Our f and g are given a partial transcript τ =

(
ComL, α̃, a

)
and additionally they share a random

R$ ← Enc(m∗|L) for some arbitrary fixed m∗ ∈ M. This defines a full transcript T = T(τ,R$). If M’s third
message ã$ in T is correct, then f will be able to extract L̃ by rewinding M and asking a new challenge β̃, answering
honestly on the left using L and the point (α, a) from τ and R$. g(R) simply outputs R̃ from M’s third message in
the transcript T(τ,R).

Two main issues with the above must be overcome. The first is that we must argue that M’s answer to α̃ is the
same when he is given (a,R$) on the right and when he is given (a,R). There is no reason necessarily for this to be
the case. However, by the simulatability of the right state of (Enc,Dec), we are able to show that M cannot decide
whether to answer α̃ correctly or not in a way which depends on C’s commitment on the left. This aspect of the proof
is a series of reductions to the hiding game of (Enc,Dec) which we call the hiding machine. We used such arguments
also in order to construct (Enc,Dec). For space reasons we have put this portion of our proof in Appendix D. We
are left with the absolute cases where M is either committing to ⊥inc on the right with high probability regardless
of the left commitment, in which case he is certainly not mauling, or he will answer correctly with non-negligible
probability even if he receives R$ on the left instead of R, in which case f(L) will succeed in extracting L̃.

The second issue is the dependence of τ on L. Certainly (f, g) are not split-state as g depends on τ which contains
information about L. However, τ contains only a commitment to L and so does not depend computationally on L.
Since f and g are polytime, we are able to argue that their output is indistinguishable from truly split-state functions
which share a bogus partial transcript which contains no information about L. One subtlety here is that originally, L
was generated along with (f, g). This is in contrast to the usual situation in non-malleable codes where the tampering
functions are fixed and then (L,R) are sampled. This is why we need our non-malleable code to have the conditional
property where non-malleability is certain to hold even conditioned on an L which was chosen before. We now
continue with the notation and proceed to the proof.
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The Distribution Mτ
m and Distinguisher Dτ . Our goal is to use a MIM who breaks the non-malleability of 〈C,R〉

to violate the security of the code (Enc,Dec). In order to do this we make some notational changes which make it
easier to relate M to the non-malleability game of the code. By definition, if M breaks the non-malleability of 〈C,R〉
then there exists v ∈M〈C,R〉, a PPT distinguisher D, and non-negligible δ = δ(λ) > 0 such that∣∣∣∣Pr(T,ṽ)←MIMv

(
D(T, ṽ) = 1

)
− Pr(T,ṽ)←MIM0

(
D(T, ṽ) = 1

)∣∣∣∣ = δ. (1)

Let m = v ◦ id, m′ = 0 ◦ id and m̃ = ṽ ◦ ĩd. So m,m′ ∈ M are the messages encoded during the left executions
of 〈C,R〉 in the real/ideal world, and m̃ ∈ M is the message encoded on the right. For a given partial transcript
τ =

(
ComL, α̃, a

)
, let Mτ

m be the distribution which draws R ← Enc(m|L) and outputs (R, m̃), where m̃ is M’s
encoded message in T(τ,R). Let Dτ be the PPT distinguisher which on input (R, m̃), sets T = T(τ,R), parses
m̃ = ṽ ◦ ĩd′ and outputs D(T, ṽ) if ĩd

′
= ĩd (recall ĩd is part of τ ), D(T,⊥id) otherwise. With these notational

changes in place, (1) gives

Prτ

[∣∣∣∣Pr
(

Dτ
(
Mτ
m

)
= 1
)
− Pr

(
Dτ
(
Mτ
m′
)

= 1
)∣∣∣∣ ≥ δ

2

]
≥ δ

2
. (2)

Notice also that since M is required to produce a commitment using a tag ĩd 6= id, when (R, m̃) is drawn from Mτ
m

or Mτ
m′ , we will always have m̃ /∈ {m,m′}.

Definition 5 (Mauling-Friendly Partial Transcripts). For m,m′ ∈M, write τ ∈ MAULm,m′ if
∣∣∣Pr
(

Dτ
(
Mτ
m

)
=

1
)
− Pr

(
Dτ
(
Mτ
m′
)

= 1
)∣∣∣ ≥ δ/2. In this case we say τ is mauling-friendly.

So, moving forward, if M breaks the non-malleability of 〈C,R〉 then there exist m,m′ ∈ M such that Prτ
[
τ ∈

MAULm,m′
]
≥ δ/2.

5.2 Ruling out Selective ⊥inc Attacks
Recall that ṽ = ⊥inc when M’s response ã is incorrect. In this section we will use the shorthand p(τ,m) =
Pr(R,m̃)←Mτ

m

(
ṽ 6= ⊥inc

)
and we will prove that if M is mauling then he is doing so by answering correctly. The

main lemma of this section is the following.

Lemma 2. If M breaks the non-malleability of 〈C,R〉 then there existm,m′ ∈M and non-negligible δ, δ′ > 0 such
that for all m∗ ∈M

Prτ

[
τ ∈ MAULm,m′ & p(τ,m∗) ≥ δ′

]
≥ δ

4
− negl.

Lemma 2 follows immediately from (2) and Claims 4 and 5 which rule out two separate types of mauling behavior.
We prove these claims in Appendix D.

Claim 4. For all m,m′ ∈M and non-negligible ξ > 0 we have:

Prτ

[∣∣∣p(τ,m)− p(τ,m′)
∣∣∣ > ξ

]
= negl.

Claim 5. Let δ = δ(λ) > 0 be as the statement of Lemma 3. For all m,m′ ∈M, we have:

Prτ

[
τ ∈ MAULm,m′ & p(τ,m) < λ−2δ3

]
≤ δ

4
.
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5.3 The Distribution DM

We now use M to define a polynomial time sampleable distribution, DM, which outputs a tampering function pair
(f, g), as follows.

• Random Choices: Instantiate M and play the first two rounds of 〈C,R〉, obtaining a partial transcript τ =(
ComL, α̃, a

)
where a = ϕ(α) and ϕ(x) is the linear map specified by ComL. Also, draw R$ ← Enc(m∗|L)

for some arbitrary fixed m∗ ∈ M and let ã$ be M’s response in the full transcript T(τ,R$). Finally draw
β̃ ← Zq.

