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ABSTRACT
Modern FPGAs offer various new features for enhanced re-
configurability and better performance. One of such feature
is a dynamically Reconfigurable LUT (RLUT) whose con-
tent can be updated internally, even during run-time. There
are many scenarios like pattern matching where this feature
has been shown to enhance performance of the system. In
this paper, we study RLUT in the context of secure applica-
tions. Next, we design several case-studies to apply this fea-
ture on security critical scenarios. These case-studies vary
from destructive scenarios like stealthy hardware Trojans to
constructive scenarios like implementation of secret ciphers
with custom Sboxes and masking countermeasure.

1. INTRODUCTION
Field Programmable Gate Arrays (FPGAs) have had a

significant impact on the semiconductor market in recent
years. FPGAs have evolved a long way from a mere array
of few thousand programmable look-up tables (LUTs) to
multi-million LUTs. Moreover, modern FPGAs come with
several on-chip features like high-density block memories,
DSP cores, PLLs, etc. These features coupled with their core
advantage of reconfigurability and low-time to market have
made FPGA an integral part of the semiconductor industry.
FPGAs turn out to be a very economical solution in low
to medium scale markets like defense, space, automotive,
medical, etc.

The key parameters for FPGA manufacturers still remain
area, performance and power. However, during these recent
years, given the critical nature of key markets like defense,
space, etc., FPGA manufacturers have started considering
security as the fourth parameter. Most recent FPGAs sup-
port bit-stream protection by authentication and encryp-
tion schemes. Other security features like tamper resistance,
blocking bit-stream read-back, temperature/voltage sensing,
etc. are also available.
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Apart from the built-in security features, designers can
use FPGA primitives and constraints to implement their
own designs in a secure manner. In [1], authors show sev-
eral side-channel countermeasures which could be realized
in FPGA to protect one design. Another work [2] demon-
strates the efficient use of block RAMs to implement com-
plex countermeasures like masking and dual-rail logic. DSPs
in FPGAs have also been widely used to design public-key
cryptographic algorithms like ECC [3, 4] and other post-
quantum algorithms. Moreover, papers like [5] have used
FPGA constraints like KEEP, Lock PINS or language like
XDL to design efficient physical countermeasures.

Another feature which has received very little attention
is the reconfigurable LUT (RLUT). As the name suggests,
this LUT can be reconfigured during the operation phase to
change the input-output mapping of the LUT. Unlike dy-
namic reconfiguration, a RLUT does not need any external
link and can be totally reconfigured on chip. To the best
of our knowledge, RLUTs have found relevant use in pat-
tern matching and filter applications [6]. In this paper, we
study RLUT and deploy it in security related applications.
We propose several industry-relevant applications of RLUT
both of constructive and destructive nature. For example,
an RLUT can be easily (ab)used by an FPGA IP designer to
insert a hardware Trojan. On the other hand, using RLUT,
a designer can provide several enhanced features like pro-
gramming secret data on client-side.

The rest of the paper is organized as follows: Sec. 2 de-
scribes the rationale of an RLUT and discusses its advan-
tages and disadvantages. Thereafter several destructive and
constructive applications of RLUT are demonstrated in Sec. 3
and Sec. 4 respectively. Finally conclusions are drawn in
Sec. 5.

2. RATIONALE OF THE RLUT
RLUT is a feature which is essentially known to be found

in Xilinx FPGAs. A Xilinx RLUT can be inferred into a
design by using a primitive cell called CFGLUT5 from its
library. This primitive allows to implement a 5-input LUT
with a single output whose configuration can be changed.
CFGLUT5 was first introduced in Virtex-5 and Spartan-6
families of Xilinx FPGAs. As we will show later in this
section, the working principle of CFGLUT is similar to the
shift register or the more popularly known SRL primitives.
Moreover, some older families of Xilinx which do not sup-
port CFGLUT5 as a primitive, can still implement RLUT



using the SRL16 primitive. In the following, for sake of
demonstration, we stick to the CFGLUT5 primitives. Nev-
ertheless the results should directly apply to its alternatives
as well.

