
Secure Comparator: a ZKP-Based Authentication System

Ignat Korchagin
ignat@cossacklabs.com

Eugene Pilyankevich
eugene@cossacklabs.com

ABSTRACT

This paper presents Secure Comparator, a way to implement Zero Knowledge Proof algorithm
called Socialist Millionaire’s Problem, to compare secrets between two parties. Compared to
existing implementations, Secure Comparator provides better security guarantees, stronger
cryptographic math, and, possibly, more integration-friendly architecture.

Keywords

Zero Knowledge Proof, Socialist Millionaire’s Problem, authentication, passwords, ed25519,
Elliptic Curve Cryptography.

1. Introduction.

The password is the oldest and the most widely used pillar of authentication. In the modern
technologically heterogeneous and distributed environment, password-based authentication is
frequently the only available method to prove identity to a third party.

Being a secret, it’s best protected when it never leaves the safe zone. Proving identity involves
communicating the secret to another party, which eventually exposes the whole or a part of the
secret, in a direct or indirect (hashed) form. In the real world, authentication traffic passes
thousands of systems between a prover (you) and a verifier (an entity which eventually decides
whether your secret is valid and you deserve the privileges you claim).

While communicating it, you open the secret to various threat vectors, which expose it to attackers
in one or another way.

2. Existing Authentication Methods and Motivation

Existing authentication methods provide some levels of protection, but each of them has significant
drawbacks.

So far, most security systems have used only three types of cryptographic primitives: encryption,
key agreement, and digital signatures. Authentication secret security is achieved by combining
some of this primitives in a protocol.

Over time, each authentication method in Internet systems was exploited in some way, and required
new techniques to provide better security guarantees and mitigate attacks:
- for plaintext passwords all kinds of passive traffic interception attacks were used;

mailto:ignat@cossacklabs.com
mailto:eugene@cossacklabs.com

- once parties started exchanging hashes, dictionary attacks and active browser attacks (using a
hash to fake authentication handshake) became used;

- once parties started to use strong authentication, which was based on key agreement algorithms,
man-in-the-middle attacks to degrade ciphers became used;

As history evolves, more and more modern data protection techniques fail against sophisticated
attacks. Wouldn’t it be great to avoid transmitting passwords at all?

3. Zero Knowledge Proof

Basing on problems above, we propose building secret-based authentication around Zero
Knowledge Proof: a method for one party (the prover) to prove to another party (the verifier) that
some statement is true with following properties [1]:
1. Completeness: if the statement is true, the honest verifier (that is, one following the protocol

properly) will be convinced of this fact by a honest prover.
2. Soundness: if the statement is false, no cheating prover can convince the honest verifier that it is

true, except with some small probability.
3. Zero-knowledge: if the statement is true, no cheating verifier learns anything other than this

fact. This is formalized by showing that every cheating verifier has some simulator that, given
only the statement to be proved (and no access to the prover), can produce a transcript that
"looks like" an interaction between the honest prover and the cheating verifier.

The first two properties form the basis of authentication and can be achieved by a proper
combination of other cryptographic primitives. The last property ensures the protocol flow and
outcome is meaningful only to honest protocol participants and nobody else. In other words, the
protocol by design does not leak any auxiliary information to the third-party observers or even the
verifier.

3.1 Socialist Millionaire’s Problem (SMP Protocol)

Socialist Millionaire’s Problem allows two parties to verify whether the secret they use is identical
without allowing either party to learn anything else about the other's secret value. That is, if
communicating parties’ secrets do not match, no party learns anything more that this fact.

Zero Knowledge Proofs have been scientifically studied and verified for two decades now. We’ve
picked Socialist Millionaire’s Problem for its simplicity, and good track record in OTR protocol,
where it is used to authenticate remote parties.

3.2 Benefits of SMP

In short, the SMP usage allows achieving the following benefits:

- a new mechanism for HTTP password authentication (ensures that password or hashes of the
password never gets sent over the wire);
- a new way to confirm established secret key after the key agreement;
- a mutual authentication mechanism;
- remote attestation mechanism;
- an insider-resistant OTP reinforcement.

4. Secure Comparator

Secure Comparator is an SMP-based authentication method, which we use to compare secrets like
passwords and access tokens. We have strived to get better security guarantees, than existing SMP
implementations, and more flexibility.

4.1 Hardening SMP

To build authentication scheme around SMP, we have used OTR protocol as a reference.

However, OTR uses 1536-bit group algebra as the basis of their computations. Since SMP is very
similar in operations to Diffie-Hellman key exchange, it is subject to almost same security
considerations. The recent disclosure of the LogJam attack on TLS protocol [4], which targets
Diffie-Hellman key exchange, provides proof that 512-bit groups might be practically cracked
today using number field sieve algorithm.