• fτ,R$,β̃
(L): Let ψ(x) be the unique linear function with constant term L and ψ(α) = a.

– rewind M back to the second message of the right interaction and ask β̃, receive β on the left;

– send (b,R$) where b = ψ(β) and receive (b̃, ·) on the right;

– output L̃, the constant term of the line spanned by
{

(α̃, ã$), (β̃, b̃)
}

.

• gτ,R$
(R): Let (ã, R̃) be M’s final message in T(τ,R). If ã = ã$ output R̃, otherwise ⊥inc.

• Output: (f, g) = (fτ,R$,β̃
, gτ,R$

).

Notice (f, g) output by DM are not split-state as the randomness (τ,R$) shared by both f and g depends on L.
Nonetheless, we show in Section 5.4 below that DM ≈c Dsplit, a distribution which outputs polytime split-state
tampering functions. Combined with the next lemma, this shows that 〈C,R〉 is non-malleable: an M which breaks
the non-malleability of 〈C,R〉 can be used to construct a distributionDsplit on Fpoly

split which breaks the security of the
code (Enc,Dec).

Lemma 3. Let δ, δ′ > 0 be as in the statement of Lemma 2. If M breaks the non-malleability of 〈C,R〉 then there
exist m,m′ ∈M such that

PrL,(f,g)

[∣∣∣∣Pr
(
Dτ (VL

m,f,g) = 1
)
− Pr

(
Dτ (VL

m′,f,g) = 1
)∣∣∣∣ > δ

2

]
>

(δδ′)3

256
− negl,

where the outer probability is over L← L and (f, g) = (fτ,R$,β̃
, gτ,R$

)← DM, where τ = (ComL, α̃, a)

Proof Idea. The randomness needed in order to draw (f, g) ← DM consists of a random partial transcript τ =(
ComL, α̃, a

)
, R$ ← Enc(m∗|L) and β̃ ← Zq. Given these choices, the distributions VL

m,f,g and Mτ
m are very

similar: both draw R ← Enc(m|L) and output (R, m̃). We prove Lemma 3 by showing that whenver
(
τ,R$, β̃

)
is such that M’s response ã$ is correct, VL

m,f,g and Mτ
m are actually identical for all m ∈ M. The proof follows

almost immediately since either M gives correct ã$ with non-negligible probability, or he is always committing to
⊥inc given a commitment to m∗ on the left. In the latter case, he cannot be mauling as we ruled out selective ⊥inc

attacks in the previous section.

Proof of Lemma 3. For randomness (τ,R$) =
(
ComL, α̃, rα + L,R$

)
, say the “extraction event”, denoted EXT,

occurs whenever ã$ is correct in T(τ,R$), and

Prβ̃

(
b̃ correct in T

(
ComL, β̃, rβ + L,R$

))
≥ (δδ′)2

32
.

It follows from Lemma 2 that if M mauls 〈C,R〉 then there exist messages m,m′ ∈ M such that Prτ,R$

(
τ ∈

MAULm,m′ & ã$ correct in T(τ,R$)
)
≥ δδ′/4− negl, and so using Bayes’ theorem,

Prτ,R$

(
τ ∈ MAULm,m′ & EXT

)
≥ δδ′

4
− δδ′

8
− negl =

δδ′

8
− negl.
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If ã$ is correct then g(R) identifies when M is committing to ⊥inc on the right: ã is correct if and only if ã = ã$.
Moreover, if EXT occurs then f(L) outputs the correct value of L̃ with probability at least (δδ′)2/32 (over the choice
of β̃ ← Zq). Indeed, f(L) outputs the correct L̃ whenever b̃ is correct.

So we have seen that Prτ,R$

(
τ ∈ MAULm,m′ & EXT

)
≥ δδ′/8 − negl, and moreover conditioned on EXT

occuring, ã$ is correct and so VL
m,f,g ≡ Mτ

m for all m ∈ M with probability at least (δδ′)2/32. But if τ ∈
MAULm,m′ and EXT occurs and ã$ is correct then∣∣∣∣Pr

(
Dτ (VL

m,f,g) = 1
)
− Pr

(
Dτ (VL

m′,f,g) = 1
)∣∣∣∣ > δ

2
,

and so Lemma 3 follows.

5.4 A Hybrid Argument to Prove DM ≈c Dsplit

Note that the distribution DM from the previous section does not output (f, g) ∈ Fpoly
split as the randomness (τ,R$) =(

Com(L),Com(r), α̃, a,R$

)
shared between f and g depends in three ways on L: 1) τ contains a commitment

to L, 2) a = rα + L, and 3) R$ ← Enc(m∗|L). We show in this section, however, that DM is computationally
indistinguishable from a polynomial time sampleable distribution Dsplit on Fpoly

split . This, together with Lemma 3,
completes the proof that 〈C,R〉 is non-malleable since we will have used an M which breaks non-malleability to
construct split-state, polytime tampering functions which break the non-malleability of the code (Enc,Dec).

D0 = DM − This is the distribution defined above. It draws L← L, a random partial transcript τ =
(
Com(L),Com(r), α̃, a)

where a = rα+ L, R$ ← Enc(m∗|L) and outputs (f0, g0) = (fτ,R$
, gτ,R$

).

D1 − This distribution outputs functions (f1, g1) which behave exactly like (f0, g0) except that they are seeded
with (τ,R$) =

(
Com(L),Com(r), α̃, a,R$

)
, where a← Zq is random instead of equal to rα+ L.

D2 − This outputs (f2, g2) which, again, differ from (f1, g1) only in their shared randomness. This time (τ,R$) =(
Com(0),Com(r), α̃, a,R$

)
, where a ∈ Zq is random. Now the only dependence on L is that R$ ← Enc(m∗|L).

D3 = Dsplit − This outputs (f3, g3) which are the same as (f2, g2) except that R$ ← Dhid instead of
{
R : L ←

L,R ← Enc(m∗|L)
}

, where Dhid is the distribution on R whose existence is guaranteed by the hiding property.
Since (τ,R$) no longer depends on L, (f3, g3) ∈ Fpoly

split .

