
A Guide to Fully Homomorphic
Encryption

Frederik Armknecht1, Colin Boyd2, Christopher Carr2, Kristian
Gjøsteen3, Angela Jäschke1, Christian A. Reuter1, and Martin

Strand3

1University of Mannheim
{armknecht, jaeschke, reuter}@uni-mannheim.de

2Department of Telematics, NTNU
{colin.boyd, ccarr}@item.ntnu.no

3Department of Mathematical Sciences, NTNU
{kristian.gjosteen, martin.strand}@math.ntnu.no

Abstract

Fully homomorphic encryption (FHE) has been dubbed the holy grail
of cryptography, an elusive goal which could solve the IT world’s problems
of security and trust. Research in the area exploded after 2009 when Craig
Gentry showed that FHE can be realised in principle. Since that time
considerable progress has been made in finding more practical and more
efficient solutions. Whilst research quickly developed, terminology and
concepts became diverse and confusing so that today it can be difficult
to understand what the achievements of different works actually are. The
purpose of this paper is to address three fundamental questions: What
is FHE? What can FHE be used for? What is the state of FHE today?
As well as surveying the field, we clarify different terminology in use and
prove connections between different FHE notions.

1 Introduction

The purpose of homomorphic encryption is to allow computation on encrypted
data. Thus data can remain confidential while it is processed, enabling useful
tasks to be accomplished with data residing in untrusted environments. In a
world of distributed computation and heterogeneous networking this is a hugely
valuable capability. Finding a general method for computing on encrypted data
had been a goal in cryptography since it was proposed in 1978 by Rivest, Adle-
man and Dertouzos [45]. Interest in this topic is due to its numerous applications

1

in the real world. The development of fully homomorphic encryption is a revo-
lutionary advance, greatly extending the scope of the computations which can
be applied to process encrypted data homomorphically. Since Gentry published
his idea in 2009 [24, 25] there has been huge interest in the area, with regard to
improving the schemes, implementing them and applying them.

We look in detail at specific applications in Section 2, but to give a feeling,
consider cloud computing. As more and more data is outsourced into cloud
storage, often unencrypted, considerable trust is required in the cloud storage
providers. The Cloud Security Alliance lists data breach as the top threat to
cloud security [51]. Encrypting the data with conventional encryption avoids
the problem. However, now the user cannot operate on the data and must
download the data to perform the computations locally. With fully homomor-
phic encryption the cloud can perform computations on behalf of the user and
return only the encrypted result.

1.1 What is Fully Homomorphic Encryption?

Principally, FHE allows for arbitrary computations on encrypted data. Com-
puting on encrypted data means that if a user has a function f and want to
obtain f(m1, . . . ,mn) for some inputs m1, . . . ,mn, it is possible to instead com-
pute on encryptions of these inputs, c1, . . . , cn, obtaining a result which decrypts
to f(m1, . . . ,mn).

In some cryptosystems the input messages (plaintexts) lie within some alge-
braic structure, often a group or a ring. In such cases the ciphertexts will often
also lie within some related structure, which could be the same as that of the
plaintexts. The function f in older homomorphic encryption schemes is typi-
cally restricted to be an algebraic operation associated with the structure of the
plaintexts. For instance, consider ElGamal. If the plaintext space is a group G,
then the ciphertext space is the product G×G, and f is restricted to the group
operation on G. Indeed most schemes prior to 2009 fit such a structure. We can
express the aim of fully homomorphic encryption to be to extend the function
f to be any function. This aim can be achieved if the scheme is homomorphic
with respect to a functionally complete set of operations and it is possible to
iterate operations from that set.

While it is always a requirement that encryption schemes are efficient in a
theoretical sense, namely running in polynomial time in the security parameter,
practical efficiency was not the first priority in obtaining the first FHE schemes.
One reason for the lack of efficiency of these schemes is that they use a plaintext
space consisting of a single bit and are homomorphic with respect to addition
and multiplication modulo 2. While any function of any complexity can be
built up from such basic operations, that may require a large number of such
operations.

In order to move towards better efficiency, some recent variants of FHE
schemes restrict the functions f in different ways which we will explore later.

Although a theoretical view of FHE cares only about maximising the choices
of f , a practical view cares also about keeping this choice only as large as needed,

2

and may also prefer a richer structure for the plaintext and ciphertext spaces
that just the binary case.

1.2 Relations of FHE: Functional Encryption and Pro-
gram Obfuscation

The fundamental idea behind FHE is to be able to apply functions on en-
crypted data. Two other cryptographic notions formed with functions in mind
are functional encryption and obfuscation. Intriguingly, obfuscation, functional
encryption and fully homomorphic encryption seem somehow intertwined, as
has been previously recognised [2, 21].

Functional encryption (FE) is similar in essence to identity based encryption
and attribute based encryption. Boneh, Sahai and Waters [12] give a concise
explanation of the relations between these three notions, as well as some discus-
sion on FHE. The concepts of FHE and FE do indeed have some overlap, and it
has been demonstrated that functional encryption can work as FHE, with some
slight adaptation [2].

Functional encryption allows a secret key to be issued using a master key,
dependent on a function f . Given a ciphertext, the secret key allows the user to
learn the value of f applied to the plaintext and nothing else [11]. Computing
functions on encrypted data links the two concepts of homomorphic and func-
tional encryption. A notable difference is the way the functions are applied.
FE grants control over what functions can be applied to the data via a master
key holder, who issues keys based on a decision of the appropriateness of the
function. A key can be used to obtain the plaintext result of the function ap-
plied on the encrypted data. FHE permits functions to be the run by anyone
with the evaluation key (see Section 3), however only the owner of the secret
key can decrypt the result into plaintext. The user running the function only
gets ciphertext.

Obfuscation was originally designed to be conceptually similar to black box
computation, where one gains knowledge of inputs to the black box, and outputs
from it, but nothing else [8, 32, 21]. With obfuscation, one could place keys
within the program to be run without revealing knowledge of the keys. One
could thus generate an obfuscated program that contains the public and private
keys, and process the input by applying first the decryption algorithm, next
the required function, and finally encrypting the result. This would act as a
replacement for the homomorphic operation in FHE.

This ability to generate a FHE scheme from an obfuscation scheme and a
traditional encryption scheme may seem promising, but practically it remains
unclear if this offers an advantage over direct FHE. We would also need to
consider the security constraints and implications of hiding secret keys inside a
published program.

3

1.3 Need for Systematization

Treatment of FHE can seem very confusing. Sometimes, two definitions seem to
say the same thing – for example, at first glance, being able to evaluate an arbi-
trary circuit and being able to evaluate arbitrarily many circuits consecutively
seems to be the same thing. This, however, is not the case as will be explained
in Remark 5.

To help understand the distinction, consider the cloud computing example:
FHE is usually sold as the solution. However, if we can only evaluate one
circuit of arbitrary size, then we cannot use intermediate results for further
computations later; everything has to be computed from scratch through the
original ciphertexts. This satisfies the usual definition of FHE (Definition 9),
but is unintuitive and is hardly an optimal solution. What is needed in this
scenario is the ability to evaluate arbitrarily many circuits consecutively.

This highlights another problem in this field: in some cases, definitions do
not express what one would intuitively assume. In other cases, one intuition
has different definitions in different papers. This, for example, is the case for
an attribute called compactness, which intuitively says that the ciphertext size
should not be growing through homomorphic operations. Gentry defines it
through one characterization in his original work, while in subsequent works a
different characterization is used. Seeing that both definitions are equivalent is
not as straightforward as one may assume, and actually requires an additional
assumption.

Sometimes, attributes are not properly defined at all, and sometimes impli-
cations are used that have not been mentioned in the same paper. Figure 1
gives an idea of how complex this jungle of definitions is. Starting with the
definitions and properties (white rectangles in the figure) we can give classifica-
tions of the different kinds of homomorphic schemes (shaded round rectangles).
Furthermore, these classifications can again be combined with hop correctness,
which yields another set of homomorphic schemes (darker oval shapes).

1.4 Our Contribution

First, in Section 2, we gather existing applications of (fully) homomorphic en-
cryption mentioned in the literature, examine their usefulness both in practice
and as building blocks for other cryptographic schemes and point out their lim-
itations.

Next, we provide the much needed organization of terminology. We present
existing definitions in a consistent way, reconciling different definitions for one
notion when they exist, and explaining points of potential confusion. Further-
more, we introduce new definitions, enabling a better understanding of existing
schemes and existing definitions. This contribution constitutes Section 3 and
is summarised in Figure 1. In Section 4, we formally prove some elementary
relations between notions presented in Section 3. To give an overview of the
current landscape in FHE research, Section 5 summarises some existing schemes
along with the underlying hardness assumptions and runtimes where available.

4

C = {allowed binary circuits}

C–evaluation scheme (Def 1, p. 10)

Correct decryption (Def. 2, p. 12)

Correct evaluation (Def. 3, p. 12)

Somewhat homomorphic (Def. 7, p. 14)

Compactness (Def. 4, p. 12)

Max depth of circuits in C is d

Length of Eval output is independent of d

Levelled homomorphic (Def. 8, p. 14)

C = {all binary circuits}

Levelled fully homomorphic (Def. 8, p. 14)

Fully homomorphic (Def. 9, p. 14)

– any one –

i-hop correctness (Def. 10, p. 15)

i-hop scheme (Def. 11, p. 17)

∞-hop correctness (Def. 14, p. 17)

∞-hop scheme (Def. 14, p. 17)

Figure 1: Classifying FHE. The definitions are white rectangles. The classes
are shaded round rectangles. The round shapes below represent the add-on
properties of hops. The arrows between the elements of the graph show their
dependencies. The integer d specifies the maximum depth of circuits in the set
of allowed binary circuits C.

