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ABSTRACT
It has been an open question whether Oblivious RAM stored
on a malicious server can be securely shared among multi-
ple users. ORAMs are stateful, and users need to exchange
updated state to maintain security. This is a challenge, as
the motivation for using ORAM is that the users may not
have a way to directly communicate. A malicious server can
potentially tamper with state information and thus break
security. We answer the question of multi-user ORAM on
malicious servers affirmatively by providing several new, ef-
ficient multi-user ORAM constructions. We first show how
to make the original square-root solution by Goldreich and
the hierarchical one by Goldreich and Ostrovsky multi-user
secure. We accomplish this by separating the critical parts
of the access, which depends on the state of the ORAM,
from the non-critical parts that can be safely executed in
any state. Our second and main contribution is a multi-user
variant of Path ORAM. To enable secure meta-data update
during evictions, we employ our first result, small multi-user
secure classical ORAMs, as a building block. Depending on
the block size, the overhead of our construction reaches a
low O(logn) communication complexity per user, similar to
state-of-the-art single-user ORAMs.

1. INTRODUCTION
Oblivious RAM (ORAM) has been a popular research topic
for a number of years. Yet, only recently it has come close
to being practical by offering sublinear worst-case communi-
cation complexity. Recent papers have tackled further effi-
ciency improvements, reducing burdensome memory restric-
tions and adding the ability to seamlessly scale database
sizes up and down. However, at least one significant hurdle
to adoption remains: security of modern ORAMs relies on
there being only a single user at all times. The problem
stems from the fact that, in order to hide the access pat-
tern, ORAM algorithms must modify some of the data on
the server after every access. If the server is permitted to,

e.g., “rewind” the data and present an old version to a user,
further interactions may reveal something about their access
pattern. Fortunately, with a single user this is easily solved
by storing a small token, such as the root of a hash tree [10].
This token authenticates and verifies freshness of all data re-
trieved from the server, ensuring that no such rewind attack
is possible.

However, with multiple users, an authentication token is not
enough. Data may not pass authentication for a valid rea-
son: it has been modified by one of the other users. If users
could communicate with each other using a secure out-of-
band channel, then it becomes possible to continually ex-
change and update each other with the most recent token.
However, existence of secure out-of-band-communication is
not always a reasonable assumption. If users already have
a secure method of continuously communicating with each
other, one may argue that ORAM may not even be needed
in the first place. Current solutions for multi-user ORAM
work only in the presence of an honest-but-curious adver-
sary, which cannot perform rewind attacks on the users.
Often, this is not a very satisfying model, since rewind at-
tacks are very easy to execute for real-world adversaries and
would be difficult to detect. Goodrich et al. [5], in their pa-
per examining multi-user ORAM, recently proposed as an
open question whether one could be secure for multiple users
against a malicious server.

Technical Highlights: In this paper, we introduce the
first construction for a multi-user ORAM. We prove security
even if the server is fully malicious. Our contribution is
twofold, specifically:

• First, we focus on two ORAM constructions that fol-
low a “classical” approach, the square-root ORAM by
Goldreich [2] and the hierarchical ORAM by Goldre-
ich and Ostrovsky [3]. We adapt these ORAMs for
multi-user security. The intuition is to separate user
accesses into two parts. One part can be performed se-
curely in the presence of a malicious server. The other
part cannot be performed securely, but contains an ef-
ficient check which will reveal any malicious behavior,
thereby allowing the user to terminate the protocol.

• The “classical” ORAM constructions have been largely
overshadowed by more recent tree-based ORAMs. Tree-
based ORAMs such as the one by Shi et al. [11] and



Stefanov et al. [12] and many derivatives, provide bet-
ter efficiency and worst-case guarantees. Consequently,
we go on to demonstrate how a multi-user secure tree-
based ORAM can be constructed using one of the“clas-
sical” ORAMs as a building block. For reasonably
small block sizes, this results in a multi-user ORAM
which has similar per-user complexity to state of the
art single-user ORAM constructions, namely O(logn)
overhead.

2. MULTI-USER ORAM
ORAM protocols provide security because they are highly
stateful. In order to hide the fact that a user accesses a
certain data block, ORAMs typically perform shuffling or
reordering of blocks so that two accesses are not recognizable
as being the same. An obvious attack that a malicious server
can do is to undo or “rewind” that shuffling after the first
access and present the same, original view of the data to the
user when they make the second access. If the user was to
blindly execute their access, and it was the same block of
data as the first access, it would result in the same pattern
of interactions with the server that the first access did. The
server would immediately have broken the security of the
scheme. This is a straightforward attack, and it is easily
defeated by having the user store a token for authentication
and freshness [10].

However, with two (or more) users, the server can execute
the same attack, but against the two users separately. Af-
ter watching one user retrieve some data, he can rewind the
ORAM’s state and present the original view to the second
user. If the second user accesses the same data that the
first user did, the server will recognize it and break security.
Without having some secure side-channel to exchange au-
thentication tokens after every access, it is difficult for users
to detect such an attack.

2.1 Security Definition
We start by briefly recalling the standard Oblivious RAM
concept. An ORAM provides an interface to read from and
write to blocks of a RAM (an array of storage blocks). It
supports Read(x), to read from the block at address x and
Write(x, v) to write value v to block x. The ORAM al-
lows storage of n blocks, each of size B. To securely realize
this functionality, an ORAM outsources a state Σ to an un-
trusted storage. For convenience, state Σ can be represented
as a sequence of fixed-length strings. We will call the un-
trusted storage provider a server in this paper because the
most likely application for a multi-user ORAM would be
outsourced cloud storage.