As stated earlier, a RLUT can be implemented in Virtex-5
FPGAs using a CFGLUT5 primitive. The basic block di-
agram of CFGLUT5 is shown in Fig. 1. It is 5-input and
a 1-output LUT. Alternatively, a CFGLUT5 can also be
modeled as a 4-input and 2-output function. The main fea-
ture of CFGLUT5 is that it can be configured dynamically
during the run-time. Every LUT is loaded with a INIT
value, which actually represents the truth table of the func-
tion implemented on that LUT. A CFGLUT5 allows the
user to change the INIT value at the run-time, thus giving
the user power of dynamic reconfiguration internally. This
reconfiguration is performed using the CDI port. A 1-bit
reconfiguration data input is shifted serially into INIT in
each clock cycle if the reconfiguration enable signal (CE) is
set high. The previous value of INIT is flushed out serially
through the CDO port, 1-bit per clock cycle. Several CFG-
LUT5 can be cascaded together using reconfiguration data
cascaded output port (CDO).

I2

I3

I4

I1
I0

CE

Clk

O5
O6

INIT

CFGLUT5

CDO

CE= Reconfiguration enable signal (active high)
CDI= Reconfiguration data serial input
O6= LUT output (For 5/4 i/p function)
O5= LUT output (For 4 i/p function)

CDO= Reconfiguration data output, can
be cascaded to CDI input of other CFGLUT

Clk=clock

INIT=Initial content of LUT

I4, I3, I2, I1, I0= LUT i/p (similar to the
address of shift register)

CDI

Figure 1: Block diagram of CFGLUT5

The reconfiguration property of CFGLUT5 is illustrated
in Fig. 2 with the help of a small example. In this fig-
ure, we show how the value of INIT gets modified from
value O = (O0, O1, O2, ..., O30, O31) to a new value N =
(N0, N1, N2, ..., N30, N31). This reconfiguration requires 32
clock cycles. As it is evident from the figure, reconfiguration
steps are basic shift register operations. Hence if required,
reconfiguration of LUT content can be executed by using
shift register primitives (SRL16E 1) in earlier device fami-
lies.

...
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Figure 2: INIT value reconfiguration in CFGLUT5
It is a common impression that any LUT can be imple-

mented as CFGLUT5. However, this is not true. The num-
ber of CFGLUT5 are far less than the number of LUTs in an
FPGA. Basically, there are two different kinds of slices in a
Xilinx FPGA i.e., SLICE M and SLICE L. Whereas a sim-
ple LUT can be synthesized in either of the slices, CFGLUT5

can be implemented only in SLICE M. SLICE M contains
LUTs which can be configured as memory elements like shift
register, distributed memory along with combinational logic
function implementation. CFGLUT5, when instantiated, is
essentially mapped into a SLICE M, configured as shift reg-
ister (SRL32) as shown in Fig 3.

Figure 3: CFGLUT5 mapped in LUT as SRL32 as
shown from Xilinx FPGA Editor

2.1 Comparison With Dynamic Configuration
Another way to reconfigure FPGA in run-time is to use

partial or dynamic reconfiguration. In partial reconfigura-
tion, a portion of the implemented design is changed without
disrupting operations of the other portion of the FPGA. This
operation deploys an Internal Configuration Access Ports
(ICAP) and the design needing reconfiguration must be map-
ped into a special reconfigurable region. Reconfiguration la-
tency is in order of millisecond. Partial reconfiguration is
helpful when significant modification of the design is re-
quired. However, for small modification, using RLUT is
advantageous as it has very small latency (maximum 32
clock cycles) compared to partial reconfiguration. Moreover
RLUT is configured internally and no external access to ei-
ther JTAG or Ethernet ports are required for reconfiguring
RLUTs.