5

2 Applications of FHE

This section explores the numerous applications of the various flavours of homo-
morphic encryption. Some require fully homomorphic encryption, while others
just need somewhat homomorphic encryption. The distinction will become clear
in Section 3. For now, it suffices to know that a fully homomorphic scheme can
compute anything on encrypted data, while a somewhat homomorphic scheme
is more restricted.

This section is divided into three parts. The first part deals with applications
that are feasible today, the second examines constructions that use homomor-
phic encryption as building blocks, and the third looks at current limitations of
FHE.

2.1 Practical Applications of FHE

Although still slow (see Section 5), homomorphic encryption has been proposed
for several practical uses. This section lists those applications that are conceiv-
able with the technology we have today.

2.1.1 Consumer Privacy in Advertising

Though often unwanted, advertising can be useful when tailored to user needs,
e.g. through recommender systems or through location-based advertising. How-
ever, many users are concerned about the privacy of their data, in this case their
preferences or location. There have been several approaches to this problem.

Jeckmans et al. [36] sketch a scenario where a user wants recommendations
for a product. The scenario is designed around a social network where recom-
mendations are based on the tastes of the user’s friends with the condition of
confidentiality. The proposed system applies homomorphic encryption to al-
low a user to obtain recommendations from friends without the identity of the
recommender being revealed.

Armknecht and Strufe [5] presented a recommender system where a user
gets encrypted recommendations without the system being aware of the con-
tent. This system builds upon a very simple but highly efficient homomorphic
encryption scheme which has been developed for this purpose. This allows a
function to be computed which chooses the advertisement for each user while
the advertising remains encrypted.

In another approach to personalized advertising [43] a mobile device sends
a user’s location to a provider, who sends customized ads, such as discount
vouchers for nearby shops, back to the user. Of course, this potentially allows
the provider to monitor everything about the user’s habits and preferences.
However, this problem can be solved by homomorphic encryption – provided
the advertisements come from a third party (or several) and there is no collusion
with the provider.

6

2.1.2 Medical Applications

Naehrig et al. [43] propose a scenario where a patient’s medical data is (contin-
uously) uploaded to a service provider in encrypted form. Here, the user is the
data owner, so the data is encrypted under the user’s public key and only the
user can decrypt. The service provider then computes on the encrypted data,
which could consist of things like blood pressure, heart rate, weight or blood
sugar reading to predict the likelihood of certain conditions occurring or more
generally to just keep track of the user’s health. The main benefit here is to
allow real-time health analysis based on readings from various sources without
having to disclose this data to any one source. Lauter [38] described an actual
implementation of a heart attack prediction by Microsoft.

2.1.3 Data Mining

Mining from large data sets offers great value, but the price for this is the
user’s privacy. While Yang, Zhong and Wright [54] are often cited as using
homomorphic encryption as a solution to this problem, the scheme actually uses
functional encryption, a common confusion discussed in Section 1.2. However,
applying homomorphic encryption is certainly conceivable as a solution.

2.1.4 Financial Privacy

Imagine a scenario where a corporation has sensitive data and also proprietary
algorithms that they do not want disclosed, e.g. stock price prediction algo-
rithms in the financial sector. Naehrig et al. [43] propose the use of homomor-
phic encryption to upload both the data and the algorithm in encrypted form
in order to outsource the computations to a cloud service.

However, keeping the algorithm secret is not something that homomorphic
encryption offers, but is rather part of obfuscation research (see section 1.2).
The attribute that comes closest in fully homomorphic schemes is called circuit
privacy, but this merely guarantees that no information about the function is
leaked by the output – not that one can encrypt the function itself.

What homomorphic encryption offers is the solution to a related problem.
Imagine that a corporation A has sensitive data, like a stock portfolio, and
another company B has secret algorithms that make predictions about the stock
price. If A would like to use B’s algorithms (for a price, of course), either A
would have to disclose the stock portfolio to B, or B has to give the algorithm
to A. With homomorphic encryption, however, A can encrypt the data with a
circuit private scheme and send it to B, who runs the proprietary algorithm and
only sends back the result, which can only be decrypted by A’s secret key. This
way, B does not learn anything about A’s data, and A does not learn anything
about the algorithms used.

7

2.1.5 Forensic Image Recognition

Bösch et al. [13] describe how to outsource forensic image recognition. Tools
similar to this are being used by the police and other law enforcement agencies
to detect illegal images in a hard drive, network data streams and other data
sets. The police use a database containing hash values of “bad” pictures. in.
A major concern is that perpetrators could obtain this database, check if their
images would be detected and, if so, change them.

This scheme uses a somewhat homomorphic encryption scheme proposed
by Brakerski and Vaikuntanathan [16] to realise a scenario where the police
database is encrypted while at the same time the company’s legitimate network
traffic stays private. The company compares the hashed and encrypted picture
data stream with the encrypted database created by the police. The service
provider learns nothing about the encrypted database itself, and after a given
time interval or threshold, the temporary variable is sent to the police.

2.2 Homomorphic Encryption Schemes as Building Blocks

Homomorphic encryption schemes can be used to construct cryptographic tools
such as zero knowledge proofs, signatures, MACs and multiparty computation
implementations.

2.2.1 Zero Knowledge Proofs

Gentry shows in his dissertation [24] that homomorphic encryption can be
used in the construction of non-interactive zero knowledge (NIZK) proofs of
small size. A user wants to prove knowledge of a satisfying assignment of bits
π1, . . . , πt for a boolean circuit C. The NIZK proof consists of generating a
public key, encrypting the πi’s and homomorphically evaluating C on these en-
cryptions. A standard NIZK proof is attached to prove that each ciphertext
encrypts either 0 or 1 and that the output of the evaluation encrypts 1.

2.2.2 Delegation of Computation

Outsourcing computation is the second big pillar in cloud computing, besides
outsourcing data. A user may want to delegate the computation of a function
f to the server. However, the server may be malicious or just prone to malfunc-
tions, meaning the user may not trust the result of the computation. The user
wants to have a proof that the computation was done correctly and verifying
this proof should also be significantly more efficient than the user doing the
computation.

Chung et al. [17] use fully homomorphic encryption to design schemes for
delegating computation, improving the results of Gennaro et al. [22], while van
Dijk and Juels [53] examine the infeasibility of FHE alone solving privacy issues
in cloud computing.

One example for the delegation of computation is message authenticators. A
user who has outsourced computation on a data set might want to check that the

8

return value is really the correct result. The tag should be independent of the
size of the original data set, and only verifiable for the holder of the private key.
Gennaro and Wichs [23] propose such a scheme based on a fully homomorphic
encryption scheme, which can be considered as a symmetric-key version of fully
homomorphic signatures [9]. However, it only supports a bounded number of
verification queries.

2.2.3 Signatures

Gorbunov et al. [33] presented a construction of levelled fully homomorphic
signature schemes. The scheme can evaluate arbitrary circuits with maximal
depth d over signed data and homomorphically produce a short signature which
can be verified by anybody using the public verification key. The user uploads
the signed data x, then the server runs some function g over the data which
yields y = g(x). Additionally, the server publishes the signature σg,y to verify
the computation.

This work also introduces the notion of homomorphic trapdoor functions
(HTDF), one of the building blocks for the signature construction. HTDF
themselves are based on the small integer solution (SIS) problem. The first
definition of fully homomorphic signatures was given in Boneh and Freeman [9].

2.2.4 Multiparty Computation

Multiparty computation requires interaction between participants. Damg̊ard et
al. [19] provide a description of how a somewhat homomorphic scheme can be
used to construct offline multiplication during the computations. The players
use the somewhat homomorphic scheme in a preprocessing phase, but return to
the much more efficient techniques of multiparty computation in the computa-
tion phase.

2.3 Limitations of FHE

Both in literature and intuitively, there are several applications which permit
fully homomorphic encryption as a solution. However, in this subsection, we
discuss three main limitations of FHE in real-world scenarios. Afterwards, we
present some examples, all of which contain the first two limitations.

The first limitation is support for multiple users. Suppose there are many
users of the same system (which relies on an internal database that is used in
computations), and who wish to protect their personal data from the provider.
One solution would be for the provider to have a separate database for every
user, encrypted under that user’s public key. If this database is very large and
there are many users, this would quickly become infeasible. López-Alt et al.
[39] have shown promising directions to address this problem by defining and
constructing multi-key FHE.

Next, there are limitations for applications that involve running very large
and complex algorithms homomorphically. All fully homomorphic encryption

9

schemes today have a large computational overhead, which describes the ratio of
computation time in the encrypted version versus computation time in the clear.
Although polynomial in size, this overhead tends to be a rather large polynomial,
which increases runtimes substantially and makes homomorphic computation of
complex functions impractical. Even if in the future an extremely efficient FHE
should be found, other problems remain. For example, for circuits, there is no
concept of aborting an algorithm when operating on encrypted data. In the case
of comparison, this would require to run the full circuit which is large by itself.
In other words, certain mechanisms seems to get significantly more involved just
because values remain hidden. One way to solve this problem is suggested by
Goldwasser et al. [31] by using Turing machines instead of circuits.

Finally, FHE does not necessarily imply secret function evaluation. We
already encountered this in the discussion of the applicability to financial data
above. This issue belongs to the research on obfuscation.

3 Definitions

This section gives an overview of the terminology used in the literature on
FHE. Some of our definitions come directly from existing papers while others
have been rephrased, either because there were no satisfactory formal definitions
or to fit the definitions into our formal framework; we give citations in the first
case.