Definition 1 (ORAM Operation OP). An operation
OP is defined as OP = (o, x, v), where o = {Read,Write}, x
is the virtual address of the block to be accessed and v is the
value to write to that block. v = ⊥ when o = Read.

We now present our multi-user ORAM security definition
which slightly augments the standard, single-user ORAM
definition.

Definition 2 (Multi-User ORAM Π). A multi-user

ORAM Π is defined by tuple Π = (Init,Access).

1. Init(λ, n,B, ψ) initializes Π. It takes as input secu-
rity parameter λ, total number of blocks n, block size
B, and number of users ψ. Init outputs an initial
ORAM state Σinit, which encompasses the entirety of
the ORAM that is stored on the server, and a list of
per user states {stu1 , . . . , stuψ} which are kept local to
the individual users.

2. Access(OP,Σ, stui) performs operation OP on ORAM
state Σ using user ui’s state stui . Access outputs (1)
an access pattern < (α1, ν1), . . . , (αm, νm) >, where
(αj , νj) denotes that the string at position αj in state
Σ is read from or replaced by string νj, and (2) a new
state stui for user ui.

In contrast to single-user ORAM, a multi-user ORAM in-
troduces the notion of users. This is modeled by different
per-user states, stui for user ui. Algorithm Init outputs dif-
ferent initial states stui and, in practice, would distribute
these initial states to users. One can assume this distribu-
tion during initialization taking place over a secure out-of-
band communication channel. However after initialization,
users cannot use an out-of-band channel anymore. When-
ever user ui executes Access on the multi-user ORAM, they
can only update their own state stui .

Finally, we define the security of a multi-user ORAM against
malicious servers. Consider the following experiment SecORAM

A,Π (λ).

Definition 3 (Multi-User ORAM SecORAM
A,Π (λ)).

1 b
$← {0, 1}

2 (Σinit, stu1 , . . . , stuψ )← Init(λ, n,B, ψ)

3 (Σ,OP0,OP1, i, stA)← A(λ, n,B,Σinit, ψ)
4 for j = 1 to poly(λ) do
5 (stui , < (α1, ν1), . . . , (αm, νm) >)← Access(OPb,Σ, stui )
6 (Σ,OP0,OP1, i, stA)← A(< (α1, ν1), . . . , (αm, νm) >, stA)

7 end
8 b′ ← A(stA)
9 output 1 iff b = b′

An ORAM Π = (Init,Access) is multi-user secure iff for all
PPT adversaries A

Pr[SecORAM
A,Π (λ) = 1] <

1

2
+ ε(λ),

where ε is a negligible function in security parameter λ.

First, a random bit b is chosen, and both the ORAM and ad-
versary A are initialized. Then, A gets oracle access to the
ORAM and can adaptively query it during poly(λ) rounds.
In each round, A selects a user ui, determines two opera-
tions OP0 and OP1, and outputs an ORAM state Σ. The
oracle performs operation OPb as user ui with state stui and
ORAM state Σ using protocol Π. The oracle returns access
pattern (αi, νi) induced by Π back to A. Each tuple (αi, νi)
tells the adversary which part of Σ was read or overwritten
(with value ν). Eventually, A guesses b.



Our game-based definition is equivalent to the standard ORAM
security definition with two exceptions: we allow the adver-
sary to arbitrarily change the state of the on-server storage
Σ, and we split the ORAM algorithm into ψ different pieces
which cannot share state between themselves.

Note that, in this work, we assume that all users trust each
other and do not conspire. For ease of exposition, we assume
that all user share a key κ used for encryptions, decryptions,
and MAC computations that we will introduce later.

Non-Goal Consistency: While certainly important, we
stress that consistency issues are a non-goal in this paper.
Informally, A could present different versions of ORAM state
Σ to different users, leading to desynchronization and incon-
sistent views of the ORAM. Not surprisingly, it is impossible
to protect against desynchronization in the absence of out-
of-band communication. The strongest consistency achiev-
able would be fork consistency. For more information, see
Li et al. [7]. In this paper, we allow A to desynchronize
users, as long as security following Definition 3 is not vio-
lated: users’ access patterns must never be revealed. Along
the same lines, “reaction-attacks” [6] (and variants) are out
of scope. In a reaction attack, A would send an old state
Σ to a user, observing the user’s reaction. For example, the
old state could force higher applications layers into access-
ing the ORAM more (or less) often. Again, in this work, we
only aim at accesses pattern protection, but cannot enforce
a specific number of accesses.

3. MULTI-USER SECURITY FOR
CLASSICAL ORAMS

We start by demonstrating how two existing ORAM con-
structions, the original square-root solution by Goldreich [2]
and the hierarchical one by Goldreich and Ostrovsky [3], can
be transformed into multi-user secure versions with the same
complexity per user.

3.1 Overview
We briefly review Goldreich [2]’s square-root ORAM. In this
ORAM, storage is divided into two partitions. One holds
n+
√
n blocks, and we will call this main memory. The other

partition holds
√
n blocks, the cache. When the ORAM is

initialized, a random permutation π on n elements is sam-
pled, and each block x is stored encrypted in the main mem-
ory at location π(x). In addition, we store

√
n encrypted

dummy elements at positions π(n+ 1), . . . , π(n+
√
n). The

cache is also encrypted, initially holding
√
n empty blocks.

