
Multi-Client Oblivious RAM secure against
Malicious Servers

Erik-Oliver Blass1, Travis Mayberry2, and Guevara Noubir3

1 Airbus Group Innovation, Munich, Germany
erik-oliver.blass@airbus.com
2 US Naval Academy, Annapolis MD,

mayberry@usna.edu
3 Northeastern University, Boston MA,

noubir@ccs.neu.edu

Abstract. It has been an open question whether Oblivious RAM stored on a ma-
licious server can be securely shared among multiple clients. The challenge is
that ORAMs are stateful, and clients would need to exchange updated state to
maintain security. However, clients often do not have a way to directly commu-
nicate, and a malicious server can tamper with state information and thus break
security. We answer the question of multi-client ORAM on malicious servers af-
firmatively by providing several new, efficient multi-client ORAM constructions.
We first extend the classical square-root ORAM by Goldreich and the hierarchical
one by Goldreich and Ostrovsky to become multi-client secure. We accomplish
this by separating the critical parts of the access, which depend on the state of the
ORAM, from the non-critical parts (cache access) that can be executed securely
in any state. Our second and main contribution is a secure multi-client variant of
Path ORAM. To enable secure meta-data update during evictions in Path ORAM,
we employ our first result, small multi-client secure classical ORAMs, as a build-
ing block. Depending on the block size, the overhead of our multi-client secure
construction reaches a low O(logn) communication complexity per client, sim-
ilar to state-of-the-art single-client ORAMs.

1 Introduction

Practicality of Oblivious RAM has improved significantly in the last few years. The
main metric of an ORAM’s performance, communication overhead, has decreased by
orders of magnitude. However, at least one significant hurdle to overcome for actual
adoption remains: security of modern ORAMs relies on there being only a single client
at all times. The problem stems from the fact that, in order to hide the access pattern,
today’s ORAMs must modify some of the data on the server after every access. If a
malicious server “rewinds” the data and presents an old version to a client, further
interactions may reveal details about the access pattern. In single client scenarios, this
is typically solved by storing a small token on the client, such as the root of a hash
tree [7]. This token authenticates and verifies freshness of all data retrieved from the
server, ensuring that no such rewind attack is possible.

In this paper, we address some more complex scenarios where multiple clients share
data stored in a single ORAM. With multiple clients, an authentication token is not

sufficient. Data may not pass one client’s authentication, simply as it has been modi-
fied by one of the other clients. If clients could communicate with each other using a
secure out-of-band channel, then it becomes possible to continually exchange and up-
date each other with the most recent token. However, existence of secure out-of-band-
communication is not always a reasonable assumption. If clients already have a secure
method of continuously communicating with each other, one may argue that ORAM
may not even be needed in the first place. Current solutions for multi-client ORAM
work only in the presence of an honest-but-curious adversary, which cannot perform
rewind attacks on the clients. Often, this is not a very satisfying model, since rewind at-
tacks are very easy to execute for real-world adversaries and would be difficult to detect.
Goodrich et al. [4], in their paper examining multi-client ORAM, recently proposed as
an open question whether one could be secure for multiple clients against a malicious
server.

Technical Highlights: In this paper, we introduce the first construction for a multi-
client ORAM. We prove security even if the server is fully malicious. Our contribution
is twofold, specifically:

– We start by focusing on two ORAM constructions that follow a “classical” ap-
proach, the square-root ORAM by Goldreich [2] and the hierarchical ORAM by
Goldreich and Ostrovsky [1]. We adapt these ORAMs for multi-client security. Our
approach is to separate client accesses into two parts. One part can be performed
securely in the presence of a malicious server. The other part cannot be performed
securely, but contains an efficient integrity check which will reveal any malicious
behavior, thereby allowing the client to terminate the protocol. Roughly speaking,
we replicate the ORAM for each client, such that clients read only from their copy
of the ORAM (integrity protected), but write into all ORAM copies (trivially se-
cure).

– The “classical” ORAM constructions have been largely overshadowed by more
recent tree-based ORAMs. Tree-based ORAMs such as the one by Shi et al. [8]
and Stefanov et al. [9] (Path ORAM) and many derivatives, provide better effi-
ciency and worst-case guarantees. Consequently, we go on to demonstrate how a
multi-client secure Path ORAM can be constructed. Among changing stash behav-
ior and address mapping, we solve the key challenge of realizing a multi-client
secure ReadAndRemove by storing Path ORAM’s metadata using small “classi-
cal” ORAMs as building blocks. For reasonably small block sizes, this results in
a multi-client ORAM which has the same per-client communication complexity as
current single-client ORAMs, i.e., O(log n).

2 Multi-client ORAM

Instead of a single ORAM accessed by a single client, we can envision multiple clients
securely exchanging or sharing data stored in a single ORAM. For example, imag-
ine multiple employees of a company that want to read from and write into the same
database stored at an untrusted server. Similar to standard ORAM security, sharing data
and jointly working on the database should not leak the employees’ access patterns

to the server. Alternatively, we can also envision a single person with multiple differ-
ent devices (laptop, tablet, smartphone) accessing the same data hosted at an untrusted
server. Again, working on the same data should not reveal access patterns. Throughout
this paper we consider the terms “multi-client” and “multi-user” to be equivalent. As
suggested by Goodrich et al. [4], we assume that clients all trust each other and leave
expansion of our results for more fine-grained security as future work.