We begin with a space P = {0, 1}, which we call the plaintext space, and
a family F of functions from tuples of plaintexts to P. We can express such a
function as a Boolean circuit on its inputs. If we denote this circuit by C, we
use ordinary function notation C(m1,m2, . . . ,mn) to denote the evaluation of
the circuit on the tuple (m1,m2, . . . ,mn). Our first definition follows Brakerski
and Vaikuntanathan [15].

Definition 1 (C–Evaluation Scheme). Let C be a set of circuits. A C–eval-
uation scheme for C is a tuple of probabilistic polynomial–time algorithms
(Gen,Enc,Eval,Dec) such that:

Gen(1λ, α) is the key generation algorithm. It takes two inputs, security pa-
rameter λ and auxiliary input α, and outputs a key triple (pk, sk, evk),
where pk is the key used for encryption, sk is the key used for decryption
and evk is the key used for evaluation.

Enc(pk,m) is the encryption algorithm. As input it takes the encryption key
pk and a plaintext m. Its output is a ciphertext c.

Eval(evk, C, c1, . . . , cn) is the evaluation algorithm. It takes as inputs the eval-
uation key evk, a circuit C ∈ C and a tuple of inputs that can be a mix
of ciphertexts and previous evaluation results. It produces an evaluation
output.

10

Dec(sk, c) is the decryption algorithm. It takes as input the decryption key sk
and either a ciphertext or an evaluation output and produces a plaintext
m.

Here X denotes the ciphertext space which contains the fresh ciphertexts (see
equation (1)), Y denotes the space of evaluation outputs and Z is the union of
both X and Y. Z∗ contains arbitrary length tuples made up of elements in Z.
The key spaces are denoted by Kp,Ks and Ke, respectively, for pk, sk and evk.
The public key contains a description of the plaintext and ciphertext spaces.
The input to the key generation algorithm Gen is given in unary notation, i.e.,
1λ. Gen may also take another optional input α from the space auxs, this is
the auxiliary input and will become clear in Remark 3. Finally, C is the set of
permitted circuits, i.e. all the circuits which the scheme can evaluate.

With these spaces defined, the domain and range of the algorithms are given
by

Gen : N×A → Kp ×Ks ×Ke
Enc : Kp × P → X
Dec : Ks ×Z → P
Eval : Ke × C × Z∗ → Y

where X∪Y = Z andA is an auxiliary space. Note that in general the evaluation
space can be disjoint from the ciphertext space.

Throughout this paper, we treat the ciphertext space X as the image of
encryption, and the evaluation space Y as the image of evaluation. Therefore
Z cannot contain an element that is not a possible output of the encryption
algorithm or the evaluation algorithm. Formally,

X = {c | Pr[Enc(pk,m) = c] > 0,m ∈ P} (1)

and

Y = {z | Pr[Eval(evk, C, c1, . . . , cn) = z] > 0, ci ∈ Z, and C ∈ C}.

Notably, the evaluation key is often also part of the public key. By defining
the scheme this way, with a separate evaluation key, we are not forbidding
pk = evk but asserting that it is not strictly necessary. Separate pk and evk is
becoming a standard definition [15, § 3.1].

Remark 1 (Ciphertext decryption). Brakerski and Vaikuntanathan [16] mention
that running the decryption algorithm on an output of the encryption algorithm
is not strictly necessary: “. . . we do not require that the ciphertexts ci are de-
cryptable themselves, only that they become decryptable after homomorphic
evaluation.” They point out that one can always evaluate the encrypted cipher-
text with a blank circuit (essentially a circuit computing the function f(x) = x)
before decryption, thus simplifying the allowed inputs to the decryption algo-
rithm. From now on, we allow the decryption of fresh ciphertexts, as this seems

11

a more natural approach and applies to most known FHE schemes. The de-
cryption algorithm can operate on ciphertexts or evaluations (take values from
both the ciphertext space and the evaluation space). This choice removes the
need for a blank circuit. In general though, this distinction is not necessary,
especially when the evaluation space and the ciphertext space are the same.

3.1 Attributes

Presented here are the attributes of homomorphic encryption schemes. On the
one hand, we need things like correctness to even call this an encryption scheme,
and on the other hand we define attributes like compactness and circuit privacy
which exclude trivial solutions to the problem of homomorphic encryption.

Definition 2 (Correct Decryption). A C–evaluation scheme (Gen, Enc, Eval,
Dec) is said to correctly decrypt if for all m ∈ P,

Pr[Dec(sk,Enc(pk,m)) = m] = 1,

where sk and pk are outputs of Gen(1λ, α).

This means that we must be able to decrypt a ciphertext to the correct
plaintext, without error.

Definition 3 (Correct Evaluation, [15, Def. 3.3]). A C–evaluation scheme
(Gen, Enc, Eval, Dec) correctly evaluates all circuits in C if for all ci ∈ X , where
mi ← Dec(sk, ci), for every C ∈ C, and some negligible function ε,

Pr[Dec(sk,Eval(evk, C, c1, . . . , cn)) = C(m1, . . . ,mn)] = 1− ε(λ)

where sk, pk and evk are outputs of Gen(1λ, α).

This means that with overwhelming probability, decryption of the homo-
morphic evaluation of a permitted circuit yields the correct result. Note that
for Definition 2 and 3 we are intentionally restricting to X and not to Y. This
is developed further in Section 3.3.

From now on, we say a C–evaluation scheme is correct if it has the properties
of both correct evaluation and correct decryption.

Definition 4 (Compactness [52, Def. 3]). A C–evaluation scheme is compact
if there is a polynomial p, such that for any key-triple (sk, pk, evk) output by
Gen(1λ, α), any circuit C ∈ C and all ciphertexts ci ∈ X , the size of the output
Eval(evk, C, c1, . . . , cn) is not more than p(λ) bits, independent of the size of the
circuit.

This means that the ciphertext size does not grow much through homomor-
phic operations and the output length only depends on the security parameter.
This also rules out the trivial homomorphic scheme where the evaluation al-
gorithm is the identity function (that is, it outputs (C, c1, . . . , cn)), and the
decryption function is defined to decrypt the input ciphertexts c1, . . . , cn, apply
the appropriate function to the corresponding plaintexts, and output this result
[26].

12

Remark 2 (On compactness). Gentry’s original definition was a slightly different
one, which could informally be paraphrased as: The scheme is compact if there
exists a circuit CD of “reasonable” length that computes the decryption circuit.
This definition relies on the size of the decryption circuit. However, we feel
that the first definition, which relies on the length of Eval’s output – given
intuitively in his work – and used as the definition of compactness in following
works [15, 52], provides for a better understanding. We further examine the
relationship between these two concepts (and state the latter one formally) in
Section 4.1.

In anticipation of following results, we introduce another definition, origi-
nally used by Gentry, that groups all of the definitions seen so far in this section
[24, Def 2.1.2].

Definition 5 (Compactly Evaluate). A C–evaluation scheme (Gen, Enc, Eval,
Dec) compactly evaluates all circuits in C if the scheme is compact and correct.

We now define circuit privacy. One may easily confuse circuit privacy se-
mantically with circuit obfuscation, because both seem to keep the circuit secret
or private. However, circuit obfuscation deals with the concealing of the circuit.
This is important if the used algorithms themselves are valuable and ought to be
secret. In contrast, circuit privacy characterizes the distributions of the output
of the algorithms Eval and Enc.

Definition 6 (Circuit Privacy [24, Def. 2.1.6]). A C–evaluation scheme (Gen,
Enc, Eval, Dec) is said to be perfectly/statistically/computationally circuit pri-
vate if for any key-triple (sk, pk, evk) output by Gen(1λ, α), for all circuits C ∈ C
and all ci ∈ X , such that mi ← Dec(sk, ci), the two distributions on Z

D1 = Eval(evk, C, c1, . . . , cn)

and
D2 = Enc(pk,C(m1, . . . ,mn)),

both taken over the randomness of each algorithm, are perfectly, statistically or
computationally indistinguishable, respectively.

Why this definition implies that the circuit is private may not be immediately
clear. Essentially, it states that the output from the evaluation of a specific
circuit on ciphertexts looks like the output from the encryption of a plaintext
value v, generated in this case by the circuit and the corresponding plaintexts.
As v is just another plaintext (i.e. v = C(m1,m2, . . . ,mn)), it is difficult for
anyone to determine how it was generated (the level of difficulty is hierarchical
from perfect to computational).

3.2 Classifications

Not all homomorphic schemes have the same properties. This part of the paper
examines definitions that allow us to classify and distinguish between different
types of schemes, depending on what circuits they can evaluate.

13

Definition 7 (Somewhat Homomorphic). A C–evaluation scheme (Gen, Enc,
Eval, Dec) that has correct decryption and correct evaluation is called a some-
what homomorphic encryption scheme (SHE).

There is no requirement for compactness, so the ciphertexts can increase
substantially in length with each homomorphic operation. Also, the set C of
permitted circuits consists of some circuits; there is no requirement here as to
which circuits this must include.

Definition 8 (Levelled Homomorphic [15, Def. 3.6]). A C–evaluation scheme
(Gen, Enc, Eval, Dec) is called a levelled homomorphic scheme if it takes an
auxiliary input α = d to Gen which specifies the maximum depth of circuits
that can be evaluated. Further requirements are correctness, compactness and
that the length of the evaluation output does not depend on d.

Other than circuit depth, there is no restriction on C. If we require that C is
the set of all binary circuits with depth at most d, the scheme is called levelled
fully homomorphic.

The difference between somewhat and levelled homomorphic schemes is a
potential point of confusion. The depth of circuits which a somewhat homo-
morphic encryption can handle can be increased through parameter choice –
this usually means that the ciphertext size will increase with the depth of the
circuits allowed. For a levelled homomorphic encryption scheme, the maximum
depth is an input parameter and the length of the ciphertext does not depend
on it.