Every access Read(x) that the (single) user u makes is then
broken down into two steps. First, u retrieves the cache
in its entirety, decrypts it, and searches to see whether the
cache contains block x. If it is not, u retrieves block π(x)
from the main memory and inserts it into the local cache.
If x is already in the cache, u simply reads its value from
the local cache and performs an additional read of the next
dummy element π(x′), x′ ∈ {n+ 1, . . . , n+

√
n}, from main

memory. This hides the fact that u found the block they
wanted in the cache. The cache is then finally re-encrypted
and stored back in the server.

A Write(x, v) to the ORAM is implemented similarly. User
u again downloads the cache, decrypts it, and stores block

x with its new value v in it. Before re-encrypting and up-
loading the cache back to the server, u also reads the next
dummy element from main memory. To always know which
dummy element is the next dummy element, the user can
store an (encrypted) dummy counter inside the cache. To
ease exposition, we will omit this detail in our protocol de-
scription below. For integrity verification, recall that u typ-
ically needs to compute and store an authentication token
(e.g., a MAC) of the latest version of the cache in their local
memory [10].

After
√
n operations, the cache will become full. At that

point, the user downloads the cache and the entirety of the
main memory. The user merges main memory and cache to-
gether by emptying the cache and reshuffling main memory
with a new permutation π. For blocks which are in both
the cache and main memory, the cache version will be newer
and so is taken to replace the old version.

For blocks of size B bit, the amortized complexity of this
scheme is Õ(

√
n ·B), and worst-case complexity is O(n ·B).

Each access requires O(
√
n) blocks, but every O(

√
n) oper-

ations require an O(n) access. Security is straightforward,
because the user never reads the same block twice from main
memory without an intervening complete shuffle. The cache
is read and re-encrypted in its entirety for each operation.
In effect, the cache acts like a “trivial” ORAM.

Challenge. When considering a multi-user scenario, it be-
comes very easy for a malicious server to break security of
the square-root ORAM. For example, user u1 can access a
block x that is not in the cache, requiring u1 to read π(x)
from main memory and insert it into the cache. The ma-
licious server now restores the cache to the state it was in
before u1’s access added block x. If a second user u2 also
attempts to access block x, the server will now observe that
both users read from the same location in main memory and
know that u1 and u2 have accessed the same block. With-
out the users having a way to communicate directly with
each other and pass information that allows them to verify
the changes to the cache, the server can always “rewind” the
cache back to a previous state. This will eventually force
one user to leak information about their accesses.

Rationale. Our approach for multi-user security is based
on the observation that the cache update part of the square-
root solution is secure by itself. Updating the cache only in-
volves downloading the cache, changing one element in it, re-
encrypting, and finally strong it back with the server. Down-
loading and later uploading the cache implies always “touch-
ing” the same

√
n blocks, independently of what the mali-

cious server presents to a user as Σ, and also independent
of the block being updated by the user. Changing values
inside the cache cannot leak any information to the server,
as its content is always newly IND-CPA encrypted. Suc-
cinctly, being similar to a trivial ORAM, updating a cache
is automatically multi-user secure.

However, any reading can leak information. Reading from
main memory is conditional on what the user finds in the
cache. We call this part the critical part of the access, and



Input: Security parameter λ, number of blocks in each ORAM
n, block size B, number of users φ

Output: Initial ORAM state Σinit, initial per user states
{stu1 , . . . , stuφ}

1 κ
$←− {0, 1}λ;

2 for i := 1 to φ do
3 Generate permutation πi,0 from key κ;

4 Initialize
√
n+ n main memory blocks, shuffled with πi,1,

and
√
n cache blocks;

5 Set cache counter χi = 0;
6 Set epoch counter γi = 0;
7 ORAMi = Encκ(main memory) || Encκ(cache || χi || γi);
8 maci = MACκ(Encκ(cache || χi || γi));
9 Send stui = {κ, χi} to user ui;

10 end
11 Send Σinit = {(ORAM1,mac1), . . . , (ORAMφ,macφ)} to server;

Algorithm 1: Init(λ, n,B, φ) – Initialize ORAM

the cache update correspondingly non-critical. To counter-
act this leakage, we implement the following changes to en-
able multi-user support for the square-root ORAM:

1. Separate ORAMs: Instead of a single ORAM, we
use φ separate ORAMs, ORAM1, . . . ,ORAMφ, one for
each user. Each user ui will perform the critical part of
the access only on their own ORAM, that is, ORAMi’s
main memory and cache. Thus, each user can guar-
antee they will not read the same address from their
ORAM’s main memory twice. However, any change to
the cache as part of ORAM Read(x) or Write(x, v) op-
erations will be written to every ORAM’s cache. Up-
dating the cache on any ORAM is already guaranteed
to be multi-user secure and does not leak information.

2. Authenticated Caches: For each user ui to guaran-
tee that they will not repeat access to the main mem-
ory of ORAMi, the cache is stored together with an
encrypted access counter χ on the server. Each user
stores locally a MAC over both the cache and the en-
crypted access counter χ of their own ORAM. Every
access to their own cache increments the counter and
updates the MAC. Since users read only from their
own ORAMs, and they can always verify the counter
value for the last time that they performed a read, the
server cannot roll back beyond that point. Two reads
will never be performed with the cache in the same
state.

3.2 Details
We detail the above ideas in two algorithms: Algorithm 1
shows the initialization procedure, and Algorithm 2 describes
the way a user performs an access with our multi-user secure
square-root ORAM.