Claim 6. D0 ≈c D1 ≈c D2 ≈c D3.

Proof. The first two indistinguishabilities follow from the hiding of Com. For the first, consider an adversary A
who interacts with a challenger C in the hiding game by choosing r0, r1 ∈ Zq at random and sending (r0, r1) to C,
receiving a commitment z = Com(rb) for a random b ∈ {0, 1}. Then A draws L ← L and α̃ ← Zq at random and
sends

(
Com(L), z

)
and α̃ to M (corresponding to the first message of the left interaction and the second message of

the right interaction), receiving α as the second message on the left. A sets a = r0α + L, draws R$ ← Enc(m$|L)
and outputs

(
Com(L), z, α̃, a,R$

)
. If b = 0 then A’s output is distributed according to D0, while if b = 1, A’s

output is distributed like D1. This proves that D0 ≈c D1; D1 ≈c D2 follows even more readily. Finally, D2 ≈c D3

follows from the hiding property of (Enc,Dec).

It follows from Lemma 3 and Claim 6 that if M breaks the non-malleability of 〈C,R〉 then there exist m,m′ ∈ M
and non-negligible δ, δ′ > 0 such that

PrL,(f,g)

[∣∣∣∣Pr
(
Dτ
m,m′(V

L
m,f,g) = 1

)
− Pr

(
Dτ
m,m′(V

L
m′,f,g) = 1

)∣∣∣∣ > δ

2

]
>

(δδ′)3

256
− negl,

where the outer probability is over L← L and (f, g)← Dsplit, drawn independently. This breaks the computational
conditional augmented non-malleability of (Enc,Dec), thus completing our proof that 〈C,R〉 is non-malleable.
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A Preliminaries
A.1 Commitment schemes
Commitment schemes are used to enable a party, known as the sender, to commit itself to a value while keeping it
secret from the receiver (hiding). Furthermore, the commitment should be such that when, in a later (decommitment)

12



stage, the commitment is opened, there is a single value which can result (binding). In this work, we consider
commitment schemes that are statistically (or perfectly) binding, namely while the hiding property only holds against
computationally bounded (non-uniform) adversaries, the binding property is required to hold against unbounded
adversaries. We denote a commitment scheme 〈C(m),R〉.

Definition 6 (Statistically Binding Commitment Scheme). Let 〈C(m),R〉 be a two phase protocol between C
and R where m is C’s secret input. Let z = Com(m; r) denote R’s view after the first phase. Let (m,w) =
Decom(m, r, z) be R’s view after the second phase. We say that 〈C(m),R〉 is a statistically binding commitment
scheme if the following properties hold:

Correctness: If parties follow the protocol, then R(z,m,w) = 1;

Binding: With high probability over R’s randomness, there does not exist a (m′, w′) with m′ 6= m such that
R(z,m′, w′) = 1;

Hiding: For all m0 6= m1, {Com(m0; r)}r ≈c {Com(m1; r)}r.

Tag-based Commitment Scheme. Following [PR05b, DDN91], we consider tag-based commitment schemes
where, in addition to the security parameter, the committer and the receiver also receive a “tag" a.k.a. the iden-
tity id as common input.

A.2 Non-malleable commitments
We follow the definition of non-malleable commitments of Lin et al [LPV08]. In the real interaction, there is a
man-in-the-middle adversary M interacting with a committer, C, in the left session a receiver R in the right. We
denote the various quantities associated with the right interaction as “tilde’d” versions of their left counterparts. So
for example, C commits to m in the left interaction while M commits to m̃ in the right. Let MIM〈C,R〉(m, z)
denote a random variable that describes (m̃, v), the value M commits to and M’s view in the full experiment. In
the simulated experiment, a simulator S directly interacts with M. Let SIMS〈C,R〉(1

λ, z) denote the random variable
describing (m̃, v) in this simulated interaction. If the tag tag for the left interaction is equal to the tag t̃ag for the
right interaction, the value m̃ committed to in the right interaction is defined to be ⊥ in both experiments. This is
analogous to the uninteresting case when C is committing to himself.

Definition 7 (Non-Malleable Commitments). A commitment scheme 〈C(m),R〉 is said to be non-malleable if for
every PPT man-in-the-middle adversary M, there exists a PPT simulator S such that the following ensembles are
computationally indistinguishable:

{MIM〈C,R〉(m, z)}m∈{0,1}λ,z∈{0,1}? , and {SIMS〈C,R〉(1
λ, z)}z∈{0,1}? .

A.3 Non-Malleable Codes
A coding scheme is a pair of functions (Enc,Dec) where Enc : M → C and Dec : C → M for a message space
M and codeword space C. It should be the case that Dec ◦ Enc(m) = m for all m ∈ M with high probability
over the randomness of Enc (it needn’t be the case that Enc is randomized at all, in which case correctness requires
Dec ◦ Enc(m) = m with probability 1). Historically, coding schemes are usually designed in order to be resilient
to some form of tampering. In their important 2010 paper Dziembowski, Pietrzak and Wichs [DPW10] introduced
non-malleable codes which are codes with strong security in the presence of tampering. Informally, for a family
F ⊂ {f : C → C}, we say that (Enc,Dec) is non-malleable with respect to F if for all f ∈ F , the tamper
distribution

(
Dec ◦ f ◦ Enc

)
(m) (over the randomness of Enc) outputs m̃ which is either equal to m if f copying or

else is independent of m. In this work we are interested in split-state non-malleable codes.

Let (Enc,Dec) be a split state coding scheme so Enc :M→ L×R and let

Fsplit =
{

(f, g)
∣∣f : L → L, g : R → R

}
be the set of split-state tampering functions.
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Definition 8 (Tampering Distribution). Fix m ∈ M, (f, g) ∈ Fsplit. The tampering distribution, denoted Tm,f,g
is: draw (L,R)← Enc(m), set (L̃, R̃) =

(
f(L), g(R)

)
and output m̃ = Dec(L̃, R̃).

Definition 9 (Simulatable Distribution). Let {Dm}m∈M be a family of distributions onM indexed by m. We say
that {Dm} is ε−simulatable if there exists a distribution S onM∪ {same} such that ∆(Dm,Sm) < ε for all m,
where Sm is the distribution onM induced by drawing m̃← S and outputting m if m̃ = same, m̃ if not.