2.2 RLUT and Security
Since we have described the functioning of RLUT in de-

tail, we can clearly recognize some properties which could
be helpful or critical for security. A typical problem of cryp-
tographic implementations is its vulnerability to statistical
attacks like Correlation Power Analysis (CPA). For instance,
CPA tries to extract secret information from static crypto-
graphic implementations by correlating side-channel leak-
ages to estimated leakage models. A desirable feature to
protect such implementations is reconfiguration of few in-
ternal features. A RLUT would be a great solution in this
case as it has the power to provide reconfigurabilty at min-
imal overhead and with no external access. It is important
to reconfigure internally to avoid the risk of any eavesdrop-
ping. On the other hand, RLUT can also be used as a se-
curity pitfall. For example, an efficient designer can simply
replace a LUT with RLUT in a design keeping the same
INIT value. Until reconfiguration, RLUT would compute
normally. However upon reconfiguration, the RLUT can be
turned into a potential Trojan. In the following sections,
we would show some relevant applications of constructive or
deadly nature.

3. DESTRUCTIVE APPLICATIONS



In earlier sections, we have presented the basic concepts
of RLUTs with major emphasis on CFGLUT5 of Xilinx FP-
GAs. Though CFGLUT5 provides user unique opportunity
of reconfiguring and modifying the design in run-time, it
also gives an adversary an excellent option to design effi-
cient and stealthy hardware Trojan. In this section, we focus
on designing tiny but effective hardware Trojan exploiting
reconfigurability of RLUTs.

A hardware Trojan is a malevolent modification of a de-
sign, intended for either disrupting the algorithm opera-
tion or leaking secret information from it. The design of
hardware Trojan involves efficient design of Trojan circuitry
(known as payload) and design of trigger circuitry to activate
the Trojan operation. A stealthy hardware Trojan should
have negligible overhead, ideally zero, compared to the orig-
inal golden circuit. Moreover, probability of Trojan getting
triggered during the functional testing should be very low,
preventing accidental discovery of the Trojan. This section
mainly discusses about effective design of hardware Trojan
payload using RLUT.

3.1 Adversary Model
We consider an adversary model where a user buys spe-

cific IPs from a third party IP vendor. It is a common
trend in the semiconductor industry to acquire proven IPs
to reduce time to market. By proven IPs, we mean IPs
with well-established performance and area figures. Let us
consider that the IP under consideration is a cryptographic
algorithm and the target device is an FPGA. An untrusted
vendor can easily insert a Trojan in the IP which can act
as backdoors to access sensitive information of other com-
ponents of the user circuit. For instance, an IP vendor can
provide a user with an obfuscated or even encrypted netlist
(encrypted EDIF ). Such techniques are popular and often
used to protect the rights of the IP vendor. A Trojan in an
IP is very serious for two major reasons. First, the Trojan
will affect all the samples of the final product and secondly
it is almost impossible to get a golden model. Moreover,
research in Trojan detection under the given attack model
is quite limited. The user does not have a golden circuit to
compare, thus making hardware Trojan detection using side
channel methodology highly unlikely.

Using RLUT, we can design extremely lightweight hard-
ware Trojan payload as we can reconfigure the same LUTs,
used in the crypto-algorithm implementation, from correct
value to malicious value. This reduces the overhead of the
hardware Trojan. We can also restore the original value of
RLUT to remove any trace of Trojan, of course, at some
overhead. An IP designer can easily replace a normal LUT
with RLUT. Instantiation of CFGLUT5 does not report any
special element in the design summary report, but a LUT
of SLICE M (SRL32). The only requirement is efficient
triggering and a reconfiguration logic which will generate
the malicious value upon receiving trigger signal. The ba-
sic methodology is same for all the Trojans, which can be
tabulated as follows:
• Choose a sensitive sub-module of the crypto-algorithm.

• Replace the LUTs of the chosen sub-module with CFG-
LUT5 keeping the same INIT value.

• Modify the INIT value upon trigger.

• Upon nominal operation, restore original INIT value.
A trigger for a hardware Trojan is designed in a way that

the Trojan gets activated in very rare cases. The trigger
stimulus can be generated either through output of a sensor

under physical stress or some well controlled internal logic.
The complexity of trigger circuit also depends on the needed
precision of the trigger in time and space. Several innova-
tive and efficient were introduced as a part of Embedded
Systems Challenge (2008) where participants were asked to
insert Trojans on FPGA designs. For instance, one of the
the proposition was content & timing trigger, which acti-
vates with a correct combination of input and time. Such
triggers are considered practically impossible to simulate.
Other triggers get activated at a specific input pattern. In
the following to not deviate from the topic, we focus mainly
on the payload design of the Trojan. We do not propose any
special triggering circuit and let the designer choose any of
the published techniques or innovate one. We precisely pro-
pose the design of the Trojan and the required triggering
conditions. Notice that, RLUTs can be exploited even to
trigger a Trojan.