First, we introduce the notion of an epoch. After
√
n accesses

to an ORAM, its cache is “full”, and the whole ORAM needs
to be re-shuffled. Re-shuffling requires computing a new
permutation π. Per ORAM, a permutation can be used for√
n operations, i.e., one epoch. The next

√
n operations, i.e.,

the next epoch, will use another permutation and so on. In
the two algorithms, we use an epoch counter γi. Therewith,
πi,γi denotes the permutation of user ui in ORAMi’s epoch

Input: Address x, new value v, user ui, stui = {k, χi}
Output: The value of block x, new state stui

1 From ORAMi: read ci = Encκ(cache || χi || γi) and maci;
2 mac′i = MACκ(ci);
3 if mac′i 6= maci then
4 Abort ;
5 end
6 Decrypt ci to get cache and counter χ′i;
7 if χ′i < χi then
8 Abort ;
9 end

10 if block x 6∈ cache then
11 Read and decrypt block πi,γi (x) from ORAMi’s main

memory ;
12 else
13 Read next dummy block from ORAMi’s main memory;
14 end
15 if v = ⊥ then // operation is a Read
16 ν ← v;
17 else // operation is a Write
18 ν ← existing value of block x;
19 end
20 Append block (x, ν) to cache;
21 if cache is full then
22 γi = γi + 1;
23 Compute new permutation πi,γi ;
24 Read and decrypt ORAMi’s main memory;
25 Shuffle cache and main memory using πi,γ ;
26 Send Encκ(main memory) to server to update ORAMi;
27 end
28 χi = χ′i + 1;
29 maci = MACκ(Encκ(cache || χi || γi));
30 Send new Encκ(cache||χi||γi) and maci to server to update

ORAMi;
31 for j 6= i do // for all ORAMj 6= ORAMi

32 Read and decrypt cache and χj from ORAMj ;
33 Read and verify maci from ORAMj ;
34 Append block (x, ν) to cache;
35 if cache is full then
36 γj = γj + 1;
37 Compute new permutation πj,γj ;

38 Read and decrypt ORAMj ’s main memory;
39 Shuffle cache and main memory using πj,γj ;

40 Send Encκ(main memory) to server to update ORAMj ;

41 end
42 macj = MACκ(Encκ(cache || χj || γj));
43 Send new Encκ(cache || χj || γj) and macj to server to

update ORAMj ;

44 end
45 output (ν, stui = {κ, χi});

Algorithm 2: Access(OP,Σ, stui) – Perform Read or Write

γi. For any user, to be able to know the current epoch of
ORAMi, we store γi together with the ORAM’s cache on the
server.

On a side note, we point out that there are various ways to
generate pseudo-random permutations πi,γi on n elements in
a deterministic fashion. For example, one can use PRFκ(i||γi)
as the seed in a PRG and therewith perform a Fisher-Yates
shuffle.

In addition to the epoch counter, we also introduce a per
user cache counter χi. Using χi, user ui counts the number
of accesses of ui to the main memory and cache of their
own ORAMi. After each access to ORAMi by user ui, χi
is incremented. Each user ui keeps a local copy of χi and
therewith verifies freshness of data presented by the server.



As we will see below, this method ensures multi-user ORAM
security. Note in Algorithm 1 that a user uj never increases
χi of another user ui. Only ui updates χi.

In our algorithms, Encκ is an IND-CPA encryption such
as AES-CBC. For convenience, we only write Encκ(main
memory), although the main memory needs to be encrypted
block by block to allow for the retrieval of specific blocks.
Also, for the encryption of main memory blocks, Encκ offers
authenticated encryption such as encrypt-then-MAC.

A user can determine whether a cache is full in Algorithm 2
by the convention that empty blocks in the cache decrypt to
⊥. As long as there are blocks in the cache remaining with
value ⊥, the cache is not full.

Init: All φ ORAMs together with their cache and epoch
counters are initialized. The server stores the ORAMs and
MACs computed with a single key κ. Each user receives
their state, comprising κ and cache counter.

Access: After verifying the MAC for ORAMi and whether
its cache is not from before ui’s last access, ui performs a
standard Read or Write operation for block x on ORAMi.
If the cache is full, ui re-shuffles ORAMi updating π. In
addition, ui also adds block x to all other users’ ORAMs.
Note that for this ui does not read from the other ORAMs,
but only completely downloads and re-encrypts their cache.

3.3 Security Analysis
First, we ensure with Lemma 1 that once a block xi,j enters
the cache of ORAMi, it can never be removed without user ui
noticing or the end of an epoch (and a new shuffle) occurring.

Lemma 1. Let Γi,j be the state of the cache of ORAMi

when user ui executes their jth access. Let R(Γ, x) be the
predicate x ∈ Γ which indicates if block x is already resident
in the cache Γ. Let xi,j be the virtual block that user ui
accesses during operation j. E(i, j) is the epoch that ORAMi

is in (as represented by the data returned from the adversary)
when user ui executes operation number j.

If (Γi,j , xi,j), then

∀k > j with E(i, j) = E(i, k) ∧ xi,j = xi,k : R(Γi,j , xi,k)

or user ui executes Abort.

Proof. This follows from the security of MAC and the
fact that no user will remove a block from the cache unless
they are performing a shuffle. If during an access j user ui
sees a counter value greater than or equal to the counter
value from access j−1, and the MAC verifies, then they can
be sure that every element in the cache during access j−1 is
also in the cache during access j (unless there was a shuffle
between).

Now, Lemma 2 shows that if Lemma 1 holds, (Init,Access)
is multi-user secure during a single epoch.

Lemma 2.

If ∀i, j, k :

xi,j 6= xi,k ∨R(Γi,j , xi,j) ∨R(Γi,k, xi,k)

∨ E(i, j) 6= E(i, k)

then (Init,Access) is a multi-user ORAM secure against ma-
licious adversaries.