Definition 10 (Split-State Non-Malleable Code). We say that (Enc,Dec) is ε−non-malleable against Fsplit if for
all (f, g) ∈ Fsplit, {Tm,f,g}m is ε−simulatable.

The Non-Malleable Code of [ADL14]. The construction of [ADL14] encodes m ∈ M into (L,R) where L,R ∈
Znp are random subject to the condition that 〈L,R〉 ∈ Hm ⊂ Zp (p is a prime much larger than |M|, and the
{Hm}m∈M are carefully chosen disjoint subsets of Zp). Non-malleability follows from an extensive analysis of the
inner product function which makes heavy use of its properties as a randomness extractor. For any (f, g) ∈ Fsplit

and x ∈ Zp, the following random process is considered: choose L,R ∈ Znp randomly such that 〈L,R〉 = x, set
(L̃, R̃) =

(
f(L), g(R)

)
, and output x̃ = 〈L̃, R̃〉. The main lemma of [ADL14] says that x̃ is either 1) independent

of x, or 2) of the form x̃ = ax + b for some a, b ∈ Zp which depend only on (f, g). Non-malleability in [ADL14]
then follows from the design of affine evasive sets as the {Hm}m. This aspect of their construction is very elegant
but as we will not need to change their {Hm}m, we do not discuss this portion further. The interested reader should
see [ADL14] for more information. We note that the earlier work of [DKO13] used essentially the same outline in
order to give a non-malleable code for one bit messages. Their construction is also very elegant and is much simpler:
they use H0 = {0} and H1 = Zp − {0}.

A.4 Augmented Non-Malleable Codes
Very recently Aggarwal et al. [AAG+16] proved that the [ADL14] construction is non-malleable even when the
tamper distribution outputs m̃ along with one of the states. Their proof looks at the randomized process: choose
L,R ∈ Znp randomly such that 〈L,R〉 = x, set (L̃, R̃) =

(
f(L), g(R)

)
and output (R, x̃) where x̃ = 〈L̃, R̃〉. The same

randomness extraction properties of the inner product function used in [ADL14] show that even conditioned on R,
x̃ is either independent of x or else x̃ = ax + b for a, b ∈ Zp which depend only on (f, g). They call this stronger
notion augmented non-malleability.

Definition 11 (Augmented Tampering Distribution). Fix m ∈ M and (f, g) ∈ Fsplit. The augmented tampering
distribution, denoted Vm,f,g is: draw (L,R) ← Enc(m), set (L̃, R̃) =

(
f(L), g(R)

)
and output (R, m̃) where m̃ =

Dec(L̃, R̃).

We use the letter V for “view”: the output of the augmented tampering distribution will be basically what the MIM
sees during a mauling attack on our non-malleable commitment scheme.

Definition 12 (Augmented Simulatable Distribution). Let {Dm}m∈M be a family of distributions on R×M in-
dexed bym, whereR is an arbitrary set. We say that {Dm} is ε−augmented simulatable if there exists a distribution
S on R × (M ∪ {same}) such that ∆(Dm, Sm) < ε for all m, where Sm is the distribution on M induced by
drawing (R, m̃)← S and outputting (R,m) if m̃ = same, (R, m̃) if not.

Definition 13 (Augmented Non-Malleable Code). We say that (Enc,Dec) is ε−augmented non-malleable against
Fsplit if for all (f, g) ∈ Fsplit, {Vm,f,g}m is ε−augmented simulatable.

Before moving on, we remark that the proof in [AAG+16] actually shows something slightly stronger. Let us think
of the randomized process above as drawing L ← Znp at random and then drawing R ← {v ∈ Znp : 〈L,v〉 = x},
computing (L̃, R̃) and outputting (R, x̃). The analysis of [AAG+16] does not actually require L to be uniform in
Znp and works whenever L has sufficient min-entropy. In particular, given n, p,M, {Hm}m as in [ADL14] and any
sufficiently large L ⊂ Znp , define the coding scheme:

• EncL(m): choose L← L and R← Znp randomly such that 〈L,R〉 ∈ Hm.
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• Dec(L,R): if 〈L,R〉 ∈ Hm, output m, otherwise output ⊥.

Claim 7. There exists an absolute constant c > 0 such that for allM, there exist n, p = poly(|M|, λ) such that for
all L ⊂ Znp of size at least |L| ≥ pcn, (EncL,Dec) is 2−Ω(λ)−augmented non-malleable.

Moreover, the simulator for (EncL,Dec) is identical to the simulator for (Enc,Dec) except that it draws L ← L
instead of L← Znp . Claim 7 follows from the proof of the main theorem in [AAG+16].

B Proof of Claim 1
The fact that the code from [ADL14] is conditionally augmented non-malleable is implicit in the recent work of
[AAG+16, Agg] (which in turn builds on [ADL14]). Below we sketch an independent proof using a simple proba-
bility argument. This is reminiscent of the way in which one argues that a sufficiently good two-source extractor is
also a strong two-source extractor.

Claim 1 (Restated). The code (Enc,Dec) of [ADL14] is ε′−conditionally augmented non-malleable for some
negligible quantity ε′ = ε′(λ) > 0.

Proof. Given (f, g) ∈ Fsplit, the simulator Sf,g guaranteed by the augmented non-malleability of (Enc,Dec) behaves
as follows: draw L,R← Znp at random, set (L̃, R̃) =

(
f(L), g(R)

)
and output

(
R, 〈L̃, R̃〉

)
unless 〈L̃, R̃〉 = 〈L,R〉, in

which case output (R, same). We define the family {SLf,g}L of simulators similarly: SLf,g draws R ← Znp at random
and outputs

(
R, 〈L̃, R̃〉

)
or (R, same) according to whether 〈L̃, R̃〉 is distinct from or equal to 〈L,R〉. Define

Lbad =
{
L ∈ Znp : ∃m ∈M st ∆

(
VL
m,f,g,S

L
m,f,g

)
> ε′

}
.