ORAM protocols provide security, because they are highly stateful. In order to hide
the fact that a client accesses a certain data block, ORAMs typically perform shuffling
or reordering of blocks, so that two accesses are not recognizable as being the same. An
obvious attack that a malicious server can do is to undo or “rewind” that shuffling after
the first access and present the same, original view of the data to the client when they
make the second access. If the client was to blindly execute their access, and it was the
same block of data as the first access, it would result in the same pattern of interactions
with the server that the first access did. The server would immediately have broken the
security of the ORAM scheme. This is a straightforward attack. In the case of a single
client, it is easily defeated by having the client store a token for authentication and
freshness [7].

However, with two (or more) clients sharing data in an ORAM, the server can ex-
ecute the same attack, but against the two clients separately. After watching one client
retrieve some data, they can rewind the ORAM’s state and present the original view to
the second client. If the second client accesses the same data that the first client did, the
server will recognize it, therefore violating security. Without having some secure side-
channel to exchange authentication tokens after every access, it is difficult for clients to
detect such an attack.

This paper tackles scenarios with fully malicious servers. Note that against an honest-
but-curious adversary, multi-client security is trivial. The adversary is guaranteed not to
change any data on the server, and so any ORAM protocol with small client memory
can be used with multiple clients. The clients simply encrypt and upload all of their
local memory (state) to the server after every access, and the next client downloads this
memory to continue the protocol where the first client left off. In the face of a malicious
server, this approach is not feasible, because the adversary can tamper with the uploaded
client memory as described above. Therefore, the malicious adversary is crucial to the
motivation for our work.

2.1 Security Definition

We briefly recall standard ORAM concepts. An ORAM provides an interface to read
from and write to blocks of a RAM (an array of storage blocks). It supports Read(x),
to read from the block at address x, and Write(x, v) to write value v to block x. The
ORAM allows storage of N blocks, each of size B. To securely realize this function-
ality, an ORAM outsources a state Σ to an untrusted storage. For convenience, state Σ
can be represented as a sequence of fixed-length strings. We will call the untrusted stor-
age provider a server here because the most likely application for a multi-client ORAM
would be outsourced cloud storage.

Definition 1 (ORAM Operation OP). An operation OP is defined as OP = (o, x, v),
where o = {Read,Write}, x is the virtual address of the block to be accessed and v is
the value to write to that block. v = ⊥ when o = Read.

We now present our multi-client ORAM security definition which slightly augments
the standard, single-client ORAM definition.

Definition 2 (Multi-client ORAMΠ). A multi-client ORAMΠ = (Init,Access) com-
prises the following two algorithms.

1. Init(λ,N,B, ψ) initializes Π . It takes as input security parameter λ, total number
of blocks N , block size B, and number of clients ψ. Init outputs an initial ORAM
stateΣinit, which encompasses the entirety of the ORAM that is stored on the server,
and a list of per client states {stu1

, . . . , stuψ} which are kept local to the individual
clients.

2. Access(OP, Σ, stui) performs operation OP on ORAM state Σ using client ui’s
state stui . Access outputs (1) an access pattern < (α1, ν1), . . . , (αm, νm) >,
where (αj , νj) denotes that the string at position αj in state Σ is read from or
replaced by string νj , and (2) a new state stui for client ui.

In contrast to single-client ORAM, a multi-client ORAM introduces the notion of
clients. This is modeled by different per-client states, stui for client ui. Algorithm Init
represents a “dealer” who outputs different initial states stui after which, in practice,
they would be distributed to the individual clients. Whenever client ui executes Access
on the multi-client ORAM, they can only update their own state stui .

Finally, we define the security of a multi-client ORAM against malicious servers.
Consider experiment SecORAM

A,Π (λ) below.

Definition 3 (Multi-client ORAM SecORAM
A,Π (λ)).

b
$← {0, 1}

(Σinit, stu1 , . . . , stuψ)← Init(λ, n,B, ψ)

(Σ,OP0,OP1, i, stA)← A(λ, n,B,Σinit, ψ)
for j = 1 to poly(λ) do

(stui , < (α1, ν1), . . . , (αm, νm) >)← Access(OPb, Σ, stui)
(Σ,OP0,OP1, i, stA)← A(< (α1, ν1), . . . , (αm, νm) >, stA)

end
b′ ← A(stA)
output 1 iff b = b′

An ORAM Π = (Init,Access) is multi-client secure iff for all PPT adversaries A

Pr[SecORAM
A,Π (λ) = 1] <

1

2
+ ε(λ),

where ε is a negligible function in security parameter λ.

