Constructing secret, verifiable auction schemes
from election schemes

Elizabeth A. Quaglia and Ben Smyth

Mathematical and Algorithmic Sciences Lab,
Huawei Technologies Co. Ltd., France

May 24, 2016

Abstract

Auctions and elections are seemingly disjoint research fields. Neverthe-
less, similar cryptographic primitives are used in both fields. For instance,
mixnets, homomorphic encryption, and trapdoor bit-commitments, have
been used by state-of-the-art schemes in both fields. These developments
have appeared independently. For example, the adoption of mixnets in
elections preceded a similar adoption in auctions by over two decades. In
this paper, we demonstrate a relation between auctions and elections: we
present a generic construction for auctions from election schemes. More-
over, we show that the construction guarantees secrecy and verifiability,
assuming the underlying election scheme satisfies secrecy and verifiabil-
ity. We demonstrate the applicability of our work by deriving an auction
scheme from the Helios election scheme. Our results inaugurate the uni-
fication of auctions and elections, thereby facilitating the advancement of
both fields.

Keywords. Auctions, elections, privacy, secrecy, verifiability.

1 Introduction

We present a construction for auction schemes from election schemes, and prove
that the construction guarantees security, assuming the underlying election
scheme is secure.

Auction schemes. An auction is a process for the trade of goods and services
from sellers to bidders [Kri00, MMS87], with the support of an auctioneer. We
study first-price sealed-bid auctions [Bral0], whereby bidders create bids which
encapsulate the price they are willing to pay, and the auctioneer opens the bids
to determine the winning price (namely, the highest price bid) and winning
bidder.

Election schemes. An election is a decision-making procedure used by vot-
ers to choose a representative from some candidates [Gum05, AH10], with the
support of a tallier. We study first-past-the-post secret ballot elections [LG84,
Saa95], which are defined as follows. First, each voter creates a ballot which
encapsulates the voter’s chosen candidate (i.e., the voter’s vote). Secondly, all
ballots are tallied by the tallier to derive the distribution of votes. Finally, the
representative — namely, the candidate with the most votes — is announced.

Bidders and voters should freely participate in auctions and elections; this
can be achieved by participating in private [UN48, OAS69, OSC90, US90], which
has led to the emergence of the following requirements [Smyl5a, MSQ14a].

e Bid secrecy: A losing bidder cannot be linked to a price.

e Ballot secrecy: A voter cannot be linked to a vote.

Ballot secrecy aims to protect the privacy of all voters, whereas bid secrecy is
only intended to protect the privacy of losing bidders. This intuitive weaken-
ing is necessary, because the auctioneer reveals the winning price and winning
bidder, hence, a winning bidder can be linked to the winning price.

Bidders and voters should be able to check that auctions and elections are
run correctly [JCJ02, CRS05, Adi06, Dag07, Adi08, DJL13]; this is known as
verifiability. Sometimes we write auction verifiability and election verifiabil-
ity to distinguish verifiability in each field. Verifiability includes the following
properties [KRS10, SFC15].

e Individual verifiability: bidders/voters can check whether their bid/ballot
is included.

e Universal verifiability: anyone can check whether the result is computed
properly.

Conceptually, individual and universal verifiability do not differ between auc-
tions and elections.

1.1 Constructing auctions from elections

Our construction for auction schemes from election schemes works as follows.

1. We represent prices as candidates, and instruct bidders to create bids by
“voting” for the candidate that represents the price they are willing to

pay.

2. Bids are “tallied” to derive the distribution of prices and the winning price
is determined from this distribution.

The relation between auctions and elections is so far straightforward. The chal-
lenge is to establish the winning bidder. This step is non-trivial, because election

schemes satisfying ballot secrecy ensure voters cannot be linked to votes, hence,
the bidder in the aforementioned steps cannot be linked to the price they are
willing to pay. We overcome this by extending the tallier’s role to addition-
ally reveal the set of ballots for a specific vote,! and exploit this extension to
complete the final step.

3. The tallier determines the winning bids and a winning bidder can be se-
lected from these bids.?

Extending the tallier’s role is central to our construction.

1.2 Motivation and related work

There is an abundance of rich election scheme research which can be capi-
talised upon to advance auctions. This statement can be justified with hind-
sight: Chaum [Cha81] exploited mixnets in election schemes twenty-three years
before Peng et al. [PBDV04] made similar advances in auctions (Jakobsson &
Juels [JJ00] use mixnets in a distinct way from Chaum and Peng et al.), Be-
naloh & Fischer [CF85] proposed using homomorphic encryption seventeen years
before Abe & Suzuki [AS02a], and Okamoto [Oka96] demonstrated the use of
trapdoor bit-commitments six years before Abe & Suzuki [AS02b].

Magkos, Alexandris & Chrissikopoulos [MACO02] and Her, Imamot & Saku-
rai [HISO5] have studied the relation between auction and election schemes.
Magkos, Alexandris & Chrissikopoulos remark that auction and election schemes
have a similar structure and share similar security properties. And Her, Imamot
& Sakurai contrast privacy properties of auction and election schemes, and com-
pare the use of homomorphic encryption and mixnets between fields. More
concretely, McCarthy, Smyth & Quaglia [MSQ14a] derive auction schemes from
the Helios and Civitas election schemes. Lipmaa, Asokan & Niemi study the
converse: they propose an auction scheme and claim that their scheme could be
used to construct an election scheme [LAN02, §9].

1.3 Contribution

We formally demonstrate a relation between auctions and elections: we present
a generic construction for auction schemes from election schemes, moreover, we
prove that auction schemes produced by our construction satisfy bid secrecy and
verifiability, assuming the underlying election scheme satisfies ballot secrecy and
verifiability. To achieve this, we first formalise syntax and security definitions
for auction schemes, since these are prerequisites to rigorous, formal results.

IBallot secrecy does not prohibit such behaviour, because ballot secrecy assumes the tallier
is trusted.

2Selecting a winning bid from a set of winning bids — i.e., having a strategy to handle
tie-breaks — is beyond the scope of this paper.

Summary of contributions and paper structure. We summarize our con-
tributions as follows.

e We propose auction scheme syntax, and the first computational security
definitions of bid secrecy and verifiability for auction schemes (Section 2).

e We present a construction for auction schemes from election schemes (Sec-
tion 3).

e We prove that our construction guarantees bid secrecy (Section 4) and
verifiability (Section 5), assuming the underlying election scheme satisfies
analogous security properties.

e We use our construction to derive an auction scheme from the Helios
election scheme (Section 6).

It follows from our results that secure auction schemes can immediately be
constructed from election schemes, allowing advances in election schemes to be
capitalised upon to advance auction schemes.

1.4 Comparison with McCarthy, Smyth & Quaglia

The idea underlying our construction was introduced by McCarthy, Smyth &
Quaglia [MSQ14a]. Our contributions improve upon their work by provid-
ing a strong theoretical foundation to their idea. In particular, we provide
a generic construction for auction schemes from election schemes, they consider
the derivation of only two auction schemes from Helios and Civitas. We prove
that auction schemes produced by our construction satisfy bid secrecy and ver-
ifiability, they do not provide any security proofs. Thus, the auction scheme
we construct from Helios satisfies bid secrecy and verifiability, whereas the auc-
tion scheme that they derive from Helios has no such proofs. Moreover, we
are the first to introduce computational security definitions of bid secrecy and
verifiability for auction schemes.

2 Auction schemes

2.1 Syntax

We formulate syntax for auction schemes.

Definition 1 (Auction scheme). An auction scheme is a tuple of efficient al-
gorithms (Setup, Bid, Open, Verify) such that:

Setup, denoted® (pk, sk, mb, mp) < Setup(k), is run by the auctioneer*. Setup
takes a security parameter k as input and outputs a key pair pk,sk, a
maximum number of bids mb, and a maximum price mp.

3Let A(z1,...,%n;7) denote the output of probabilistic algorithm A on inputs 1, ..., s
and random coins 7. Let A(z1,...,zn) denote A(z1,...,xn;7r), where r is chosen uniformly
at random. And let + denote assignment.

4Some auction schemes permit the auctioneer’s role to be distributed amongst several

Bid, denoted b < Bid(pk, np,p, k), is run by voters. Bid takes as input a public
key pk, an upper-bound mp on the range of biddable prices, a bidder’s
chosen price p, and a security parameter k. A bidder’s price should be
selected from the range 1,...,np of prices. Bid outputs a bid b or error
symbol 1.

Open, denoted (p, b, pf) < Open(sk, np, bb, k), is run by the auctioneer. Open
takes as input a private key sk, an upper-bound np on the range of biddable
prices, a bulletin board bb, and a security parameter k, where bb is a set.
It outputs a (winning) price p, a set of (winning) bids b, and a non-
interactive proof pf of correct opening.

Verify, denoted s < Verify(pk, np, bb,p, b, pf, k), is run to audit an auction. It
takes as input a public key pk, an upper-bound np on the range of biddable
prices, a bulletin board bb, a price p, a set of bids b, a proof pf, and a
security parameter k. It outputs a bit s, which is 1 if the auction verifies
successfully or 0 otherwise.

Auction schemes must satisfy correctness, completeness, and injectivity, which
we define below.

Correctness asserts that the price and the set of bids output by algorithm
Open correspond to the winning price and the set of winning bids, assuming the
bids on the bulletin board were all produced by algorithm Bid.

Definition 2 (Correctness). There exists a negligible function negl, such that
for all security parameters k, integers nb and np, and prices pi,...,Pnp €
{1,...,np}, it holds that

Pr[(pk, sk, mb, mp) + Setup(k);
for 1 <i<nbdo
L bi <~ Bld(pka np7pi7"€);
(pa bvpf) — Open(5k7 np, {blv e abnb}a H)
:nb <mbAnp <mp=p=mnax(0,p1,...,pp) No={b; | p;=pA1<
i < nb}] > 1— negl(k).

Completeness stipulates that outputs of algorithm Open will be accepted by
algorithm Verify. This prevents biasing attacks [SFC15].

Definition 3 (Completeness). There exists a negligible function negl, such that
for all security parameters k, bulletin boards bb, and integers np, we have

Pr[(pk, sk, mb, mp) <+ Setup(k);

(p, b, pf) < Open(sk, np, bb, k);
: |6b| < mb A np < mp = Verify(pk, np, bb,p, b, pf, k) = 1] > 1 — negl(k).

auctioneers. For simplicity, we consider only a single auctioneer in this paper. Generalising
syntax and security definitions to multiple auctioneers is a possible direction for future work.
Similarly, we consider only a single tallier in election schemes.

Injectivity asserts that a bid can only be interpreted for one price, assuming
the public key input to algorithm Bid was produced by algorithm Setup. This
ensures that distinct prices are not mapped to the same bid by algorithm Bid.
Hence, a bid unambiguously encodes a price.

Definition 4 (Injectivity). For all security parameters k, integers np, and
prices p and p’, such that p # p', we have

Pr[(pk, sk, mb, mp) < Setup(k); b < Bid(pk, np, p, k);
b« Bid(pk,np,p' k) :b# LAY # L=b#b]=1.

Our proposed syntax is based upon syntax for auction schemes by McCarthy,
Smyth & Quaglia [MSQ14a] and syntax for election schemes by Smyth, Frink
& Clarkson [SFC15]. Moreover, our correctness, completeness and injectivity
properties are based upon similar properties of election schemes. (Cf. Sec-
tion 3.1.)

2.2 Bid secrecy

We formalise bid secrecy as an indistinguishability game between an adversary
and a challenger.® Our game captures a setting where the challenger generates a
key pair using the scheme’s Setup algorithm, publishes the public key, and only
uses the private key for opening.

The adversary has access to a left-right oracle [BDJR97, BR05] which can
compute bids on the adversary’s behalf. Bids can be computed by the left-
right oracle in two ways, corresponding to a randomly chosen bit 5. If § = 0,
then, given a pair of prices pg, p1, the oracle outputs a bid for py. Otherwise
(8 = 1), the oracle outputs a bid for p;. The left-right oracle essentially allows
the adversary to control the distribution of prices in bids, but bids computed
by the oracle are always computed using the prescribed Bid algorithm.

The adversary outputs a bulletin board (the bulletin board may contain bids
output by the oracle and bids generated by the adversary), which is opened by
the challenger to reveal price p, set of winning bids b, and non-interactive proof
pf of correct opening. Using these values, the adversary must determine whether
B=0or =1

To avoid trivial distinctions, we insist that a bid for price p was not output
by the left-right oracle, assuming p is the winning price. This assumption is
required to capture attacks that exploit poorly designed Open algorithms, in
particular, we cannot assume that Open outputs the winning price, because al-
gorithm Open might have been designed maliciously or might contain a design
flaw. We ensure winning bids were not output by the left-right oracle using a log-
ical proposition. The proposition uses predicate correct-price(pk, np, bb, p, k),

5Games are algorithms that output 0 or 1. An adversary wins a game by causing it to
output 1. We denote an adversary’s success Succ(Exp(-)) in a game Exp(-) as the probability
that the adversary wins, that is, Succ(Exp(:)) = Pr[Exp(-) = 1]. Adversaries are assumed to
be stateful, that is, information persists across invocations of the adversary in a single game,
in particular, the adversary can access earlier assignments.

which holds when: (p = 0V (3r . Bid(pk,np,p,k;7) € bb\ {L} A1l < p <
np)) A (=3p', 7" . Bid(pk, np,p’, k;r") € b\ {L} Ap < p’ < np). Intuitively, the
predicate holds when price p has been correctly computed: when there exists
a bid for price p on the bulletin board and there is no bid for a higher price,
i.e., when p is the winning price. Moreover, injectivity ensures that the bid was
created for that price.®

By design, our notion of bid secrecy is satisfiable by auction schemes which
reveal losing prices, assuming that these prices cannot be linked to bidders.
And our construction will produce auction schemes of this type. Hence, to
avoid trivial distinctions, we insist, for each price p, that the number of bids on
the bulletin board produced by the left-right oracle with left input p, is equal
to the number of bids produced by the left-right oracle with right input p. This
can be formalized using predicate balanced(bb, np, L), which holds when: for
all prices p € {1,...,np} we have |[{b | b € bb A (b,p,p1) € L} = |{b | b €
bb A (b,po,p) € L}|, where L is the set of oracle call inputs and outputs.

Intuitively, if the adversary loses the game, then the adversary is unable
to distinguish between bids for different prices, assuming that a bid is not a
winning bid; it follows that losing prices cannot be linked to bidders. On the
other hand, if the adversary wins the game, then there exists a strategy to
distinguish honestly cast bids.

Definition 5 (Bid secrecy). Let ¥ = (Setup, Bid, Open, Verify) be an auction
scheme, A be an adversary, k be a security parameter, and Bid-Secrecy(Z, A, k)
be the following game.”
Bid-Secrecy(3, A, k) =

(pk, sk, mb, mp) < Setup(k);

B<r{0,1} L« 0;

np + A(pk,r); bb <+ A°();

(p, b, pf) + Open(sk, np, bb, K);

g < Alp, b, pf);

if g = B A balanced(bb, np, L) A [6b] < mb A np < mp

A (correct-price(pk, np,bb,p, k) = Vb € bb . (b,p,p1) & L A (b,po,p) € L)

then
| return 1
else
L return 0

Oracle O is defined as follows:®

o O(po,p1) computes b < Bid(pk, np,ps,r); L < LU {(b,po,p1)} and out-
puts b, where po,p1 € {1,...,np}.

6The existential quantifiers in correct-price demonstrate the importance of defining injec-
tivity perfectly rather than computationally. In particular, correct-price cannot interpret a
bid for more than one price.

"We write x < S for the assignment to x of an element chosen uniformly at random from
set S.

8The oracle may access game parameters, e.g., pk. Henceforth, we allow oracles to access
game parameters without an explicit mention.

We say ¥ satisfies bid secrecy, if for all probabilistic polynomial-time adver-
saries A, there exists a negligible function negl, such that for all security param-
eters k, we have Succ(Bid-Secrecy(3, A, k)) < 3 + negl(x).

Our definition of bid secrecy is based upon the notion of ballot secrecy
proposed by Smyth [Smyl5a] (cf. Appendix A) and, roughly speaking, corre-
sponds to a symbolic bid secrecy definition proposed by Dreier, Lafourcade &
Lakhnech [DLL13, Definition 15].°

2.2.1 Example: Enc2Bid

We demonstrate the applicability of our definition with a construction (Enc2Bid)
for auction schemes from asymmetric encryption schemes.®

Definition 6 (Enc2Bid). Given an asymmetric encryption scheme II = (Gen,
Enc, Dec), we define Enc2Bid(II) as follows.

e Setup(k) computes (pk, sk) <+ Gen(k) and outputs (pk, sk, poly(k), |m|).

e Bid(pk, np,p, k) computes b <+ Enc(pk,p) and outputs b, if 1 < p < np <
|m|, and outputs L, otherwise.

e Open(sk,np,bb, k) proceeds as follows. Computes 0 < {(b, Dec(sk,b)) |
b € bb}. Finds the largest integer p such that (b,p) € 9AN1 < p < np,
outputting (0,0, €) if no such integer exists. Computes b < {b | (b,p) €
dAp =p}. Outputs (p,b,e).

o Verify(pk, np, bb, p, b, pf, k) outputs 1.

Algorithm Setup requires poly to be a polynomial function, algorithms Setup and
Bid require m = {1,...,|m|} to be the encryption scheme’s plaintext space, and
algorithm Open requires € to be a constant symbol.

Lemma 1. Suppose Il is an asymmetric encryption scheme with perfect correct-
ness. We have Enc2Bid(II) is an auction scheme (i.e., correctness, completeness
and injectivity are satisfied).

The proof of Lemma 1 and all further proofs, except where otherwise stated,
appear in Appendix C.

Intuitively, given a non-malleable asymmetric encryption scheme II, auc-
tion scheme Enc2Bid(II) derives bid secrecy from the encryption scheme until
opening and opening maintains bid secrecy by only disclosing winning bids and
the winning price. We defer a formal proof of bid secrecy until Section 4.2.1,
where we can use our election to auction scheme construction and accompanying
security results.

9We discuss our motivation to base the definition of bid secrecy on the notion of ballot
secrecy by Smyth in Section 4.1.

10We present definitions of cryptographic primitives and relevant security definitions in
Appendix B.

2.3 Auction verifiability

We formalise individual and universal verifiability as games between an adver-
sary and a challenger. Our definitions are based upon analogous definitions for
election schemes by Smyth, Frink & Clarkson [SFC15] (cf. Section 5.1).11

2.3.1 Individual verifiability

Individual verifiability challenges the adversary to generate a collision from al-
gorithm Bid. If the adversary cannot win, then bidders can uniquely identify
their bids, hence, bidders can check whether their bid is included.