Proof. The writing part of a Read or Write operation
always reads and writes the same strings α ∈ Σ, namely
the cache and its authentication data (counters and mac).
Therefore, with IND-CPA encryption, any pair of operations
OP0 and OP1 will be indistinguishable for the writing part.

The read part on the other hand contains a conditional ac-
cess to main memory. The goal is to show that this access
does not leak any information that would allow an adver-
sary to distinguish between two accesses. Our condition
above ensures that there will not be two operations in the
same epoch where the user requests a block and it is not in
the cache. Since a block in main memory is only accessed if
it does not already exist in the cache, this guarantees that
each user i will never access the same block in main memory
twice in the same epoch. Recall that every block is mapped
to a random location, following a permutation π. If π is a
random permutation, then the access pattern to main mem-
ory will be indistinguishable from random accesses, and the
adversary’s view will be indistinguishable for all pair of op-
erations OP0 and OP1.

Theorem 1. (Init,Access) is a multi-user Oblivious RAM
secure against malicious adversaries.

Proof. In the same epoch, security follows from Lemma 2
and Lemma 1. Between epochs, main memory is re-shuffled
and the ORAM is effectively reinitialized, with security of
this new epoch being ensured as was the previous.

Deamortizing. Goodrich et al. [4] propose a way to deamor-
tize the classical square-root ORAM such that it obtains a
worst-case overhead factor of

√
n · log2(n). Their method

involves dividing the work of shuffling over the
√
n opera-

tions during an epoch such that when the cache is full there
is a newly shuffled main memory to swap in right away.
This shuffling induces an access pattern in the RAM which
is independent of the block a user is trying to access (it is
performed along with the user request simply to spread the
work out), and as such can also be incorporated into our
scheme to achieve sublinear worst-case overhead.

3.4 Hierarchical Construction
In addition to the square-root ORAM, Goldreich and Ostro-
vsky [3] also propose a generalization which achieves poly-log
overhead. In order to do this, it has a hierarchical series of
caches instead of a single cache. Each cache has 2j slots in



it, for j from 1 to logn, where each slot is a bucket holding
O(logn) blocks. At the bottom of the hierarchy is the main
memory which has 2 · n blocks.

The reader is encouraged to refer to the original paper [3] for
full details, but the main idea is that each level of the cache is
structured as a hash table. Up to 2j−1 blocks can be stored
in cache level j, half the space is reserved for dummies like
in the previous construction. After 2j−1 blocks, the entire
level is retrieved and shuffled into the next level. Shuffling
involves generating a new hash function and rehashing all
the blocks into their new locations in level j + 1, until the
shuffling percolates all the way to the bottom and the user
must shuffle main memory to start again. Level j must be
shuffled after 2j−1 accesses, resulting in an amortized poly-
logarithmic cost.

To access a block, a user queries the caches in order using the
unique hash function at each level. When the block is found,
the remainder of the queries will be on dummy blocks to hide
that it was found. After reading, and potentially changing
the value of the block, it is added back into the first level of
the cache and the cache is shuffled as necessary.

Multi-user security. As this scheme is a generalization of
the square-root one, our modifications extend naturally to
provide multi-user security. Again, each user should have
their own ORAM which they read from. Writing to other
users’ ORAMs is done by inserting the block into the top
level of their cache and then shuffling as necessary. The
only difference this time is that each level of the cache must
be independently authenticated. Since the cache levels are
now hash tables, and computing a MAC over them for each
access would be prohibitively expensive, we can instead use
a Merkle tree [9]. This allows for efficient verification and
updating of pieces of the cache, and it maintains poly-log
communication overhead.

4. TREE-BASED CONSTRUCTION
While pioneering the research, classical ORAMs have been
outperformed by newer tree-based ORAMs which achieve
better average and worst-case complexity. We now proceed
to show how these constructions can be modified to also sup-
port multiple users. Our strategy will be similar to before,
but with one major twist: in order to avoid linear worst case
complexity, tree-based ORAMs do only small local “shuf-
fling,” which turns out to make separating a user access into
critical and non-critical parts much more difficult. When
writing, one must not only add a new version of the block
to the ORAM, but also explicitly mark the old version as
obsolete, requiring a conditional access. This is in contrast
with our previous construction where old versions of a block
would simply be discarded during the shuffle.

4.1 Overview
For this paper, we will use Path ORAM [12] as the basis
for our multi-user scheme, but the concepts apply similarly
to other tree-based schemes. To start, we briefly describe
the original Path ORAM construction with emphasis on the
features that will be important in our modified version. See
[12] for complete details of the scheme.

Unlike classical ORAMs, instead of supporting Read and
Write operations, Path ORAM supports ReadAndRemove,
Add, and Evict. ReadAndRemove, as the name suggests,
reads a block from the ORAM and removes it, while Add
adds it back to the ORAM, potentially with a different value.
These two operations can be used to emulate classical Read
and Write operations, but it begins to illustrate the difficulty
we have making this scheme multi-user secure: changing the
value of a block implicitly requires reading it, meaning that
both reading and writing are equally critical and not easily
separated. The third operation, Evict, is a partial shuffling
that is done after each access in order to maintain the in-
tegrity of the tree.

The RAM in Path ORAM is structured as a tree with n leaf
nodes, each node in the tree holding up to Z blocks where
Z is a small constant. Each block in the ORAM is tagged
with a value uniform in the range [0, n). As an invariant,
blocks will always be located on the path from the root of
the tree to the leaf node corresponding to their tag. Over
the lifecycle of the tree, blocks will enter at the root and
filter their way down toward the leaves, making room for
new blocks to in turn enter at the root. The user has a map
which stores, for every block, which leaf node it is tagged
for.