If |Lbad| < ε′pn then we are done so assume |Lbad| ≥ ε′pn. By Claim 7, the restricted code (EncLbad ,Dec) is
2−Ω(λ)−augmented non-malleable with simulator SLbadf,g identical to that for (Enc,Dec) except that the initial choices
of L,R are L← Lbad, R← Znp . However, by definition of Lbad, SLf,g does not simulate

{
VL
m,f,g

}
m

when L ∈ Lbad.
Therefore, it must be that

∣∣Lbad∣∣ < ε′pn and so (Enc,Dec) is ε′−conditionally augmented non-malleable.

C Proof of Lemma 1
Lemma 1 (Restated). If (G,E,D) is a semantically secure private key encryption scheme with the random cipher-
text property, Com is a perfectly binding non-interactive commitment scheme and (Enc0,Dec0) is ε−conditionally
augmented non-malleable against Fsplit for negligible ε > 0, then (Enc,Dec) is computationally conditionally
augmented non-malleable against Fpoly

split .

Claim 8. For any m,m′ ∈M, (f, g) ∈ Fpoly
split and non-negligible ξ > 0 we have

PrL

[∣∣∣∣Pr(R,m̃)←VL
m,f,g

(
m̃ 6= ⊥com

)
− Pr(R,m̃)←VL

m′,f,g

(
m̃ 6= ⊥com

)∣∣∣∣ > ξ

]
= negl. (3)

Proof. Fix m,m′ ∈M, and (f, g) ∈ Fpoly
split . Let BAD be the set of L ∈ L such that the inequality pL,m > ξ + pL,m′

holds (using shorthand pL,m instead of Pr(R,m̃)←VL
m,f,g

(
m̃ 6= ⊥com

)
as above), and suppose for contradiction that

there is a non-negligible ξ′ = ξ′(λ) > 0 such that PrL
[
L ∈ BAD

]
≥ ξ′. Fix N = 3/(ξξ′), N ′ = Ω(λξ−2) and

consider the PPT adversary A who interacts with a challenger C as follows.

• A sends m,m′ to C and receives
(
R, {R1}, . . . , {RN}

)
.

• A computes (c̃, z̃) = g(R) and (c̃i, z̃i) = g(Ri) for each i = 1, . . . , N and Ri ∈ {Ri}.

• For i = 1, . . . , N , A sets pi = PrRi∈{Ri}
(
z̃i = z̃

)
and outputs i∗ such that pi∗ is maximal.
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Note that if the random secret L ∈ L chosen by C is in BAD then z̃ is correct (i.e., Decom(z̃) = (k̃, σ̃) where
f(L) =

(
L̃0, (k̃, σ̃)

)
) with probability at least ξ. If z̃ is correct then for all i and Ri ∈ {Ri}, Dec(L̃, R̃i) 6= ⊥com if

and only if z̃i = z̃. Therefore, pi approximates pL,mi where mi = m′ if i 6= i∗ and mi∗ = m. Therefore,

pi∗ ≥ pL,m −
ξ

3
> pL,m′ + ξ − ξ

3
≥ pi +

ξ

3
,

for all i 6= i∗. We have used the Chernoff-Hoeffding bound, facilitated by our choice of large N ′. So we see that

Pr
(
A wins

)
≥ Pr

(
L ∈ BAD

)
Pr
(
z̃ correct

∣∣L ∈ BAD
)
(1− negl) = ξξ′ − negl >

2

N
,

and so A breaks the right state simulatability of (Enc,Dec).

Fix any m∗ ∈M and non-negligible δ = δ(λ) > 0 and define

LBOT =
{
L ∈ L : Pr(R,m̃)←VL

m∗,f,g

(
m̃ 6= ⊥com

)
< λ−2δ3

}
.

If L ∈ LBOT then SLf,g samples R← Enc(m∗|L) and outputs (R,⊥com).

Claim 9. For any PPT distinguisher D,

PrL

[
L ∈ LBOT & ∃m st

∣∣∣Pr(R,m̃)←VL
m,f,g

(
D(R, m̃) = 1

)
− Pr(R,m̃)←SLm,f,g

(
D(R, m̃) = 1

)∣∣∣ > δ

]
< δ.

Proof. We use the hiding machine again. Set BAD′ to be the set of L ∈ LBOT such that there exists m ∈ M such
that

Pr(R,m̃)←VL
m,f,g

(
D(R, m̃) = 1

)
> δ + Pr(R,m̃)←SLm,f,g

(
D(R, m̃) = 1

)
.

Assume for contradiction that PrL
[
L ∈ BAD′

]
≥ δ. Fix N = 5/δ, N ′ = Ω(λδ−2) and consider the PPT adversary

A who interacts with a challenger C as follows.

• A sends m,m∗ to C and receives
(
R, {R1}, . . . , {RN}

)
.

• For i = 1, . . . , N , A sets pi = PrRi∈{Ri}
(
D(R,⊥com) = 1

)
and outputs i∗ such that pi∗ is maximal.

Note that if the random secret L ∈ L chosen by C is in BAD′ and furthermore is not in the negligible fraction of
L for which (3) does not hold, then pL,m, pL,m∗ < 2λ−2δ3 (this uses the definition of LBOT and Claim 8 with
ξ = λ−2δ3). Therefore, the expected number of (i,Ri) such that i ∈ {1, . . . , N}, Ri ∈ {Ri}, and m̃i 6= ⊥com is at
most 2λ−2δ3NN ′ < 1/2, where m̃i = Dec(L̃, R̃i); so with probability at least 1/2 there exist no such (i,Ri). In
this case, pi approximates Pr(R,m̃)←X

(
D(R, m̃) = 1

)
, where X = SLf,g when i 6= i∗ and X = VL

m,f,g when i = i∗.
Therefore,

pi∗ ≥ Pr(R,m̃)←VL
m,f,g

(
D(R, m̃)

)
− δ

3
> Pr(R,m̃)←SLf,g

(
D(R, m̃) = 1

)
+ δ − δ

3
≥ pi +

δ

3
,

for all i 6= i∗. We have used the Chernoff-Hoeffding bound with sufficiently large N ′. So we see that

Pr
(
A wins

)
≥ Pr

(
L ∈ BAD′

)
Pr
(
m̃i = ⊥com ∀ (i,Ri)

∣∣L ∈ BAD′
)
− negl ≥ δ

2
− negl >

2

N
,

and so A breaks the right state simulatability of (Enc,Dec).