Remark 3. The parameter α was introduced in Definition 1 specifically to allow
specifying the maximum depth of circuit that can be evaluated. Thus, when we
later assume that α is polynomial in λ, this is justified because in all existing
schemes α = d, a constant. However, we aim to work with the most general
framework possible, so we also allow cases where α might have a different func-
tionality and be substantially larger.

Definition 9 (Fully Homomorphic [15, Def. 3.5]). A fully homomorphic en-
cryption scheme is a C–evaluation scheme (Gen, Enc, Eval, Dec) that is compact,
correct and where C is the set of all circuits.

This definition means that the scheme can evaluate any circuit of arbitrary
size, which does not need to be known when setting the parameters.

3.3 Evaluating in Stages

Sometimes we want to compute a result in two or more stages, where the results
from one stage could be used as input for a later stage. In this case, we want
to evaluate on ciphertexts that were output by Eval in addition to ciphertexts
that were output by Enc.

The definition of correct evaluation (Definition 3) only guarantees that the
algorithm Eval works when its input ciphertexts are in X , the set of fresh ci-
phertexts that can be output by the Enc algorithm. We want to study under

14

which conditions we can hope that the evaluation algorithm will work when
given evaluation outputs (we present implications in Section 4.2).

Evaluation in stages is known as i-hop homomorphic encryption ([47, Sec-
tion 2.2], [29, Section 1.4]), where i is either an integer or can be replaced by
“multi”,“poly” or ∞ (see Definitions 12, 13 and 14 below). We now define
computation in stages (also staged computation).

A computation Ci,n in i stages of width n is defined by a set of circuits
{Ck`} indexed by 1 ≤ k ≤ i, 1 ≤ ` ≤ n, where Ck` has kn inputs. Given initial
plaintexts m01,m02, . . . ,m0n, we compute

mk` = Ck`(m01,m02, . . . ,m0n, . . . ,mk−1,1, . . . ,mk−1,n)

for 1 ≤ k ≤ i and 1 ≤ ` ≤ n. The output of the staged computation after Eval
and Dec is mi1,mi2, . . . ,min. Denoting the initial plaintexts by ~m0 and the
output plaintexts by ~mi, we introduce the natural notation ~mi = Ci,n(~m0).

Let (pk, evk, sk) be a key triple output by Gen, and let c01, c02, . . . , c0n be
a sequence of ciphertexts from X . Compute the ciphertexts {ck`} for 1 ≤ k ≤
i, 1 ≤ ` ≤ n recursively by

ck` = Eval(evk, Ck`, c01, . . . , c0n, . . . , ck−1,1, . . . , ck−1,n).

The output of the encrypted staged computation is the sequence of ciphertexts
ci1, ci2, . . . , cin. Denoting the fresh ciphertexts by ~c0 and the ouput ciphertexts
by ~ci, we introduce the natural notation of Eval having multiple outputs

~ci = Eval(evk,Ci,n,~c0).

Remark 4. A slightly narrower view [29, 47] of computation in stages is that
the only ciphertext output by one stage can be input for the next stage. Since
it is normally considered possible to apply the identity function to a ciphertext,
this formulation is usually no weaker than our more general view.

Let ~c = (c1, . . . , cn) be a tuple of ciphertexts and ~m = (m1, . . . ,mn) be
a tuple of plaintexts such that under a secret key sk, Dec(sk, ck) = mk for
1 ≤ k ≤ n. We then introduce the natural notation

~m = Dec(sk,~c).

Definition 10 (i-Hop Correctness). Let pk, evk, sk be keys output by Gen(1λ),
and let Ci,n = {Ck`} be any staged computation where n is polynomial in λ
and ~c0 = (c01, . . . , c0n) in Xn. A C–evaluation scheme (Gen, Enc, Eval, Dec) is
i-hop correct if

Pr[Dec(sk,Eval(evk,Ci,n,~c0) = Ci,n(Dec(sk,~c0))] = 1− ε(λ),

where ε is a negligible function and the probability is taken over the coins of
the Eval algorithm invocations.

15

m01 m02Enc Enc

1st stage

2nd stage

EvalC11

EvalC12

EvalC21

EvalC22

c01 c02

c11 c12

c21 c22

Dec

Figure 2: Diagram of staged evaluation for i = 2 stages and n = 2 in- and
outputs. After encrypting the plaintexts, a subset of the resulting (fresh)
ciphertexts is used for the following Eval algorithms as input successively.
Therefore, this is the appropriate diagram for the formula ~c2 = (c21, c22) ←
Eval(evk,C2,2,~c0) = Eval (evk,C2,2, (Enc(pk,m01),Enc(pk,m02))). Since a cir-
cuit does not have to use all given inputs, the dotted arrows represent the
ignored inputs. Furthermore, the light shaded shapes belong to 1-hop and the
darker shaded shapes to 2-hop.

While previous definitions of i-hop (and multi-hop, see below) implicitly
use a construction like i-hop correctness, it was never clearly defined in the
literature. Additionally, we allow Eval to fail, although only with negligible
probability.

In Figure 2 staged evaluation is illustrated for i = 2 and n = 2, where each
invocation of Eval outputs n results, but not all of them must be used in the
next iteration of Eval which is indicated by a dotted arrow. Furthermore, Eval
may use i · n = 4 different circuits in the whole process.

Now we have defined i-hop correctness, we can define i-hop, multi-hop, poly-
hop and ∞-hop. Similar definitions of i-hop and multi-hop can be found in the
work of Gentry et al. [29, Section 1.4] and Rothblum [47]. The main difference

16

is that we allow inputs from each of the predecessor Eval algorithms as well as
fresh ciphertexts. The previous definitions allow only the output of the direct
predecessor Eval invocations as input.

Definition 11 (i-Hop, [29, 47]). Let i ∈ N. We say that a C–evaluation scheme
(Gen, Enc, Eval, Dec) is i-hop if j-hop correctness holds for all j with 1 ≤ j ≤ i.

Remark 5 (FHE and i-Hop). The relation between fully homomorphic and i-hop
is another possible source of confusion. One may expect that if it is possible to
evaluate an arbitrary circuit (fully homomorphic encryption), it would be pos-
sible to execute arbitrarily many circuits consecutively. This, however, is not
the case. Outputs of Eval might look very different from fresh ciphertexts and
there is no guarantee that they form valid inputs to Eval. For example, assume
we have a 1-hop fully homomorphic encryption scheme, a circuit C that takes
as input c1, . . . , cn and outputs c′1, . . . , c

′
v, and a circuit C ′ that takes as input

c1, . . . , cv and outputs c′1, . . . , c
′
w. If we run Eval(evk, C ′ ◦ C, c1, . . . , cn) (where

C ′◦C is the concatenation of the two circuits), this is certainly a valid operation,
because we are evaluating one circuit (not to be confused with staged compu-
tation). However, if we first run Eval(evk, C, c1, . . . , cn) to obtain c′1, . . . , c

′
v,

then attempting to run Eval(evk, C ′, c′1, . . . , c
′
v), is not supported by the 1-hop

scheme, because c′1, . . . , c
′
v will not be valid inputs. This observation is impor-

tant for applications where two separate entities compute on some encrypted
data, and the second entity evaluates the output of the first. In this scenario,
the second entity does not have access to the fresh ciphertexts and is forced
to operate on the output of the evaluation given by the first. This would be
impossible with a 1-hop scheme.

Instead of being bounded by an integer, the hops may be bounded by some
polynomial depending on λ which leads us to the next definition.

Definition 12 (Multi-Hop, [29, Sec. 1.4], [47]). Let p be some polynomial.
We say that a C–evaluation scheme (Gen, Enc, Eval, Dec) is multi-hop if j-hop
correctness holds for all j with 1 ≤ j ≤ p(λ).

Definition 13 (Poly-Hop). Let p be some polynomial and let α ∈ A. We say
that a C–evaluation scheme (Gen, Enc, Eval, Dec) is poly-hop if j-hop correctness
holds for all j with 1 ≤ j ≤ p(λ, α).

As far as we are aware, this is the first proposed definition of poly-hop. It
seems to be a natural extension to the existing definitions of i-hop and multi-hop.
This way, the auxiliary input may influence the number of keys and therefore
the number of possible evaluations.

Definition 14 (∞-Hop). We say that a C–evaluation scheme (Gen, Enc, Eval,
Dec) is ∞-hop if j-hop correctness holds for all j.

Again, as far as we know, ∞-hop was not yet mentioned in the literature.
Like poly-hop,∞-hop is a natural extension of the existing definitions. It allows
an unlimited number of hops. Hence, there are direct implications for FHE. See
Section 4 for further discussions on this topic.

17

Remark 6 (Hops and classifications). We are not requiring a fully homomorphic
scheme for the notion of hop correctness – the definition is applicable to any
homomorphic scheme of Section 3.2 (somewhat homomorphic, levelled homo-
morphic, levelled fully homomorphic and fully homomorphic).

Remark 7 (Poly-hop vs. multi-hop). What is the difference between poly-hop
and multi-hop? If you need a security parameter to output a public key, then
any bound on the security parameter is also a bound on the public key. This
makes sense if a user cannot increase the size of the public key independently
(or to some degree of independence) of the security parameter. This, however,
is allowed by Definition 1, as some form of auxiliary input to the key generation
algorithm. There is nothing stopping an auxiliary input defining the public key
size, independent of the security parameter. This relates to poly-hop because
in practice, levelled homomorphic schemes can be achieved by having several
key pairs with which one can perform the recrypt operation (see Section 5.1
for a more detailed explanation). This means the public key size increases
multiplicatively by this number of keys. Of course, if the number of key pairs
is polynomial in λ (or more generally, if α is polynomial in λ), poly-hop and
multi-hop are the same.