Definition 7 (Individual verifiability). Let ¥ = (Setup, Bid, Open, Verify) be an
auction scheme, A be an adversary, k be a security parameter, and Exp-I1V (3,
A, k) be the following game.
Exp-IV(E, A, k) =
(pk, np, p,p’) + A(k);
b < Bid(pk, np,p, k);
b+ Bid(pk, np,p’, k);
if b=V Ab# LAY # 1 then
| return 1
else
L return 0
We say X satisfies individual verifiability, if for all probabilistic polynomial-time
adversaries A, there exists a negligible function negl, such that for all security
parameters k, we have Succ(Exp-IV(X, A, k)) < negl(x).

Individual verifiability resembles injectivity, but game Exp-IV allows an adver-
sary to choose the public key and prices, whereas there is no adversary in the
definition of injectivity (the public key is an output of algorithm Setup and
prices are universally quantified, under the restriction that prices are distinct).

2.3.2 Universal verifiability

Universal verifiability challenges the adversary to concoct a scenario in which
Verify accepts, but the winning price or the set of winning bids is not cor-
rect. Formally, we check the validity of the winning price using predicate
correct-price. And we check the validity of the set of winning bids using
predicate correct-bids(pk, np,bb,p, b, k), which holds when b = bbN{b | b =
Bid(pk, np, p, k; 1)}, i.e., it holds when b is the intersection of the bulletin board
and the set of all bids for the winning price.

Since function correct-price will now be parameterised with a public key
constructed by the adversary, rather than a public key constructed by algorithm
Setup (cf. Section 2.2), we must strengthen injectivity to hold for adversarial
keys.

11We discuss our motivation to base the definitions on the notions of verifiability by Smyth,
Frink & Clarkson in Section 5.

Definition 8 (Strong injectivity). An auction scheme (Setup, Bid, Open, Verify)
satisfies strong injectivity, if for all security parameters k, public keys pk, in-
tegers np, and prices p and p’, such that p # p', we have

Pr[b < Bid(pk, np,p, r); b’ + Bid(pk, np,p’, k)
bA L AW AL=bEY] =1

Definition 9 (Universal verifiability). Let 3 = (Setup, Bid, Open, Verify) be an
auction scheme satisfying strong injectivity, A be an adversary, k be a security
parameter, and Exp-UV(X, A, k) be the following game.
Exp-UV(XZ, A k) =
(pk,np, bb, p, b, pf) < A(k);
if (—correct-price(pk, np, bb,p, k) V —correct-bids(pk, np, bb,p, b, k)) A
Verify(pk, np, bb,p, b, pf, k) = 1 then
| return 1
else
L return 0
We say ¥ satisfies universal verifiability, if for all probabilistic polynomial-time
adversaries A, there exists a negligible function negl, such that for all security
parameters K, we have Succ(Exp-UV(Z, A, k)) < negl(k).

3 Auctions from elections

3.1 Election scheme syntax
We recall syntax for election schemes from Smyth, Frink & Clarkson [SFC15].

Definition 10 (Election scheme [SFC15]). An election scheme is a tuple of
efficient algorithms (Setup, Vote, Tally, Verify) such that:

Setup, denoted (pk, sk, mb, mec) < Setup(k), is run by the tallier. Setup takes
a security parameter k as input and outputs a key pair pk, sk, a mazrimum
number of ballots mb, and a maximum number of candidates mc.

Vote, denoted b < Vote(pk,nc,v, k), is run by voters. Vote takes as input
a public key pk, some number of candidates nc, a voter’s vote v, and a
security parameter k. A wvoter’s vote should be selected from a sequence
1,...,nc of candidates. Vote outputs a ballot b or error symbol L.

Tally, denoted (v, pf) < Tally(sk,nc,bb, k), is run by the tallier. Tally takes
as input a private key sk, some number of candidates nc, a bulletin board
bb, and a security parameter k, where bb is a set. It outputs an election
outcome v and a non-interactive proof pf that the outcome is correct. An
election outcome is a vector v of length nc such that v[v] indicates'? the
number of votes for candidate v.

121et v[v] denote component v of vector v.

10

Verify, denoted s < Verify(pk, nc,bb, v, pf, k), is run to audit an election. It
takes as input a public key pk, some number of candidates nc, a bulletin
board bb, an election outcome v, a proof pf, and a security parameter
k. It outputs a bit s, which is 1 if the election verifies successfully or 0
otherwise.

Election schemes must satisfy correctness, completeness, and injectivity, which
are defined below.

Definition 11 (Correctness [SFC15]). There exists a negligible function negl,
such that for all security parameters k, integers nb and nc, and votes vy, ...,
vnp € {1,...,nc}, it holds that if v is a vector of length nc whose components
are all 0, then

Pr[(pk, sk, mb, mc) < Setup(k);
for 1 <i<nbdo
b; + Vote(pk, nc, v;, K);
L v[v;] viv] + 1;
(v, pf) < Tally(sk, nc,{b1,...,bnp}, K)
:nb < mbAnc<mec=v=v]>1-—negl(k).

Definition 12 (Completeness [SFC15]). There exists a negligible function negl,
such that for all security parameters k, bulletin boards bb, and integers nc, we
have

Pr[(pk, sk, mb, mc) < Setup(k);

(v, pf) < Tally(sk, nc, bb, k);
: |66 < mb A ne < me = Verify(pk, ne, bb, v, pf, k) = 1] > 1 — negl(k).

Definition 13 (Injectivity). For all security parameters k, integers nc, and
votes v and V', such that v # v', we have

Pr[(pk, sk, mb, mc) < Setup(k); b + Vote(pk, nc, v, k);
b’ < Vote(pk,nc,v', k) :b# LAY # L =0b#b]=1.

Injectivity for election schemes (Definition 13) is analogous to injectivity for
auction schemes (Definition 4) and is slightly weaker than the original definition
(cf. Definition 23).

Comparing auction and election schemes. Auction schemes are distin-
guished from election schemes in the final step of their execution: auction
schemes open the bulletin board to recover the winning price and winning bids,
whereas, election schemes tally the bulletin board to recover the distribution of
votes. Our goal is to bridge this gulf; we do so by introducing reveal algorithms.

11

3.2 Reveal algorithm

To achieve the functionality required to construct auction schemes from election
schemes, we define reveal algorithms which link a vote to a set of ballots for
that vote, given the tallier’s private key. We stress that ballot secrecy does not
prohibit the existence of such algorithms, because ballot secrecy asserts that the
tallier’s private key cannot be derived by the adversary.

Definition 14 (Reveal algorithm). A reveal algorithm is an efficient algorithm
Reveal defined as follows:

Reveal, denoted b < Reveal(sk, nc,bb, v, k), is run by the tallier. Reveal takes
as input a private key sk, some number of candidates nc, a bulletin board
bb, a vote v, and a security parameter k. It outputs a set of ballots b.

Let T' = (Setup, Vote, Tally, Verify) be an election scheme. The reveal algorithm
1s correct with respect to ', if there exists a negligible function negl, such that
for all security parameters k, integers nb and nc, and votes v,v1,...,Vnp €
{1,...,nc}, it holds that

Pr[(pk, sk, mb, mc) < Setup(k);
for 1 <i<nbdo
| b; « Vote(pk, nc,v;, K);
b + Reveal(sk, nc, {b1, ..., b}, v, K)
cnb<mbAnc<mc=b={b|vi=vA1l<i<nb}|>1-—negl(x).

Reveal algorithms are run by talliers to disclose sets of ballots for a specific
vote. Hence, we extend the tallier’s role to include the execution of a reveal
algorithm (cf. Section 1.1), thereby bridging the gap between elections and
auctions. It is natural to consider whether this extension is meaningful, i.e.,
given an arbitrary election scheme, does there exist a reveal algorithm, such
that the reveal algorithm is correct with respect to that election scheme? We
answer this question positively in Appendix D.

3.3 Construction

We show how to construct auction schemes from election schemes. We first
describe a construction (Section 3.3.1) which can produce auction schemes sat-
isfying bid secrecy. Building upon this result, we present our second construction
(Section 3.3.2) which can produce auction schemes satisfying bid secrecy and
auction verifiability.

3.3.1 Non-verifiable auction schemes

Our first construction follows intuitively from our informal description (Sec-
tion 1.1). Algorithm Bid is derived from Vote, simply by representing prices as
candidates. Algorithm Open uses algorithm Tally to derive the distribution of

12

prices and the winning price is determined from this distribution. Moreover, we
exploit a reveal algorithm Reveal to disclose the set of winning bids.

Definition 15. Given an election scheme I' = (Setupr, Vote, Tally, Verifyp) and
a reveal algorithm Reveal, we define A(T", Reveal) = (Setup,, Bid, Open, Verify,)
as follows.

Setup, (k) computes (pk, sk, mb, me) < Setupp(k) and outputs (pk, sk, mb, mc).
Bid(pk, np, p, k) computes b + Vote(pk, np,p, k) and outputs b.

Open(sk, np, bb, k) proceeds as follows. Computes (v, pf) < Tally(sk, np,bb).
Finds the largest integer p such that v[p] > 0 A 1 < p < np, outputting
(0,0,¢) if no such integer exists. Computes b < Reveal(sk, np,bb, p, k).
And outputs (p, b, €).

Verify , (pk, np, bb, p, b, pf’, k) outputs 1.
Algorithm Open requires € to be a constant symbol.

Lemma 2. Let I" be an election scheme and Reveal be a reveal algorithm. Sup-
pose Reveal is correct with respect to I'. We have A(T, Reveal) is an auction
scheme.

3.3.2 Verifiable auction schemes

Our second construction extends our first construction to ensure verifiability, in
particular, algorithm Open is extended to include a proof of correct tallying and
a proof of correct revealing. Moreover, algorithm Verify is used to check proofs.

Definition 16. Given an election scheme I' = (Setupr, Vote, Tally, Verify), a
reveal algorithm Reveal, and a non-interactive proof system A = (Prove, Verify),

we define A(T', Reveal, A) = (Setup,, Bid, Open, Verify,) as follows.
Setup, (k) computes (pk, sk, mb, me) < Setupp(k) and outputs (pk, sk, mb, mc).
Bid(pk, np, p, k) computes b + Vote(pk, np,p, k) and outputs b.

Open(sk, np, bb, k) proceeds as follows. Computes (v, pf) < Tally(sk, np,bb).
Finds the largest integer p such that v[p] > 0 A 1 < p < np, outputting
(0,0,¢€) if no such integer exists. Computes b < Reveal(sk, np, bb, p, k)
and pf’ < Prove((pk, np,bb,p, b, k), sk), and outputs (p,b, (v, pf, pf’)).

Verify , (pk, np, bb, p, b, 0, k) proceeds as follows. Parses o as (v, pf,pf'), out-
putting 0 if parsing fails. The algorithm performs the following checks:

1. Checks that Verifyp(pk, np, bb, v, pf, k) = 1.

2. Checks that p is the largest integer such that v[p] >0 A 1 <p < np
or there is no such integer and (p, b, pf’) = (0,0, ¢).

3. Checks that Verify((pk, np,bb,p,b, k), pf’, k) = 1.

13

Outputs 1, if all of the above checks hold, and outputs 0, otherwise.

Algorithms Tally and Verify require € to be a constant symbol.

To ensure that our construction produces auction schemes, the non-interactive
proof system must be defined for a suitable relation. We define such a relation
as follows.

Definition 17. Given an election scheme I' = (Setup, Vote, Tally, Verify) and
a reveal algorithm Reveal, we define binary relation R(T,Reveal) over vectors
of length 6 and bitstrings such that ((pk,nc,bb,v,b, k), sk) € R(T, Reveal) <
Imb, me,r, 1’ . b = Reveal(sk, nc, bb, v, k;7) A (pk, sk, mb, me) = Setup(k;r’) A
1 <v<nc<me.

Lemma 3. Let I' be an election scheme, Reveal be a reveal algorithm, and A
be a non-interactive proof system for relation R(I',Reveal). Suppose Reveal is
correct with respect to T'. We have A(T',Reveal, A) is an auction scheme.

Next, we study the security of auction schemes produced by our construc-
tions, in particular, we present conditions under which our constructions pro-
duce auction schemes satisfying bid secrecy and verifiability.

4 Privacy results

We introduce a definition of ballot secrecy which is sufficient to ensure that our
construction produces auction schemes satisfying bid secrecy (assuming some
soundness conditions on the underlying election scheme and reveal algorithm).

4.1 Ballot secrecy
Our definition of ballot secrecy strengthens an earlier definition by Smyth [Smy15a].13

Definition 18 (Ballot secrecy). Let I' = (Setup, Vote, Tally, Verify) be an elec-
tion scheme, A be an adversary, k be a security parameter, and Ballot-Secrecy (T,
A, k) be the following game.

Ballot-Secrecy(T', A, k) =

13We adopt the definition of ballot secrecy by Smyth because it strengthens earlier defini-
tions by Bernhard et al. [BCPT11, BPW12b, SB13, SB14, BCGT15b] to detect attacks that
arise when the adversary controls the bulletin board and the communication channel. Our
privacy results could be extended to other definitions of bid secrecy and ballot secrecy, by
modifying our proofs.

14

(pk, sk, mb, mc) < Setup(k);

B g {0,1}; L+ 0; W « 0;

ne + A(pk, k); bb + A°();

(v, pf) < Tally(sk, nc, bb, k);

for b € bb A (b,vg,v1) ¢ L do

(v', pf") « Tally(sk, nc, {b}, K);

L W+« W U{(b,v")}

g < A(v,pf, W);

if g = B A balanced(bb, nc, L) A |bb] < mb A nc < mc then
| return 1

else
L return 0

Oracle O is defined as follows:

o O(vg,v1) computes b < Vote(pk, nc,vg, k); L < LU {(b,vo,v1)} and out-
puts b, where vg,v1 € {1,..., nc}.

We say T satisfies ballot secrecy, if for all probabilistic polynomial-time ad-
versaries A, there exists a negligible function negl, such that for all security
parameters k, we have Succ(Ballot-Secrecy(I', A, k)) < % + negl(k).

Our formalisation of ballot secrecy challenges an adversary to determine
whether the left-right oracle produces ballots for “left” or “right” inputs. In
addition to the oracle’s outputs, the adversary is given the election outcome
and tallying proof derived by tallying the adversary’s board (intuitively, this
captures a setting where the bulletin board is constructed by an adversary that
casts ballots on behalf of a subset of voters and controls the distribution of votes
cast by the remaining voters). The adversary is also given a mapping W from
ballots to votes, for all ballots on the bulletin board which were not output
by the oracle. To avoid trivial distinctions, we insist that oracle queries are
balanced, i.e., predicate balanced must hold. Intuitively, if the adversary does
not succeed, then ballots for different votes cannot be distinguished, hence, a
voter cannot be linked to a vote, i.e., ballot secrecy is preserved. On the other
hand, if the adversary does succeed, then ballots can be distinguished and ballot
secrecy is not preserved.

Comparing notions of ballot secrecy. Our definition of ballot secrecy
(Ballot-Secrecy) strengthens an earlier definition (Smy-Ballot-Secrecy) by Smyth
[Smyl5a] (recalled in Appendix A). In particular, in Ballot-Secrecy the adver-
sary is given the vote corresponding to any ballot that was not computed by
the oracle, whereas in Smy-Ballot-Secrecy the adversary does not have this ca-
pability. It is trivial to see that Ballot-Secrecy strengthens Smy-Ballot-Secrecy,
because any adversary against Smy-Ballot-Secrecy (without access to W) is also
an adversary against Ballot-Secrecy (with access to W). In Appendix A, we
show that Ballot-Secrecy is strictly stronger using a scheme that satisfies Smy-
Ballot-Secrecy but not Ballot-Secrecy, hence separating the two notions.

15

4.1.1 Example: Enc2Vote satisfies ballot secrecy

We demonstrate the applicability of our definition using a construction (Enc2Vote)
for election schemes from non-malleable public-key encryption schemes.'*

Definition 19 (Enc2Vote). Given an asymmetric encryption scheme IT = (Gen,
Enc, Dec), we define Enc2Vote(II) as follows.

e Setup(k) computes (pk, sk) «+ Gen(k) and outputs (pk, sk, poly(k), |m|).

e Vote(pk, ne,v, k) computes b < Enc(pk,v) and outputs b, if 1 <v < nec <
|m|, and L, otherwise.

e Tally(sk, nc, bb, k) initialises vector v of length nc, computes for b € bb
do v <+ Dec(sk,b); if 1 < v < nc then v[v] « v[v] + 1, and outputs

(v,e€).

e Verify(pk, nc, bb, v, pf, k) outputs 1.

Algorithm Setup requires poly to be a polynomial function, algorithms Setup and
Vote require m = {1,...,|m|} to be the encryption scheme’s plaintext space, and
algorithm Tally requires € to be a constant symbol.

Lemma 4. Suppose I is an asymmetric encryption scheme with perfect cor-
rectness. We have Enc2Vote(II) is an election scheme.

Intuitively, given an encryption scheme II satisfying non-malleability, the
election scheme Enc2Vote(IT) derives ballot secrecy from the encryption scheme
until tallying and tallying maintains ballot secrecy by only disclosing the number
of votes for each candidate. Formally, the following holds.!®

Proposition 5. Suppose Il is an asymmetric encryption scheme with perfect
correctness. If I1 satisfies IND-PAO, then Enc2Vote(Il) satisfies ballot secrecy.

4.2 Relations between ballot and bid secrecy

The main distinctions between our formalisations of privacy for elections and
auctions are as follows.

1. Our ballot secrecy game tallies the bulletin board, whereas our bid secrecy
game opens the bulletin board.

2. Our ballot secrecy game is intended to protect the privacy of all voters,
whereas our bid secrecy game is only intended to protect the privacy of
losing bidders.

14The construction was originally presented by Bernhard et al. [SB14, SB13, BPW12b,
BCP*11] in a slightly different setting.

15Bellare & Sahai [BS99, §5] show that their notion of non-malleability (CNM-CPA) coincides
with a simpler indistinguishability notion (IND-PAO), thus it suffices to consider IND-PAO in
Proposition 5.

16

3. Our ballot secrecy game provides the adversary with the vote correspond-
ing to any ballot that was not computed by the oracle, whereas the ad-
versary is not given a similar mapping in our bid secrecy game.