Let LVALID = L \ LBOT be the set of L for which pL,m∗ ≥ λ2δ−3 and furthermore, assume LVALID comprises at
least a δ−fraction of L; if not, we are done as {SLf,g}L∈LBOT

are sufficient to conditionally simulate
{
VL
m,f,g

}
m,L

.

Given (f, g), we construct (f0, g0) ∈ Fsplit which tampers (Enc0,Dec0). We will then use SL0f0,g0 whose existence is
guaranteed by the conditional non-malleability of (Enc0,Dec0), to construct SLf,g. The construction of (f0, g0) is as
follows.
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• Random Choices: Draw k ← G(1λ), σ ← $, set z = Com(k, σ), and draw c$ ← Ek(0). Set (·, z̃$) =
g(c$, z). Save the values (k, σ, z, z̃$).

• f0(L0): Compute
(
L̃0, (k̃, σ̃)

)
= f

(
L0, (k, σ)

)
. Output L̃0.

• g0(R0): Draw c← Ek(R0) and set (c̃, z̃) = g(c, z). If z̃ 6= z̃$, output ⊥com. Otherwise, use superpolynomial
time to break open z̃ and recover the pair (k̃′, σ̃′). Output R̃0 = Dk̃′(c̃).

Remark. Note that g0 above does not run in polynomial time. It is possible to change the construction to use
polynomial time (f0, g0) instead, however the proof would be longer and more difficult.

Definition 14. Let L =
(
L0, (k, σ)

)
be a left state and let (f0, g0) ∈ Fpoly

split be the tampering function pair obtained
from (f, g) using randomness (k, σ) and c$. We say that

(
L, (f0, g0)

)
is good and write either

(
L, (f0, g0)

)
∈ GOOD

or (L, c$) ∈ GOOD if
Decom(z̃$) = (k̃, σ̃),

where (·, z̃$) = g
(
c$,Com(k, σ)

)
, and

(
·, (k̃, σ̃)

)
= f(L).

If
(
L, (f0, g0)

)
∈ GOOD then tampering with (f, g) is the same as tampering with (f0, g0). To see this, note that

(R, m̃)← VL
m,f,g has m̃ = ⊥com if and only if Decom(z̃) 6= (k̃, σ̃), or equivalently, since (L, c$) ∈ GOOD and Com

is perfectly binding, if z̃ 6= z̃$. Moreover, if m̃ 6= ⊥com then g(R) =
(
Ek̃(g(R0)), z̃

)
. It follows that if

(
L, (f0, g0)

)
∈

GOOD, then VL
m,f,g is identical to the distribution: draw (R0, m̃) ← VL0

m,f0,g0
, set R =

(
Ek(R0),Com(k, σ)

)
and

output (R, m̃).

We now define our simulators
{
SLf,g

}
L

for L ∈ LVALID: SLf,g chooses c$ st
(
L, (f0, g0)) ∈ GOOD, then draws

(R0, m̃) ← SL0f0,g0 , sets c ← Ek(R0), z = Com(k, σ) and outputs (R, m̃) where R = (c, z). Defining SLf,g this way
is possible whenever there exists c$ such that (L, c$) ∈ GOOD.

Claim 10. If PrL
[
L ∈ LVALID

]
≥ δ then PrL,c$

[
(L, c$) ∈ GOOD

]
≥ λ−2δ4.

Proof Sketch. If L ∈ LVALID then PrR←Enc(m∗|L)

(
Decom(z̃) = (k̃, σ̃)

)
≥ λ−2δ3. It follows from the security

of (G,E,D) that Prc$
(
Decom(z̃$) = (k̃, σ̃)

)
≥ λ−2δ3 − negl, and so a non-negligible fraction of c$ are so that

(L, c$) ∈ GOOD. This can be formalized using an easy application of the hiding machine.

Proof of Lemma 1. Fix non-negligible δ = δ(λ) > 0 and (f, g) ∈ Fpoly
split , let

{
SLf,g

}
L

be the family of simulators
described above and let Ef,g be the event

∃m ∈M st
∣∣∣Pr(R,m̃)←VL

m,f,g

(
D(R, m̃) = 1

)
− Pr(R,m̃)←SLm,f,g

(
D(R, m̃) = 1

)∣∣∣ > δ.

We must show that PrL
[
Ef,g

]
< 2δ + λ−2δ4 + 2ε. We have

PrL
[
Ef,g

]
= PrL

[
L ∈ LBOT & Ef,g

]
+ PrL

[
L ∈ LVALID & Ef,g

]
< 2δ + PrL

[
Ef,g

∣∣|LVALID| ≥ δ|L|]
≤ 2δ + λ−2δ4 + PrL

[
Ef,g

∣∣∃ c$ (L, c$) ∈ GOOD
]

≤ 2δ + λ−2δ4 + ε+ PrL
[
∃m ∈M st ∆

(
VL0
m,f0,g0

, SL0m,f0,g0
)
> ε
]

< 2δ + λ−2δ4 + 2ε,

where the second line is from Claim 9, the fourth uses the above discussion about the ramifications of (L, c$) ∈
GOOD and the last uses the ε−conditional augmented non-malleability of (Enc0,Dec0).
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D Extras from Section 4
A Hiding Game For 〈C,R〉. Before proving Theorem 1, we specify a hiding game for 〈C,R〉, analogous to the
hiding game for (Enc,Dec). We will use that this game is hard for a PPT adversary to win in the proof of non-
malleability. Consider the following hiding game between a challenger C and a PPT adversary A.

• Partial Transcript: C chooses L ← L, r ← Zq and sends ComL =
(
Com(L),Com(r)

)
to A, A returns

α ∈ Zq and receives a = rα+ L from C.

• Message Choice: A chooses m,m′ ∈M and sends them to C.

• Challenge Message: C chooses R ← Enc(m|L), b ← {0, 1} and sends (R,R0,R1) to A where Rb ←
Enc(m|L) and R1−b ← Enc(m′|L).

• Guess: A outputs a guess b′ ∈ {0, 1} and wins if b′ = b.