First, a random bit b is chosen, and both the ORAM and adversaryA are initialized.
Then, A gets oracle access to the ORAM and can adaptively query it during poly(λ)
rounds. In each round, A selects a client ui, determines two operations OP0 and OP1,
and outputs an ORAM state Σ. The oracle performs operation OPb as client ui with
state stui and ORAM state Σ using protocol Π . The oracle returns access pattern
(αi, νi) induced by Π back to A. Each tuple (αi, νi) tells the adversary which part
of Σ was read or overwritten (with value ν). Eventually, A guesses b.

Our game-based definition is equivalent to ORAM’s standard security definition
with two exceptions: we allow the adversary to arbitrarily change the state of the on-
server storage Σ, and we split the ORAM algorithm into ψ different pieces which can-
not share state among themselves.

As discussed above, this work assumes that all clients trust each other and do not
conspire. For ease of exposition, we assume that all client share a key κ used for en-
cryptions, decryptions, and MAC computations that we will introduce later.

Consistency: An orthogonal concern to security for multi-client schemes is consis-
tency, whether the clients each see the same version of the database when they access
it. Because the clients in our model do not have any way of communicating except
through the malicious adversary, it is possible for A to “desynchronize” the clients so
that their updates are not propagated to each other. Our multi-client ORAM guarantees
that in this case the clients still have complete security and access pattern privacy, but
consistency cannot be guaranteed. This is a well known problem with the best solution
being fork consistency [5], which we can achieve.

3 Multi-client Security for Classical ORAMs

We start by transforming two classical ORAM constructions, the original square-root
solution by Goldreich [2] and the hierarchical one by Goldreich and Ostrovsky [1], into
multi-client secure versions, retaining the same communication complexity per client.

Challenge When considering a multi-client scenario, it becomes easy for a malicious
server to break security of the square-root ORAM. For example, client u1 can access
a block x that is not in the cache, requiring u1 to read π(x) from main memory and
insert it into the cache. The malicious server now restores the cache to the state it was
in before u1’s access added block x. If a second client u2 also attempts to access block
x, the server will now observe that both clients read from the same location in main
memory and know that u1 and u2 have accessed the same block (or not). Without the
clients having a way to communicate directly with each other and pass information that
allows them to verify the changes to the cache, the server can always “rewind” the cache
back to a previous state. This will eventually force one client to leak information about
their accesses.

Rationale Our approach for multi-client security is based on the observation that the
cache update part of the square-root solution is secure by itself. Updating the cache
only involves downloading the cache, changing one element in it, re-encrypting, and fi-
nally storing it back with the server. Downloading and later uploading the cache implies

Input: Security parameter λ, number of blocks in each ORAM n, block size B, number
of clients φ

Output: Initial ORAM state Σinit, initial per client states {stu1 , . . . , stuφ}
κ

$←− {0, 1}λ;
for i := 1 to φ do

Generate permutation πi,0 from key κ;
Initialize

√
N + n main memory blocks, shuffled with πi,1, and

√
N cache blocks;

Set cache counter χi = 0; Set epoch counter γi = 0;
ORAMi = Encκ(main memory)||Encκ(cache||χi||γi);
maci = MACκ(Encκ(cache||χi||γi));
Send stui = {κ, χi} to client ui;

end
Send Σinit = {(ORAM1,mac1), . . . , (ORAMφ,macφ)} to server;

Algorithm 1: Init(λ, n,B, φ), initialize multi-client square-root ORAM

always “touching” the same
√
n blocks, independently of what the malicious server

presents to a client as Σ, and also independent of the block being updated by the client.
Changing values inside the cache cannot leak any information to the server, as its con-
tent is always newly IND-CPA encrypted. Succinctly, being similar to a trivial ORAM,
updating a cache is automatically multi-client secure.

However, reading can leak information. Reading from the main ORAM is condi-
tional on what the client finds in the cache. We call this part the critical part of the ac-
cess, and the cache update correspondingly non-critical. To counteract this leakage, we
implement the following changes to enable multiple clients for the square-root ORAM:

1. Separate ORAMs: Instead of a single ORAM, we use a sequence of ORAMs,

ORAM1,ORAM2, . . . ,ORAMφ,

one for each client. Client ui will perform the critical part of their access only
on ORAMi’s main memory and cache. Thus, each client can guarantee they will
not read the same address from their ORAM’s main memory twice. However, any
change to the cache as part of ORAM Read(x) or Write(x, v) operations will be
written to every ORAM’s cache. Updating the cache on any ORAM is already
guaranteed to be multi-client secure and does not leak information.

2. Authenticated Caches: For each client ui to guarantee that they will not repeat
access to the main memory of ORAMi, the cache is stored together with an en-
crypted access counter χ on the server. Each client stores locally a MAC over both
the cache and the encrypted access counter χ of their own ORAM. Every access to
their own cache increments the counter and updates the MAC. Since clients read
only from their own ORAMs, and they can always verify the counter value for the
last time that they performed a read, the server cannot roll back beyond that point.
Two reads will never be performed with the cache in the same state.