3.2 Trojan Description
Before designing Trojan for a given hardware, we first

demonstrate the potential of RLUT in inserting malicious
activity. Let us consider a buffer which is a very basic
gate. Buffers are often inserted in a circuit by CAD tools
to achieve desired timing requirements. For FPGA design-
ers, another equivalent of buffer is route-only LUT. These
buffers can be inserted in any sensitive wires without rais-
ing an alarm. In fact, sometimes the buffers might already
exist.

To insert a buffer, a designer can use LUT1 primitive with
INIT=0x2. However, this buffer is implemented in a LUT6
with INIT=0xAAAAAAAAAAAAAAAA and can be easily replaced
by CFGLUT5. A simple Trojan would be to change the
INIT value of CFGLUT5 to 0xAAAAAAAA and feedback CDO

output to CDI input (see Fig 1). The CE input is connected
to the trigger of the Trojan. Now, when the Trojan is trig-
gered once (one clock), INIT value changes to 0x55555555

which changes the functionality of the gate to inverter. An-
other trigger brings back the INIT value to 0xAAAAAAAA i.e.
a buffer. Thus by precisely controlling the trigger, an ad-
versary can interchange between a buffer and inverter. Such
a Trojan can be used in many scenarios like injecting single
bit faults for Differential Fault Attacks or controlling data
multiplexers or misreading status flags, etc.

Next, we target a basic AES IP as a Trojan target. The
AES takes 128 bits of plaintext and key as input and produce
128 bit ciphertext in 11 clock cycles along with a 1-bit done
signal. Original AES circuit requires 1594 LUTs, 260 flip-
flops and runs at a maximum frequency of 212.85 MHz
on SASEBO-GII boards (Virtex-5). We developed four dif-
ferent Trojans with the objective of obtaining the secret key
of the underlying AES implementation. The objective of
the developed Trojan is to retrieve the AES key with only
one execution of hardware Trojan or single bad encryption.
Triggering conditions can be further relaxed if several bad
encryptions are acceptable. Each Trojan has trigger with
different pulse-width or number of clock cycles. The de-
tailed description of the developed Trojans are as follows:

3.2.1 Trojan 1
This Trojan targets the control unit of AES implemen-

tation to get access to the secret key. The control unit of
AES is a counter which also produces a done flag to indi-
cate completion of the encryption cycle. done is set to high
only if counter value reaches 11. Signal done is driven by a



LUT, which takes 4 bit counter value as input, and under
normal operation it should contain value 0x00000800. To
insert a Trojan we replace this LUT with CFGLUT5 with
INIT=0x80000800. The CDO output is fedback into CDI

input as in the example above. A trigger of 2 clock cycles
at the CE input activates the Trojan (INIT=0x00002002)
and produces the round 0 output (at round 0, counter value
is 1) as the ciphertext. By knowing the plaintext, one can
easily extract the full key with one wrong encryption. After
extracting the key, a trigger of 10 clock cycles will restore
the normal operations of the AES (INIT=0x00800800). The
transition of INIT to activate the Trojan and restore back
is shown in Fig 4(a). The value above the 11th bit are not
important for normal operation, as a mod12 counter can-
not attain those value. Keeping the same Trojan we imple-
mented three different versions, depending on the precision
of the trigger.

1. Trojan 1a needs a 1 cycle trigger synchronized with
the start of the encryption. This trigger is used to
enable a FSM which generates 12 clock cycles for CE
of the CFGLUT , in order to activate the Trojan and
restore it back after exploitation. The overhead for
this Trojan is 6 LUTs and 4 flip-flops.

2. Trojan 1b is a zero overhead Trojan. It assumes a
adversary to be slightly stronger than Trojan 1a who
can generate a trigger signal active for precisely 12
cycles and synchronized with the start of encryption.