These distinctions support our intuition: we can construct auction schemes sat-
isfying bid secrecy from election schemes satisfying ballot secrecy. Yet, interest-
ingly, ballot secrecy alone is insufficient to ensure that our construction produces
auction schemes satisfying bid secrecy. This is because our construction is re-
liant upon the underlying tally algorithm producing the expected outcome, and
the underlying reveal algorithm producing the expected set of ballots. Other-
wise, a poorly designed tally algorithm could lead to the construction of auction
schemes which do not satisfy bid secrecy, and similarly for a poorly designed
reveal algorithm. This leads to a separation result (cf. Appendix E). Never-
theless, we can formulate soundness conditions which capture a class of election
schemes for which our intuition holds.

Tally soundness. Correctness for election schemes ensures that algorithm
Tally produces the expected election outcome under ideal conditions. A similar
property, which we call tally soundness, can hold in the presence of an adversary.
Our formulation of tally soundness (Definition 20) challenges the adversary to
concoct a scenario in which the election outcome does not include the votes of
all ballots on the bulletin board that were produced by Vote.
Formally, we capture the correct election outcome using function correct-outcome,

which is defined such that for all pk, nc, bb, k, £, and v € {1,..., nc}, we have'¢

correct-outcome(pk, nc, bb, k)[v] = ¢
— F % ebb\ {L}:3Ir:b= \Vote(pk,nc,v, ;)

That is, component v of vector correct-outcome(pk,bb, nc, k) equals £ iff there
exist ¢ ballots on the bulletin board that are votes for candidate v. The vector
produced by correct-outcome must be of length ne.

Definition 20 (Tally soundness). Let I' = (Setup, Vote, Tally, Verify) be an elec-
tion scheme, A be an adversary, k be a security parameter, and Tally-Soundness(
T, A k) be the following game.
Tally-Soundness(T', A, k) =

(pk, sk, mb, mc) < Setup(k);

(nc, bb) « A(pk, k);

(v, pf) < Tally(sk, nc, bb, k);

if v e {1,...,nc} . v[v] < correct-outcome(pk, nc, bb, k)[v] A [bb| < mb A

nc < mc then
| return 1

else
L return 0

6Function correct-outcome uses a counting quantifier [Sch05] denoted 3=. Predicate
(3=fx : P(z)) holds exactly when there are £ distinct values for = such that P(zx) is sat-
isfied. Variable x is bound by the quantifier, whereas /¢ is free.

17

We say T' satisfies tally soundness, if for all probabilistic polynomial-time ad-
versaries A, there exists a negligible function negl, such that for all security
parameters K, we have Succ(Tally-Soundness(T', A, k)) < negl(k).

Reveal soundness. Correctness for reveal algorithms ensures that algorithm
Reveal produces the set of ballots for a particular vote under ideal conditions.
A similar property, which we call reveal soundness, can hold in the presence of
an adversary. Our formulation of reveal soundness challenges the adversary to
concoct a scenario in which the set of ballots for a particular vote is not correct,
i.e., the set does not contain all the ballots for the specified vote.

Definition 21 (Reveal soundness). Let I' = (Setup, Vote, Tally, Verify) be an
election scheme, Reveal be a reveal algorithm, A be an adversary, k be a security
parameter, and Reveal-Soundness(T', A, k) be the following game.
Reveal-Soundness(T', A, k) =
(pk, sk, mb, mc) < Setup(k);
(nc, bb,v) < A(pk, k);
b + Reveal(sk, nc, bb, v, k);
W« 0
for b € bb do
(v, pf) + Tally(sk, nc, {b}, K);
L W~ WuU{(bv)};
ifb£{b|(b,v) e WAvV[y]=1}AJbb] <mbA1<v<nc<methen
| return 1
else
L return 0
We say Reveal satisfies reveal soundness with respect to I', if for all proba-
bilistic polynomial-time adversaries A, there exists a negligible function negl,
such that for all security parameters r, we have Succ(Reveal-Soundness(T', A,
k)) < negl(k).
Lemma 6. Let I' be an election scheme and Reveal be a reveal algorithm. If
Reveal satisfies reveal soundness with respect to I', then Reveal is correct with
respect to I'.

4.2.1 Bid secrecy for non-verifiable auction schemes

We prove that the construction presented in Section 3.3.1 produces auction
schemes satisfying bid secrecy, assuming the underlying election scheme satisfies
ballot secrecy and tally soundness, and the underlying reveal algorithm satisfies
reveal soundness.

Proposition 7. Let ' be an election scheme and Reveal be a reveal algorithm.
Moreover, let ¥ = A(I',Reveal). If T' satisfies ballot secrecy and tally sound-
ness, and Reveal satisfies reveal soundness with respect to I, then ¥ satisfies bid
secrecy.

We demonstrate the applicability of our result in the following example.

18

Example: Enc2Bid satisfies bid secrecy

In Appendix C we present a reveal algorithm Reveal-Enc2Bid(II) such that
Enc2Bid(II) is equivalent to A(Enc2Vote(II), Reveal-Enc2Bid(II)). Hence, we can
use Proposition 7 to prove that Enc2Bid(II) satisfies bid secrecy, obtaining the
following result.

Proposition 8. Suppose 11 is an asymmetric encryption scheme with perfect
correctness. If 11 satisfies IND-PAO, then Enc2Bid(II) satisfies bid secrecy.

4.2.2 Bid secrecy for verifiable auction schemes

We generalise Proposition 7 to verifiable auction schemes, assuming the non-
interactive proof system is zero-knowledge.

Theorem 9. Let T be an election scheme, Reveal be a reveal algorithm, and
A be a non-interactive proof system for relation R(L',Reveal). Moreover, let
Y = A(T,Reveal, A). If T satisfies ballot secrecy and tally soundness, Reveal
satisfies reveal soundness with respect to ', and A is zero-knowledge, then X
satisfies bid secrecy.

We shall see that tally soundness is implied by universal verifiability (Sec-
tion 5.1.2), hence, a special case of the above theorem requires that I' satisfies
universal verifiability, rather than tally soundness.

5 Verifiability results

We recall definitions of election verifiability by Smyth, Frink & Clarkson [SFC15].17
We show that these definitions are sufficient to ensure that our construction pro-
duces schemes satisfying auction verifiability.

7Kiisters et al. [KTV11] argue that decomposing verifiability into individual and universal
verifiability is insufficient to detect certain attacks involving ill-formed ballots. Cortier et
al. [CEK*15, §1] and Smyth, Frink & Clarkson [SFC15] have shown that this argument does
not hold in general: they present definitions of universal verifiability that rule out such attacks.
Nevertheless, Smyth, Frink & Clarkson acknowledge that “there [might] still lurk ... ‘gaps’ in
[their] decomposition.” But, we must concede that gaps might also lurk in alternative defini-
tions of verifiability. In particular, those definitions that do not require decomposition, such
as global verifiability. Indeed, Cortier et al. [CGK*16, §1] have observed “severe limitations
and weaknesses” in some definitions of global verifiability.

We adopt verifiability definitions by Smyth, Frink & Clarkson [SFC15] because they improve
upon earlier definitions, e.g., [JCJ10, CGGI14, KZZ15], to detect attacks that arise when
tallying and verification procedures collude, when verification procedures reject legitimate
outcomes, and when the adversary controls the bulletin board and the communication channel.
Moreover, Smyth, Frink & Clarkson have shown verifiability results for Helios, which will be
useful in our case study. Our verifiability results could be extended to other definitions of
verifiability, e.g., [KTV10, CGKT16], by modifying our proofs.

19

5.1 Election verifiability
5.1.1 Individual verifiability

Individual verifiability challenges the adversary to generate a collision from al-
gorithm Vote.

Definition 22 (Individual verifiability [SFC15]). Let I' = (Setup, Vote, Tally,
Verify) be an election scheme, A be an adversary, k be a security parameter,
and Exp-IV-Ext(T', A, k) be the following game.

Exp-IV-Ext(T", A, k) =
(pk, ne,v,v") < A(k);
b < Vote(pk, nc,v, k);
b + Vote(pk, nc,v', K);
if b=V Ab# LAY # 1 then
| return 1
else
L return 0
We say I satisfies individual verifiability, if for all probabilistic polynomial-time
adversaries A, there exists a negligible function negl, such that for all security
parameters £, we have Succ(Exp-IV-Ext(T, A, k)) < negl(k).

5.1.2 Universal verifiability

Universal verifiability challenges the adversary to concoct a scenario in which
Verify accepts, but the election outcome is not correct.

Formally, we capture the correct election outcome using function correct-outcome.
Since function correct-outcome will now be parameterised with a public key con-
structed by the adversary, rather than a public key constructed by algorithm
Setup (cf. Section 4.2), we must strengthen injectivity to hold for adversarial
keys.

Definition 23 (Strong injectivity [SFC15]). An election scheme (Setup, Vote,
Tally, Verify) satisfies strong injectivity, if for all security parameters k, public
keys pk, integers nc, and votes v and v, such that v # v', we have

Pr[b < Vote(pk, nc, v, k); b’ < Vote(pk, ne,v', k)
bt LAY AL =bAY] =1

Definition 24 (Universal verifiability [SFC15]). Let I' = (Setup, Vote, Tally,
Verify) be an election scheme satisfying strong injectivity, A be an adversary, k
be a security parameter, and Exp-UV-Ext(T", A, k) be the following game.

Exp-UV-Ext(T', A, k) =

20

(pk, nc, bb, v, pf) + A(k);
if v # correct-outcome(pk, nc, bb, k) A Verify(pk, nc,bb, v, pf, k) =1
then

| return 1

else
L return 0
We say I' satisfies universal verifiability, if for all probabilistic polynomial-time
adversaries A, there exists a negligible function negl, such that for all security
parameters K, we have Succ(Exp-UV-Ext(T, A, k)) < negl(k).

Universal verifiability is similar to tally soundness, in particular, both no-
tions challenge the adversary to concoct a scenario in which the election outcome
is not correct. The election outcome is computed by the challenger using algo-
rithm Tally in Tally-Soundness. By comparison, the outcome is chosen by the
adversary in Exp-UV-Ext, under the condition that it must be accepted by algo-
rithm Verify. Since completeness asserts that outcomes output by Tally will be
accepted by Verify, we have the following result.

Lemma 10. Let I' be an election scheme. If ' satisfies universal verifiability,
then T satisfies tally soundness.

It is trivial to see that universal verifiability is strictly stronger than tally sound-
ness, because Enc2Vote satisfies tally soundness (see proof of Proposition 8), but
not universal verifiability (it accepts any election outcome).

Corollary 11. Universal verifiability is strictly stronger than tally soundness.

The proof of Corollary 11 follows from Lemma 10 and the above reasoning; we
omit a formal proof.

5.2 Election verifiability implies auction verifiability

The following results demonstrate that our second construction (Section 3.3.2)
produces verifiable auction schemes from verifiable election schemes.

Theorem 12. Let T' be an election scheme, Reveal be a reveal algorithm, and
A be a non-interactive proof system for relation R(I", Reveal), such that Reveal is
correct with respect to . IfT' satisfies individual verifiability, then A(T', Reveal, A)
satisfies individual verifiability.

The proof of Theorem 12 follows from Definitions 7, 16 & 22 and we omit a
formal proof.

For universal verifiability, we require the non-interactive proof system to
satisfy a notion of soundness. This notion can be captured by the following
property on relation R(T', Reveal).

Definition 25. Given an election scheme I' = (Setup, Vote, Tally, Verify) and
a reveal algorithm Reveal, we say relation R(I',Reveal) is A-suitable, if ((pk,
np, bb,p, b, k), sk) € R(T',Reveal) implies correct-bids(pk, np,bb,p, b, k) with
overwhelming probability.

21

Theorem 13. Let T be an election scheme, Reveal be a reveal algorithm, and
A be a non-interactive proof system for relation R(T',Reveal), such that Reveal
is correct with respect to I'. If T' satisfies universal verifiability, A satisfies
soundness, and R(T, Reveal) is A-suitable, then A(T, Reveal, A) satisfies univer-
sal verifiability.

6 Case study: Helios

We demonstrate the applicability of our construction by deriving an auction
scheme from Helios [AMPQ09].

6.1 Helios

Helios is an open-source, web-based electronic voting system, which has been de-
ployed in the real-world: the International Association of Cryptologic Research
has used Helios annually since 2010 to elect board members [BVQ10, HBH10],'8
the Catholic University of Louvain used Helios to elect the university president
in 2009 [AMPQO09], and Princeton University has used Helios since 2009 to elect
student governments.lg)’20

Informally, Helios can be modelled as an election scheme (Setup, Vote, Tally,
Verify) such that:

Setup generates a key pair for an asymmetric homomorphic encryption scheme,
proves correct key generation in zero-knowledge, and outputs the public
key coupled with the proof.

Vote encrypts the vote, proves correct ciphertext construction in zero-knowledge,
and outputs the ciphertext coupled with the proof.

Tally proceeds as follows. First, any ballots on the bulletin board for which
proofs do not hold are discarded. Secondly, the ciphertexts in the remain-
ing ballots are homomorphically combined, the homomorphic combination
is decrypted to reveal the election outcome, and correctness of decryption
is proved in zero-knowledge. Finally, the election outcome and proof of
correct decryption are output.

Verify recomputes the homomorphic combination, checks the proofs, and out-
puts 1 if these checks succeed and 0 otherwise.

The original Helios scheme [AMPQO09] is known to be vulnerable to attacks
against ballot secrecy and verifiability, and defences against those attacks have
been proposed [CS11, SC11, Smyl2, CS13, SB13, SB14, Smyl5b, BPW12a).
We adopt the formal definition of Helios proposed by Smyth, Frink & Clarkson

18http://www.iacr.org/elections/, accessed 3 Apr 2013.
9http://heliosvoting.org/2009/10/13/helios-deployed-at-princeton/, accessed 8
Feb 2013.

2Onttps://princeton.heliosvoting.org/, accessed 8 Feb 2013.

22

[SFC15], which adopts non-malleable ballots [SHM15] and uses the Fiat—-Shamir
transformation with the inclusion of statements in hashes [BPW12a] to defend
against those attacks. Henceforth, we write Helios’16 to refer to that formal-
ization.

6.2 An auction scheme from Helios’16

We derive an auction scheme from Helios’16 using our construction parame-
terised with a reveal algorithm and a non-interactive proof system. We formally
describe that reveal algorithm and proof system in Appendix F, and refer to
the resulting scheme as the auction scheme from Helios’16. Our privacy and
verifiability results allow us to prove security of that scheme:

Theorem 14. If Helios’16 satisfies ballot secrecy, then the auction scheme from
Helios’16 satisfies bid secrecy.

Proof. Smyth, Frink & Clarkson have shown that Helios’16 satisfies universal
verifiability [SFC15]. It follows from Lemma 10 that Helios'16 satisfies tally
soundness. Hence, by Theorem 9, it suffices to prove that the reveal algorithm
satisfies reveal soundness and that the non-interactive proof system is zero-
knowledge. We defer those proofs to Lemmata 30 & 31 in Appendix F.3. O

Proving that Helios’16 satisfies ballot secrecy would advance the state-of-
the-art in a manner that is beyond the scope of this case study. Indeed, the
only privacy results [BPW12a, Ber14, BCG'15a] for Helios consider variants of
Helios’16 and depend upon undesirable trust assumptions [Smy15a].

Theorem 15. The auction scheme from Helios’16 satisfies individual and uni-
versal verifiability.

Proof. Smyth, Frink & Clarkson have shown that Helios’16 satisfies individual
and universal verifiability [SFC15]. Hence, by Theorem 12, the auction scheme
from Helios’16 satisfies individual verifiability. To show universal verifiability,
it suffices (Theorem 13) to prove that the non-interactive proof system satisfies

soundness and the associated relation is A-suitable. We defer those proofs to
Lemmata 33 & 32 in Appendix F.4. O

Deriving auction schemes from Helios is not new. Indeed, McCarthy, Smyth
& Quaglia [MSQ14a] derive the Hawk auction scheme from Helios. Our auction
scheme is distinguished from Hawk by formal security results, whereas Hawk
only has an informal security analysis [MSQ14b, §4.4].

7 Conclusion
We demonstrate that the seemingly disjoint research fields of auctions and elec-

tions are actually related. In particular, we present a generic construction for
auction schemes from election schemes. And we formulate precise conditions

23

under which auction schemes produced by our construction are secure. Our
results inaugurate the unification of auctions and elections, thereby facilitating
the advancement of both fields. In particular, secure auction schemes can be
immediately constructed from election schemes, allowing advances in election
schemes to be capitalised upon to advance auction schemes.

Acknowledgements

This research was largely conducted at Ecole Normale Supérieure and INRIA,
with support from the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013) / ERC project CRYSP (259639).

A Ballot secrecy

We recall the definition of ballot secrecy (Definition 26) by Smyth [Smyl5a]
(which is based upon an unpublished draft by Smyth [Smy14] and an extended
version of that draft by Bernhard & Smyth [BS15]) and introduce a construction
for election schemes (Definition 27) which demonstrates that our notion of ballot
secrecy is strictly stronger than Smyth’s notion (Proposition 16).

Definition 26 (Smy-Ballot-Secrecy [Smyl5al). LetT' = (Setup, Vote, Tally, Verify)
be an election scheme, A be an adversary, k be a security parameter, and Smy-
Ballot-Secrecy(T', A, k) be the following game.

Smy-Ballot-Secrecy(I', A, k) =
(pk, sk, mb, mc) < Setup(k);
ne < A(pk, k);

B+r{0,1} L« 0;

bb « A°();

(v, pf) < Tally(sk, nc, bb, k);

g < A(v, pf);

if g = B A balanced(bb, ne, L) A1 < nec < me A |bb| < mb then
| return 1

else

L return 0

Oracle O s defined as follows:

o O(vg,v1) computes b < Vote(pk, nc,vg, k); L < LU {(b,vp,v1)} and out-
puts b, where vg,v1 € {1, ..., nc}.

We say I' satisfies Smy-Ballot-Secrecy, if for all probabilistic polynomial-time
adversaries A, there exists a negligible function negl, such that for all security
parameters r, we have Succ(Smy-Ballot-Secrecy(I', A, k)) < 1 + negl(k).

24

Definition 27. SupposeT' = (Setupr, Voter, Tallyp, Verifyr) is an election scheme
and € is a constant. Let x(I',e) = (Setup,, Vote,, Tally, , Verify,) be the following
election scheme.

Setup, (x). Computes (pk, sk, mb, mc) < Setupp(r), generates a nonce k of
the same length as sk, and outputs (pk, (sk, k), mb, mc).

Vote, (pk,nc,v, k). Computes b < Voter(pk,nc,v, k) and outputs b.

TaIIyX(sk', nc,bb, k). Parses sk’ as (sk,k), computes (v, pf) < Tallyp(sk, ne,
bb, k), and outputs (v, (pf, sk ® k)), if bb = {€}, and outputs (v, (pf,k)),

otherwise.