4 Implications

We now detail the implications of the definitions given in the previous section.
First we return to the issue of compactness and its two, seemingly separate,
definitions.

4.1 Consolidating compactness

As noted, there is a difference between Definition 4 and the definition of com-
pactness originally given by Gentry [24]. This section is devoted to reconciliation
of these two definitions of compactness. The definition presented by Gentry is
given below, and also the definition of compact evaluation, which is important
for Lemma 1.

Remark 8. Here, many results only hold if the auxiliary input to the key genera-
tion algorithm, α, is polynomially bounded by λ. For all meaningful applications
(and for all homomorphic encryption schemes known to date) this appears to
be the case, but we cannot formally guarantee it (see also Remark 7). Thus, we
state explicitly when we need this requirement for a statement to hold.

Definition 15 (G-Compactness [24, Def. 2.1.2]). A C–evaluation scheme is
G-compact if there is a polynomial f such that, for every value of the security
parameter λ, the decryption algorithm can be expressed as a circuit CD of size
at most f(λ).

Definition 16 (G-Compact Evaluation [24, Def. 2.1.3]). A C–evaluation scheme
(Gen, Enc, Eval, Dec) is said to G-compactly evaluate all permitted circuits in C
if the scheme is G-compact and is correct for all permitted circuits.

18

C–evaluation scheme

Perfect circuit privacy

∞-hop correctness

NAND∈ C

Correct evaluation

Correct decryption

Theorem
2

Theorem
4

Theorem
5

Corollary
1

Theorem
3

Fully homomorphic

Compactness

Statistical circuit privacy

∞-hop scheme

Multi-hop scheme

Figure 3: Overview of Theorem 2 through Theorem 5 and Corollary 1 and
their dependencies. White rectangles are definitions, gray rounded rectangles
are classifications, black shapes are hop schemes and light gray circles are the-
orems. Simple arrows pointing towards a theorem or corollary represent the
requirements for a theoreom/corollary while double arrows represent the impli-
cation.

Recall that the size of a circuit is just the total number of gates it has.
Picturing a circuit as a directed graph, this is the sum of all the vertices minus
the sum of the input vertices [37, §1.2, p.13]. It is not immediately clear that
this definition of compactness is the same as the definition we gave earlier.

Theorem 1. Let α be bounded by a polynomial in λ. A C–evaluation scheme
(Gen, Enc, Eval, Dec) G-compactly evaluates C if and only if the scheme com-
pactly evaluates C.

The proof can be found in Appendix A.

Theorem 2. A C–evaluation scheme (Gen, Enc, Eval, Dec) with perfect circuit
privacy implies compactness when α is polynomially bounded in λ.

The proof can be found in Appendix B.

4.2 FHE and Hop Results

We now present results relating to FHE schemes and hop correctness, assuming
that α is polynomially bounded by λ. Figure 3 shows a comprehensive overview
of these results, also including Theorem 2. The diagram is formulated as in
Figure 1, where there are two different kind of arrows. The simple black arrow
is a requirement, so for example Theorem 4 has the two requirements of perfect
circuit privacy and fully homomorphic. All of the requirements are needed for
each theorem. The second arrow type is double-lined, which represents the
implication of the theorem. As for Theorem 4, the given requirements yield an
infinity-hop scheme.

Theorem 3. A fully homomorphic encryption scheme (Gen, Enc, Eval, Dec)
that is statistically circuit private is multi-hop.

19

The proof can be found in Appendix C.
We now investigate the relationship between fully homomorphic and i-hop,

noting what properties a somewhat homomorphic encryption scheme needs to
be be fully. First, we examine under which conditions a fully homomorphic
scheme allows infinite stages of computation (∞-hop):

Theorem 4. A somewhat homomorphic encryption scheme (Gen, Enc, Eval,
Dec) which is perfect circuit private is ∞-hop.

Proof. Since the scheme has perfect circuit privacy, the outputs of Eval are
distributed identically to fresh encryptions. This means that they are of exactly
the same form (X = Y = Z) and decrypt correctly. So they are ciphertexts and
constitute a valid input to Eval again. This holds no matter how often we apply
evaluate, as the output is always of the same form as the input.

The following theorem considers the other direction – when an∞-hop scheme
is fully homomorphic.

Theorem 5. A somewhat homomorphic encryption scheme (Gen, Enc, Eval,
Dec) with NAND in C that is perfect circuit private and ∞-hop is fully homo-
morphic.

Proof. Since the scheme has perfect circuit privacy, it has compactness by The-
orem 2. Thus, all we need to show is that the scheme can evaluate any circuit.
Assume that this is not the case, so there exists a circuit C which the scheme
cannot correctly evaluate. But then we can express C as a circuit composed only
of NAND-gates. Since the scheme is ∞-hop and NAND ∈ C, we can correctly
evaluate each NAND-gate on the corresponding input, no matter what level of
evaluation iteration this input has. Thus, we have found a way to correctly
evaluate this circuit with the scheme, meaning C ∈ C. This is a contradiction
to our assumption and thus shows that the scheme is fully homomorphic.

Corollary 1. A somewhat homomorphic encryption scheme (Gen, Enc, Eval,
Dec) that is perfect circuit private and has NAND ∈ C is fully homomorphic.

Proof. By Theorem 2 and Theorem 4, then Theorem 5.

5 Existing schemes

In this section we briefly survey existing fully homomorphic encryption schemes.
Only limited steps towards full homomorphism were made before Gentry’s
breakthrough. Fellows and Koblitz’s Polly Cracker [20] is fully homomorphic ex-
cept that it lacks compactness. It was anyway not intended to be practical. The
Boneh-Goh-Nissim scheme [10] is compact, but can only handle a single multi-
plication. Obviously these schemes are not fully homomorphic by Definition 9,
or by contemporary treatments of FHE [24].

20

Table 1 lists various prominent fully homomorphic encryption schemes, start-
ing with Gentry’s 2009 scheme. For each scheme the table mentions the un-
derlying computational assumption (described below) and an indication of the
asymptotic or concrete runtime where available.

5.1 Bootstrapping and Alternatives

A key concept in the development of the first fully homomorphic scheme is
Gentry’s bootstrapping technique. Schemes based on Gentry’s blueprint are
noise-based, which means that the plaintext is hidden by noise which can be
removed by decryption. However, this noise increases with each homomorphic
evaluation, and once it exceeds a certain threshold, decryption will fail.

To overcome this problem, Gentry introduced the notion of recryption which
works by encrypting a ciphertext anew (so that it becomes doubly encrypted)
and then removing the inner encryption by homomorphically evaluating the
doubly encrypted plaintext and the encrypted decryption key using the decryp-
tion circuit. As long as the evaluation algorithm can handle the decryption
process plus one more gate, progress can be made in evaluating the circuit of
interest.

Definition 17 (Bootstrappable). A C–evaluation scheme is called bootstrap-
pable if it is able to homomorphically evaluate its own decryption circuit plus
one additional NAND gate.

This informal definition essentially captures the more precise one in the
literature [24]. Now the question is: Does publishing an encryption of the secret
key under its own public key impair security?

If we assume it is safe to publish the encryption of the secret key under its
corresponding public key, we achieve fully homomorphic encryption and even
i-hop [24, 52, 16, 48]. This assumption is called circular security. However, if
circular security does not hold then one possibility is to use a chain of public
key/secret key pairs, where the secret key is always encrypted under the next
public key. This allows suitable somewhat homomorphic schemes to become
levelled homomorphic, where the level depends on the number of key pairs.

An alternative way to achieve homomorphic encryption is due to Brakerski
et al. [14]. The challenge is still how to manage the noise, but this time it is
achieved by reducing the modulus of the ciphertext space along with the noise.
A security parameter that dictates how small the modulus can be gives a bound
on the number of levels. This line of work yields native levelled homomorphic
schemes [15, 14, 46]. However, authors usually note that one can apply boot-
strapping as an optimisation, as well as a means to get to a fully homomorphic
i-hop scheme, again assuming circular security.

5.2 Security Assumptions

We now give a brief overview of the problems that existing schemes are based
on. The formal definitions are often taken directly from the corresponding

21

Scheme

Under-
lying
Prob-
lems

Asymptotic Runtime Concrete Runtime

Gentry: A Fully
Homomorphic Encryption
Scheme [24]

BDDP &
SSSP

O(λ3.5) per gate for ciphertext
refreshing [50]

-

van Dijk, Gentry, Halevi,
Vaikuntanathan: FHE over
the Integers [52]

AGCD &
SSSP

Public key size: O(λ10), no
gate cost given

-

Coron, Naccache, Tibouchi:
Public Key Compression
and Modulus Switching for
FHE over the Integers [18]

DAGCD
& SSSP

Public key size: O(λ5 log(λ)),
no gate cost given

Recryption takes about 11
minutes.

Brakerski, Vaikuntanathan:
Efficient FHE from
(standard) LWE [15]

DLWE

Evaluation key size:
O(λ2C log(λ)) where C is a
very large parameter that
ensures bootstrappability.

-

Brakerski, Vaikuntanathan:
FHE from Ring-LWE and
Security for Key Dependent
Messages [16]

PLWE
Very cheap key generation,
unknown for bootstrapping

-

Brakerski, Gentry,
Vaikuntanathan: FHE
without Bootstrapping [14]

RLWE

Per-gate computation overhead
O(log λ · λ · d3) (where d is the
depth of the circuit) without
bootstrapping, O(log λ · λ2)
with bootstrapping.