ReadAndRemove: To retrieve block x, the user looks up in
the map which leaf node it is tagged for and retrieves all
nodes from the root to that leaf node, denoted P(x). By
the tree invariant, block x will be found somewhere on the
path P(x). The user then removes block x from the node it
was found in, reencrypts all the nodes and puts them back
in the RAM.

Add: To put a block back in the ORAM, the user simply
retrieves the root node and inserts the block into one of
its free slots, reencrypting and writing the node back after-
wards. The map is updated with a new random tag for this
block in the interval [0, n). If there is not enough room in
the root node, the user keeps the block locally in a “stash”,
waiting for a later opportunity to insert it into the tree.

Evict: So that the stash does not become too large, after ev-
ery operation the user also performs an eviction which moves
blocks down the tree to free up space. Eviction consists of
picking a path in the tree (using reverse lexicographic order-
ing [1]) and moving all blocks on that path as far down the
tree as they can go, without violating the invariant. Addi-
tionally, the user inserts any matching block from the stash
into the path.

Typically, the user’s map, which indicates for each block
which path it will be found on, is too large to store locally.
Fortunately, if the block size is at least 2 · logn, the map
can itself be stored recursively in another ORAM, and so
on, inducing a total communication complexity of O(log2 n).
Additionally, Stefanov et al. [12] show that if B = Ω(log2 n),
the complexity can be reduced to O(logn).

Integrity. Because of its tree structure, it is straightforward
to ensure integrity in Path ORAM. The user can store a
MAC in every node of the tree that is computed over the



contents of that node and the respective MACs of its two
children. Since the client accesses entire paths in the tree at
once, verifying and updating the MAC values when an access
is done incurs minimal overhead. This is a common strategy
with tree-based ORAMs, which we will make integral use of
in our scheme. We will also include user ui’s counter χu
in the root MAC as before, to prevent rollback attacks (see
below).

Challenge. Looking at Path ORAM, there exist several
challenges when trying to add multi-user capabilities with
our previous strategy. First, if we separate it into φ sepa-
rate ORAMs (which we will do), we actually end up with
a very large blowup because of the recursion. At the top
level, we will have φ ORAMs, but each of those will have to
have φ ORAMs in turn to support the map, each of which
will have φ more, going down logn levels. The overall com-
plexity would be φlogn ∈ Ω(n). Additionally, as alluded
to above, the fact that Add cannot be performed without
ReadAndRemove means that we cannot easily split the ac-
cess into critical and non-critical parts like before.

Rationale. To remedy these problems, we institute the fol-
lowing major changes to Path ORAM:

1. Unified Tagging: Instead of separately tagging every
block in each of the ORAMs, we will have a unified
tagging system where a block x has the “same” tag in
each of the separate user ORAMs. This allows us to
avoid a branching factor for the recursive map. For a
block x, the map will resolve to a tag value t which
describes its path in each one of the user ORAMs.
Let h be a PRF mapping from [0, 2λ)× [1, φ] to [0, n).
The leaf that block x is percolating to differs for any
ORAM. For ORAMi of user ui, it is pseudo-randomly
determined by value h(t, i).

2. Secure Block Removal: The central problem with
ReadAndRemove is that it is required before every Add
so that the tree will not fill up with old, obsolete
blocks which cannot be removed. Unlike the square-
root ORAM, the shuffling process (eviction) happens
locally and cannot know about other versions of a block
which exist on different paths. We solve this problem
by including metadata on each bucket, as in Mayberry
et al. [8]. For every node in the tree, we include an
encrypted array which indicates the ID of every block
in that node, or a special value ⊥ for slots which are
empty. Removing a block from the tree can now be
performed by simply changing the metadata to indi-
cate that the slot is empty. It will then be overwritten
by the eviction routine with a real block if that slot
is every needed. If B is large, this metadata is sub-
stantially smaller than the real blocks. We can then
store it in a less efficient classical ORAM described
above which is itself multi-user secure. This allows us
to take advantage of the better complexity provided
by tree-based ORAMs for the majority of the data,
while falling back on a simpler ORAM for the meta-
data which is independent of B. We will show that, for
modest block sizes, this leads to significantly improved

Input: Security parameter λ, number of blocks in each ORAM
n, block size B, number of users φ, sub-routine ORAM
(M− Init,M− Access)

Output: Initial ORAM state Σinit, initial per user states
{stu1 , . . . , stuφ}

1 κ
$←− {0, 1}λ ;

2 for j = 1 to φ do
3 i = 0 ;
4 n0 = n ;
5 while ni > 1 do
6 Initialize a tree Tj,i with ni leaf nodes ;
7 Set eviction counter ej,i = 0;

// The stash must also be stored on the server
8 Create array Sj,i with Y blocks ;

// Use a sub-ORAM to hold block metadata
9 Mj,i = M− Init(λ, 2ni · Z,Z · logni, φ) ;

10 ni+1 = ni · dlogni/Be ;
11 i = i+ 1 ;
12 end
13 Create a root block Rj ;
14 Set ORAM counter χj = 0;
15 ORAMj = Encκ((Tj,0,Mj,0, Sj,0, ej,0)|| . . . ||(Tj,m,Mj,m,

Sj,m, ej,m)||χj ||Rj);

16 Send stuj = {κ, χj , ej,0, . . . , ejm} to user uj ;

17 end
18 Send Σinit = {ORAM1, . . . ,ORAMφ} to server;

Algorithm 3: Init(λ, n,B, φ) – Initialize ORAM

performance compared to storing the data entirely in
a classical ORAM.