Verify, (pk, nc, bb, v, pf', k). Parses pf' as (pf,h), computes s + Verifyp(pk,
ne, bb, v, pf, k), and outputs s.

Proposition 16. Ballot-Secrecy is strictly stronger than Smy-Ballot-Secrecy.

Proof sketch. Intuitively, given an election scheme I satisfying Smy-Ballot-Secrecy
and a constant €, we have x(T', €) satisfies Smy-Ballot-Secrecy, because tallying
reveals either (v, (pf, sk @ k)) or (v, (pf,k)). By comparison, x(T',€) does not
satisfy Ballot-Secrecy, because of the following attack. The adversary outputs
bulletin board bb U {€} such that bb #), recovers sk @ k and k from W, and
obtains the private key. By election scheme correctness, this key can be used to
recover votes from ballots. O

B Cryptographic primitives

B.1 Asymmetric encryption

Definition 28 (Asymmetric encryption scheme [KL07]). An asymmetric en-
cryption scheme is a tuple of efficient algorithms (Gen, Enc, Dec) such that:

e Gen, denoted (pk, sk) + Gen(k), takes a security parameter k as input
and outputs a key pair (pk, sk).

e Enc, denoted ¢ < Enc(pk, m), takes a public key pk and message m from
the plaintext space®' as input, and outputs a ciphertext c.

e Dec, denoted m < Dec(sk,c), takes a private key sk, and ciphertext ¢ as
input, and outputs a message m or error symbol L. We assume Dec is
deterministic.

21Definitions of asymmetric encryption schemes (including the definition by Katz & Lin-
dell [KLO7]) typically leave the set defining the plaintext space implicit. Such definitions can
be extended to explicitly include the plaintext space, for instance, Smyth, Frink & Clark-
son [SFC15] present a definition in which algorithm Setup outputs the plaintext space.

25

Moreover, the scheme must be correct: there exists a negligible function negl,
such that for all security parameters k and messages m from the plaintext space,
we have Pr[(pk, sk) < Gen(k); ¢ < Enc(pk,m) : Dec(sk,c) = m] > 1 — negl(k).
We say correctness is perfect, if the aforementioned probability is one.

Definition 29 (IND-PAO [BS99]). Let IT = (Gen, Enc, Dec) be an asymmetric
encryption scheme, A be an adversary, k be a security parameter, and IND-PAO(
I, A, k) be the following game.??
IND-PAO(IT, A, k) =

(pk, sk) < Gen(k);

B <+r{0,1};

(mg, m1) « A(pk, K);

y < Enc(pk,mg);

¢ Aly) ;

p « (Dec(sk,c[1]),. .., Dec(sk, c[lc]]));

g < A(p);

if g= 5 Ay ¢ cthen

| return 1

else
L return 0

In the above game, we insist mg and my are in the encryption scheme’s plain-
text space and |mg| = |my|. We say II satisfies indistinguishability under
chosen plaintext and parallel chosen ciphertext attacks (IND-PAO), if for all
probabilistic polynomial-time adversaries A, there exists a negligible function
negl, such that for all security parameters k, we have Succ(IND-PAO(I1, A, k))
< 1 + negl(k).

Definition 30 (Homomorphic encryption [SFC15]). An asymmetric encryption
scheme I' = (Gen, Enc, Dec) is homomorphic,?3 with respect to ternary operators
O, ®, and ®,%* if there exists a negligible function negl, such that for all security
parameters k, the following conditions are satisfied:?>

e For all messages my and mq fromT'’s plaintext space, we have Pr[(pk, sk) <
Gen(k); c1 < Enc(pk,m1); ca < Enc(pk, ma) : Dec(sk, c1 ®@px c2) = Dec(sk,
c1) Opi Dec(sk, ca)] > 1 — negl(x).

o For all messages m1 and mo from I'’s plaintext space, and all coins r1 and
o, we have Pr[(pk, sk) < Gen(k) : Enc(pk, m1;7r1) @pk Enc(pk, ma;ra) =
Enc(pk, mi ©pr ma;r1 @pi 12)] > 1 — negl(k).

22We extend set membership notation to vectors: we write € x if is an element of the
set {x[i]: 1 << |x|}

230ur definition of an asymmetric encryption scheme leaves the plaintext space implicit,
whereas, Smyth, Frink & Clarkson [SFC15] explicitly define the plaintext space; this change
is reflected in our definition of homomorphic encryption.

24Henceforth, we implicitly bind ternary operators, i.e., we write I' is a homomorphic asym-
metric encryption scheme as opposed to the more verbose I' is a homomorphic asymmetric
encryption scheme, with respect to ternary operators ®, @, and ®.

25We write X opkr Y for the application of ternary operator o to inputs X, Y, and pk. We
occasionally abbreviate X o, Y as X oY, when pk is clear from the context.

26

We say T' is additively homomorphic, if for all security parameters k and key
pairs pk, sk, such that there exists coins r and (pk, sk) = Gen(k;r), we have Opy
is the addition operator in the group defined by I'’s plaintext space and ©py.

B.2 Proof systems

Definition 31 (Non-interactive proof system [SFC15]). A non-interactive proof
system for a relation R is a tuple of algorithms (Prove, Verify), such that:

e Prove, denoted o <+ Prove(s,w, k), is executed by a prover to prove
(s,w) € R.

e Verify, denoted v < Verify(s,o, k), is executed by anyone to check the
validity of a proof. We assume Verify is deterministic.

Moreover, the system must be complete: there exists a megligible function u,
such that for all statement and witnesses (s,w) € R and security parameters K,
we have Pr[o < Prove(s,w, k) : Verify(s,0,k) = 1] > 1 — u(k).

Definition 32 (Soundness). Suppose (Prove, Verify) is a non-interactive proof
system for relation R. We say (Prove, Verify) is sound, if for all probabilis-
tic polynomial-time adversaries A, there exists a negligible function negl, such
that for all security parameters k, we have Pr[(s,0) + A(k) : (s,w) € R A
Verify(s, o) = 1] < negl(k).

Definition 33 (Zero knowledge). Let A = (Prove, Verify) be a non-interactive
proof system for a relation R, derived by application of the Fiat-Shamir trans-
formation [FS87] to a random oracle H and the sigma protocol. Moreover, let
S be an algorithm, A be an adversary, k be a security parameter, and ZK(A, A,
H,S, k) be the following game.
ZK(A A H, S k) =
B R {Oa 1}7
g+ AP (k);
if ¢ = 3 then
| return 1
else
L return 0

Oracle P is defined on inputs (s,w) € R as follows:

o P(s,w) computes if =0 then o < Prove(s,w, k) else o < S(s, k) and
outputs o.

And algorithm S can patch random oracle H.?6 We say A satisfies zero knowl-
edge, if there exists a probabilistic polynomial-time algorithm S, such that for all
probabilistic polynomial-time algorithm adversaries A, there exists a negligible

26Random oracles can be programmed or patched. We will not need the details of how
patching works, so we omit them here; see Bernhard et al. [BPW12a] for a formalization.

27

function negl, and for all security parameters k, we have Succ(ZK(A, A, H, S,
k) < 3 + negl(k). An algorithm S for which zero knowledge holds is called a
simulator for (Prove, Verify).

C Proofs

By Definitions 3 & 12, we have the following facts:

Fact 17. Suppose ¥ = (Setup, Bid, Open, Verify) is an auction scheme. Further
suppose for all public keys pk, integers p and np, sets b and bb, proofs pf, and
security parameters k, we have Verify(pk, np, bb,p, b, pf, k) = 1. It follows that
Y satisfies completeness.

Fact 18. Suppose I' = (Setup, Vote, Tally, Verify) is an election scheme. Further
suppose for all public keys pk, integers nc, sets bb, vectors v, proofs pf, and
security parameters k, we have Verify(pk, nc,bb, v, pf, k) = 1. It follows that T
satisfies completeness.

C.1 Proof of Lemma 1

Let Enc2Bid(II) = (Setup, Bid, Open, Verify) and II = (Gen, Enc, Dec). We prove
that Enc2Bid(II) satisfies correctness, completeness, and injectivity.

First, correctness. Suppose k is a security parameter, nb and np are integers,
and p1,...,pnp € {1,...,np} are prices. Further suppose (pk, sk, mb, mp) is an
output of Setup(k) such that nb < mbAnp < mp and for each 1 < i < nb we have
Bid(pk, np, pi, k) outputs b;. Let bb = {by,...,bnp}. Suppose Open(sk, np, bb,)
outputs (p, b, pf). Let 0 < {(b, Dec(sk, b)) | b € bb}. Since (pk, sk) are outputs
of Gen and since II is perfectly correct, we have ® = {(b1,p1), ..., (bnp, Pnp)}- By
inspection of Open, we have p is the largest integer such that (b,p) € 0A1 <p <
np, or no such integer exists and p = 0. It follows that p = max(0, p1,...,pnp) in
both cases. By further inspection of Open, we have b = {b | (b,p’) € 0 Ap' = p}
in the former case and b = () in the latter case. In the former case, we have
b={b; | p; =pAl <i<mnb}. And,in the latter case, we have 0 & {p1,...,pnb},
hence, b = {b; | p;, = pA1 < i < nb} = 0. It follows that correctness is
(perfectly) satisfied.

Secondly, completeness. Algorithm Verify always outputs 1, hence, the result
follows from Fact 17.

Finally, injectivity. By contradiction, suppose there exists a security param-
eter , integer p,p’, np, and coins r, s, s’ such that

(pk, sk, mb, mp) = Setup(x;r) A b = Bid(pk, np, p, k; s) A
b = Bid(pk,np,p’,k;8) Ab# LAY # LAb=b Ap#p.
By definition of Setup, we have (pk, sk) < Gen(k;r) and mp = {1,...,|m|},

where m is the encryption scheme’s plaintext space. Moreover, by definition
of Bid, we have b = Enc(pk,p;s) and b = Enc(pk,p’;s’). Furthermore, since

28

b# LAV # 1, we have, by inspection of Bid, that p and p’ are from the
plaintext space. Since II is perfectly correct, we have

Dec(sk,b) = p = p’ = Dec(sk, V),

thus deriving a contradiction and concluding our proof. O

C.2 Proof of Lemma 2

Let A(T,Reveal) = (Setup,,Bid, Open, Verify,) and I' = (Setupr, Vote, Tally,
Verifyp). Algorithm Verify always outputs 1, hence, it follows from Fact 17
that A(T', Reveal) satisfies completeness. Moreover, it follows from injectivity
of T that A(T,Reveal) satisfies injectivity. We show that A(T, Reveal) sat-
isfies correctness. Suppose k is a security parameter, nb and mp are inte-
gers, and p1,...,pnp € {1,...,np} are prices. Further suppose (pk, sk, mb,
mp) is an output of Setup(x) such that nb < mb A np < mp and for each
1 < i < nb we have Bid(pk, np, p;, k) outputs b;. Let bb = {by,...,bnp}. More-
over, suppose Open(sk, np, bb, k) outputs (p, b, pf) and Tally(sk, np, bb, k) out-
puts (v, pf). Since T satisfies correctness, we have with overwhelming probabil-
ity that v can be equivalently computed by initialising v as a zero-filled vector
of length np and by performing the following computation:

for 1 <i<nbdo
| vlpi] < vpi] + 1

By inspection of Open, we have p is the largest integer such that v[p] > 0 A
1 < p < np, or no such integer exists and p = 0. It follows that p =
max(0,p1,-..,Pnp) in both cases. By further inspection of Open, we have b is an
output of Reveal(sk, np, bb, p, k) in the former case and b = () in the latter. In
the former case we have b = {b; | p; = pA1 < i < nb} with overwhelming prob-
ability, because reveal algorithm Reveal is correct with respect to I'. And in the
latter case we have 0 € {p1,...,pnp}, hence, b = {b; | p; =pA1<i<nb}=0.
Hence, correctness is satisfied with overwhelming probability. O

C.3 Proof of Lemma 3

The proof that A(T, Reveal, A) satisfies correctness and injectivity is similar to
the proof that A(T", Reveal) satisfies correctness and injectivity (Appendix C.2),
and we omit a formal proof. We prove that A(T', Reveal, A) satisfies complete-
ness.

Let T' = (Setupr, Vote, Tally, Verify), A = (Prove, Verify), and A(T, Reveal,
A) = (Setup,, Bid, Open, Verify,). Suppose k is a security parameter, bb is a
bulletin board, and np is an integer. Further suppose (pk, sk, mb, mp) is an
output of Setup, (k) such that |bb] < mb A np < mp and (p, b, o) is an output
of Open(sk,np,bb, k). It suffices to show that Verify, (pk, np,bb,p,b,0,k) =1
with overwhelming probability. By definition of Verify,, we must show that
checks (1) — (3) hold with overwhelming probability.

29

Check (1) succeeds with overwhelming probability, because T' satisfies com-
pleteness. Check (2) succeeds by definition of Open. We prove that Check (3)
succeeds with overwhelming probability as follows. If p & {1,..., np}, then the
check vacuously holds, otherwise, we proceed as follows. Since A satisfies com-
pleteness, it suffices to show that ((pk, np,bb,p,b, k), sk) € R(T,Reveal). By
aforementioned assumptions, we have 1 < p < np < mp, moreover, there exists
coins r such that (pk, sk, mb, mp) = Setup, (;7). Furthermore, by inspection
of Open, there exist coins ' such that b = Reveal(sk, np, bb, v, k;7’). The result
((pk, np,bb,p, b, k), sk) € R(T, Reveal) follows.

We have that Verify, (pk, np, bb,p, b, pf, k) outputs 1 with overwhelming
probability, hence, A(T', Reveal, A) satisfies completeness. O

C.4 Proof of Lemma 4

Let Enc2Vote(II) = (Setup, Vote, Tally, Verify) and II = (Gen, Enc, Dec). Algo-
rithm Verify always outputs 1, hence, it follows from Fact 18 that Enc2Vote(II)
satisfies completeness. The proof that Enc2Vote(II) satisfies injectivity is sim-
ilar to the proof that Enc2Bid(II) satisfies injectivity (Appendix C.1), and we
omit a formal proof. We prove that Enc2Vote(II) satisfies correctness. Suppose
Kk is a security parameter, nb and nc are integers, and vy,..., v € {1,..., nc}
are votes, and v is a vector of length nc whose components are all 0. Further
suppose (pk, sk, mb, mc) is an output of Setup(x) such that nb < mb A nc < mc
and for each 1 < i < nb we have b; is an output of Vote(pk, nc, v;, k). Moreover,
for each 1 <4 < nb compute v[v;] < v[v;] + 1. Suppose (v/, pf) is an output of
Tally(sk, nc, {b1,...,bup}, k). By inspection of algorithm Tally, we have v’ is a
vector of length nc computed as follows:

for b € {by,...,bnp do
v Dec(sk,b);
if 1 <v < nc then
L v[o] < v[o] + 1

Since pk, sk are output by Gen and since II is perfectly correct, we have Dec(sk,
b;) = v; for all 4 € {1,...,nb}. It follows that v = v’. Hence, correctness is
(perfectly) satisfied. O

C.5 Proof of Proposition 5

Let BSO0, respectively BS1, be the game derived from Ballot-Secrecy by replacing
B +r {0,1} with 8 «+ 0, respectively 8 « 1. These games are trivially re-
lated to Ballot-Secrecy, namely, Succ(Ballot-Secrecy(T', A, k)) = % - Succ(BSO(T,
A,K)) + 5 - Succ(BS1(T, A, k)). Moreover, let BS1:0 be the game derived from
BS1 by replacing ¢ = § with g = 0. We relate game BS1 to BS1:0, and we
relate games BSO and BS1:0 to the hybrid games Gg, Gy, ... introduced in Def-
inition 34. We use these relations to prove Proposition 5.

Lemma 19. LetII be an asymmetric encryption scheme and letT' = Enc2Vote(II).
If a probabilistic polynomial-time adversary A wins game Ballot-Secrecy, then

30

for all security parameters k we have Succ(BS1(T', A, k)) = 1 — Succ(BS1:0(T,
A, K)).

Definition 34. Let I' = (Setup, Vote, Tally, Verify) be an election scheme, A be
a probabilistic polynomial-time adversary, € be a constant symbol, and k be a
security parameter. We introduce games Go, G1,... defined as follows.

Gi(FaAv €, K:) =

(pk, sk, mb, me) < Setup(k);

L« 0;W <« 0;

ne + A(pk, k); bb + A°();

v < (0,...,0); // vector of length nc

for b € bb A (b,vg,v1) ¢ L do
(v', pf) < Tally(sk, nc, {b}, k);
W+« W U{(b,v)}
VvV

for b € bb A (b,vg,v1) € L do

L v[vg] < v[ve] + 1;
g A(v, e, W);

if g = 0 A balanced(bb, nc, L) A |bb] < mb A nc < mc then
| return 1

else
L return 0

Oracle O is defined such that O(vg,v1) computes, on inputs vg,v1 € {1,...,nc},
the following:
if |L| < i then
L b « Vote(pk, nc, v1, K);
else
| b« Vote(pk, nc,vo, k);
L+ LU {(b, V0, Ul)};
return b;

Fact 20. Let II be an asymmetric encryption scheme. Suppose Enc2Vote(II) =
(Setup, Vote, Tally, Verify). There exists a negligible function negl, such that for
all security parameters k, bulletin boards bby and bby such that bby N bby = 0,
and integers nc, we have

Pr[(pk, sk, mb, mc) < Setup(k);

(v, pf) < Tally(sk, nc, bby U bby, k);
(V07 pfO) «— Tally(5k7 nc, bbUa KJ)?
(

vy, pfq) < Tally(sk, nc, bby, k)
2 [bbg U bby| < mb Anc < mec=v=vy+vy]>1— negl(k).

Proof of Fact 20. The proof follows from Definition 19. O

31

Lemma 21. LetII be an asymmetric encryption scheme and let T' = Enc2Vote(II).
Suppose € is the constant symbol used by I'. We have for all probabilistic
polynomial-time adversaries A and security parameters k that Succ(BSO(T, A,
k)) = Succ(Go(T', A, €, k)) and Succ(BS1:0(T', A, k)) = Succ(G4(T', A, €, k)), where
q is an upper-bound on adversary A’s oracle queries.

Proof. The challengers in games BSO and Gy, respectively BS1:0 and G,, both
construct keys using the same algorithm and provide those keys, along with the
security parameter, as input to the first adversary call, thus, these inputs and
corresponding outputs are equivalent.