3. Trojan 1c relaxes the restriction on the adversary
seen at previous case. It assumes that there are some
delays of n� 10 clock cycles between two consecutive
encryption. The adversary provides a trigger of two
clock cycles (not necessarily consecutive) before the
start of current encryption. After the faulty encryp-
tion is complete, the adversary generates 10 trigger cy-
cles (again not necessarily consecutive) to restore back
the cipher operations. The overhead for this Trojan is
2 LUTs.

CLKCLK
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 01 1 1 1

102

31 30 29 11 2 1 0 31 30 29 13 2 1 0 31 30 23 11 1 0

INIT (32 bits) INIT (32 bits) INIT (32 bits)

... ...... ... ...... ...

(a)

CLKCLK
0 0 0 0 1 0 0 0 0 0 0 0 0 1 01 1 11 0

210

INIT (32 bits)

31 30 29 22 2 1 0 31 30 29 10 2 1 0

INIT (32 bits)

31 30 29 12 1 0

INIT (32 bits)

... ...... ... ... ...

(b)

Figure 4: Operations of CFGLUT5 to activate the
Trojan and restore to normal operations for (a) Tro-
jan 1; (b) Trojan 2. Bit positions not shown contain
‘0’

3.2.2 Trojan 2
This Trojan targets the datapath of the AES design. The

underlying design contains a multiplexer which switches be-
tween MixColumns output and input plaintext depending
on the round/count value. The output of the multiplexer
is produced at input of AddRoundKey operation. Under
normal operation, multiplexer passes the input plaintext in
round 0 (select signal of multiplexer is set to 1) and Mix-
Columns output in other rounds (select signal of multiplexer
is set to 0). To design the Trojan, we have replaced the LUT
(with INIT=0x00000002) which generates select signal of the
multiplexer with CFGLUT5, containing INIT=0x00400002.
Upon a trigger of 10 clock cycles (INIT=0x80000400), the

multiplexer is programmed to select input plaintext during
the last round computation. From the resulting ciphertext of
this faulted encryption, we can easily obtain the last round
key, given the plaintext. Further a trigger of 2 clock cycles
restores the normal operation (INIT=0x00001002) as shown
in Fig 4(b). Again the value over bit position 12 is not a
problem as the select signal is controlled by a mod12 counter
and the value is never reached. This Trojan also has a zero
overhead.

Tab. 1 summarizes the nature, trigger condition and cost
of the four Trojans. The frequency overhead of all the de-
signs were negligible and hence not mentioned below.

Table 1: Area overhead of the Trojans on Virtex-5
FPGA. Trigger is given in clock cycles and s sub-
script indicates trigger must be consecutive synchro-
nized with the start of encryption.

Trojan Trigger Payload Overhead

Trojan 1a 1s 6 LUTs & 4 flip-flops
Trojan 1b 12s 0
Trojan 1c 12 2 LUTs
Trojan 2 12s 0

4. CONSTRUCTIVE APPLICATIONS
In the previous section, we discussed some application of

RLUT for hardware Trojans into third party IPs. However,
RLUT do have a brighter side to their portfolio. The easy
and internal reconfigurability of RLUT can surely be well
exploited by the designers to solve certain design issues. In
the following, we detail three distinct cases with several ap-
plications, where RLUT can be put to good use.

4.1 Customizable Sboxes
A common requirement in several industrial application

is dynamic or cutomizable substitution boxes (Sboxes) of a
cipher. One such scenario which is often encountered by IP
designers who design secret ciphers for industrial applica-
tion. A majority of secret ciphers use a standard algorithm
like AES with modified specification like custom Sboxes or
linear operations. Sometimes the client is not comfortable
to disclose these custom specifications to the IP designer.
Common solutions either have a time-space overhead or re-
sort to dynamic reconfiguration, to allow the client to pro-
gram Sboxes at its side. A RLUT can come handy in this
case.

There are several algorithms where the Sboxes can be se-
cret. The former Soviet encryption algorithm GOST 28147-
89 which was standardized by the Russian standardization
agency in 1989 is a prominent example [7]. The A3/A8
GSM algorithm for European mobile telecommunications is
another example. In the field of digital rights management,
Cryptomeria cipher (C2) has a secret set of Sboxes which
are generated and distributed to licencees only.