The same paper provides estimates that 1024-bit groups may already be vulnerable now or will
become vulnerable sometime in the near future. Based on the above we feel that 1536-bit might not
provide adequate security level. In addition, we preferred to have a more fundamental solution to
this than just increasing the field bit size, which puts extra pressure on both algorithm speed and
memory requirements. Therefore, we decided to harden the SMP by re-implementing it based on
Elliptic Curve Cryptography.

Both SMP and DH security is mostly based on discrete logarithm problem (DLP): finding an
exponent used to compute the power of some base in a cyclic group does not have algorithms with
polynomial time complexity. However, in ECC domain this problem is considered even more
secure, because, unlike in prime-field algebra, where such algorithms exist with sub-exponential
time complexity, only exponential time algorithms exist for ECC.

To make SMP (as well as most of the DLP-based algorithms) ECC-enabled, following has to be
changed in the algorithm flow:

- choose target ECC domain parameters;
- introduce deterministic mapping of secret and random protocol values to big integers greater than

0 and smaller than ECC field base point order;
- replace all prime-field group multiplications with ECC point additions;
- replace all prime-field group divisions with ECC point subtractions;
- replace all prime-filed group exponentiations with ECC point on big integer multiplications.

After considering all possible variants for a good ECC domain, we decided to use ed25519,
because:

- we wanted something better protected from side-attacks than conventional NIST curves;
- fast and performant;
- available in public domain, and, preferably, coming from trusted experts (Daniel J. Bernstein);
- has little or no weak private keys, so above mapping can be designed easily (a simple hash

function with truncated output).

However, original ed25519 implementation lacked some basic ECC primitives, so it had to be
extended for SMP.

4.2 Extending ed25519

Even though ed25519 is a good candidate, it is a digital signature algorithm. In SMP, we need a
different combination of ECC primitive operations and as a consequence - different algorithm
parameter handling.

In addition, basic ed25519 boasts constant time operations protecting users' secrets from side-
channel (mostly timing) attacks. Since the code was written with high optimizations in mind,
ed25519 had a limited subset of operations to start with:

• Q = d * G - basic ECC base point multiplication;
• R = s * G + r * Q - sum of two points, where one is a multiple of base point.

SMP, on the other hand, requires T = u * P - simple point multiplication, but where P is some
random (not known in advance) point. First two obvious choices were not the right ones to pick:

1) To implement this operation based on existing features of ed25519, the obvious way was to reuse
the second function (sum of two points) passing n - ECC base point order - as s parameter.
Effectively, since n * G = O (ECC zero point), so n * G + r * Q = O + r * Q = r * Q. However,
first ed25519 operation is constant time, while the second one is not. For digital signature usage, it
does not create serious threat - the second operation is used only to verify signatures with the public
key (no secret information is used). In our case, our adapted function may be used to multiply some
secret random value on an arbitrary point.

2) The reusing approach, which was taken in the first ed25519 operation (scalar multiplication
replaced by point addition from a table of a precomputed point factors) also made little sense, since
its constant time properties are based on a large precomputed table (~30 KB) specifically for G
(which is constant and known in advance). We cannot afford to do the same computations in the
process for arbitrary point, because of performance considerations: since we may receive a random
point from our peer we would have to recompute the table each time.

Instead of trying to make the operation constant time, we decided to take the blinding approach.
Let’s suppose we want to compute R = d * Q:

• generate random integer rnd
• compute R = rnd * G + d * Q - variable time, where the attacker can only get some information

about rnd + d, but since they know neither d nor rnd, it is similar to as if d was encrypted by rnd
• compute P = rnd * G - constant time operation, available in original ed25519, so attacker gets

nothing
• compute R = R - P = rnd * G + d * Q - rnd * G = d * Q - constant time operation (simple point

subtraction, does not involve secret handling)

5. The Protocol

Our SMP protocol is very similar to SMP implementation in Cypherpunk’s OTR [3] except that we
use ECC for all computations.