Left-right oracle calls O(vg,v1) in games BSO and Gy output ballots for
vote vg, hence, the bulletin boards are equivalent in both games. The bulletin
boards in BS1:0 and G, are similarly equivalent, in particular, left-right oracle
calls O(vg, v1) in both games output ballots for vote vy, because ¢ is an upper-
bound on the left-right oracle queries, therefore, |L| < ¢ in G,, where L is the
set constructed by the oracle in G,.

It follows that |bb| < mb A nc < mec in BS0, respectively BS1:0, iff |bb| <
mb A ne < me in Gy, respectively G,. Moreover, predicate balanced is satisfied
in BSO, respectively BS1:0, iff predicate balanced is satisfied in Gy, respectively
G,. Hence, if [bb| < mb A nc < mec is not satisfied or if predicate balanced is not
satisfied, then Succ(BSO(T', A, k)) = Succ(Go(T', A, €, %)) and Succ(BS1:0(T, A,
k)) = Succ(G4(T', A, €, k)), concluding our proof. Otherwise, it suffices to show
that the inputs to the third adversary call are equivalent.

By inspection of games BS0 and Gy, respectively BS1:0 and G, it is trivial to
see that the third element of the triple input to the adversary call is equivalently
computed in each game. Furthermore, the second element of the triple input to
the adversary call in Gg, respectively Gg, is € and, by definition of I, it is also
€ in BSO0, respectively BS1:0. It remains to show that the first element of the
triple input to the adversary call, namely the outcome, is equivalently computed
in games BSO and Gy, respectively BS1:0 and G,.

In BSO0, respectively BS1:0, the outcome is computed by tallying the bulletin
board. By comparison, in Gg, respectively G4, the outcome is computed by
individually tallying each ballot on the bulletin board that was constructed by
the adversary (i.e., ballots in {b € bb A (b, vp,v1) ¢ L}, where bb is the bulletin
board and L is the set constructed by the oracle), and by simulating the tally of
the remaining ballots (i.e., ballots constructed by the oracle, namely, ballots in
{be€bbA (bvg,v1) € L}). By Fact 20, it suffices to prove that the simulations
are valid, i.e., in Gy and G4, computing

for b € bb A (b,vg,v1) € L do

| v[vo] = v[ve] +1
is equivalent to
for b € bb A (b,vg,v1) € L do
v Dec(sk,b);
if 1 <v < nc then
| v[v] < v[v]+1

32

where II = (Gen, Enc, Dec).

In Gy, we have for all (b,vg,v1) € L that b is an output of Enc(pk,vg) such
that 1 < vg < ne. And vg is from the plaintext space, thus, Dec(sk,b) = vg
by correctness of II. Similarly, in G,, we have for all (b,vp,v1) € L that b is
an output of Enc(pk,v1) such that 1 < v; < nc. And v; is from the plaintext
space, thus, Dec(sk,b) = v, by correctness of II. Hence, computing for b €
bb A (b,vp,v1) € L do v < Dec(sk,b); if 1 < v < nc then v[v] < v[v] + 1 is
equivalent to

for b € bb A (b,vg,v1) € L do

v <— Dec(sk, b);
L v[v] + v[v] +1
In Gy, it follows by correctness of II that the simulation is valid. Moreover,
since predicate balanced holds in G, we have for all v € {1,..., nc} that |{b |
bebbA (byv,v1) € L} =|{b|b e bbA (bvg,v) € L}|, where bb is the bulletin
board and L is the set constructed by the oracle. Hence, in G4, computing

for b € bb A (b, vg,v1) € L do v[vg] < v]vg] + 1;
is equivalent to

for b € bb A (b,vg,v1) € L do v[v1] ¢ v]vi] + 1;

Thus, the simulation is valid in G, too, thereby concluding our proof. O

Proof of Proposition 5. Let T' = Enc2Vote(II). Suppose I' does not satisfy
Ballot-Secrecy, i.e., there exists a probabilistic polynomial-time adversary A,
such that for all negligible functions negl, there exists a security parameter and

1
3 + negl(x) < Succ(Ballot-Secrecy(T', A, k))

By definition of BSO and BS1, we have

- (Succ(BSO(T', A, &) + Succ(BS1(T', A, k)))

DO | =

And, by Lemma 19, we have

- (Suce(BSO(T', A, k)) + 1 — Succ(BS1:0(T, A, k)))

N = N

- (Succ(BSO(T', A, k)) — Succ(BS1:0(T, A,)))

DN | =

|

with non-negligible probability. Let € be the constant symbol used by I'" and let
q be an upper-bound on the number of oracle queries made by A. Hence, by
Lemma 21, we have

+ — - (Succ(Go(T, A, €, k) — Succ(G4(T, A, ¢, k)))

| =
N| =

33

which can be rewritten as a telescoping series

1
+3 D Suce(Gj(T, A, e, k) — Succ(Gji1 (T, A, €, k)

0<j<q

DO =

Suppose Succ(G;(T', A, €,%)) — Succ(G;+1(T, A, €, k)) is the largest term in the
series, where 7 € {0,...,¢ — 1}. Hence,

< — 4 = - q- (Succ(Gy(T, A, ¢, k) — Succ(Giy1 (T, A, €, k)))

DN =

1
2
Thus,

+ — -negl(k) < = + = - (Succ(G;(T, A, €, k)) — Succ(Gi11(T, A, €, K)))

N
Q| =
N
N =

From A, we construct an adversary B against I, and show that B wins with
probability at least % + % - (Succ(G;(T, A, e, k) — Succ(G;+1(T, A, €, k))).

Let T' = (Setup, Vote, Tally, Verify) and IT = (Gen, Enc, Dec). We define ad-
versary B as follows.

e B(pk, k) computes nc < A(pk, k); L « () and runs A, handling oracle calls
O(vg, v1) as follows, namely, if |L| < 4, then compute b < Enc(pk,v1); L «
LU{(b,vp,v1)} and return b to A, otherwise, assign vgj < vo; vy < v1 and
output (vg, v1).

e B(y) assigns L < LU{(y,v{,v])}; returns y to A and handles any further
oracle calls O(vg,v1) as follows, namely, computes b < Enc(pk,vg); L +
LU {(b,vg,v1)} and returns b to A; assigns A’s output to bb; supposes
{by,..., b} = b6\ {b | (byvo,v1) € L}; and outputs (by,...,bx) to the
challenger.

e 5(p) initialises W as the empty set and v as a zero-filled vector of length
nc, computes

for 1 <j<kdo

v/ +(0,...,0); // vector of length nc
if 1 < p[j] < nc then
vplj]] < vIp[jl] + 1;
v[plil] « 1;
W= WU{(b;,v')}
for b € bb A (b,v9,v1) € L do
| vive] = vive] +1;
g — A(V,G,W);

and outputs g.

34

We prove that B wins IND-PAO against II with non-negligible probability.

Suppose (pk, sk) is an output of Gen(k). Further suppose we run B(pk, k).
Tt is trivial to see that B(pk, k) simulates the challenger and oracle in both G;
and G;y1. In particular, B(pk,) simulates the first ¢« — 1 oracle calls. Since
G; and G;;1 are equivalent to adversaries that make less than ¢ oracle queries,
adversary A must make at least i queries to ensure that - (Succ(G(I', A, €,k)) —
Succ(G;41(T, A, €, k))) is non-negligible. Hence, termination of B is guaranteed
with non-negligible probability. Suppose B terminates by outputting (mg,m1),
corresponding to the inputs of A’s ith left-right oracle call. Further suppose y
is an output of Enc(pk, mg), where 3 is a bit, and c is an output of B(y). If
B =0, then B(y) simulates the oracle in G;, otherwise (8 = 1), B(y) simulates
the oracle in G;;1. By definition of B, we have ¢ = (by,...,b;) such that

{b1,.., by} = b6\ {b | (b,ve,v1) € L} (1)

where bb is A’s output. Let p < (Dec(sk,c[1]),..., Dec(sk,c[|c|])). And sup-
pose ¢ is an output of B(p). Let us assume that if 5 = 0, then B(p) simulates
the challenger in G;, otherwise, B(p) simulates the challenger in G;11, i.e., we
assume the following claims:

Claim 22. Computing W as
W« 0;
for 1 <j<kdo
v < (0,...,0); // vector of length nc
if 1 < p[j] < nc then

[viplll < 1
W W U{(b;,v)};

1s equivalent to computing W as
W« 0;
for b € bb A (b,v9,v1) ¢ L do

L (v, pf) < Tally(sk, nc, {b}, K);
W~ WuU{(bv)};

Claim 23. Computing v as

v < (0,...,0); // vector of length nc
for 1 <j<kdo

if 1 < p[j] < nc then
L | vIplill « vIplill + 1

s equivalent to computing v as

v < (0,...,0); // vector of length nc
for b € bb A (b,vg,v1) ¢ L do

(v', pf) Tally(sk, nc, {b}, K);
VvV

35

In the above claims, it suffices to consider set L, since it corresponds to the set
generated by the oracle in G; if 5 = 0, respectively G, if 5 = 1.
By Claims 22 & 23, we have either:

e 3 =0 and B(p) simulates the challenger in G;, thus, g = 8 with at least
the probability that A wins G;.

e 3 =1 and B(p) simulates the challenger in G;;1, thus, g # 0 with at least
the probability that A looses G;11 and, since A wins game Ballot-Secrecy,
we have ¢ is a bit, hence, g = .

It follows that B’s success is at least %~Succ(Gi(F, A e, k))+ % -(1—=Succ(Gi41 (T,
A, €, k))), thus we conclude our proof by proving Claims 22 & 23.

Proof of Claim 22. By definition of p and since Dec is deterministic, the former
computation is equivalent to
W <« 0;
for 1 <j <k do
v < (0,...,0); // vector of length nc
if 1 < Dec(sk,b;) < nc then
L v[Dec(sk,b;)] < 1;

W WuU{(bj,v)};

Moreover, by definition of Tally and properties of addition, and since Dec is
deterministic, the later computation is equivalent to
W« 0;
for b € bb A (b,vg,v1) ¢ L do
v < (0,...,0); // vector of length nc
if 1 < Dec(sk,b) < nc then
| v[Dec(sk,b)] <1
W WO {(bv)):

Hence, we conclude by (1).

Proof of Claim 23. By definition of p and since Dec is deterministic, the former
computation computes vector v as
v < (0,...,0); // vector of length nc
for 1 <j<kdo
if 1 < Dec(sk,b;) < nc then
L | v[Dec(sk, b;)] + v[Dec(sk,b;)] + 1;

Moreover, by definition of Tally and since Dec is deterministic, the latter com-
putation computes vector v as

36

v« (0,...,0); // vector of length nc
for b € bb A (b,vg,v1) ¢ L do
v/« (0,...,0); // vector of length nc
if 1 < Dec(sk,b) < nc then
| v'[Dec(sk,b)] < v'[Dec(sk,b)] + 1

VvV

which is equivalent to

v« (0,...,0); // vector of length nc
for b € bb A (b,vg,v1) ¢ L do
L if 1 < Dec(sk,b) < nc then
| v[Dec(sk,b)] < v[Dec(sk,b)] + 1

Hence, we conclude by (1). O

C.6 Proof of Lemma 6

Let I" = (Setup, Vote, Tally, Verify). Suppose algorithm Reveal is not correct with
respect to I'. We construct an adversary A against game Reveal-Soundness.

o A(pk, k) computes for 1 < i < nb do b; < Vote(pk, nc,v;, k) and outputs
(ne,{b1,...,bup},v).

Suppose k is a security parameter, nb and nc are integers, v,v1,...,Unp €
{1,...,nc} are votes, and Setup(k) outputs (pk, sk, mb, mc). We consider the
interesting case: nb < mbAnc < mc. Since Setup is efficient, integers mb and mc
can be efficiently computed. Moreover, since Vote is efficient, nb < mb A nc <
me, and v € {1,...,nc}, adversary A is efficient, i.e., A is a probabilistic
polynomial-time adversary.

Suppose A(pk, k) outputs (nc,{b1,...,bnp},v) and W is computed as fol-
lows.

W+ 0;

for b € bb do

(v, pf) « Tally(sk, ne, {b}, x);
L W+~ WuU{(bv)}

By correctness of I', we have for all 1 < ¢ < nb that Tally(sk, nc, {b;}, k) outputs
(v, pf) such that v[v;] = 1. Suppose Reveal(sk, nc,{b1,...,b.},v,K) outputs
b. Since Reveal is not correct with respect to I', we have b # {b; | v; =v A1 <
i <nb} ={b| (b,v) € WA v[y] =1}, with non-negligible probability. Hence,
A wins game Reveal-Soundness, concluding our proof.

C.7 Proof of Proposition 7

Let ' = (Setupr, Vote, Tally, Verify), 3 = (Setupy,, Bid, Open, Verifyy.), and € be
the constant used by algorithm Open. Suppose Y. does not satisfy bid secrecy,
hence, there exists an adversary A, such that for all negligible functions negl,

37

there exists a security parameter x and Succ(Bid-Secrecy (¥, A, k)) > 1+negl(k).
We construct an adversary B that wins Ballot-Secrecy (T, B, k):

e B(pk, k) computes np + A(pk, k) and outputs np.

e 53() initialises L « @, computes bb < A(), and outputs bb. Any oracle
calls from A on inputs (pg, p1) are forwarded to B’s oracle and a transcript
of calls is maintained, i.e., B computes b < O(pg,p1); L + LU{(b,po,p1)}
and returns b to A.

e B(v,pf,W) proceeds as follows. Finds the largest integer p such that
v[p] > 0A1 < p < np; if no such integer exists, then algorithm B computes
g < A(0,0,¢) and outputs g. If (b,p,p1) € L Ab € bb, then abort.
Otherwise, algorithm B assigns b <— {b | (b, v') € WAV'[p] = 1}, computes
g < A(p,b,¢), and outputs g.

It is trivial to see that B(pk,) and B() simulate A’s challenger to A. Let us
prove that B(v, pf, W) simulates A’s challenger. In essence, we must prove that
B simulates algorithm Open. By inspection of Ballot-Secrecy, we have v and
pf are output by algorithm Tally. By inspection of adversary B and algorithm
Open, if there is no integer p such that v[p] > 0 A1 < p < np, then it is trivial
to see that B simulates algorithm Open. Otherwise, it suffices to prove that:
1) B aborts with negligible probability, and 2) B simulates Reveal to produce b
with overwhelming probability. We prove each condition as follows.

1. We will prove this by contradiction. Suppose B aborts with non-negligible

probability, hence, (b,p,p1) € L Ab € bb, where p is the largest integer
such that v[p] > 0A1 < p < np. By definition of Ballot-Secrecy, we
have b was produced by the oracle. And by definition of the oracle, there
exists coins r such that b = Vote(pk, np,p,x;7) V b = Vote(pk, np, p1,
k;r) and 1 < p,p; < me. Since A wins the Bid-Secrecy game, we infer
balanced(bb, np, L), hence, there exists b, pg, r such that (V/,pg,p) € L A
b e bbA1l<po<ncA((b =Vote(pk,np, po, &;r') Nb = Vote(pk, np, p, k;
r)) V (b = Vote(pk, np, p, k;1') Ab = Vote(pk, np, p1, k;7))).
Let vo and vy be zero-filled vectors of length np. By correctness of T,
the computation vg[p] < 1;vi[p] « 1;volpo] < vo[po] + 1;vi[p1]
vi[p1] + 1; (v, pf") « Tally(sk,np,{b,b'}, k) ensures v/ = vo Vv =
vi, with overwhelming probability. Moreover, by tally soundness, we
have v'[p] > correct-outcome(pk, np,{b,b'}, x)[p] and we have v’'[pg] >
correct-outcome(pk, np,{b, '}, k)[po] V V'[p1] > correct-outcome(pk, np,
{b,V'}, k)[p1]. Thus, by definition of correct-outcome, we have

b# LAY # L (2)
It follows that

Ir . Bid(pk, np,p,k;7) € bb\ {L} A1 <p<mnp (3)

38

Since T' satisfies tally soundness, we have for all p’ € {1,...,np} that
v[p'] > correct-outcome(pk, np, bb, k)[p'], with overwhelming probability.
Moreover, since p is the largest integer such that v[p] > 0A 1 < p < np,
we have for all p’ € {p+1,...,np} that v[p/] < 0. Hence, by definition of
correct-outcome, we have, with overwhelming probability, that:

=3p',r" . Bid(pk, np,p’,k;7") € b\ {L} Ap<p' <mp (4)

By (3) & (4), we derive that correct-price(pk, np, bb, p, k) holds with over-
whelming probability. Furthermore, since A wins the Bid-Secrecy game
it follows for all b € bb that (b,p,p1) ¢ L with overwhelming probabil-
ity. However, we have assumed (b,p,p1) € L A b € bb with non-negligible
probability, hence we derive a contradiction.

2. Since B aborts with negligible probability, we can infer b € bb implies
(b,p,p1) € L with overwhelming probability. By this inference and by
definition of Ballot-Secrecy, we have W is a set of pairs (b,v’) such that
b € bb and (v/, pf’) is output by Tally for some pf’. It follows by definition
of B that b = {b | (b,v') € W AV'[p] = 1}. Since Reveal satisfies reveal
soundness with respect to I', we have B simulates Reveal.

We have shown that B simulates A’s challenger with overwhelming probability.
It follows that B guesses 8 correctly with the same success as A with over-
whelming probability, hence, B wins Ballot-Secrecy (T, B, k) with overwhelming
probability, thereby deriving a contradiction and concluding our proof. O

C.8 Proof of Proposition 8

Let Enc2Vote(IT) = (Setup, Vote, Tally, Verify) and II = (Gen, Enc, Dec). More-
over, let Reveal-Enc2Bid(II) be algorithm Reveal-Enc2Bid such that:

e Reveal-Enc2Bid(sk, nc, bb, v, k) computes b < {b | b € bb A Dec(sk,b) = v}
and outputs b.

It follows from Definitions 6, 15 & 19 that Enc2Bid(II) and A(Enc2Vote(II),
Reveal-Enc2Bid(II)) are equivalent, assuming the same constant is used by Enc2Vote(II),
Enc2Bid(II), and A(Enc2Vote(II), Reveal-Enc2Bid(II)). Hence, by Proposition 5
and 7, to show that Enc2Bid(II) satisfies bid secrecy, it suffices to show that
Enc2Vote(II) satisfies tally soundness and Reveal-Enc2Bid(II) satisfies reveal
soundness with respect to Enc2Vote(II).