There are certain encryption schemes like DRECON [8],
which offers DPA resistance natively by exploiting tweak-
able ciphers. In this scheme, users exchange a set of tweak
during the key exchange. The tweak is used to choose the
set of Sboxes from a bigger pool of precomputed Sboxes. In
the proposed implementation [8], the entire pool of Sboxes
must be stored on-chip. Using RLUT, the Sboxes can be
easily computed as a function of the tweak and stored on
the fly. Similarly, a low-cost masking scheme RSM [2] can
also benefit from RLUT to achieve desired rotation albeit
at the cost of latency. Thus there exist several applications
where customizable Sboxes are needed.

As a proof of concept, we implement the Sbox generation



scheme of [8]. The original implementation generates a pool
of 32 4× 4 Sboxes and stores it into BRAMs, while only 16
are used for a given encryption. It uses a set of Sboxes which
are affine transformations of each other. It is based on the
theory that if S(·) is a cryptographically strong Sbox, one
can generate 2n strong Sboxes by following: Fi(x) = αS(x)⊕i
for all i = 0, · · · , 2n − 1, where α is an invertible matrix of
dimension n× n. α can also be considered a function of the
tweak value t i.e. α = f(t). Since affine transformation does
not change most of the cryptographic properties of Sboxes,
all the generated Sboxes are of equal cryptographic strength.
The scheme can be very well implemented using RLUT as
follows. We read the initial Sbox and store the newly com-
puted Sbox in the same location. The architecture is shown
in Fig 5. As we have stated earlier, each CFGLUT5 can
be modeled as 2 output 4 input function generator, we can
implement a 4 × 4 Sbox using two CFGLUT5 as shown in
Fig 5. The reconfiguration of the Sbox is carried through
following steps:

1. Read the value of the Sbox for input 15.

2. Compute the new value (4-bits {3,2,1,0}) of the Sbox
using affine transformer for the Sbox input 15.

3. Now CFGLUT5 is updated by the computed value, 2
bits for each CFGLUT5 ({3,2},{1,0}). However, only
one bit can be shifted in CFGLUT5 in one clock cycle.
Hence we shift in two bits, 1-bit in each CFGLUT5
({0,2}) and store the other 2-bit ({1,3}) in two 16 bit
register.

4. After the 2-bits ({0,2}) of new value of Sbox is shifted
in, old value for the input 15 is flushed out. The old
value at position 14 is moved up to position 15. Thus
the address is hard-coded to 0xf. We keep on repeating
the above steps until we have read the whole old Sbox
for all possible inputs, which requires 16 clock cycles.

5. After 16 clock cycles, we start to shift in the data which
we stored in the shift register bits ({1,3}) for 16 Sbox
entries, which takes another 16 clock cycles. This com-
pletes Sbox reconfiguration.

The architecture requires 56 LUTs, 38 flip-flops with
a maximum operating frequency of 271 MHz. To
reconfigure one Sbox, we need 32 clock cycles.
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Figure 5: Architecture of Sbox Computation using
affine transformation and storing in RLUT.

4.2 Sbox Scrambling
RLUT also have the potential to provide side-channel re-

sistance. The reconfiguration provided by RLUT can be
very well used to confuse the attackers. A beneficial tar-
get would be the much studied masking countermeasures [1]
which suffer from high overhead due to the requirement
of regular mask refresh. One of the masking countermea-
sures which was fine-tuned for FPGA implementation is
Block Memory content Scrambling (BMS [1]). This scheme
has limited overhead, claims first-order security and, to our
knowledge, no practical attack has been published against
it.