Input: Address x, new value v, client ui, stui = {k, χi}
Output: The value of block x, new state stui
From ORAMi: read ci = Encκ(cache||χi||γi) and maci;
mac′i = MACκ(ci);
if mac′i 6= maci then output Abort;
Decrypt ci to get cache and counter χ′i;
if χ′i < χi then output Abort;
if block x 6∈ cache then

Read and decrypt block πi,γi(x) from ORAMi’s main memory;
else

Read next dummy block from ORAMi’s main memory;
if v = ⊥ then // operation is a Read

ν ← v;
else // operation is a Write

ν ← existing value of block x;
Append block (x, ν) to cache;
if cache is full then

γi = γi + 1; Compute new permutation πi,γi ;
Read and decrypt ORAMi’s main memory;
Shuffle cache and main memory using πi,γ ;
Send Encκ(main memory) to server to update ORAMi;

χi = χ′i + 1; maci = MACκ(Encκ(cache||χi||γi));
Send new Encκ(cache||χi||γi) and maci to server to update ORAMi;
for j 6= i do // for all ORAMj 6= ORAMi

Read and decrypt cache and χj from ORAMj ; Read and verify maci from ORAMj ;
Append block (x, ν) to cache;
if cache is full then

γj = γj + 1; Compute new permutation πj,γj ;
Read and decrypt ORAMj’s main memory;
Shuffle cache and main memory using πj,γj ;
Send Encκ(main memory) to server to update ORAMj ;

macj = MACκ(Encκ(cache||χj ||γj));
Send new Encκ(cache||χj ||γj) and macj to server to update ORAMj ;

end
output (ν, stui = {κ, χi});

Algorithm 2: Access(OP, Σ, stui), Read,Write for multi-client square-root ORAM

3.1 Details

We detail the above ideas in two algorithms: Algorithm 1 shows the initialization pro-
cedure, and Algorithm 2 describes the way a client performs an access with our multi-
client secure square-root ORAM.

First, we introduce the notion of an epoch. After
√
N accesses to an ORAM, its

cache is “full”, and the whole ORAM needs to be re-shuffled. Re-shuffling requires
computing a new permutation π. Per ORAM, a permutation can be used for

√
N op-

erations, i.e., one epoch. The next
√
n operations, i.e., the next epoch, will use another

permutation and so on. In the two algorithms, we use an epoch counter γi. Therewith,
πi,γi denotes the permutation of client ui in ORAMi’s epoch γi. For any client, to be

able to know the current epoch of ORAMi, we store γi together with the ORAM’s cache
on the server.

On a side note, we point out that there are various ways to generate pseudo-random
permutations πi,γi on n elements in a deterministic fashion. For example, one can use
PRFκ(i||γi) as the seed in a PRG and therewith perform a Fisher-Yates shuffle.

In addition to the epoch counter, we also introduce a per client cache counter χi.
Using χi, client ui counts the number of accesses of ui to the main memory and cache
of their own ORAMi. After each access to ORAMi by client ui, χi is incremented. Each
client ui keeps a local copy of χi and therewith verifies freshness of data presented by
the server. As we will see below, this method ensures multi-client ORAM security.
Note in Algorithm 1 that a client uj never increases χi of another client ui. Only ui
ever updates χi.

In our algorithms, Encκ is an IND-CPA encryption such as AES-CBC. For con-
venience, we only write Encκ(main memory), although the main memory needs to be
encrypted block by block to allow for the retrieval of specific blocks. Also, for the en-
cryption of main memory blocks, Encκ offers authenticated encryption such as encrypt-
then-MAC.

A client can determine whether a cache is full in Algorithm 2 by the convention
that empty blocks in the cache decrypt to ⊥. As long as there are blocks in the cache
remaining with value ⊥, the cache is not full.

Init: All φ ORAMs together with their cache and epoch counters are initialized. The
server stores the ORAMs and MACs computed with a single key κ. Each client receives
their state, comprising κ and cache counter.

Access: After verifying the MAC for ORAMi and whether its cache is not from before
ui’s last access, ui performs a standard Read or Write operation for block x on ORAMi.
If the cache is full, ui re-shuffles ORAMi updating π. In addition, ui also adds block x
to all other clients’ ORAMs. Note that for this, ui does not read from the other ORAMs,
but only completely downloads and re-encrypts their cache.

Note on complexity In addition to the communication complexity involved, there is also
computation the client must perform in our scheme. Fortunately, the computation is
exactly proportional to the communication and easily quantifiable. Every block of data
retrieved from the server has a MAC that must be verified and a layer of encryption that
must be removed. Since modern ciphers and hash functions are very efficient, and can
even be done in hardware on many computers, communication is the clear bottleneck.
For comparison, encryption and MACs are common on almost every secure network
protocol, so we consider only the communication overhead in our analysis.

3.2 Security Analysis

First, we ensure with Lemma 1 that once a block xi,j enters the cache of ORAMi, it can
never be removed without client ui noticing or the end of an epoch (and a new shuffle)
occurring.