We prove Enc2Vote(II) satisfies tally soundness by contradiction. Suppose &
is a security parameter and Setup(x) outputs (pk, sk, mb, mc). Further suppose
nc is an integer and bb is a set such that |bb| < mb A nc < mec. Moreover,
suppose Tally(sk, nc, bb, k) outputs (v, pf). Let £ = correct-outcome(pk, nc, bb,
k)[v]. Suppose there exists v € {1,...,nc} such that v[v] < £. By definition
of correct-outcome, we have 3=¢b € bb \ {1} : 3r : b = Enc(pk,v;r). And by
definition of Vote, bulletin board bb contains £ ciphertexts for plaintext v. Since

39

pk, sk are outputs of Gen and since IT is perfectly correct, we have that those

¢ ciphertexts all decrypt to v. By definition of Tally, it follows that v[v] > ¢,
thereby deriving a contradiction.

We prove Reveal-Enc2Bid(II) satisfies reveal soundness with respect to Enc2Vote(II).

Suppose & is a security parameter and Setup(x) outputs (pk, sk, mb, mc). Fur-

ther suppose bb is a set and nc and v are integers such that [bb] < mb A1 <

v < ne < me. Moreover, suppose Reveal-Enc2Bid(sk, nc, bb, v, k) outputs b. By
definition of Reveal-Enc2Bid, we have

b={b|be bbADec(sk,b) = v}.

Suppose W is computed as follows.
W« 0;
for b € bb do

L (v, pf) « Tally(sk, nc, {b}, k);
W+ WuU{(bv)}

Let vg be a zero-filled vector of length nc. By definition of Tally, it follows that
W can be equivalently computed as follows.
W« 0;
for b € bb do
V < Vg
v’ + Dec(sk,b);
if 1 <9’ < nc then
L v[v'] + 1;
W+ WuU{(bv)}

We have for all (b,v) € W that v[v] = 1 iff Dec(sk,b) = v, hence, we derive
b={b|(b,v) € WAV[v] =1}). It follows that reveal soundness with respect
to Enc2Vote(I) is satisfied. O

C.9 Proof of Theorem 9

Let ¥ = A(T,Reveal) and ¥’ = A(T, Reveal, A). By Proposition 7, we have
that ¥ satisfies bid secrecy. We prove ¥/ satisfies bid secrecy by contradiction.
Suppose Y’ does not satisfy bid secrecy, hence, there exists an adversary A,
such that for all negligible functions negl, there exists a security parameter s
and Succ(Bid-Secrecy (X', A, k)) > 1 + negl(x). Let us construct an adversary B
that wins Bid-Secrecy (X, B, k).

o B(pk, k) computes nc < A(pk,) and outputs nc.

e () computes bb « A(), forwarding any oracle calls to its own oracle, and
outputs bb.

e B(p,b, pf) computes pf’ + S((pk,nc,bb,p,b,k),k); g < A(p,b, pf’) and
outputs g, where S is a simulator for A.

40

It is trivial to see that B(pk, k) and B() simulate A’s challenger to A. More-
over, there exists a negligible function negl’ such that B(p, b, pf) simulates A’s
challenger to A with overwhelming probability 1 — negl’ (), because outputs
of S are indistinguishable from proofs output by A. Let ¢ be the probability
that A guesses f correctly when A does not see the same distribution of in-
puts as in Bid-Secrecy(¥', A, k). The success probability of B is greater than
(1 — negl'(k)) - (3 + negl(x)) + negl’() - ¢, hence, B wins Bid-Secrecy (%, B, k),
deriving a contradiction and concluding our proof. O

C.10 Proof of Lemma 10

Let T' = (Setup, Vote, Tally, Verify). Suppose T' does not satisfy tally sound-
ness, hence, there exists an adversary 4, such that for all negligible func-
tions negl, there exists a security parameter £ and Succ(Tally-Soundness(T', A,
k)) > negl(x). We construct an adversary B that wins Exp-UV-Ext(T, B, k):

o B(x) computes (pk, sk, mb, mc) < Setup(k); (nc, bb) < A(pk, k); (v, pf)
Tally(sk, nc, bb, k) and outputs (pk, nc, bb, v, pf).

Since A wins Tally-Soundness(T', A, k), we have: Pr[(pk, nc,bb, v, pf) < B(k) :
v # correct-outcome(pk, nc, bb, k) A |bb| < mbAnc < me] > negl(x). Moreover,
by completeness, there exists a negligible function negl’ such that: Pr[(pk, nc,
bb, v, pf) < B(k) : |bb| < mbAnc < me = Verify(pk, ne,bb, v, pf, k) =1] > 1—
negl’(x). It follows that: Pr[(pk, nc,bb, v, pf) < B(k) : v # correct-outcome(pk,
nc, bb, k) A Verify(pk, nc, bb, v, pf, k) = 1] > negl(x) - (1 — negl’(x)). Hence, B
wins Exp-UV-Ext(T, B, k). O

C.11 Proof of Theorem 13

Let 3 = A(T', Reveal, A) = (Setups;, Bid, Open, Verifys,), I' = (Setupr, Vote, Tally,
Verify-), and A = (Prove, Verify).

Suppose I' satisfies universal verifiability. By definition of universal veri-
fiability, we have I' satisfies strong injectivity. And, by definition of strong
injectivity and by Definition 16, it is trivial to see that X satisfies strong in-
jectivity. We proceed by contradiction. Suppose ¥ does not satisfy universal
verifiability, hence, there exists an adversary A, negligible function negl, and
security parameter «, such that Succ(Exp-UV(XZ, A, k)) > negl(k), i.e.,

Pr[(pk, np, bb, p, b, 0) + A(k)
: (—correct-price(pk, np, bb, p, k) V —correct-bids(pk, np, bb,p, b, K))
A Verifys,(pk, np, bb, p, b, 0, k) = 1] > negl(k) (5)
We construct adversaries B and C, from adversary A, such that either B wins

Exp-UV-Ext(T, B, k) or Pr[(s,7) < C(k) : (s,w) & R(T', Reveal) A Verify(s, 7, k) =
1] is non-negligible:

41

e B(k) computes (pk,np,bb,p,b,o) + A(k), parses o as (v, pf,pf’), and
outputs (pk, np, bb, v, pf).

e C(r) computes (pk,np,bb,p,b,0) < A(k), parses o as (v, pf, pf’), assigns
s + (pk, np,bb,p, b,), and outputs (s, pf’).

Henceforth, we assume that adversaries B and C successfully parse o. This
assumption is necessary for A to win Exp-UV(X, A, k), hence we do not lose
generality.

First, we consider adversary B’s success. Let (v, p, np) hold if p is the
largest integer such that v[p] >0 A 1 < p < np, or there is no such integer and
p = 0. By definition of ¢ and by inspection of Verifys,, we have:

Verifys.(pk, np, bb,p,b,0,k) =1
= Verifyp(pk, np, bb, o[1], 0[2], k) = 1 A(o[l],p, np) (6)
Let us assume the following:

Y(v, p, np) A —correct-price(pk, np, bb, p, k)
= v # correct-outcome(pk, np, bb, k) (7)

By (6) & (7) and logical reasoning, we have: Verifys,(pk,np,bb,p,b,0, k) =1 A
—icorrect-price(pk, np, bb, p, k) = Verifyp(pk, np, bb,o[l],0[2], k) = 1 A o[l] #
correct-outcome(pk, np, bb, k)
It follows that:
Pr[(pk, nc, bb, v, pf) < B(k) : Verifyp(pk, nc,bb, v, pf, k) =1
A v # correct-outcome(pk, ne, bb, k)]
> Pr[(pk,np,bb,p, b,0) < A(k) : Verifys,(pk, np, bb,p, b,0,r) = 1

A —correct-price(pk, np, bb, p, k)] (8)

Equation (8) relates B’s success to A’s success.

Secondly, we consider adversary C’s success. By further inspection of Verifyy,,
we have:

Verifys.(pk, np, bb,p,b,0,k) = 1 = Verify((pk, np, bb,p,b,k),0[3],k) = 1
Moreover, since relation R(T', Reveal) is A-suitable, we have:
—correct-bids(pk, np, bb, p, b, k) = ((pk, np, bb, p, b, k), sk) ¢ R(T', Reveal)
with overwhelming probability. It follows that:

Pr{(s,7) «+ C(k) : (s,w) & R(T, Reveal) A Verify(s, T, k) = 1]
> Pr[(pk, np,bb,p,b,0) + A(k) : Verifys:(pk, np, bb,p,b,0,k) = 1
A —correct-bids(pk, np, bb, p, b, k)] (9)

42

with overwhelming probability. Equation (9) relates C’s success to A’s success.

Finally, we use the relations with A’s success to show that either adver-
sary B wins Exp-UV-Ext(T', B, k) or Pr[(s,7) < C(k) : (s,w) & R(T', Reveal) A
Verify(s, 7, k) = 1] is non-negligible, thereby deriving a contradiction. By (5),
(8), & (9), we have:

Pr[(pk, nc, bb, v, pf) + B(x) : Verify(pk, nc,bb, v, pf, k) =1
A v # correct-outcome(pk, nc, bb, k)] > negl(x)
V Pr[(s,7) < C(k) : (s,w) & R(T, Reveal) A Verify(s, 7, k) = 1] > negl(k)

The above equation shows that A’s success provides an advantage for adversary
B or C. To conclude, it remains to prove (7).

Proof of (7). By inspection of correct-price, we have:

Y(v,p, np) A ~correct-price(pk, np, bb, p, k)

=(v,p,np) A ((3p',r" . Bid(pk, np,p’,k;r") € bb \ {L} Ap < p’ < np)
Vpé&{0,...,np}
V (p# 0 A~3r . Bid(pk, np,p, 5:7) € b6\ {L})

Moreover, since (v, p, np) Ap &€ {0,...,np} is false, we have:

=(v,p,np) A ((3p',r" . Bid(pk, nc,p’,k;7") € bb\ { L} Ap < p’ < np)
V (p # 0 A =3r. Bid(pk, np, p, r;7) € bb \ {1}))

Furthermore, we have ¥(v,p, np) A 3p',r" . Bid(pk, nc,p’,r;7") € bb\ {L} A
p < p' < np implies v # correct-outcome(pk, np, bb, k), because v[p'] = 0 by
definition of ¥. We also have ¥(v,p,np) Ap # 0 A =3r . Bid(pk, np,p,k;r) €
bb\ { L} implies v # correct-outcome(pk, np, bb, k), because v[p] > 0. It follows
that:

= v # correct-outcome(pk, np, bb, k),

thereby concluding our proof. O

D Reveal algorithms exist

We prove that every election scheme has a reveal algorithm that is correct with
respect to that election scheme (Proposition 24). Our proof follows from election
scheme correctness: algorithm Tally can be applied to every ballot on the bulletin
board to link votes to ballots. The result is largely theoretical, because the class
of reveal algorithms introduced in the proof leak the ballot-vote mapping for
every ballot on the bulletin board during execution. This does not violate
ballot secrecy, because the tallier is assumed to be trusted, i.e., the tallier is
assumed not to disclose mappings. Nevertheless, reveal algorithms which only

43

disclose a set of ballots for a particular vote, i.e., revealing the minimal amount
of information, are preferable for privacy, and we demonstrate the existence of
such algorithms in the context of our case study.

Proposition 24. Given an election scheme, there exists a reveal algorithm that
18 correct with respect to that election scheme.

Proof. Suppose I' = (Setup, Vote, Tally, Verify) is an election scheme. Let reveal
algorithm Reveal be defined as follows:

Reveal(sk, nc, bb, v, k) =
b+ 0;
for b € bb do
(v, pf) < Tally(sk, nc, {b}, K);
if v[v] =1 then
| b+ bU{b};

return b

We prove that Reveal is correct with respect to I'.

Suppose k is a security parameter, nb and nc are integers, and v, v1, ..., Vnp €
{1,...,nc} are votes. Moreover, suppose Setup(x) outputs (pk, sk, mb, mc) such
that nb < mbAnc < mc and for each 1 < i < nb we have Vote(pk, nc, v;, k) out-
puts b;. Further suppose that Reveal(sk, nc,{b1,...,bns},v,%) outputs b. By
definition of Reveal, we have b; € b if Tally(sk, nc, {b}, k) outputs (v, pf) such
that v[v] = 1. By correctness of I, we have v[v] = 1 if v; = v, with overwhelm-
ing probability. Furthermore, by definition of Reveal, we have b C {by,...,bu}.
It follows that b = {b; | v; = v} with overwhelming probability, hence Reveal
satisfies reveal algorithm correctness. O

E Separation result

We prove that every election scheme satisfying ballot secrecy can be modified
such that ballot secrecy is preserved, yet the auction scheme derived from the
modified scheme, using our construction, does not satisfy bid secrecy (Proposi-
tion 25). Our proof exploits our construction’s reliance on the tallying algorithm
producing the expected outcome (§4.2): we modify the election scheme’s tal-
lying algorithm such that it announces an incorrect outcome in the presence
of an adversary. The modification preserves ballot secrecy, because ballot se-
crecy does not depend on the correctness of the outcome. However, the auction
scheme derived from the modified scheme does not satisfy bid secrecy, because
the adversary can cause the announcement of an incorrect winning price, which
causes the reveal algorithm to link bidders that bid at that price.

Proposition 25. There exists a function incorrect-price, such that for all elec-
tion schemes T' (that permits at least two prices and at least three bids for
some security parameter) satisfying ballot secrecy, we have election scheme
incorrect-price(T") satisfies ballot secrecy, yet auction scheme A(incorrect-price(T),

44

Reveal) does not satisfy bid secrecy, for some reveal algorithm Reveal that is cor-
rect with respect to incorrect-price(T).

Definition 35. Let I = (Setup, Vote, Tally, Verify) be an election scheme. Sup-
pose w and € are constant symbols that cannot be output by Vote. We define
incorrect-price(I") = (Setup, Vote, Tally’, Verify'), where Tally’ and Verify’ are de-
fined as follows.

Tally'(pk, sk, nc, bb, k) initialises v as a zero-filled vector of length nc, computes
if w € bb then v[l] «+ 1;pf < € else (v, pf) « Tally(pk, sk, nc,bb, k),
and outputs (v, pf).

Verify'(pk, nc, bb, v, pf, k) outputs 1.

Lemma 26. Given an election scheme T, we have incorrect-price(T") is an elec-
tion scheme.

Proof sketch. Tt suffices to show that incorrect-price(T") satisfies correctness, com-
pleteness, and injectivity. Let I' = (Setup, Vote, Tally, Verify). Correctness fol-
lows from the underlying scheme, because w cannot be output by Vote. Com-
pleteness follows from Fact 18. And Injectivity follows from the underlying
scheme, because we do not modify Setup nor Vote. O

Lemma 27. Given an election scheme I' satisfying ballot secrecy, we have
incorrect-price(I") satisfies ballot secrecy.

Proof sketch. Suppose incorrect-price(T") does not satisfy ballot secrecy, i.e., there
exists an adversary that wins game Ballot-Secrecy against incorrect-price(T).
From this adversary we can construct an adversary that wins Ballot-Secrecy
against I', simulating the tally algorithm if necessary (i.e., in cases when the bul-
letin board contains the constant used in set membership tests by incorrect-price),
hence deriving a contradiction. O

Proof of Proposition 25. Suppose I' is an election scheme satisfying ballot se-

crecy. By Lemma 26 & 27, we have incorrect-price(T") is an election scheme
satisfying ballot secrecy. And, by Proposition 24, there exists a reveal algo-
rithm Reveal that is correct with respect to incorrect-price(I"). By Lemma 2, we

have A(incorrect-price(T"), Reveal) is an auction scheme. And it remains to show

that A(incorrect-price(T"), Reveal) does not satisfy bid secrecy.

Let incorrect-price(I") = (Setupr, Vote, Tally, Verifyp), A(incorrect-price(T'), Reveal) =

(Setup, Bid, Open, Verify), and w be the constant used by the set membership

test introduced by incorrect-price. We construct an adversary 4 against game
Bid-Secrecy.

o A(pk, k) outputs 2.

o A() computes by < O(1,2);b1 < O(2,1);b6b < {bg,b1,w} and outputs
bb.

45

e A(p, b, pf) outputs 0 if by € b, and 1 otherwise.

Suppose k is a security parameter and Setup(k) outputs (pk, sk, mb, mp) such
that 3 < mb and 2 < mp, i.e., the scheme permits at least three bids and two
prices. Further suppose A(pk, k) outputs np and A() outputs bb, hence, we
have bb = {bg, b1,w}, such that

by = Vote(pk, np, 1 + B, k;r09) A by = Vote(pk, np,2 — B, k;7r1),

for some coins o and r1, where 3 is the bit chosen by the challenger. Moreover,
suppose Open(sk, np, bb, k) outputs (p, b, pf), hence, we have b is an output of
Reveal(sk, np, bb, p, k), where p = 1, since w € bb. By definition of Reveal, set b
is computed as follows:
b <+ 0;
for b € bb do
(v, pf) < Tally(sk, np, {b}, K);
if v[p] =1 then
| b bU{b};

By correctness of incorrect-price(I"), we have Tally(sk, np, {bo}, k) outputs (v, pf)
such that v[p] = 1 iff 8 = 0, with overwhelming probability. It follows that
bp € b iff 8 = 0, with overwhelming probability. Hence, A(p, b, pf) outputs
g = B, with overwhelming probability. Moreover, we have balanced(bb, np, L).
And

correct-price(pk,np,bb,p,k) = Vb € bb . (b,p,p1) € L A (b,po,p) € L

holds vacuously, because bi_g € bb is a bid for 2 > p, hence, correct-price(pk,
np, bb, p, k) does not hold. Thus, the adversary wins against game Bid-Secrecy,
concluding our proof. O

F An auction scheme from Helios

Our construction is parameterised by an election scheme, a reveal algorithm,
and a non-interactive proof system. Hence, we derive an auction scheme from
Helios as follows.

Definition 36. Let Helios’16 be the election scheme defined by Smyth, Frink
& Clarkson [SFC15], Reveal be the reveal algorithm given in Definition 37, and
A be the proof system defined in Definition 38. We define the auction scheme
from Helios’16 as A(Helios'16, Reveal, A).27

In this appendix, let (Setup, Vote, Tally, Verify) be Helios’16 and (Gen, Enc,
Dec) be the additively homomorphic asymmetric encryption scheme used by
Helios’16. Moreover, let (ProveKey, VerKey), respectively (ProveDec, VerifyDec)

27Formally, A(Helios’16, Reveal, A) is an auction scheme by Lemmata 3, 28, & 29.

46

and (ProveCiph, VerifyCiph), be the non-interactive proof system derived by ap-
plication of the Fiat-Shamir transformation [FS87] to a random oracle H and
the sigma protocol for proving knowledge of discrete logarithms by Chaum et
al. [CEGPS87, Protocol 2], respectively the sigma protocol for proving knowledge
of equality between discrete logarithms by Chaum & Pedersen [CP93, §3.2], and
the sigma protocol for proving knowledge of disjunctive equality between dis-
crete logarithms by Cramer et al. [CFSY96].