The BMS scheme works as follows: let Y (X) = P (SL(X))
be a round of block cipher, where X is the data, P (·) is the
linear and SL(·) is the non-linear layer of the block cipher.
For example in PRESENT cipher [9], the non-linear layer
is composed of 16 4 × 4 Sboxes and the linear layer is bit-
permutation. According to the BMS scheme, the masked
round can be written as YM (X) = P (SLM (XM )), where
XM is masked data X ⊕M and SLM (·) is the Sbox layer of
16 scrambled Sbox. Now each Sbox Sm(·) in SLM is scram-
bled with one nibblem of the 64-bit maskM . The scrambled
Sbox Sm(·) can be simplified as Sm(xm)) = S(xm ⊕ m) ⊕
P−1(m), where x is one nibble of round input X. Next in
a dual-port BRAM which is divided into an active and in-
active segment, where the active segment contains SLM0(·)
i.e. Sbox scrambled with mask M0 is used for encryptions.
Parallely, another Sbox layer SLM1(·) scrambled with mask
M1 is computed in an encryption-independent process and
stored in the inactive segment. Every few encryption, the
active and inactive contents are swapped and a new Sbox
scrambled with a fresh mask is computed and stored in the
current inactive segment. This functioning is illustrated in
Fig. 6.

SLM1

SL(XM1 ⊕M1)⊕P−1(M1)

SLM0
keyr

XM0 = X ⊕M0

SL(XM0 ⊕M0)⊕P−1(M0)

64

64

64

64

64

64 64
P

64

SWAP=0

YM0 = P (SL(X))⊕M0

Figure 6: Architecture of Modified PRESENT
Round. SLM0 is the (precomputed) active SLayer
while SLM1 is being computed as in Fig. 7

.
BMS is nice countermeasure and shown to have reason-

able overhead of 44% for LUTs, 2× BRAMs and roughly
3× extra flip-flops in FPGA. Another advantage of BMS is
that it is generic i.e. it can be applied to any cryptographic
algorithm. BMS can be viewed as a leakage resilient im-
plementation, where the cipher is not called enough with a
fixed mask for an attack to succeed. The memory contexts
are swapped again with a fresh mask. However, for certain
algorithms BMS could become unattractive. For example in
a lightweight algorithm like PRESENT, a 4 × 4 Sbox can
be easily implemented in 4 LUTs. In newer FPGA families
which support 2-output LUT, 2 LUTs are enough to imple-
ment a Sbox. Using a BRAM in such a scenario would lead
to huge wastage of resources.

In the following, we use RLUT to implement BMS like



countermeasure. Precisely we design a PRESENT crypto-
processor protected with a BMS like scrambling scheme but
using RLUTs to store scrambled Sboxes. Rest of the scheme
is left is same as [1]. The architecture of Sbox scrambler us-
ing RLUT is shown in Fig 7. SBOXP is the PRESENT
Sbox. A mod16 counter generates the Sbox address ADDR
which is masked with Mask m of 4-bits. The output of Sbox
is scrambled with inverse permutation of the mask to scram-
ble the Sbox value. Please note the the permutation must
be applied on the whole 64-bits of the mask to get 4-bits
of the scrambling constant for each Sbox. Each output of
the scrambler is 4-bits. As stated before, each 4 × 4 Sbox
can be implemented in 2 CFGLUT5 each producing 2-bits
of the Sbox computation. Let us call the CFGLUT5 produc-
ing bits 0, 1 as SBOXML and bits 2, 3 as SBOXMH . The
4-bit output of the scrambler is split into two buses of 2-bits
({3,2},{1,0}). Bits {3,2} and {1,0} are then fed to the CDI

of SBOXML and SBOXMH respectively, through a FIFO.
The same scrambler is used to generate all the 16 Sboxes
one after the other and program CFGLUT5. In total it re-
quires 16× 32 clock cycles to refresh all 16 inactive Sboxes.
This means we can swap active and inactive Sboxes every
16 encryptions. The area overhead comes from the scram-
bler circuit and multiplexers used to swap active/inactive
Sboxes. It is summarized in Tab. 2.
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4

4

64 64

4
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RNG

4 4
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pLayer

4

2

2

FIFO

FIFO
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SBOXP

CDI

SBOXML

CFGLUT5

CFGLUT5

O6

O5

O5

O6
CDI

SBOXMH

Figure 7: Architecture of Sbox Scrambler
.Table 2: Area and Performance Overhead of Scram-

bling Scheme on Virtex-5 FPGA

Architecture LUTs Flip-flops Frequency (Mhz)

Original 208 150 196
Scrambled 557 552 189
Overhead 2.67× 3.68× 1.03×

4.3 Design obfuscation
A usual prerequisite for an attack to work is to know the

system under attack. Of course, some attacks can work
in completely blackbox conditions (consider the cube at-
tack [10]), but the secrecy of the system seriously under-
mines the potential of attackers. Basically, most attack
paths will require an initial stage of reverse-engineering.
Therefore, obscuring a netlist can be a very effective pre-
venting protection. The designer can focus on critical parts
of the system, such as state machines.