Just as for the hiding game of the code (Enc,Dec), we will usually use an (N,N ′)−way variant of the above game,
where the challenge message is

(
R, {R1}, . . . , {RN}

)
where R is as in the basic game and each #{Ri} = N ′, and

also Ri ← Enc(m′|L) for all Ri ∈ {Ri} and all i except for a random i∗, for which Ri∗ ← Enc(m|L) for all
Ri∗ ∈ {Ri∗}. In the (N,N ′)−way variant, A wins if he guesses i∗.

Claim 11. If Com is computationally hiding and (Enc,Dec) has the hiding property then for all PPT adversariesA,
the probability thatA wins the above game (resp. its (N,N ′)−way variant) is at most 1/2+negl (resp. 1/N+negl).

Proof Sketch. The main difference between the above game and the hiding game for (Enc,Dec) is the partial tran-
script generation phase. Consider the version of the above with the bogus partial transcript phase: C chooses L← L
but sends

(
Com(0),Com(0)

)
, and upon receiving α ∈ Zq, returns a random a ∈ Zq. The bogus game is indistin-

guishable from the original by the hiding of Com. But any A who wins the bogus game can be used to construct an
A′ who wins the hiding game for (Enc,Dec) since A′ can generate the bogus partial transcript himself and forward
the other messages from his challenger to A.

D.1 Proof of Claims 4 and 5
Claim 4 (Restated). For all m,m′ ∈M and non-negligible ξ > 0 we have:

Prτ

[∣∣∣p(τ,m)− p(τ,m′)
∣∣∣ > ξ

]
= negl.

Proof. We utilize the hiding machine. We prove the first formally and we will set up the machine and give the proof
outline for the second. Fixm,m′ ∈M and non-negligible ξ > 0. Define BAD =

{
τ : p(τ,m) > ξ+p(τ,m′)

}
and

suppose for contradiction that there is some non-negligible ξ′ > 0 for which Pr
(
τ ∈ BAD

)
≥ ξ′. Set N = 4/(ξξ′),

N ′ = Ω
(
λξ−2

)
and consider the PPT adversaryA who interacts with C in the (N,N ′)−way hiding game for 〈C,R〉

as follows.

• A instantiates M. Upon receiving ComL from C, it plays the first two rounds of 〈C,R〉 with M, giving input
ComL and uniform α̃ and receiving α in the second round of the left interaction. A sends α to C and receives
a. This defines a partial transcript τ =

(
ComL, α̃, a

)
.

• A sends (m,m′) to C and receives challenge
(
R, {R1}, . . . , {RN}

)
. A forwards (a,R) to M and receives

(ã, R̃). This defines a full transcript T = T(τ,R). Moreover, for all i = 1, . . . , N and Ri ∈ {Ri}, A sends
(a,Ri) to M and receives (ãi, R̃i), defining transcripts {Ti} for i = 1, . . . , N , where Ti = T(τ,Ri).

• A computes pi = PrRi∈{Ri}
(
ãi = ã

)
, and outputs i∗ such that pi∗ is maximal.
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Note that if τ ∈ BAD, then M’s response ã in T is correct with probability at least ξ. Moreover, if ã is correct then
ṽ 6= ⊥inc in Ti if and only if ãi = ã. Therefore, conditioned on τ ∈ BAD and ã being correct, we see that

pi∗ ≥ p(τ,m)− ξ

3
> p(τ,m′) + ξ − ξ

3
≥ pi + ξ − ξ

3
− ξ

3
= pi +

ξ

3
,

for all i 6= i∗ with probability at least 1 − 2−Ω(λ). We have used the Chernoff-Hoeffding bound, made possible by
our choice of large enough N ′. We conclude that

Pr
(
A wins

)
≥ ξξ′(1− negl) >

2

N
,

which violates the security of the hiding game for 〈C,R〉.

Claim 5 (Restated). Let δ = δ(λ) > 0 be as the statement of Lemma 3. For all m,m′ ∈M, we have:

Prτ

[
τ ∈ MAULm,m′ & p(τ,m) < λ−2δ3

]
≤ δ

4
.

Proof. This is another invocation of the hiding machine. Define BAD′ to be τ ∈ MAULm,m′ and p(τ,m) < λ−2δ3,
and suppose for contradiction that Prτ

[
τ ∈ BAD′

]
> δ/4. By part one, whp over τ , if τ ∈ BAD′ then p(τ,m′) <

2λ−2δ3 as well. Set N = 17/δ, N ′ = Ω(λδ−2) and consider the A who instantiates M and plays with C as follows.

• A instantiates M and plays until he has partial transcript τ . ThenA sendsm,m′ and receives
(
R, {R1}, . . . , {RN}

)
,

and sets Ti = T(τ,Ri), for all Ri ∈ {Ri}.

• A computes pi = PrRi∈{Ri}
(
Dτ (Ri,⊥inc) = 1

)
and outputs i∗ such that pi∗ is maximal.

If τ ∈ BAD′ then with probability at least 1/2, M will answer incorrectly in every Ti ∈ {Ti} for all i = 1, . . . , N ,
and so M’s commitment in every Ti is to ⊥inc. If this happens then pi approximates PrR←Enc(mi|L)

(
Dτ (R, m̃) = 1

)
where mi∗ = m and mi = m′ when i 6= i∗. In this case, we have by Chernoff-Hoeffding,

pi∗ ≥ PrR←Enc(m|L)

(
Dτ (R, m̃)

)
− δ

6
> PrR←Enc(m′|L)

(
Dτ (R, m̃)

)
+
δ

2
− δ

6
≥ pi +

δ

6
,

for all i 6= i∗ with probability 1− 2−Ω(λ). And so,

Pr
(
A wins

)
≥ δ

8
− negl >

2

N
,

which violates the security of the hiding game for 〈C,R〉.

E The Extended Protocol
In this section we modify the protocol of Section 4 so it remains non-malleable against a non-synchronizing ad-
versary. The only non-synchronizing scheduling available to the adversary which is not trivially dealt with is the
sequential scheduling where he lets the left interaction complete before beginning the right. Note this scheduling
could not yeild a mauling attack against an extractable commitment, since this scheduling allows one to extract M’s
commitment without rewinding C. However, our protocol in Section 4 is not extractable. In this section we make it
extractable while, and thus non-malleable against a sequential adversary, while still maintaining its non-malleability
against a synchronizing adversary.