We also note that Path ORAM’s stash concept cannot be
used in a multi-user setting. Since the users do not have
a way of communicating with each other out of band, all
shared state (which includes the stash) must be stored in
the RAM. This has already been noted by Goodrich et al.
[5], and since the size of the stash does not exceed logn,
storing it in the RAM (encrypted and integrity protected)
does not effect the overall complexity.

Similar to before, we also introduce an eviction counter e for
each ORAM. User ui will verify whether, for each of their
recursive ORAMs, this eviction counter is fresh.

4.2 Details
Algorithm 3 initializes φ separate ORAMs and distributes
the initial states (containing the shared key) to each user.
These ORAMs Tj,i each take the form of a series of trees.
The first tree stores the data blocks, while the remaining
trees recursively store the map which relates block addresses
to leaf nodes. In addition to this, as described above, each
tree has its own sub-ORAM to keep track of block meta-
data. The stash of each (sub-)ORAM is called S0,i, and the
metadata (classical) ORAM Mj,i.

For simplicity, we assume that Encκ encrypts each node of
a tree separately, therewith allowing individual node access.
Also, we assume authenticated encryption, using the per
node integrity protection previously mentioned.

As noted above, the functions (ReadAndRemove,Add) can be
used to implement (Read,Write), which in turn can imple-
ment a simple interface (Access). Because our construction



Input: Address x, user ui, stui = {κ, χi}
Output: The value of block x
// Let m be the depth of recursion, nj be the number of

blocks in tree j
1 Retrieve root block R;

// Find tag tm where x is mapped to
2 pos = x/n; xm = bpos · (B/λ)c; tm = R[xm];

// Compute new tag t′m for x

3 t′m
$← [0, 2λ);

4 for j = m to 0 do
5 leafj = h(tj , ui)// Compute leaf of user ui’s ORAMi;
6 Read path P(leafj) and Si,j from Ti,j , locating block xj ;
7 Retrieve MAC values for P(leafj) as V and the stored

counter as χ′i;
8 if V 6= MAC− Path(Σ, stui ,P(leafj), S, χ

′
i) ∨ χ′i 6= χi then

9 Abort;
10 end
11 Re-encrypt and write back P(leafj) and Si,j to Ti,j ;

// Let (a, b) be the node and slot that xj was found
at

12 M− Access(Mj , (write, a · Z + b,⊥), ui);
13 if j 6= 0 then

14 t′j
$← [0, 2λ) // Sample a new value for t;

// Block xj contains multiple t values
15 Extract tj−1 from block xj ;
16 Update block xj with new value t′j−1 and new leaf tag

t′j ;

17 else
18 Set v to the value of block xj ;
19 If OP is a write, update xj with new value;
20 end
21 Insert block xj into the stash Si,j ;
22 χi = χi + 1 ;
23 Update MAC of stash to MACκ(Si,j || MAC of root bucket ||

χi || ei,j);
// Update the block in other user’s ORAMs

24 for p 6= i do
25 Retrieve path P(h(tj , up)) from Tp,j and update

metadata so block xj is removed;
26 Insert block xj into the stash Sp,j of Tp,j ;
27 Update MAC of root bucket in Ti,j ;

28 end
29 output (v, stui = {κ, χi, ei,0, . . . , ei,m});
30 end

Algorithm 4: Access(OP,Σ, stui) – Perform Read or Write

introduces dependencies between ReadAndRemove and Add,
in Algorithm 4 we illustrate a unified Access function for our
scheme. The user starts with the root block and traverses
the recursive map upwards to find the address of block x
and finally retrieve it from the main tree. For each recur-
sive tree, it retrieves a value t which allows it to locate the
correct block in the next tree. After retrieving a block in
each tree, the user marks that block as free in the meta-
data ORAM so that it can be overwritten during a future
eviction. This is necessary to maintain the integrity of the
tree and ensure that it does not overflow. At the same time,
the user also marks that block free in the metadata of each
other user and inserts the new block value into the root of
their trees. This is analogous to the previous scheme where
a user reads from their own ORAM and writes back to the
ORAMs of the other users.

Algorithm 5 illustrates the eviction procedure. Since evic-
tion does not take as input any user access, it is non-critical.
The user simply downloads a path in the tree which is spec-

Input: Address x, new value v, user ui, stui = {k, χi}
Output: The value of block x

1 for j = 1 to φ do
2 for r = 1 to m do
3 Retrieve eviction counter ej,r for Tj,r;
4 Retrieve path P(ej,r), Sj,r and MAC chain V ;

// Verify integrity of the path and eviction
counter

5 if V 6= MAC− Path(Σ, stui ,P(leafj), Sj,r, χ
′
i, ej,r)

then
6 Abort;
7 end
8 Read metadata for path from Mj,r ;
9 Move blocks out of the stash and down the path as far

as possible;
10 Reencrypt P(ej,r) and Sj,r and write back to server;
11 Update metadata for path Mj,r;
12 ej,r = ej,r + 1;

13 end
14 end

Algorithm 5: Evict(Σ, stui) – Perform Evict

Input: Σ, stui , path P, stash S, χ, eviction counter e
Output: Updated MAC values

1 for j = logn to 1 do
2 V [j] = MACκ(contents of bucket P[j] || MAC of left child ||

MAC of right child) ;

3 end
// Root MAC over the stash and tree parameters χ and e

4 V [0] = MACκ(S || MAC of root bucket || χ || e) ;
5 return V

Algorithm 6: MAC− Path(Σ, stui , path P, stash S, χ,
eviction counter e)

ified by eviction counter e and retrieves it in its entirety.
The only modification that we make from the original Path
ORAM scheme is that we read block metadata from the sub-
ORAM that indicates which blocks in the path are free and
can be overwritten by new blocks being pushed down the
tree.