Those are initially programmed by random values, which
leads to absurd results of reverse-engineering, be them static

or dynamic. Then, in a second step, the circuit requests
an unlocking key, which enables a reconfiguration of critical
part. Depending on the expected reactivity of the system,
the rewriting of the RLUT contents can be achieved in se-
ries (low complexity) or parallel (low programmation time).
The second step requires an interaction with an external
component, or a connection to some network. The missing
correct bitstream part is then either reprogrammed, or fed
externally.
5. CONCLUSIONS

This paper addresses methods to exploit reconfigurable
LUTs (RLUTs) in FPGAs for secure applications, with both
views: destructive and constructive. First it has been shown
that the RLUT can be used by an attacker to create Hard-
ware Trojans. Indeed the payload of stealthy Trojans can
be inserted easily in IP by untrusted vendors. The Trojans
can be used to inject faults or modify the control signals in
order to facilitate the key extraction. This is illustrated by
a few examples of Trojans in AES. Second the protective
property of RLUT has been illustrated by increasing the re-
siliency of the Sboxes of cryptographic algorithms. This is
accomplished either by changing dynamically the Sboxes of
customized algorithms or scrambling the SBoxes of standard
algorithms.

To sum up, this paper clearly shows the positive and neg-
ative impact of RLUT on security of FPGAs. Due to the
obvious positive application of RLUTs in security, one can-
not simply restrict the use of RLUT in secure applications.
This motivates further research in two principle directions.
Firstly, there is need for Trojan detection techniques at IP
level. This detection techniques should be capable of distin-
guishing a RLUT based optimizations from potential Tro-
jans. Finally certain new countermeasures totally based on
RLUTs can be studied.
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[6] Martin Kumm, Konrad Möller, and Peter Zipf. Reconfigurable
FIR filter using distributed arithmetic on FPGAs. In 2013
IEEE International Symposium on Circuits and Systems
(ISCAS2013), Beijing, China, May 19-23, 2013, pages
2058–2061. IEEE, 2013.

[7] Axel Poschmann, San Ling, and Huaxiong Wang. 256 bit
standardized crypto for 650 ge £ gost revisited. In Stefan
Mangard and François-Xavier Standaert, editors,
Cryptographic Hardware and Embedded Systems, CHES 2010,
volume 6225 of Lecture Notes in Computer Science, pages
219–233. Springer Berlin Heidelberg, 2010.

[8] Suvadeep Hajra, Chester Rebeiro, Shivam Bhasin, Gaurav
Bajaj, Sahil Sharma, Sylvain Guilley, and Debdeep
Mukhopadhyay. DRECON: DPA Resistant Encryption by
Construction. In David Pointcheval and Damien Vergnaud,
editors, AFRICACRYPT, volume 8469 of Lecture Notes in
Computer Science, pages 420–439. Springer, 2014.



[9] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof
Paar, Axel Poschmann, Matthew J. B. Robshaw, Yannick
Seurin, and Charlotte Vikkelsoe. PRESENT: An
Ultra-Lightweight Block Cipher. In CHES, volume 4727 of
LNCS, pages 450–466. Springer, September 10-13 2007. Vienna,
Austria.

[10] Itai Dinur and Adi Shamir. Cube attacks on tweakable black
box polynomials. In Antoine Joux, editor, Advances in
Cryptology - EUROCRYPT 2009, Cologne, Germany, April
26-30, 2009. Proceedings, volume 5479 of Lecture Notes in
Computer Science, pages 278–299. Springer, 2009.