Let’s suppose we have two parties with secrets x and y respectively, and they wish to know whether
x == y. They use ed25519 curve with G as a basepoint. Alice starts the protocol:

• Alice
• picks two random numbers: a2 and a3
• computes G2a = a2 * G and G3a = a3 * G
• sends G2a and G3a to Bob

• Bob
• picks two random numbers: b2 and b3
• computes G2b = b2 * G and G3b = b3 * G
• computes G2 = b2 * G2a and G3 = b3 * G3a
• picks random number r
• computes Pb = r * G3 and Qb = r * G + y * G2
• sends G2b, G3b, Pb and Qb to Alice

• Alice
• computes G2 = a2 * G2b and G3 = a3 * G3b
• picks random number s
• computes Pa = s * G3 and Qa = s * G + x * G2
• computes Ra = a3 * (Qa - Qb)
• sends Pa, Qa, Ra to Bob

• Bob
• computes Rb = b3 * (Qa - Qb)
• computes Rab = b3 * Ra
• checks whether Rab == Pa - Pb
• sends Rb to Alice

• Alice
• computes Rab = a3 * Rb
• checks whether Rab == Pa - Pb

If the Rab == Pa - Pb check succeeds then each party is convinced that x == y. Since Rab = (Pa -
Pb) + (a3 * b3 * (x - y)) * G2, iff x == y, Rab = (Pa - Pb) + 0 * G2 = Pa - Pb. If x≠ y, then a3 * b3
* (x - y) * G2 is a random ECC point not known to any party, so no information is revealed.

5.1 ECC-Specific Considerations

All numbers used in ECC calculations for best security must be less than ECC base point order. For
ed25519, a suitable number is any 32-byte array, but with three last bits cleared in the first byte,
first bit cleared and second bit set in the last byte. This applies to any random numbers used as well
as for the secrets themselves.

5.2 Hashing Secrets

We do not directly use secret information in SMP calculations. To allow arbitrary length string to be
compared, we hash all the information and compare hashes instead. Currently, we use SHA-256 for
that.

6. Existing ZKP/ZKPP Systems.

Although we believe that our implementation is novel, the idea of using Zero Knowledge
Proofs for password authentication (which is called ZKPP) is not. Below are the two best
systems we’re aware of, and our explanation what we differ with.

Lightweight Zero Knowledge Proof Authentication [5]

The paper describes a classic zero knowledge protocol (based on graph isomorphism) in the
application within web authentication. Unlike SMP, the protocol is a one-way client-server
authentication mechanism. The downside of this approach is having soundness error
probability of 1/2 for one round of challenge-response. Therefore, in order to lower it many
iterations of the protocol are required. This significantly increases the number of round-trips
in overall authentication scheme (the paper mentions ~2000).

RFC 2945: SRP Authentication and Key Exchange System [6]

Secure remote password protocol was developed primarily to support zero knowledge
password verification. It also uses DLP and public key cryptography for its operations.
Unlike SMP, its use-case (client-server password verification) is embedded in the protocol
flow. The advantage of this is that server does not have to store plaintext password to do the
protocol. However, it provides a one-way authentication mechanism, whereas SMP
implicitly does mutual authentication. From cryptography perspective, SRP requires explicit
salt to protect from replay attack, where SMP has such protection inherently from its flow.
Also, because of extended required cryptographic primitives (need to do field element
multiplication), it is hard to port SRP to ECC domain.

7. Other uses

Password authentication is only one narrow use-case; however, being the most obvious and
demanding, it is presented as the main purpose here. Using Secure Comparator-based
authentication is not limited to it though, as the system will work with any comparison of
secrets, which have public identifiers (usernames, customer names, record IDs) and secret
parts.

One of the obvious use-cases is enabling two personal data-processing systems to compare
secret customer identifiers (SSN, Tax ID) between parties without established trust
relationships, which can be essential in interactions, where request query has parts, the
disclosure of which can affect privacy or security.

8. Example Implementation

We have implemented Secure Comparator in our open-source security services library,
Themis [7]. Feel free to explore the source code on our GitHub [8], or read the blog post
outlining various practical aspects of using Secure Comparator [9].

References

[1] ftp://ftp.inf.ethz.ch/pub/crypto/publications/Maurer09.pdf
[2] http://markus-jakobsson.com/papers/jakobsson-crypto96.pdf
[3] Off-the-Record Messaging Protocol version 3, https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
[4] https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
[5] http://cs.nyu.edu/~zaremba/docs/zkp.pdf
[6] https://en.wikipedia.org/wiki/Secure_Remote_Password_protocol
[7] https://www.cossacklabs.com/themis
[8] https://github.com/cossacklabs/themis/tree/master/src/themis
[9] https://cossacklabs.com/introducing_secure_comparator.html

http://markus-jakobsson.com/papers/jakobsson-crypto96.pdf
https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf
http://cs.nyu.edu/~zaremba/docs/zkp.pdf
https://en.wikipedia.org/wiki/Secure_Remote_Password_protocol
https://www.cossacklabs.com/themis
https://github.com/cossacklabs/themis/tree/master/src/themis
https://cossacklabs.com/introducing_secure_comparator.html