Lemma 1. Let Γi,j be the state of the cache of ORAMi when client ui executes their
jth access. Let R(Γ, x) be the predicate x ∈ Γ which indicates if block x is already

resident in the cache Γ . Let xi,j be the virtual block that client ui accesses during
operation j. E(i, j) is the epoch that ORAMi is in (as represented by the data returned
from the adversary) when client ui executes operation number j.

For all PPT adversaries A and security parameter λ, there exists a negligible func-
tion ε such that

Pr [If R(Γi,j , xi,j), then

(∀k > j with E(i, j) = E(i, k) ∧ xi,j = xi,k) :

R(Γi,j , xi,k) or client ui outputs Abort] = 1− ε(λ)

Proof. This follows from the security of MAC and the fact that no client will remove a
block from the cache unless they are performing a shuffle. If during an access j client
ui sees a counter value greater than or equal to the counter value from access j−1, and
the MAC verifies, then they can be sure that every element in the cache during access
j − 1 is also in the cache during access j (unless there was a shuffle between).

Now, Lemma 2 shows that if Lemma 1 holds, (Init,Access) is multi-client secure
during a single epoch.

Lemma 2. For all PPT adversariesA and security parameter λ, there exists a negligi-
ble function ε such that

If Pr [∀i, j, k :

xi,j 6= xi,k ∨R(Γi,j , xi,j) ∨R(Γi,k, xi,k)
∨ E(i, j) 6= E(i, k)] = 1− ε(λ)

then (Init,Access) is a multi-client ORAM secure against malicious adversaries.

Proof. The writing part of a Read or Write operation always reads and writes the same
strings α ∈ Σ, namely the cache and its authentication data (counters andmac). There-
fore, with IND-CPA encryption, any pair of operations OP0 and OP1 will be indistin-
guishable for the writing part.

The read part on the other hand contains a conditional access to main memory.
The goal is to show that this access does not leak any information that would allow an
adversary to distinguish between two accesses. Our condition above ensures that there
will not be two operations in the same epoch where the client requests a block and
it is not in the cache. Since a block in main memory is only accessed if it does not
already exist in the cache, this guarantees that each client i will never access the same
block in main memory twice in the same epoch. Recall that every block is mapped to
a random location, following a permutation π. If π is a random permutation, then the
access pattern to main memory will be indistinguishable from random accesses, and the
adversary’s view will be indistinguishable for all pair of operations OP0 and OP1.

Theorem 1. For all PPT adversaries A and security parameter λ, there exists a negli-
gible function ε such that (Init,Access) is a multi-client Oblivious RAM secure against
A with probability 1− ε(λ).

Proof. In the same epoch, security follows from Lemma 2 and Lemma 1. Between
epochs, main memory is re-shuffled and the ORAM is effectively reinitialized, with
security of this new epoch being ensured as was the previous.

Deamortizing Goodrich et al. [3] propose a way to deamortize the classical square-
root ORAM such that it obtains a worst-case overhead factor of

√
N · log2(N). Their

method involves dividing the work of shuffling over the
√
n operations during an epoch

such that when the cache is full there is a newly shuffled main memory to swap in right
away. This shuffling induces an access pattern in the RAM which is independent of the
block a client is trying to access (it is performed along with the client request simply to
spread the work out), and as such can also be incorporated into our scheme to achieve
sublinear worst-case overhead.

Multi-client security As this scheme is a generalization of the square-root one, our mod-
ifications extend naturally to provide multi-client security. Again, each client should
have their own ORAM which they read from. Writing to other clients’ ORAMs is done
by inserting the block into the top level of their cache and then shuffling as necessary.
The only difference this time is that each level of the cache must be independently au-
thenticated. Since the cache levels are now hash tables, and computing a MAC over
every level for each access would require downloading the whole data structure, we
can instead use a Merkle tree [6]. This allows for efficient verification and updating of
pieces of the cache without having access to the entire thing, and it maintains poly-log
communication overhead.

4 Tree-based Construction

While pioneering the research, classical ORAMs have been outperformed by newer
tree-based ORAMs which achieve better average and worst-case complexity. We now
proceed to show how these constructions can be modified to also support multiple
clients. Our strategy will be similar to before, but with one major twist: in order to
avoid linear worst case complexity, tree-based ORAMs do only small local “shuffling,”
which turns out to make separating a client access into critical and non-critical parts
much more difficult. When writing, one must not only add a new version of the block to
the ORAM, but also explicitly mark the old version as obsolete, requiring a conditional
access. This is in contrast with our previous construction where old versions of a block
would simply be discarded during the shuffle.

4.1 Overview

For this section, we will use Path ORAM [9] as the basis for our multi-client scheme,
but the concepts apply similarly to other tree-based schemes.

Integrity Because of its tree structure, it is straightforward to ensure integrity in Path
ORAM. The client can store a MAC in every node of the tree that is computed over
the contents of that node and the respective MACs of its two children. Since the client
accesses entire paths in the tree at once, verifying and updating the MAC values when
an access is done incurs minimal overhead. This is a common strategy with tree-based
ORAMs, which we will make integral use of in our scheme. We will also include client
ui’s counter χu in the root MAC as before, to prevent rollback attacks (see below).