In [28]: 36 hours for an AES
encryption on a supercomputer

Smart, Vercauteren: FHE
with Relatively Small Key
and Ciphertext Sizes [48]

PCP &
SSSP

Key generation is O(log n · n2.5)
where n is the dimension of the
lattice, according to [27]

Key generation took several
hours even for small
parameters which do not
deliver a fully homomorphic
scheme, for larger parameters
the keys could not be
generated

Rohloff, Cousins: A Scalable
Implementation of Fully
Homomorphic Encryption
Built on NTRU [46]

SVP &
RLWE

-
Recryption at 275 seconds on
20 cores with 64-bit security

Halevi, Shoup:
Bootstrapping for HElib [34]

RLWE -

Vectors of 1024 elements from
GF(216) was recrypted in 5.5
minutes at security level ≈ 76,
single CPU core.

Gentry, Halevi:
Implementing Gentry’s
Fully-Homomorphic
Encryption Scheme [27]

SVP &
BDD

Key generation is O(log n · n1.5)
where n is the dimension of the
lattice

Bootstrapping: From 30 s for
small setting, to 30 min for
large setting.

Table 1: Selected fully homomorphic schemes and their underlying security
problems. The authors often provide different runtime analyses for their
schemes, so the figures may not be comparable. The concrete experiments
have been run by the respective authors on widely different hardware, but still
give an indication. Blank cells are, to the best of our knowledge, not publicly
known.

22

papers, but simplified by omitting parameters whenever possible. Many of these
problems were studied by Ajtai [1].

Most of the problems below have reductions to either the Shortest Vector
Problem (SVP) or the Closest Vector Problem (CVP), which informally requires
a player to provide a shortest possible vector in the lattice and the vector closest
to a point respectively. These problems have decisional variants as well. For
instance, GapSVPγ is the problem of proving that there is a vector shorter than
1, or that all vectors are longer than γ. In addition, we mention the shortest
independent vector problem (SIVP), which is essentially to compute a lattice
basis with only short vectors.

We first consider the Learning With Errors problem family. All of these
problems exist in both search and decision variants, just like the computational
Diffie-Hellman and decisional Diffie-Hellman problems.

LWE: [44] The Learning With Errors problem is a generalization of the
“learning parity with noise” problem.

For an integer q = q(n) and an error distibution χ = χ(n) on Zq, define the
distribution As,χ for some s ∈ Znq as the distribution obtained by choosing a
vector a ← Znq uniformly at random and a noise term e ← χ and outputting
(a, 〈a, s〉 + e) ∈ Znq × Zq. Then the (n,m, q, χ)-LWE problem is to output s,
given m independent samples from As,χ.

The decisional version is to distinguish between m samples chosen according
to As,χ for some uniformly random s and m samples from the uniform distri-
bution over Znq × Zq.

PLWE: [15] The Polynomial LWE problem is a variant of the Ring Learning
With Errors Problem (RLWE) and is closely related to DLWE.

For a parameter λ, let f(x) ∈ Z[x] be a polynomial of degree n = n(λ), and
let q = q(λ) ∈ Z be a prime. Consider the rings R = Z[x]/ 〈f(x)〉 and Rq =
R/qR, and let χ denote the Gaussian distribution over R. Then the PLWEf,q,χ
assumption states that for all λ and for all l = poly(λ), the two distributions
D1 = {(ai, ai · s + ei)} and D2 = {(ai, ui)}, i = 1, . . . , l, are computationally
indistinguishable. Here, s, ai and ui are uniform in Rq and the ei are sampled
from χ.

RLWE: [42] This is the same problem as PLWE where f(x) = xd + 1 and
d = d(λ) is a power of 2.

There also exists a variant with augmented data in the error term, named
Augmented LWE. For certain parameters, A-LWE is as hard as LWE [7].

There exists a quantum reduction from LWE to SVP and SIVP by Regev
[44]. It is also known that the search and decision variants are equally hard [40].

SSSP: [24] This is called the Sparse Subset Sum Problem. In his original
work, Gentry “squashed the decryption circuit”, which reduces the size of the
decryption circuit such that it is in the set of circuits that the scheme can
homomorphically evaluate. Idea: the secret key is written as the sum of some
elements, and these elements are “hidden” in a much larger set of elements. This
large set becomes part of the public key, and the secret key includes an indicator
vector of which elements belong to the smaller set (i.e., sum up to the secret
key). This gives the adversary information about the secret key, so we must

23

ensure that it cannot be extracted from the public key. SSSP formalizes this
requirement. Since all papers that follow Gentry’s blueprint use this squashing
technique, the SSSP problem appears several times in the table. It is formally
defined as follows.

Let S and T be two natural numbers with S � T , and let q be a prime
number. The challenger sets b ← {0, 1}. If b = 0, it generates a set τ with
cardinality |τ | = T of uniformly random integers in [−q/2, q/2] such that there
exists a subset of cardinality S whose elements sum to 0 mod q. If b = 1, the
set τ is generated without this requirement. The challenge is to guess b.

BDD: The Bounded Distance Decoding problem is identical to the Closest
Vector Problem, except that for BDD, there is a guarantee that the vector t is
very close to the lattice. The Closest Vector Problem is a problem from lattice
theory that informally asks for the point on a lattice that is closest to a given
vector t ∈ Rn.

There exists quantum reductions proving that GapSVP, BDD and SIVP
are equally hard, as well as an equivalence between SVP and CVP [44]. An
equivalence between SVIP and BDD, however, remains an open problem [41].

AGCD: [35] The Approximate Greatest Common Divisor problem is the
task of given near multiples of a number p, to find that number p. Given
polynomially many numbers of the form xi = qi ·p+ri where ri is much smaller
than qi · p, output p.

The decisional variant includes an an additional integer z = x+ b · α. Here,
x is of the same form as the xi’s, b is either 0 or 1, and α is from an appropriate
interval depending on the parameters. The task is to find b.

PCP: The Polynomial Coset Problem [48] is a decisional problem that can
informally be described as having to decide whether a given value is the evalua-
tion of a small polynomial mod p, or randomly sampled from Fp. More formally,
we can describe the problem in a challenge scenario:

The challenger first selects b← {0, 1} randomly and runs the key generation
algorithm of the scheme, which outputs a prime p and a value α ∈ Fp, derived
under some constraints which we will not go into here. If b = 0, the challenger
randomly chooses a polynomial R(x) with coefficients in a certain range and
computes r = R(α) mod p. If b = 1, the challenger chooses r ← Fp randomly.
The problem now is: Given (p, α, r), decide whether b = 0 or b = 1.

Notably, this problem differs from other problems in that it is defined with
respect to a corresponding scheme, making it less natural and harder to ex-
plaining in outline. The PCP problem is related to the Ideal Coset Problem as
defined by Gentry [24].

5.3 Implementations

It is fair to say that FHE mostly exists on paper. However, there also exist
implementations, as suggested in the above table. The foremost among those is
Halevi and Shoup’s HElib [34], which implements the BGV scheme [14] along
with optimisations such as ciphertext packing [49], which allows several plain-
texts to be encoded in a single ciphertext. In 2014, bootstrapping was intro-

24

duced to the library [34]. However, at the time of writing the secure Gaussian
randomness distribution is not yet implemented, hence the implementation is
insecure.

The library was used by the IBM, Microsoft and Stanford/MIT teams at the
2015 iDASH Secure Genome Analysis Contest [38].

6 Conclusion

In this paper we have simplified and structured the jungle of definitions in the
field of homomorphic encryption. We investigated whether existing applications
need homomorphic encryption as a solution to their problems, both in theory
and in practice. Furthermore, we reviewed the current state of the art and
presented it systematically.

There is still much work to be done. Current schemes have some way to go to
be practical in daily applications. Thus we can expect continuing focus on mak-
ing existing schemes more efficient and on constructing new efficient schemes.
In fact, given that several applications do not require fully homomorphic en-
cryption, an important and promising line of research is to identify applications
which would benefit from appropriate homomorphic encryption schemes and
afterwards tailor schemes for respective use cases.

Then there is the more theoretical line of work. While a framework for
group homomorphic encryption schemes has been presented [4] and to some ex-
tent for FHE [3], an equivalent result is lacking for fully (or at least somewhat)
homomorphic encryption schemes in full generality. As explained in Section 5,
all secure schemes which go beyond simple group-homomorphic operations are
noise-based and one of the main challenges is to control the noise. In fact this
is often the reason why fully homomorphic encryption schemes are consider-
ably less efficient. A unified view on somewhat/fully homomorphic encryption
schemes may be very useful in gaining a better understanding of the expected
security and on the possible design space.

All in all, the topic of FHE is an interesting and challenging research area
with great potential, and there is much to be done. However, if research (specif-
ically the advancement of efficiency) continues at its current pace, we are con-
fident that real-world applications may be right around the corner.

Acknowledgements

This work was supported by the German Academic Exchange Service (DAAD),
project number 57068907.

References

[1] Miklós Ajtai. Generating hard instances of lattice problems (extended ab-
stract). In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual

25

ACM Symposium on the Theory of Computing, pages 99–108. ACM, 1996.

[2] Joël Alwen, Manuel Barbosa, Pooya Farshim, Rosario Gennaro, S. Dov
Gordon, Stefano Tessaro, and David A. Wilson. On the relationship be-
tween functional encryption, obfuscation, and fully homomorphic encryp-
tion. In Martijn Stam, editor, Cryptography and Coding – 14th IMA In-
ternational Conference, IMACC 2013, volume 8308 of Lecture Notes in
Computer Science, pages 65–84. Springer, 2013.