Let ΠNM be the commitment of Section 4 and let Πext be a (malleable) three round extractable commitment
scheme. Our commitment scheme in this section commits to v by using ΠNM to commit to v while, in parallel, using
Πext to commit to the decommitment information of the first part. We prove that this composition enjoys the best of
both of its building blocks: it is extractable (and so non-malleable against a sequential adversary) while still being
non-malleable against a synchronizing adversary. One technical point is that in the proof of synchronizing non-
malleability, we need to rewind the protocol one time, therefore to make our proof go through, we need extraction
from Πext to require two rewinds. The protocol is shown in Figure 2.
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Setup: Let Com be a non-interactive, perfectly binding commitment scheme. Let (Enc,Dec) be a conditional
non-malleable code with indistinguishable views. Fix a large prime q. Let id ∈ {0, 1}λ be C’s identity.

Commiter’s Private Input: v ∈M〈C,R〉 to be committed to.

Commit Phase:

1. C→ R:

• Set m = v ◦ id and draw (L,R)← Enc(m), where L ∈ L ⊂ Zq. Choose random r ← Zq and ω, ω′ ← $
send Com(L;ω), Com(r;ω′) to R.

• Set X = (L, r, ω, ω′) ∈ {0, 1}poly(λ), viewed as a string and for i = 1, . . . , λ choose
X0
i ,X

1
i ,X

2
i ∈ {0, 1}poly(λ) randomly such that X0

i ⊕ X1
i ⊕ X2

i = X. Send Ybi = Com(Xbi), to R for
b ∈ {0, 1, 2}.

2. R→ C: Send random challenge α ∈ Zq and c ∈ {0, 1, 2}λ to C.

3. C→ R: Send a = rα+ L, R and Decom(Yci
i ) for i = 1, . . . , λ to C.

Decommit Phase:

1. C→ R: Open the commitments sent in step 1. Let L′, r′ ∈ Zq and Xbi ∈ {0, 1}poly(λ) be the decommitted
values.

Receiver’s Output: If the strings X0
i ⊕ X1

i ⊕ X2
i are not equal for all i or if they are all equal to X ∈ {0, 1}poly(λ)

but X is not a valid decommitment to Com(L;ω), Com(r;ω′) sent in step one output ⊥fail. If L′ and r′ do not
satisfy r′α+ L′ = a then output ⊥inc. Otherwise, compute m′ = Dec(L′,R) and parse m′ = v′ ◦ id′. Output v′ if
id′ = id, ⊥id if not.

Figure 2: Non-malleable commitment scheme 〈C,R〉.

Claim 12. 〈C,R〉 is a perfectly binding extractable commitment scheme.

Theorem 2. 〈C,R〉 is non-malleable.

Proof. It suffices to prove that it is non-malleable against a synchronizing adversary as the only other non-trivial
scheduling is the sequential one and non-malleability against a sequential adversary follows from extractability. We
follow the same outline and use the same notation as in the proof of Theorem 1. Recall that if M breaks the non-
malleability of 〈C,R〉 then there existm,m′ ∈M and non-negligible δ > 0 such that Prτ

[
τ ∈ MAULm,m′

]
≥ δ/2,

where τ ∈ MAULm,m′ if ∣∣∣∣Pr
(
Dτ
m,m′

(
Mτ
m

)
= 1
)
− Pr

(
Dτ
m,m′

(
Mτ
m′
)

= 1
)∣∣∣∣ ≥ δ

2
.

The partial transcript τ includes the first two rounds of the right execution and the entire left execution except for R.
As before, τ is completed to a full transcript once R is specified. Note that if M’s commitment ṽ is to ⊥fail, then M’s
first message is bad, either because the strings X̃0

i ⊕ X̃1
i ⊕ X̃2

i are not all equal, or because they are not all equal to a
valid decommitment to Com(L̃; ω̃), Com(r̃; ω̃′). In any case, M cannot be mauling if ṽ = ⊥fail as C’s commitment
on the left is not even defined after the first message. Also, the proof of Lemma 2 goes through unchanged for this
new protocol and so it follows that if M is mauling with non-negligible probability then he is doing so while also
sending the correct value for ã with non-negligible probability.
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This allows us to build a distribution DM on tampering functions which we will use to break the security of
(Enc,Dec). As before (f, g)← DM share a random partial transcript τ and a random R$, let ã$ be M’s response on
the right in the transcript T(τ,R$). f(L) extracts L̃ by rewinding M and asking a new challenge β̃ on the right, using
L and τ to answer on the left. We provide f with the decommitments Decom(Ybi ) so he can answer this part of M’s
query on the left honestly. g(R) completes τ to T(τ,R) and checks whether M’s answer ã is equal to ã$ or not. If so
g(R) = R̃, where R̃ is from M’s final message of T(τ,R). If not g(R) = ⊥inc. The same proof of Lemma 3 shows
that if M breaks the non-malleability of 〈C,R〉 then there exist m,m′ ∈M and non-negligible δ, δ′ > 0 such that

PrL,(f,g)

[∣∣∣∣Pr
(
Dτ (VL

m,f,g) = 1
)
− Pr

(
Dτ (VL

m′,f,g) = 1
)∣∣∣∣ > δ

2

]
> δ′, (4)

where the outer probability is over L ← L and (f, g) ← DM using randomness which depends on L. In order to
complete the reduction to the security of (Enc,Dec) we need to exhibbit a distribution Dsplit on split state tampering
function pairs such that

PrL,(f,g)

[∣∣∣∣Pr
(
Dτ (VL

m,f,g) = 1
)
− Pr

(
Dτ (VL

m′,f,g) = 1
)∣∣∣∣ > δ

2

]
> δ′, (5)

where the outer probability is over L← L and (f, g)← Dsplit drawn independently. In the proof of Theorem 1, we
argued that DM ≈c Dsplit and so (5) followed straight from (4). Here, this won’t quite work because f gets every
Decom(Ybi ) so it can answer M’s query in the rewind. This means f knows L and so we will not be able to hybrid
away f ’s dependence on L without f noticing. However, the following observation lets us deduce (5) anyway: as f
only rewinds once its output contains no information about X = X0

i ⊕ X1
i ⊕ X2

i .
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