Challenge Looking at Path ORAM, there exist several challenges when trying to add
multi-client capabilities with our previous strategy. First, if we separate it into φ separate
ORAMs (which we will do), we actually end up with a very large blowup because of
the recursion. At the top level, we will have φ ORAMs, but each of those will have to
have φORAMs in turn to support the map, each of which will have φmore, going down
log n levels. The overall complexity would be φlogN ∈ Ω(N). Additionally, the fact
that Add cannot be performed without ReadAndRemove means that we cannot easily
split the access into critical and non-critical parts like before.

Rationale To remedy these problems, we institute the following major changes to Path
ORAM:

1. Unified Tagging: Instead of separately tagging every block in each of the ORAMs,
we will have a unified tagging system where a block x has the “same” tag in each
of the separate client ORAMs. This allows us to avoid a branching factor for the
recursive map. For a block x, the map will resolve to a tag value t which describes
its path in each one of the client ORAMs. Let h be a PRF mapping from [0, 2λ)×
[1, φ] to [0, N). The leaf that block x is percolating to differs for every ORAM and
is pseudo-randomly determined by value h(t, i).

2. Secure Block Removal: The central problem with ReadAndRemove is that it is
required before every Add so that the tree will not fill up with old, obsolete blocks
which cannot be removed. Unlike the square-root ORAM, the shuffling process
(eviction) happens locally and cannot know about other versions of a block which
exist on different paths. We solve this problem by including metadata on each
bucket. For every node in the tree, we include an encrypted array which indicates
the ID of every block in that node. Removing a block from the tree can then be per-
formed by simply changing the metadata to indicate that the slot is empty. It will
be overwritten by the eviction routine with a real block if that slot is ever needed. If
B is large, this metadata is substantially smaller than the real blocks. We can then
store it in a less efficient classical ORAM described above which is itself multi-
client secure. This allows us to take advantage of the better complexity provided
by tree-based ORAMs for the majority of the data, while falling back on a simpler
ORAM for the metadata which is independent of B.

We also note that Path ORAM’s stash concept cannot be used in a multi-client
setting. Since the clients do not have a way of communicating with each other out
of band, all shared state (which includes the stash) must be stored in the RAM. This
has already been noted by Goodrich et al. [4], and since the size of the stash does not

exceed logN , storing it in the RAM (encrypted and integrity protected) does not affect
the overall complexity.

Similar to before, we also introduce an eviction counter e for each ORAM. client ui
will verify whether, for each of their recursive ORAMs, this eviction counter is fresh.

4.2 Details

See Appendix A for full algorithms, Init,Access and Evict. To initialize the multi-client
ORAM, φ separate ORAMs are created and the initial states (containing the shared
key) are distributed to each client. These ORAMs Tj,i each take the form of a series of
trees. The first tree stores the data blocks, while the remaining trees recursively store
the map which relates block addresses to leaf nodes. In addition to this, as described
above, each tree has its own sub-ORAM to keep track of block metadata. The stash of
each (sub-)ORAM is called S0,i, and the metadata (classical) ORAM Mj,i.

To avoid confusion between different ORAM initialization functions, MInit is a
reference to Algorithm 1, i.e., initialization of a multi-client secure classical ORAM.

For simplicity, we assume that Encκ encrypts each node of a tree separately, there-
with allowing individual node access. Also, we assume authenticated encryption, using
the per node integrity protection previously mentioned.

As noted above, the functions (ReadAndRemove,Add) can be used to implement
(Read,Write), which in turn can implement a simple interface (Access). Because our
construction introduces dependencies between ReadAndRemove and Add, in Algo-
rithm 4 we illustrate a unified Access function for our scheme. The client starts with
the root block and traverses the recursive map upwards to find the address of block x
and finally retrieves it from the main tree. For each recursive tree, it retrieves a value t
which allows it to locate the correct block in the next tree. After retrieving a block in
each tree, the client marks that block as free in the metadata ORAM so that it can be
overwritten during a future eviction. This is necessary to maintain the integrity of the
tree and ensure that it does not overflow. At the same time, the client also marks that
block free in the metadata of each other client and inserts the new block value into the
root of their trees. This is analogous to the previous scheme where a client reads from
their own ORAM and writes back to the ORAMs of the other clients.

Again, we avoid confusion between different ORAM access operations by referring
to the multi-client secure classical ORAM access operation of Algorithm 2 as MAccess.

Algorithm 5 illustrates the eviction procedure. Since eviction does not take as input
any client access, it is non-critical. The client simply downloads a path in the tree which
is specified by eviction counter e and retrieves it in its entirety. The only modification
that we make from the original Path ORAM scheme is that we read block metadata from
the sub-ORAM that indicates which blocks in the path are free and can be overwritten
by new blocks being pushed down the tree.