F.1 Reveal algorithm

Definition 37. We define reveal algorithm Helios-Reveal as follows.

Helios-Reveal(sk’, nc, bb, v, k) proceeds as follows. Parse sk’ as a vector (pk, sk).
Let {by,...,be} be the largest subset of bb satisfying the conditions given
by the Helios’16 tallying algorithm (see [SFC15] for details). Compute:

b <« 0
for 1 <i</{do
if (v = nc A Dec(sk,b;[1]® - ®b;[nc —1]) = 0)
V (1 <wv < ne A Dec(sk, b;[v]) = 1) then
L b+ buU {bj};

Output b.

Lemma 28. Reveal algorithm Helios-Reveal is correct with respect to Helios’16.

Proof. Suppose k is a security parameter, nb and nc are integers, and v, v1, ...,
Vnp € {1,...,nc} are votes. Further suppose (pk’, sk’, mb, me) is an output of
Setup(x) such that nb < mb A nc < me, hence sk’ is a tuple (pk, sk). Moreover,
suppose for each 1 < i < nb that b; is an output of Vote(pk’, nc,v;, k). Let
bb = {b1,...,bns}. Suppose b is an output of Helios-Reveal(sk’, nc, bb, v, k). By
definition of Helios’16, the largest subset of bb satisfying the conditions given
by the Helios’16 tallying algorithm is bb, hence, Helios-Reveal operates on bb,
rather than a subset of bb. We distinguish two cases.

e Casel: 1 < v < nc. By definition of Vote, we have for all b € bb that bis an
output of the asymmetric encryption scheme used by Helios’16. Moreover,
if v; = v, then b[v] enciphers 1, otherwise, b[v] enciphers 0. By correctness
of the encryption scheme, we have with overwhelming probability that
v; = v implies Dec(sk, b[v]) = 1. Hence, by definition of Helios-Reveal, we
have b € b.

e Case II: v = nc. As per the first case, we have for all b € bb that b is an
output of the encryption scheme used by Helios’16, but the construction
of b differs from the previous case, namely, we have b[1],...,b[nc — 1] each
encipher 0. Given that the encryption scheme is homomorphic, we have
with overwhelming probability that Dec(sk,b[l] ® --- ® b[nc — 1]) = 0.
Hence, by definition of Helios-Reveal, we have b € b.

47

In both cases, it follows that b = {b; | v; = v A1 <i < nb}, with overwhelming
probability, thereby concluding our proof. O

F.2 Non-interactive proof system

Definition 38. We define the tuple of algorithms (ProveReveal, VerifyReveal) as
follows:

ProveReveal(s, sk, k) proceeds as follows. Parse s as (pk',nc,bb,v,b,x) and
pk' as (pk,m, p). Output L if parsing fails or if VerKey((k, pk,m), p, k) #
Ive €{1,...,nc}V{Ll,...,nc} € m. Let {b1,...,be} be the largest subset
of bb satisfying the conditions given by the Helios’16 tallying algorithm
(see [SEC15] for details). Initialise vector Q of length ¢ and compute:

for1<i</{do
if 1 <v < nc then
| Qli] < ProveDec((pk, b;[v], Dec(sk, b;[v])), sk, &);

else
cbi[l]®--- @ bi[nc — 1];
Q[¢] < ProveDec((pk, c, Dec(sk, ¢)), sk, k);

Output Q.

VerifyReveal(s, Q) proceeds as follows. Parse s as (pk’, nc,bb,v, b, k) and pk’ as
(pk,m, p). Output 0 if parsing fails or if VerKey((k, pk,m),p, k) Z1Vv &
{1,...;nc}V{Ll,...,nc} L m. Let {by,...,be} be the largest subset of bb
satisfying the conditions given by the Helios’16 tallying algorithm. Output
1 if any of the following checks hold.

1. {b1,...,b} =0, Q| =0, and b = 0.

2. 1<v<mne, |Q=4¢ b6C{by,...,b}, and for all1 < i < L, ifb; € b,
then VerifyDec((pk,b;[v],1), Q[i],x) = 1, otherwise, VerifyDec((pk,
bi[v]v 0)7 Q[l]v K&) =1

3 v=mnc, |Q =¥ b C {by,...,b}, and for all, 1 < i < L ifb; € b,
then VerifyDec((pk, b;[1] ® - - - ® b;[nc — 1],0), Q[i], k) = 1, otherwise,
VerifyDec((pk, b;[1] ® - - - @ b;[nc — 1], 1), Q[t], k) = 1.

Output O if all of the checks fail.

Lemma 29. The tuple of algorithms (ProveReveal, VerifyReveal) is a non-interactive
proof system for relation R(Helios’16, Helios-Reveal) (i.e., it satisfies complete-
ness).

Proof sketch. Suppose (s, sk’) € R(Helios'16, Helios-Reveal) and & is a security
parameter. Since R(Helios’16, Helios-Reveal) is defined over vectors of length 6
and bitstrings, we can parse s as (pk’, nc, bb,v,b, k). Moreover, by definition
of R(Helios’16, Helios-Reveal), there exists mb, mc, r, and r’, such that b =

48

Helios-Reveal(sk’, nc, bb, v, k; 1), (pk’, sk’, mb, mc) = Setup(k;r’') and 1 < v <
nc < me. And, by definition of Setup, we have pk’ is a vector (pk, m, p), where
(pk, sk) is an output of Gen, m is the encryption scheme’s message space, p is
an output of ProveKey, and mc is the largest integer such that {0, ..., mc} C m.

We have VerKey((k, pk,m), p, k) = 1, by completeness of (ProveKey, VerKey).
We also have v € {1,...,nc} and {1,...,nc} € m. Let {b1,...,b¢} be the
largest subset of bb satisfying the conditions given by the Helios’16 tallying
algorithm. Suppose ProveReveal(s, sk, k) outputs Q. By definition of algorithm
ProveReveal, we have Q is a vector of length . If {b1,...,b,} = 0, then |Q| = 0,
and b = 0, by definition of algorithms ProveReveal and Helios-Reveal, hence,
VerifyReveal(s, Q) = 1, by definition of algorithm VerifyReveal, concluding our
proof. Otherwise, b C {by,...,b;} and we proceed by distinguishing two cases.

e Case I: 1 <wv < ne. Suppose i € {1,...,¢}. We have Q][] is an output of
ProveDec((pk, b;[v], Dec(sk, b;[v])), sk, k) by definition of ProveReveal. If
b; € b, then Dec(sk,b;[v]) = 1 by definition of Helios-Reveal and, with
overwhelming probability, VerifyDec((pk, b;[v], 1), Q[i],x) = 1 by correct-
ness of the encryption scheme and by completeness of A. Otherwise
(b; € b,), we proceed as follows. We have Dec(sk,b;[v]) # 1 by defini-
tion of Helios-Reveal, hence, Dec(sk, b;[v]) = 0, because b;[v] is a encryp-
tion of a plaintext in {0,1}, by the tallying conditions of Helios’16. By
correctness of the encryption scheme and by completeness of A, we have
VerifyDec((pk, b;[v],0), Q[i], k) = 1, with overwhelming probability.

e CaseIl: v = nc. Suppose i € {1,...,¢}. Let ¢ = b;[1]®- - -®b;[nc—1]. We
have Q[i] is an output of ProveDec((pk, ¢, Dec(sk, ¢)), sk, k) by definition
of ProveReveal. If b; € b, then Dec(sk,c) = 0 by definition of Helios-Reveal
and, with overwhelming probability, VerifyDec((pk,c,0),Qli],x) = 1 by
correctness of the encryption scheme and by completeness of A. Otherwise
(b; ¢ b), we proceed as follows. We have Dec(sk,c) = 1 by definition of
Helios-Reveal and the tallying conditions of Helios’16. By correctness of
the encryption scheme and by completeness of A, we have VerifyDec((pk,

¢, 1),Qli], k) = 1.

In both cases, one of the checks in VerifyReveal will succeed, hence, VerifyReveal(s,
Q) = 1, with overwhelming probability. O

F.3 Lemmata supporting Theorem 14

Lemma 30. Reveal algorithm Helios-Reveal satisfies reveal soundness with re-
spect to Helios’16.

Proof. Suppose k is a security parameter, (pk’,sk’,mb, mc) is an output of
Setup(k), and (nc, bb,v) is an output of A(pk’, k), such that 1 < v < nc <
mc and |bb| < mb. By definition of algorithm Setup, we have pk’ is a triple
(pk,m, p), such that (pk, sk) is an output of Gen, m is the plaintext space, and
p is a proof of correct key construction. Further suppose that b is an output

49

of Helios-Reveal. To prove that Helios-Reveal satisfies reveal soundness with
respect to Helios’16, it suffices to show b = {b | (b,v) € W A v[v] = 1} with
overwhelming probability, where W is computed as follows: W <« (); for b € bb
do (v,pf) < Tally(sk’, nc, {b},k); W < W U {(b,v)}.

By definition of algorithm Tally, we have for all (b,v) € W that b € bb and
either () or {b} is the largest subset of {b} satisfying the tallying conditions given
in [SFC15], moreover, in the former case v is a zero-filled vector of length nc and
in the latter case b[1],...,b[nc — 1] are ciphertexts on plaintexts in {0,1} and
v = (Dec(sk,b[1]),..., Dec(sk,blnc — 1]),1 — 377, " v[j]), with overwhelming
probability.

Let W’ be the largest subset of W such that for all (b,v) € W’ we have v is
not a zero-filled vector. It follows that:

{b] (b,v) e WAV =1} ={b]| (b,v) € W Av[v] =1} (10)

Let {b1,...,bs} be the largest subset of bb satisfying the tallying conditions
given in [SFC15]. It follows that:

{b1,...,be} ={b| (b,v) e W'} (11)
We distinguish two cases.

e Case I 1 < v < nec—1. We have for all (b,v) € W' that vjv] =
Dec(sk,b[v]). By syntactic equality and (10), it suffices to prove b =
{b | (b,v) € W' A Dec(sk,b[v]) = 1}. By definition of Helios-Reveal, we
have b = {b; | 1 <i < ¢ ADec(sk,b;[v]) = 1}. Hence, we conclude by (11).

e Case II: v = nc. We have for all (b, v) € W’ that v[nc] =1— anll v[j]-
By syntactic equality and (10), it suffices to prove b = {b | (b,v) €
WAL=] =1} = {b | (b,v) € W AT][] = 0} By
definition of Helios-Reveal, we have b = {b; | 1 < ¢ < ¢ A Dec(sk,b;[1] ®

--®b;[nc—1]) = 0}. By (11) it suffices to prove Ayc(y, 4,1 Dec(sk, b[1]®
- ®blne —1]) = Z;lfll v[j] = Z;ﬁ;l Dec(sk,b[j]). We have for all b €
{b1,...,be} that b[1],...,b[nc — 1] are ciphertexts on plaintexts in {0, 1}.
Moreover, by deﬁnition of Setup, we have {0,...,nc — 1} C m. It follows
that Z”Cfl Dec(sk,b[j]) € m. Furthermore, since the encryption scheme
is additively homomorphic, we have 7% ! Dec(sk, b[j]) = Dec(sk,b[1]) ®
-® Dec(sk,b[nc—1]), hence, we conclude Noeior,... by Dec(sk, b1]®@- - ®

b[nc -1]) = Z?i;l Dec(sk, b[j]), with overwhelming probability.
Hence, Helios-Reveal satisfies reveal soundness with respect to Helios’16. O

Lemma 31. Non-interactive proof system (ProveReveal, VerifyReveal) is zero
knowledge.

Proof sketch. Bernhard et al. [BPW12a, §4] remark that (ProveDec, VerifyDec)
is zero knowledge. Let S be the simulator for (ProveDec, VerifyDec). Sup-
pose (ProveReveal, VerifyReveal) does not satisfy zero knowledge, hence, there

50

exists a probabilistic polynomial-time adversary A, such that for all negligible
functions negl, there exists a security parameter x and Succ(ZK((ProveReveal,
VerifyReveal), A, H,S, k)) > 5 + negl(x). We construct an adversary B against
(ProveDec, VerifyDec) from A and S. (For clarity, we rename B’s oracle Q.)

e B(k) computes g < A" (r) and outputs g, handling A’s oracle calls to
P(s,w) by computing ¢ < Q’'(s,w, k) and returning o to A, where Q' is
derived from ProveReveal by replacing all occurrences of ProveDec(s’, w', k)
with Q(s',w").

We prove the following contradiction: Succ(ZK((ProveDec, ProveDec), B, H, S,
K)) > % + negl'(k), for some negligible function negl’. It suffices to show that
adversary B simulates A’s oracle P to A in ZK((ProveReveal, VerifyReveal), A,
H,S', k). Tt is trivial to see that P is simulated when 5 = 0, because P and Q'
are identical in this case. Moreover, P is simulated when 8 = 1, because S is
indistinguishable from ProveDec. O

F.4 Lemmata supporting Theorem 15
Lemma 32. Relation R(Helios’16, Helios-Reveal) is A-suitable.

Proof. Suppose ((pk’, nc,bb, v, b, k), sk') € R(Helios’16, Helios-Reveal). By defi-
nition of R(Helios’16, Helios-Reveal), there exists mb, mc, r, 7’ such that (pk’, sk’,
mb, mec) = Setup(x;7’), b = Helios-Reveal(sk’, nc, bb, v, s;7), and 1 < v < ne <
mec. Let ' = bbN {b| b= Vote(pk’, nc,v, r;7)}. To prove relation R(Helios’16,
Helios-Reveal) is A-suitable, we need to show that predicate correct-bids holds,
i.e., b =1b’. It suffices to prove b € b iff b € b’.

Case I: b € b. By definition of Helios-Reveal, private key sk’ parses as a vector
(pk, sk) and b € bb, hence, it remains to prove b is an output of algorithm Vote
for vote v.

By definition of Helios-Reveal, we have that b satisfies the conditions given
by the Helios’16 tallying algorithm. Thus, b is a vector of length 2 -nc — 1 and
/\;Lifl VerifyCiph(pk, b[4], {0, 1}, b[j + nc — 1],) = 1 A VerifyCiph(pk,b[1] ®--- ®
binc —1],{0,1},0[2 - nc — 1],n¢) = 1. In their proof that Helios’16 satisfies
universal verifiability, Smyth, Frink & Clarkson [SFC15] show:

1. Simulation sound extractability of (ProveCiph, VerifyCiph) implies the ex-
istence of messages my,...,Mnp,—1 € {0,1} and coins ry, ..., r2.n,—2 such
that for all 1 < j < ng — 1 we have b[j + nc — 1] = ProveCiph((pk, b[3],
{0,1}), (mj,7;), j, ks rj4ne—1) and b[j] = Enc(pk, m;; ;) with overwhelm-
ing probability.

2. There exist coins 7; 2.n,—1 such that b[2-nc—1] = ProveCiph((pk, ¢, {0, 1}),
(m,r),nc, k;r9.no—1) with overwhelming probability, where ¢ «+ b[1] ®
e ®bng—1],m+m O - Ompy_1,and r < r1 D B rp,_1.

Thus,

o1

3. There exists 5,7 such that
b = Vote(pk', nc, B, k; 1)

and either 8 = nc/\/\r}fflmj =0or B €{l,....nc — 1} Amg =

Jj=1
LA Njeqr,.p-1.841,.me—1y M5 = 0-
4. And
Vie{l,...,nc—1}.mj=1<= = (12)
nc—1
ij:0<:>,8:nc (13)
j=1

Hence, it suffices to prove that 8 = v.

By definition of Helios-Reveal, we have either: 1) Dec(sk,b[v]) = 1, hence,
m, = 1 by correctness of the encryption scheme, and = v by (12); or 2)
Dec(sk,b;[1] ® -+ ® b;[nc — 1]) = 0, hence, m; @ -+- ® my.—1 = 0, and since
nc—1 < mc, we have my ; ©--- @ my; = Zle m;,j, thus, Zle m;,; =0, and
B = v by (13). Hence, we conclude Case 1.

Case II: b € b’. By definition of b/, there exists r such that b = Vote(pk', nc,
v, k;r) € bb. And by correctness of Helios’16, we have b satisfies the conditions
given by the Helios’16 tallying algorithm. Moreover, by definition of algorithm
Vote, if 1 < v < ne, then there exist coins r such that blv] = Enc(pk, 1;r),
and by correctness of the encryption scheme, we have Dec(sk,b[v]) = 1, thus,
b € b. Otherwise (v = nc), for 1 < j < nc — 1, there exist coins r such that
b[j] = Enc(pk,0;r), hence, Dec(sk,b;[1] ® --- @ bi[nc —1]) =00 ---© 0 = 0,
thus, b € b, concluding Case II, and our proof. O

Lemma 33. Non-interactive proof system (ProveReveal, VerifyReveal) is sound.

Proof sketch. Suppose (ProveReveal, VerifyReveal) is not sound, hence, there ex-
ists a probabilistic polynomial-time adversary A, such that for all negligible
functions negl, there exists a security parameter x and if A(k) outputs (s, o),
then (s,w) ¢ R(Helios’'16, Helios-Reveal) and VerifyReveal(s, o) = 1, with prob-
ability greater than negl(k).

By definition of VerifyReveal, we have s parses as (pk’,nc,bb,v,b,) and
pk' as (pk,m,p). Moreover, VerKey((x,pk,m),p,x) = 1 Av € {1,...,nc} A
{1,...,nc} Cm. Bernhard et al. [BPW12a, §4] remark that (ProveKey, VerKey)
satisfies their notion of simulation sound extractability, hence, (ProveKey, VerKey)
satisfies soundness too. Thus, w parses as (sk,r) such that (pk, sk) = Gen(k;r)
and m is the encryption scheme’s message space. Let sk’ = (pk, sk) and let m
be the largest integer such that {0,...,m} C m. By definition of Setup, there
exists ' such that (pk, sk, m,m) = Setup(k;r’). We have {1,...,nc} C m
and {0,...,m} C m, hence, nc < m by definition of m. It follows that
Imb, me, v’ . (pk, sk, mb, mc) = Setup(k; ') A1 < v < ne < me.

92

Since (s,w) ¢ R(Helios’16, Helios-Reveal), we have b is not an output of
Helios-Reveal(sk, nc, bb, v, k). We proceed by contradiction: we show that if any
of the three checks in VerifyReveal hold, then b is an output of Helios-Reveal(sk,
ne, bb, v, k). We proceed by case analysis on the three checks.