[3] Frederik Armknecht, Stefan Katzenbeisser, and Andreas Peter. Shift-type
homomorphic encryption and its application to fully homomorphic encryp-
tion. In Aikaterini Mitrokotsa and Serge Vaudenay, editors, Progress in
Cryptology – AFRICACRYPT 2012, volume 7374 of Lecture Notes in Com-
puter Science, pages 234–251. Springer, 2012.

[4] Frederik Armknecht, Stefan Katzenbeisser, and Andreas Peter. Group ho-
momorphic encryption: characterizations, impossibility results, and appli-
cations. Des. Codes Cryptography, 67(2):209–232, 2013.

[5] Frederik Armknecht and Thorsten Strufe. An efficient distributed privacy-
preserving recommendation system. In The 10th IFIP Annual Mediter-
ranean Ad Hoc Networking Workshop, Med-Hoc-Net 2011, pages 65–70.
IEEE, 2011.

[6] Sanjeev Arora and Boaz Barak. Computational complexity: A modern
approach (draft). Accessed 27 Oct 2014, 2007.

[7] Rachid El Bansarkhani, Özgür Dagdelen, and Johannes A. Buchmann.
Augmented learning with errors: The untapped potential of the error term.
In Rainer Böhme and Tatsuaki Okamoto, editors, Financial Cryptography
and Data Security, FC 2015, volume 8975 of Lecture Notes in Computer
Science, pages 333–352. Springer, 2015.

[8] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating
programs. In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 1–18. Springer,
2001.

[9] Dan Boneh and David Mandell Freeman. Homomorphic signatures for poly-
nomial functions. In Kenneth G. Paterson, editor, Advances in Cryptology
– EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science,
pages 149–168. Springer, 2011.

[10] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on
ciphertexts. In Joe Kilian, editor, Theory of Cryptography, Second Theory
of Cryptography Conference, TCC 2005, volume 3378 of Lecture Notes in
Computer Science, pages 325–341. Springer, 2005.

26

[11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Def-
initions and challenges. In Yuval Ishai, editor, Theory of Cryptography –
8th Theory of Cryptography Conference, TCC 2011, volume 6597 of Lecture
Notes in Computer Science, pages 253–273. Springer, 2011.

[12] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: a new
vision for public-key cryptography. Commun. ACM, 55(11):56–64, 2012.

[13] Christoph Bösch, Andreas Peter, Pieter H. Hartel, and Willem Jonker.
SOFIR: securely outsourced forensic image recognition. In IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, ICASSP
2014, pages 2694–2698. IEEE, 2014.

[14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homo-
morphic encryption without bootstrapping. Electronic Colloquium on Com-
putational Complexity (ECCC), 18:111, 2011.

[15] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic
encryption from (standard) LWE. In Rafail Ostrovsky, editor, IEEE 52nd
Annual Symposium on Foundations of Computer Science, FOCS 2011,
pages 97–106. IEEE, 2011.

[16] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryp-
tion from ring-LWE and security for key dependent messages. In Phillip
Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume 6841
of Lecture Notes in Computer Science, pages 505–524. Springer, 2011.

[17] Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved dele-
gation of computation using fully homomorphic encryption. In Tal Rabin,
editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture
Notes in Computer Science, pages 483–501. Springer, 2010.

[18] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key
compression and modulus switching for fully homomorphic encryption over
the integers. In David Pointcheval and Thomas Johansson, editors, Ad-
vances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes
in Computer Science, pages 446–464. Springer, 2012.

[19] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Reihaneh
Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO
2012, volume 7417 of Lecture Notes in Computer Science, pages 643–662.
Springer, 2012.

[20] Michael Fellows and Neal Koblitz. Combinatorial cryptosystems galore! In
Finite fields: theory, applications, and algorithms, volume 168 of Contemp.
Math., pages 51–61. Amer. Math. Soc., Providence, RI, 1994.

27

[21] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai,
and Brent Waters. Candidate indistinguishability obfuscation and func-
tional encryption for all circuits. In 54th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2013, pages 40–49. IEEE Com-
puter Society, 2013.

[22] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive veri-
fiable computing: Outsourcing computation to untrusted workers. In Tal
Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of
Lecture Notes in Computer Science, pages 465–482. Springer, 2010.

[23] Rosario Gennaro and Daniel Wichs. Fully homomorphic message authenti-
cators. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology
– ASIACRYPT 2013, volume 8270 of Lecture Notes in Computer Science,
pages 301–320. Springer, 2013.

[24] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stan-
ford University, 2009. crypto.stanford.edu/craig.

[25] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Michael Mitzenmacher, editor, Proceedings of the 41st Annual ACM Sym-
posium on Theory of Computing, STOC 2009, pages 169–178. ACM, 2009.

[26] Craig Gentry. Computing on the edge of chaos: Structure and random-
ness in encrypted computation. Electronic Colloquium on Computational
Complexity (ECCC), 21:106, 2014.

[27] Craig Gentry and Shai Halevi. Implementing Gentry’s fully-homomorphic
encryption scheme. In Kenneth G. Paterson, editor, Advances in Cryptology
– EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science,
pages 129–148. Springer, 2011.

[28] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation
of the AES circuit. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in
Computer Science, pages 850–867. Springer, 2012.

[29] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i -hop homomorphic
encryption and rerandomizable Yao circuits. In Tal Rabin, editor, Advances
in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in Computer
Science, pages 155–172. Springer, 2010.

[30] Oded Goldreich. Introduction to complexity theory, online lecture notes.
Accessed 27 Oct 2014, 1999.

[31] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikun-
tanathan, and Nickolai Zeldovich. How to run Turing machines on en-
crypted data. In Ran Canetti and Juan A. Garay, editors, Advances in
Cryptology – CRYPTO 2013, volume 8043 of Lecture Notes in Computer
Science, pages 536–553. Springer, 2013.

28

[32] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In
Salil P. Vadhan, editor, Theory of Cryptography, 4th Theory of Cryptog-
raphy Conference, TCC 2007, volume 4392 of Lecture Notes in Computer
Science, pages 194–213. Springer, 2007.

[33] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully
homomorphic signatures from standard lattices. In Rocco A. Servedio and
Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing, STOC 2015, pages 469–477. ACM,
2015.

[34] Shai Halevi and Victor Shoup. Bootstrapping for helib. In Elisabeth Os-
wald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT
2015, volume 9056 of Lecture Notes in Computer Science, pages 641–670.
Springer, 2015.

[35] Nick Howgrave-Graham. Approximate integer common divisors. In
Joseph H. Silverman, editor, Cryptography and Lattices, International Con-
ference, CaLC 2001, volume 2146 of Lecture Notes in Computer Science,
pages 51–66. Springer, 2001.

[36] Arjan Jeckmans, Andreas Peter, and Pieter H. Hartel. Efficient privacy-
enhanced familiarity-based recommender system. In Jason Crampton et al.,
editors, Computer Security – ESORICS 2013, volume 8134 of Lecture Notes
in Computer Science, pages 400–417. Springer, 2013.

[37] Stasys Jukna. Boolean Function Complexity – Advances and Frontiers,
volume 27 of Algorithms and combinatorics. Springer, 2012.

[38] Kristin Lauter. Practical applications of homomorphic encryption, 2015.

[39] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-
fly multiparty computation on the cloud via multikey fully homomorphic
encryption. In Howard J. Karloff and Toniann Pitassi, editors, Proceedings
of the 44th Symposium on Theory of Computing Conference, STOC 2012,
pages 1219–1234. ACM, 2012.

[40] Vadim Lyubashevsky. Search to decision reduction for the learning with
errors over rings problem. In 2011 IEEE Information Theory Workshop,
ITW 2011, pages 410–414. IEEE, 2011.

[41] Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decod-
ing, unique shortest vectors, and the minimum distance problem. In Shai
Halevi, editor, Advances in Cryptology – CRYPTO 2009, volume 5677 of
Lecture Notes in Computer Science, pages 577–594. Springer, 2009.

[42] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Henri Gilbert, editor, Advances in Cryp-
tology – EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer
Science, pages 1–23. Springer, 2010.

29

[43] Michael Naehrig, Kristin E. Lauter, and Vinod Vaikuntanathan. Can ho-
momorphic encryption be practical? In Christian Cachin and Thomas
Ristenpart, editors, Proceedings of the 3rd ACM Cloud Computing Secu-
rity Workshop, CCSW, pages 113–124. ACM, 2011.

[44] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, Proceedings
of the 37th Annual ACM Symposium on Theory of Computing, pages 84–93.
ACM, 2005.

[45] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy
homomorphisms. Foundations of Secure Computation, Academia Press,
pages 169–179, 1978.

[46] Kurt Rohloff and David Bruce Cousins. A scalable implementation of fully
homomorphic encryption built on NTRU. In Rainer Böhme et al., ed-
itors, Financial Cryptography and Data Security – FC 2014 Workshops,
BITCOIN and WAHC 2014, volume 8438 of Lecture Notes in Computer
Science, pages 221–234. Springer, 2014.

[47] Ron Rothblum. Homomorphic encryption: From private-key to public-key.
In Yuval Ishai, editor, Theory of Cryptography – 8th Theory of Cryptogra-
phy Conference, TCC, volume 6597 of Lecture Notes in Computer Science,
pages 219–234. Springer, 2011.

[48] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption
with relatively small key and ciphertext sizes. In Phong Q. Nguyen and
David Pointcheval, editors, Public Key Cryptography – PKC 2010, volume
6056 of Lecture Notes in Computer Science, pages 420–443. Springer, 2010.

[49] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD oper-
ations. Des. Codes Cryptography, 71(1):57–81, 2014.

[50] Damien Stehlé and Ron Steinfeld. Faster fully homomorphic encryption. In
Masayuki Abe, editor, Advances in Cryptology – ASIACRYPT 2010, vol-
ume 6477 of Lecture Notes in Computer Science, pages 377–394. Springer,
2010.