4.3 Security Analysis

We start the security analysis by showing that, due to the MACs authenticating each
data structure, a specific client ui will read the same tag t from a tree in their ORAM
with probability negligible in λ.

Lemma 3. Let ui be a client i. For any two accesses to a map tree Ti,j , 1 ≤ j ≤ m,
by client ui, which do not result in ui aborting, the probability that they both return the
same value t is negligible in λ.

Proof. We start with the root block. Client ui replaces each value with a fresh t0 in the
range [0, 2λ) after each access. So, if the server is honest, ui will read the same value in
two separate accesses only with probability 2−λ. For the case of a malicious server, ui
also keeps a counter χi which is incremented after every access. The root block on the
server additionally stores this counter along with a MAC that authenticates the block-
counter combination. As long as the MAC is unforgeable with chance 1 − 2−λ, the
probability that ui does not abort on a bad block-counter combination is negligible.

After the root block, we continue with the map trees. The client will read a path in
each tree which contains the target block, and next value tj . If the server is honest, ui
would have changed tj since the last time it was accessed and the probability would
again be 2−λ. client ui also has a MAC chain here tied to a counter which can be
verified, so against a malicious adversary the probability is still negligible in λ.

With that lemma, we can prove that our construction is secure based on the fact that
the t values induce a uniform distribution of blocks across the leaf nodes and that no
client will have a collision in their t values with any non-negligible probability.

Theorem 2. Our tree-based construction (Init,Access) is a multi-client Oblivious RAM
secure against malicious adversaries.

Proof. If h is a PRF, then assigning leaf nodes to blocks as h(t, i) for client ui will
result in a (pseudo-)random distribution over the leaf nodes for every block in every tree.
By Lemma 3, even against a malicious adversary, with all but negligible probability no
client will make two accesses that return the same value ti. By induction, this means that
the paths read in each tree when a client accesses their own ORAM will be distributed
pseudorandomly, independent of the virtual block being accessed. Thus, a client reading
from their own ORAM cannot leak any information that would allow an adversary to
distinguish between two access patterns.

When clients write to other clients’ ORAMs, they directly and deterministically
access the stash. The clients additionally read and write with the sub-ORAM, which
is in itself multi-client secure. Since they always execute the same number of accesses
(log n per tree) on this ORAM, and the number of accesses is the only thing leaked to
the adversary with a secure ORAM. This information cannot give an advantage to the
adversary in distinguishing access patterns.

The last algorithm is eviction. Since the path chosen during eviction is deterministic
(based on the counter) and independent of any accesses done by any client, it is straight-
forward to see that it also will induce a pattern on the server which is indistinguishable.

4.4 Complexity

The complexity of our scheme is dominated by the cost of an eviction. For a client to
read a path in each of O(logN) recursive trees, for each of the φ different ORAMs, it
takesO(φ·B ·log2N) communication. Additionally, the client must makeO(φ·log2N)

accesses to a metadata ORAM. If µ(N,B) denotes the cost of a single access in such a
sub-ORAM, the overall complexity is thenO(φ·log2N ·[B+µ(N, logN)]). Taking the
hierarchical ORAM as a sub-ORAM, the total worst-case communication complexity
computes to O(φ · log2N [B + log4N]). If B ∈ Ω(log4N) then the communication
complexity, in terms of blocks, is O(log2N), otherwise it is at most O(log5N), i.e.,
with the assumption B ∈ Ω(logN) (minimal possible block size).

Although a complexity linear in φ may seem at first to be expensive, we stress that
this is a substantial improvement over naive solutions which achieve the same level of
security. The only straightforward way to have multi-client security against malicious
servers is for each client to append their updates to a master list, and for clients to scan
this list to find the most updated version of a block during reads. This is not only linear
in the size of the database, but in the number of operations performed over the entire
life of the ORAM.

One notable difference in parameters from basic Path ORAM is that we require a
block size of at least c · λ, where c ≥ 2. Path ORAM only needs c · log n, and for
security parameter λ, λ > logN holds. In our scheme, the map trees do not directly
hold addresses, but t values which are of size λ. In order for the map recursion to
terminate in O(logN) steps, blocks must be big enough to hold at least two t values
of size λ. If the block size is Ω(λ2), we can also take advantage of the asymmetric
block optimization from Stefanov et al. [9] to reduce the complexity to O(φ · (log6 n+
B · logN). Then, if additionally B ∈ Ω(log5N), the total complexity is reduced to
O(logN) per client.

4.5 Conclusion

We have presented the first techniques that allow multi-client ORAM, secure even in
the face of fully malicious servers. Our multi-client ORAMs are reasonably efficient
with complexities between O(logN) to O(log5N) per client, depending on the un-
derlying block size. Future work will focus on efficiency improvements, e.g., reducing
worst-case complexity to being sublinear in φ. Additionally, the question of whether
tree-based constructions are more efficient than classical ones is not as clear in the
multi-client setting as it is for a single client. Although tree ORAMs are more efficient
for a number of parameter choices, they incur substantial overhead from using a sub-
ORAM to hold tree metadata. This is not required for the classical constructions. Future
research may focus on achieving a “pure” tree-based construction which does not de-
pend on another ORAM. Finally, it may be interesting to investigate whether multiple
clients can be supported with a more fine-grained access control. For example, instead
of every client have full permissions to the ORAM, can they have separate keys and
somehow share only pieces of their individual databases.