1. By definition of Helios-Reveal, we have {b1,...,b,} = 0 A b = () implies b
is an output of Helios-Reveal(sk, nc, bb, v, k).

Let {b1,...,bs} be the largest subset of bb satisfying the tallying conditions of
Helios’16. Hence, b1 [v], ..., be[v] are ciphertexts on plaintexts in {0,1}. Suppose
b C {b1,...,bs} and |Q| = £. We consider the two remaining checks.

2. Suppose 1 < v < ne and for all 1 < ¢ < ¢, if b; € b, then VerifyDec((pk,
b;[v],1), Qi], k) = 1, otherwise, VerifyDec((pk, b;[v],0), Q[i], k) = 1. Bern-
hard et al. [BPW12a, §4] remark that (ProveDec, VerifyDec) satisfies their
notion of simulation sound extractability, hence, (ProveDec, VerifyDec) sat-
isfies soundness too. Thus, for all 1 < < ¢, if b; € b, then Dec(sk, b;[v]) =
1, otherwise, Dec(sk, b;[v]) = 0, with overwhelming probability. It follows
that b is a subset of {by,...,b¢} such that for every element b in b we
have b[v] decrypts to 1, and for every element b in b\ {b1,...,bs} we have
blv] decrypts to 0. Since the tallying conditions of Helios’16 ensure that
bi[v],...,be[v] are ciphertexts on plaintexts in {0,1}, we have b is the
largest subset of {b1,...,bs} such that for every element b in b we have
b[v] decrypts to 1. Thus, b is an output of Helios-Reveal(sk, nc, bb, v, k).

3. Suppose v = nc and for all 1 <4 < £, if b; € b, then VerifyDec((pk, b;[1] ®
-+ ®b;[nc—1],0), Q[i], k) = 1, otherwise, VerifyDec((pk, b;[1]®- - -®@b;[nc—
1],1), Q[i], k) = 1. Bernhard et al. [BPW12a, §4] remark that (ProveDec,
VerifyDec) satisfies their notion of simulation sound extractability, hence,
(ProveDec, VerifyDec) satisfies soundness too. Thus, for all 1 < i < ¢, if
b; € b, then Dec(sk,b;[1] ® - ® b;[nc — 1]) = 0, otherwise, Dec(sk, b;[1] ®
-+ @ bi[nc — 1]) = 1, with overwhelming probability. It follows that b
is a subset of {b1,...,bs} such that for every element b in b we have
b[1]®- - -®b[nc—1] decrypts to 0, and for every element b in b\ {b1,...,be}
we have b[1] ® -+ ® b[nc — 1] decrypts to 1. Since the tallying conditions
of Helios’16 ensure that b[1] ® - - - ® b[nc — 1] is a ciphertext on a plaintext
in {0, 1}, we have b is the largest subset of {b1,...,bs} such that for every
element b in b we have b[1] ® - - - ® b[nc — 1] decrypts to 0. Thus, b is an
output of Helios-Reveal(sk, nc, bb, v, k).

We have shown that if any of the three checks in VerifyReveal hold, then b is
an output of Helios-Reveal(sk, nc, bb, v, k), thereby deriving a contradiction, and
concluding our proof. O

93

References

[Adi06]

[Adi08]

[AH10]

[AMPQ09)]

[AS02a]

[AS02b)

[BCG+15a]

[BCG+15b)

[BCP+11]

[BDJR97]

Ben Adida. Advances in Cryptographic Voting Systems. PhD the-
sis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 2006.

Ben Adida. Helios: Web-based Open-Audit Voting. In USENIX
Security’08: 17th USENIX Security Symposium, pages 335-348.
USENIX Association, 2008.

R. Michael Alvarez and Thad E. Hall. FElectronic Elections: The
Perils and Promises of Digital Democracy. Princeton University
Press, 2010.

Ben Adida, Olivier de Marneffe, Olivier Pereira, and Jean-Jacques
Quisquater. Electing a University President Using Open-Audit Vot-
ing: Analysis of Real-World Use of Helios. In EVT/WOTE’09:
Electronic Voting Technology Workshop/Workshop on Trustworthy
Elections. USENIX Association, 2009.

Masayuki Abe and Koutarou Suzuki. M+1-st price auction using
homomorphic encryption. In PKC’02: 5th International Workshop
on Practice and Theory in Public Key Cryptography, volume 2274
of LNCS, pages 115-124. Springer, 2002.

Masayuki Abe and Koutarou Suzuki. Receipt-free sealed-bid auc-
tion. In Information Security, volume 2433 of LNCS, pages 191—
199. Springer, 2002.

David Bernhard, Véronique Cortier, David Galindo, Olivier
Pereira, and Bogdan Warinschi. A comprehensive analysis of game-
based ballot privacy definitions. Cryptology ePrint Archive, Report
2015/255 (version 20150319:100626), 2015.

David Bernhard, Véronique Cortier, David Galindo, Olivier
Pereira, and Bogdan Warinschi. SoK: A comprehensive analysis
of game-based ballot privacy definitions. In S€&P’15: 36th Security
and Privacy Symposium. IEEE Computer Society, 2015.

David Bernhard, Véronique Cortier, Olivier Pereira, Ben Smyth,
and Bogdan Warinschi. Adapting Helios for provable ballot pri-
vacy. In ESORICS’11: 16th European Symposium on Research in
Computer Security, volume 6879 of LNCS, pages 335-354. Springer,
2011.

Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway.
A Concrete Security Treatment of Symmetric Encryption. In
FOCS’97: 38th Annual Symposium on Foundations of Computer
Science, pages 394—403. IEEE Computer Society, 1997.

o4

[Ber14]

[BPW12a)

[BPW12b)]

[BROS]

[Bral0]

[BS99]

[BS15]

[BVQ10]

[CEGPS7]

[CEK™15]

David Bernhard. Zero-Knowledge Proofs in Theory and Practice.
PhD thesis, Department of Computer Science, University of Bristol,
2014.

David Bernhard, Olivier Pereira, and Bogdan Warinschi. How Not
to Prove Yourself: Pitfalls of the Fiat-Shamir Heuristic and Appli-
cations to Helios. In ASTACRYPT"’12: 18th International Confer-
ence on the Theory and Application of Cryptology and Information
Security, volume 7658 of LNCS, pages 626—643. Springer, 2012.

David Bernhard, Olivier Pereira, and Bogdan Warinschi. On
Necessary and Sufficient Conditions for Private Ballot Submis-
sion. Cryptology ePrint Archive, Report 2012/236 (version
20120430:154117b), 2012.

Mihir Bellare and Phillip Rogaway. Symmetric Encryption. In
Introduction to Modern Cryptography, chapter 4. 2005. http://
cseweb.ucsd.edu/~mihir/cse207/classnotes.html.

Felix Brandt. Auctions. In Burton Rosenberg, editor, Handbook
of Financial Cryptography and Security, pages 49-58. CRC Press,
2010.

Mihir Bellare and Amit Sahai. Non-malleable Encryption: Equiv-
alence between Two Notions, and an Indistinguishability-Based
Characterization. In CRYPTO’99: 19th International Cryptology
Conference, volume 1666 of LNCS, pages 519-536. Springer, 1999.

David Bernhard and Ben Smyth. Ballot secrecy with malicious bul-
letin boards. Cryptology ePrint Archive, Report 2014/822 (version
20150413:170300), 2015.

Josh Benaloh, Serge Vaudenay, and Jean-Jacques Quisquater.
Final Report of IACR Electronic Voting Committee. International
Association for Cryptologic Research. http://www.iacr.org/
elections/eVoting/finalReportHelios_2010-09-27.html,
Sept 2010.

David Chaum, Jan-Hendrik Evertse, Jeroen van de Graaf, and René
Peralta. Demonstrating Possession of a Discrete Logarithm With-
out Revealing It. In CRYPTO’86: 6th International Cryptology
Conference, volume 263 of LNCS, pages 200-212. Springer, 1987.

Véronique Cortier, Fabienne Eigner, Steve Kremer, Matteo Maffei,
and Cyrille Wiedling. Type-Based Verification of Electronic Voting
Protocols. In POST’15: 4th Conference on Principles of Security
and Trust, LNCS, pages 303-323. Springer, 2015.

%)

[CFS85]

[CFSY96]

[CGGI14]

[CGK*16]

[Cha81]

[CP93)

[CRS05]

[CS11]

[CS13]

[Dag07]

[DJL13]

Josh Daniel Cohen and Michael J. Fischer. A Robust and Verifi-
able Cryptographically Secure Election Scheme. In FOCS’85: 26th

Symposium on Foundations of Computer Science, pages 372-382.
IEEE Computer Society, 1985.

Ronald Cramer, Matthew K. Franklin, Berry Schoenmakers, and
Moti Yung. Multi-Autority Secret-Ballot Elections with Linear
Work. In EUROCRYPT’96: 15th International Conference on the
Theory and Applications of Cryptographic Techniques, volume 1070
of LNCS, pages 72-83. Springer, 1996.

Véronique Cortier, David Galindo, Stephane Glondu, and Malika
Izabachene. Election Verifiability for Helios under Weaker Trust
Assumptions. In ESORICS’1): 19th FEuropean Symposium on Re-
search in Computer Security, volume 8713 of LNCS, pages 327-344.
Springer, 2014.

Veronique Cortier, David Galindo, Ralf Kuesters, Johannes
Mueller, and Tomasz Truderung. Verifiability Notions for E-Voting
Protocols. Cryptology ePrint Archive, Report 2016/287 (version
20160317:161048), 2016.

David L. Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Communications of the ACM, 24:84-90,
1981.

David Chaum and Torben P. Pedersen. Wallet Databases with
Observers. In CRYPTO’92: 12th International Cryptology Confer-
ence, volume 740 of LNCS, pages 89-105. Springer, 1993.

David Chaum, Peter Y. A. Ryan, and Steve Schneider. A Practical
Voter-Verifiable Election Scheme. In ESORICS’05: 10th European

Symposium On Research In Computer Security, volume 3679 of
LNCS, pages 118-139. Springer, 2005.

Véronique Cortier and Ben Smyth. Attacking and fixing Helios:
An analysis of ballot secrecy. In CSF’11: 2/th Computer Security
Foundations Symposium, pages 297-311. IEEE Computer Society,
2011.

Véronique Cortier and Ben Smyth. Attacking and fixing Helios: An
analysis of ballot secrecy. Journal of Computer Security, 21(1):89—
148, 2013.

Participants of the Dagstuhl Conference on Frontiers of E-Voting.
Dagstuhl Accord, 2007. http://www.dagstuhlaccord.org/.

Jannik Dreier, Hugo Jonker, and Pascal Lafourcade. Defining ver-
ifiability in e-auction protocols. In ASIACCS’13: 8th ACM Sym-
posium on Information, Computer and Communications Security,
pages 547-552. ACM Press, 2013.

96

[DLL13]

[FS87]

[GumO05]

[HBH10]

[HISO5]

[JCJ02

[JCJ10]

[7J00]

[KLO7]

[Kri00]

[KRS10]

Jannik Dreier, Pascal Lafourcade, and Yassine Lakhnech. Formal
Verification of e-Auction Protocols. In POST’13: 2nd International
Conference on Principles of Security and Trust, volume 7796 of
LNCS, pages 247-266. Springer, 2013.

Amos Fiat and Adi Shamir. How To Prove Yourself: Practical So-
lutions to Identification and Signature Problems. In CRYPTO’86:
6th International Cryptology Conference, volume 263 of LNCS,
pages 186—194. Springer, 1987.

Andrew Gumbel. Steal This Vote: Dirty FElections and the Rotten
History of Democracy in America. Nation Books, 2005.

Stuart Haber, Josh Benaloh, and Shai Halevi. The Helios e-Voting
Demo for the TACR. International Association for Cryptologic Re-
search. http://www.iacr.org/elections/eVoting/heliosDemo.
pdf, May 2010.

Yong-Sork Her, Kenji Imamoto, and Kouichi Sakurai. Analysis and
comparison of cryptographic techniques in e-voting and e-auction.
Technical Report 10(2), Information Science and Electrical Engi-
neering, Kyushu University, September 2005.

Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-
Resistant Electronic Elections. Cryptology ePrint Archive, Report
2002/165, 2002.

Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-
Resistant Electronic Elections. In David Chaum, Markus Jakob-
sson, Ronald L. Rivest, and Peter Y. A. Ryan, editors, Towards
Trustworthy Flections: New Directions in Electronic Voting, vol-
ume 6000 of LNCS, pages 37-63. Springer, 2010.

Markus Jakobsson and Ari Juels. Mix and match: Secure function
evaluation via ciphertexts. In ASTACRYPT’00: 6th International
Conference on the Theory and Application of Cryptology and In-
formation Security, pages 162—177. Springer, 2000.

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryp-
tography. Chapman & Hall/CRC, 2007.

Vijay Krishna. Auction Theory. Academic Press, second edition,
2000.

Steve Kremer, Mark D. Ryan, and Ben Smyth. Election verifia-
bility in electronic voting protocols. In ESORICS’10: 15th Euro-
pean Symposium on Research in Computer Security, volume 6345
of LNCS, pages 389-404. Springer, 2010.

o7

[KTV10]

[KTV11]

[KZZ15]

[LANO2]

[LG84]

[MAC02]

[MMS87]

[MSQ14a

[MSQ14b)

[OAS69]

Ralf Kiisters, Tomasz Truderung, and Andreas Vogt. Account-
ability: Definition and relationship to verifiability. In CCS’10:
17th ACM Conference on Computer and Communications Secu-
rity, pages 526-535. ACM Press, 2010.

Ralf Kiisters, Tomasz Truderung, and Andreas Vogt. Verifiability,
Privacy, and Coercion-Resistance: New Insights from a Case Study.
In S6P’11: 32nd IEEE Symposium on Security and Privacy, pages
538-553. IEEE Computer Society, 2011.

Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. End-to-
end verifiable elections in the standard model. In EUROCRYPT’15:
34th International Conference on the Theory and Applications of
Cryptographic Techniques, volume 9057 of LNCS, pages 468-498.
Springer, 2015.

Helger Lipmaa, N. Asokan, and Valtteri Niemi. Secure Vickrey
Auctions without Threshold Trust. In FC’02: 6th International
Conference on Financial Cryptography and Data Security, volume
2357 of LNCS, pages 87-101. Springer, 2002.

Arend Lijphart and Bernard Grofman. Choosing an electoral sys-
tem: Issues and Alternatives. Praeger, 1984.

Emmanouil Magkos, Nikos Alexandris, and Vassilis Chrissikopou-
los. A Common Security Model for Conducting e-Auctions
and e-Elections. CSCC’02: 6th WSEAS International Multi-
conference on Circuits, Systems, Communications and Comput-
ers http://www.wseas.us/e-library/conferences/crete2002/
papers/444-766.pdf, 2002.

R. Preston McAfee and John McMillan. Auctions and bidding.
Journal of Economic Literature, 25(2):699-738, 1987.

Adam McCarthy, Ben Smyth, and Elizabeth A. Quaglia. Hawk and
Aucitas: e-auction schemes from the Helios and Civitas e-voting
schemes. In FC’14: 18th International Conference on Financial
Cryptography and Data Security, volume 8437 of LNCS, pages 51—
63. Springer, 2014.

Adam McCarthy, Ben Smyth, and Elizabeth A. Quaglia. Hawk
and Aucitas: e-auction schemes from the Helios and Civi-
tas e-voting schemes. http://bensmyth.com/publications/

2014-Hawk-and-Aucitas-auction-schemes/, 2014. Long version
of [MSQ14al.

American Convention on Human Rights, “Pact of San Jose, Costa
Rica”, 1969.

98

[Oka96]

[0SC90]

[PBDV04]

[Saa95]

[SB13]

[SB14]

[SC11]

[Sch05]

[SFC15]

[SHM15]

[Smy12]

Tatsuaki Okamoto. An electronic voting scheme. In Advanced IT
Tools: IFIP World Conference on IT Tools, IFIP Advances in In-
formation and Communication Technology, pages 21-30, 1996.

Document of the Copenhagen Meeting of the Conference on the
Human Dimension of the CSCE, 1990.

Kun Peng, Colin Boyd, Ed Dawson, and Kapalee Viswanathan. Ef-
ficient implementation of relative bid privacy in sealed-bid auction.
In Information Security Applications, volume 2908 of LNCS, pages
244-256. Springer, 2004.

Thomas Saalfeld. On Dogs and Whips: Recorded Votes. In Herbert
Doring, editor, Parliaments and Majority Rule in Western Europe,
chapter 16. St. Martin’s Press, 1995.

Ben Smyth and David Bernhard. Ballot secrecy and ballot inde-
pendence coincide. In ESORICS’13: 18th Furopean Symposium
on Research in Computer Security, volume 8134 of LNCS, pages
463-480. Springer, 2013.

Ben Smyth and David Bernhard. Ballot secrecy and ballot inde-
pendence: definitions and relations. Cryptology ePrint Archive,
Report 2013/235 (version 20141010:082554), 2014.

Ben Smyth and Véronique Cortier. A note on replay attacks
that violate privacy in electronic voting schemes. Technical
Report RR-7643, INRIA, June 2011. http://hal.inria.fr/
inria-00599182/.

Nicole Schweikardt. Arithmetic, first-order logic, and counting
quantifiers. Search Results ACM Transactions on Computational
Logic, 6(3):634-671, July 2005.

Ben Smyth, Steven Frink, and Michael R. Clarkson. Elec-
tion Verifiability: Definitions and an Analysis of Helios and
JCJ. Cornell’s digital repository, https://ecommons.cornell.
edu/handle/1813/39908 and Cryptology ePrint Archive, Report
2015/233, 2015.

Ben Smyth, Yoshikazu Hanatani, and Hirofumi Muratani. NM-
CPA secure encryption with proofs of plaintext knowledge. In
IWSEC’15: 10th International Workshop on Security, volume 9241
of LNCS. Springer, 2015.

Ben Smyth. Replay attacks that violate ballot secrecy in helios.
Cryptology ePrint Archive, Report 2012/185, 2012.

99

[Smy14]

[Smy15a]

[Smy15b]

[UNA48]
[US90]

Ben Smyth. Ballot secrecy with malicious bulletin boards. Cryp-
tology ePrint Archive, Report 2014 /822 (version 20141012:004943),
2014.

Ben Smyth. Secrecy and independence for election schemes. Cryp-
tology ePrint Archive, Report 2015/942, 2015.

Ben Smyth. Secrecy and independence for election schemes. Cryp-
tology ePrint Archive, Report 2015/942, 2015.

Universal Declaration of Human Rights, 1948.

Sherman Antitrust Act, 1890.

60