4.3 Security Analysis
We start the security analysis by showing that, due to the
MACs authenticating each data structure, a specific user ui
will read the same tag t from a tree in their ORAM with
probability negligible in λ.

Lemma 3. For any two accesses to a map tree Ti,j, 1 ≤
j ≤ m, by arbitrary but fixed user ui, which do not result
in ui aborting, the probability that they both return the same
value t is negligible in λ.

Proof. We start with the root block. User ui replaces
each value with a fresh t0 in the range [0, 2λ) after each
access. So, if the server is honest, ui will read the same
value in two separate accesses only with probability 2−λ.
For the case of a malicious server, ui also keeps a counter
χi which is incremented after every access. The root block
on the server additionally stores this counter along with a
MAC that authenticates the block-counter combination. As
long as the MAC is unforgeable with chance 1 − 2−λ, the
probability that ui does not abort on a bad block-counter
combination is negligible.



After the root block, we continue with the map trees. The
user will read a path in each tree which contains the target
block, and next value tj . If the server is honest, ui would
have changed tj since the last time it was accessed and the
probability would again be 2−λ. User ui also has a MAC
chain here tied to a counter which can be verified, so against
a malicious adversary the probability is still negligible in
λ.

With that lemma, we can prove that our construction is
secure based on the fact that the t values induce a uniform
distribution of blocks across the leaf nodes and that no user
will have a collision in their t values with any non-negligible
probability.

Theorem 2. Our tree-based construction (Init,Access) is
a multi-user Oblivious RAM secure against malicious adver-
saries.

Proof. If h is a PRF, then assigning leaf nodes to blocks
as h(t, i) for user ui will result in a (pseudo-)random dis-
tribution over the leaf nodes for every block in every tree.
By Lemma 3, even against a malicious adversary, with all
by negligible probability no user will make two accesses that
return the same value ti. By induction, this means that
the paths read in each tree when a user accesses their own
ORAM will be distributed pseudorandomly, independent of
the virtual block being accessed. Thus, a user reading from
their own ORAM cannot leak any information that would
allow an adversary to distinguish between two access pat-
terns.

When users write to other users’ ORAMs, they directly and
deterministically access the stash. The users additionally
read an write with the sub-ORAM, which is in itself multi-
user secure. Since they always execute the same number
of accesses (logn per tree) on this ORAM, and the number
of accesses is the only thing leaked to the adversary with a
secure ORAM, this part cannot give advantage to a distin-
guisher.

The last algorithm is eviction. Since the path chosen during
eviction is deterministic (based on the counter) and indepen-
dent of any accesses done by any user, it is straightforward
to see that it also will induce a pattern on the server which
is indistinguishable.

4.4 Complexity
The complexity of our scheme is dominated by the cost of
an eviction. For a user to read a path in each of O(logn) re-
cursive trees, for each of the φ different ORAMs, it takes
O(φ · B · log2 n) communication. Additionally, the user
must make O(φ · log2 n) accesses to a metadata ORAM. If
µ(n,B) denotes the cost of a single access in such a sub-
ORAM, the overall complexity is then O(φ · log2 n · [B+µ(n,
logn)]). Taking the hierarchical ORAM as a sub-ORAM,
the total worst-case communication complexity computes to
O(φ · log2 n[B + log4 n]). If B ∈ Ω(log4 n) then the commu-
nication complexity, in terms of blocks, is O(log2 n), oth-
erwise it is at most O(log5 n), i.e., with the assumption
B ∈ Ω(logn) (minimal possible block size). Although a

complexity linear in φ may seem at first to be expensive,
we stress that we are the first to achieve Oblivious RAM
against malicious adversaries.

One notable difference in parameters from basic Path ORAM
is that we require a block size of at least c · λ, where c ≥ 2.
Path ORAM only needs c · logn, and for security parameter
λ, λ > logn holds. In our scheme, the map trees do not
directly hold addresses, but t values which are of size λ. In
order for the map recursion to terminate in O(logn) steps,
blocks must be big enough to hold at least two t values of
size λ. If the block size is Ω(λ2), we can also take advantage
of the asymmetric block optimization from Stefanov et al.
[12] to reduce the complexity to O(φ · (log6 n + B · logn).
Then, if additionally B ∈ Ω(log5 n), the total complexity is
reduced to O(logn) per user.

4.5 Conclusion and Future Work
We have presented the first techniques that allow multi-user
ORAM, secure even in the face of fully malicious servers.
Our multi-user ORAMs are reasonably efficient with com-
plexities between O(logn) to O(log5 n) per user, depend-
ing on the underlying block size. Future work will focus
on efficiency improvements, e.g., reducing worst-case com-
plexity to being sublinear in φ. Additionally, the question
of whether tree-based constructions are more efficient than
classical ones is not as clear in the multi-user setting as it is
for a single user. Although tree ORAMs are more efficient
for a number of parameter choices, they incur substantial
overhead from using a sub-ORAM to hold tree metadata.
This is not required for the classical constructions. Future
research may focus on achieving a “pure” tree-based con-
struction which does not depend on another ORAM. Finally,
it may be interesting to investigate whether multiple users
can be supported with a more fine-grained access control.
Instead of every user have full permissions to the ORAM,
can they have separate keys and somehow share only pieces
of their individual databases.
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