[51] Top Threats Working Group. The notorious nine: Cloud computing top
threats in 2013. Report, Cloud Security Alliance, February 2013. Accessed
7 Apr 2015.

[52] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
Fully homomorphic encryption over the integers. In Henri Gilbert, edi-
tor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture
Notes in Computer Science, pages 24–43. Springer, 2010.

[53] Marten van Dijk and Ari Juels. On the impossibility of cryptography alone
for privacy-preserving cloud computing. In Wietse Venema, editor, 5th

30

USENIX Workshop on Hot Topics in Security, HotSec’10. USENIX Asso-
ciation, 2010.

[54] Zhiqiang Yang et al. Privacy-preserving classification of customer data
without loss of accuracy. In Hillol Kargupta et al., editors, Proceedings
of the 2005 SIAM International Conference on Data Mining, SDM 2005,
pages 92–102. SIAM, 2005.

A Proof of Theorem 1

We prove Theorem 1 with the following lemmas.

Lemma 1. A scheme with G-compactness and correctness is compact.

This lemma holds only when we assume correct decryption and correct eval-
uation. To understand why we must have correctness, consider G-compactness
without it. In this case, we have a decryption circuit of polynomial size but it
does not have to actually decrypt. This means we could form a trivial decryp-
tion circuit that takes any Eval output, trims the bits to a specified maximum
size and runs the decryption circuit on that. Obviously, this would not bound
the output of Eval, so G-compactness without correctness does not imply com-
pactness.

Proof. Given the security parameter λ, we can find a decryption circuit with
size at most p(λ). As each gate takes at most 2 inputs, the bound on the
number of inputs to the circuit is less or equal to 2p(λ) = q(λ) where q is a
polynomial.1 This bound on the input length means that the output from the
Eval algorithm must output a ciphertext less than q(λ) bits in length. Otherwise,
we would be unable to run the decryption algorithm correctly, contradicting our
assumption. Noting that q(λ) is a bound independent of the size of the circuit
being evaluated, this gives us compactness.

Lemma 2. A scheme with compactness and correctness is G-compact when α
is polynomially bounded by λ.

Proving this lemma relies on results from complexity theory, allowing us to
construct a polynomially sized circuit from a polynomial algorithm. For details
on the relationship between algorithm running time and circuit size see Gentry
[26, §2.1 Circuits], Goldreich [30, Ch. 2, Ch. 20 §1.2] or Arora & Barak [6, Ch.
6].

Proof. All outputs of Eval are no more than b(λ) bits long, meaning input to
the decryption algorithm after evaluation is at most b(λ) bits in length. Eval is
a poly-time algorithm, and so its running time is bounded polynomially by the
length of its input.

1Any circuit where each gate takes n inputs (for some bounded n) can be constructed as
a circuit with gates taking at maximum two inputs, with only a constant factor increase in
size. [30, §1.2]

31

The algorithm Enc also has a polynomial bound on the length of its output.
Firstly note, the number of outputs from an algorithm cannot be greater than
the algorithm running time. Next, we know Enc is a poly-time algorithm tak-
ing two inputs, pk and m ∈ P, where pk is an output from Gen, a poly-time
algorithm taking the input parameters λ and α = α(λ). P is described in pk.
Now, the running time of Enc is bounded by some polynomial on the input
parameters, themselves bounded polynomially by the input parameter λ. Thus,
the output from Enc is bounded by a polynomial, a(λ) say. Since sk is again
an output of Gen, we can also bound its length by a polynomial c(λ). Taking
d(λ) = max{a(λ), b(λ)}, which is also a polynomial in λ, we can define v = d+c.
Clearly v is a polynomial in λ and bounds the size of the inputs to Dec. Thus,
Dec has a running time of p(v(λ)) for some polynomial p.

Using the results cited above, we can now construct a decryption circuit
that replicates the algorithm, where the circuit size will be some polynomial q
on the running time of the algorithm. Thus the size of the decryption circuit
is q(p(v(λ))), which is a polynomial, independent of C. This completes the
proof.

B Proof of Theorem 2

We prove Theorem 2 with the following lemmas.

Lemma 3. A C–evaluation scheme (Gen, Enc, Eval, Dec) with perfect circuit
privacy implies X = Y.

Lemma 4. A C–evaluation scheme (Gen, Enc, Eval, Dec) with X = Y implies
compactness when α is polynomially bounded in λ.

Recall that X is the set of all possible outputs of the encryption algorithm
and Y is the set of all possible outputs of the evaluation algorithm.

When we are dealing with perfect circuit privacy, perfect indistinguishability
means that

|Pr[Enc(pk,C(Dec(sk, c1), . . . ,Dec(sk, cn))) = x]

− Pr[Eval(evk, C, c1, . . . , cn) = x]| = 0

holds for every key tuple (pk, sk, evk) output by Gen(1λ, α), for all ci ∈ X and
all C ∈ C.

Proof of Lemma 3. Y ⊆ X :
Assume Y * X , then there exists a ∈ Y such that a /∈ X . Hence a is a

possible output of Eval with probability p > 0, but is not a possible output of
Enc. This means that for some ci ∈ X , and some C ∈ C

|Pr[Enc(pk,C(Dec(sk, c1), . . . ,Dec(sk, cn))) = a]

− Pr[Eval(evk, C, c1, . . . , cn) = a]| = |0− p| = p > 0,

32

which is a contradiction to perfect circuit privacy.
For X ⊆ Y, we use the strategy from above. So X ⊆ Y and Y ⊆ X , hence

X = Y.

Proof of Lemma 4. If X = Y then all outputs of Eval are also outputs of Enc.
Thus, by the argument in Lemma 1 on the length of outputs of Enc,

length(c) ≤ a(λ)

for some polynomial a for all fresh ciphertexts c, where λ is the input parameter.
Hence, all evaluation outputs are bounded by some polynomial on the input
parameter.

C Proof of Theorem 3

Proof. We first show that the probability that the evaluation algorithm outputs
a ciphertext that is not fresh or does not decrypt correctly is negligible. The
result then follows from the structure of a computation in stages.

Since the scheme is fully homomorphic, there is a negligible function ε′ such
that if pk, evk, sk have been output by Gen(1λ, α), then for any circuit C ∈ C
and ciphertexts c1, c2, . . . , cn ∈ X , we have

Pr[Dec(sk,Eval(evk, C, c1, . . . , cn)) =

C(Dec(sk, c1), . . . ,Dec(sk, cn))] = 1− ε′(λ).

Since the scheme has statistical circuit privacy, there is a negligible function
ε′′ such that if pk, evk, sk have been output by Gen(1λ, α), then for any circuit
C ∈ C and ciphertexts c1, c2, . . . , cn ∈ X , we have

∆ =
∑
y∈Z
|Pr[Enc(pk,C(Dec(sk, c1), . . . ,Dec(sk, cn))) = y]

− Pr[Eval(evk, C, c1, . . . , cn) = y]| ≤ ε′′(λ).

Since Enc will never output ciphertexts in Z \ X , we have

Pr[Eval(evk, C, c1, . . . , cn) ∈ X]

≥ 1−
∑

y∈Z\X

Pr[Eval(evk, C, c1, . . . , cn) = y]

≥ 1−∆ ≥ 1− ε′′(λ).

It is then clear that there is a negligible function ε such that the probability
for an evaluation to be correct and the resulting ciphertext is in X is at least
1− ε(λ).

Suppose pk, evk, sk have been output by Gen(1λ, α), that Ci,n is a compu-
tation in i stages of width n and that c01, c02, . . . , c0n ∈ X . We are interested
in the probability

Pr[Dec(sk,Eval(evk,Ci,n,~c0)) = Ci,n(Dec(sk,~c0))].

33

Let Ej be the event that after the jth stage, all of the ciphertexts computed
so far are in X and decrypt to the correct value. It is clear that Pr[Ei] is no
greater than the probability we are interested in. Since different executions of
Eval are independent, we have:

Pr[Ej] ≥ Pr[Ej | Ej−1] Pr[Ej−1] ≥ (1− ε(λ))n Pr[Ej−1].

It quickly follows that
Pr[Ei] ≥ (1− ε(λ))in.

To conclude the proof, we must show that 1− (1− ε(λ))in is negligible when
in is polynomial in λ. For simplicity, we will write ε instead of ε(λ) and show
that 1− (1− ε)k is negligible when k is polynomial in λ.

We will show this by induction:

1. k = 1 : 1− (1− ε)1 = ε, which is negligible by definition.

2. Now let µ := 1− (1− ε)k be negligible. Then we have:

1− (1− ε)k+1 = 1− (1− ε)k+1 − µ+ µ
= 1− (1− ε)k+1 − (1− (1− ε)k) + µ
= (1− ε)k − (1− ε)k+1 + µ
= (1− ε)k · (1− (1− ε)) + µ
= (1− ε)k · (−ε) + µ
This shows that by increasing the exponent from k to k + 1, we get an
increase of (1− ε)k · (−ε). If we can show that this increase is negligible,
we have completed our proof. We again show this by induction:

(a) k = 1 : (1− ε) · (−ε) = ε2 − ε. Noting that
|ε2 − ε| < ε and ε negligible, the claim holds for k = 1.

(b) Let α := (1− ε)k · (−ε) be negligible. Then we have:

(1− ε)k+1 · (−ε) = (1− ε) · (1− ε)k · (−ε)
= (1− ε) · α < α,
so for the case of k + 1 it is also negligible.

3. Thus, we have shown that we start out with something negligible and add
something negligible in each step. So, as long as we take polynomially
many steps, the result will always also be negligible.

34