References

[1] O. Goldreich and R. Ostrovsky. “Software protection and simulation on oblivious
RAMs”. In: Journal of the ACM 43.3 (1996). ISSN 0004-5411, pp. 431–473.

[2] Oded Goldreich. “Towards a Theory of Software Protection and Simulation by
Oblivious RAMs”. In: Proceedings of Symposium on Theory of Computing. New
York, USA, 1987, pp. 182–194.

[3] M.T. Goodrich et al. “Oblivious RAM simulation with efficient worst-case access
overhead”. In: Proceedings of Workshop on Cloud Computing Security Workshop.
Chicago, USA, 2011, pp. 95–100.

[4] M.T. Goodrich et al. “Privacy-preserving group data access via stateless oblivi-
ous RAM simulation”. In: Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms. 2012, pp. 157–167.

[5] J. Li et al. “Secure Untrusted Data Repository (SUNDR)”. In: Proceedings of Op-
erating System Design and Implementation. San Francisco, USA, 2004, pp. 121–
136.

[6] Ralph C Merkle. “A digital signature based on a conventional encryption func-
tion”. In: Advances in Cryptology – CRYPTO. Springer. 1988, pp. 369–378.

[7] L. Ren et al. “Integrity Verification for Path Oblivious-RAM”. In: Proceedings of
High Performance Extreme Computing Conference. Waltham, USA, 2013, pp. 1–
6.

[8] E. Shi et al. “Oblivious RAM with O(log3(N)) Worst-Case Cost”. In: Proceed-
ings of Advances in Cryptology – ASIACRYPT. Vol. 7073. Seoul, South Korea,
2011, pp. 197–214. ISBN: 978-3-642-25384-3.

[9] E. Stefanov et al. “Path ORAM: An Extremely Simple Oblivious RAM Protocol”.
In: Proceedings of Conference on Computer & Communications Security. ISBN
978-1-4503-2477-9. Berlin, Germany, 2013, pp. 299–310.

A Tree-based Algorithms

Input: Security parameter λ, number of blocks in each ORAM N , block size B, number
of clients φ, initialization sub-routine for multi-client secure classical ORAM
MInit

Output: Initial ORAM state Σinit, initial per client states {stu1 , . . . , stuφ}
κ

$←− {0, 1}λ;
for j = 1 to φ do

i = 0;
N0 = N ;
while ni > 1 do

Initialize a tree Tj,i with Ni leaf nodes;
Set eviction counter ej,i = 0;
// The stash must also be stored on the server
Create array Sj,i with Y blocks;
// Use a sub-ORAM to hold block metadata
Mj,i = MInit(λ, 2ni · Z,Z · logni, φ);
Ni+1 = Ni · dlogNi/Be;
i = i+ 1;

end
Create a root blockRj ;
Set ORAM counter χj = 0;
ORAMj = Encκ((Tj,0,Mj,0, Sj,0, ej,0)|| . . . ||(Tj,m,Mj,m, Sj,m, ej,m)||χj ||Rj);
Send stuj = {κ, χj , ej,0, . . . , ejm} to client uj ;

end
Send Σinit = {ORAM1, . . . ,ORAMφ} to server;

Algorithm 3: Init(λ, n,B, φ), initialize multi-client tree-based ORAM

Input: Address x, client ui, stui = {κ, χi}, access sub-routine for multi-client secure
classical ORAM MAccess

Output: The value of block x
// Let m be the depth of recursion, nj be the number of

blocks in tree j
Retrieve root blockR;
// Find tag tm where x is mapped to
pos = x/n; xm = bpos · (B/λ)c; tm = R[xm];
// Compute new tag t′m for x

t′m
$← [0, 2λ);

for j = m to 0 do
leafj = h(tj , ui)// Compute leaf of client ui’s ORAMi;
Read path P(leafj) and Si,j from Ti,j , locating block xj ;
Retrieve MAC values for P(leafj) as V and the stored counter as χ′i;
if V 6= MACPath(Σ, stui ,P(leafj), S, χ′i) ∨ χ′i 6= χi then Abort ;
Re-encrypt and write back P(leafj) and Si,j to Ti,j ;
// Let (a, b) be the node and slot that xj was found at
MAccess(Mj , (write, a · Z + b,⊥), ui);
if j 6= 0 then

t′j
$← [0, 2λ) // Sample a new value for t;

// Block xj contains multiple t values
Extract tj−1 from block xj ;
Update block xj with new value t′j−1 and new leaf tag t′j ;

else
Set v to the value of block xj ;
If OP is a write, update xj with new value;

Insert block xj into the stash Si,j ;
χi = χi + 1;
Update MAC of stash to MACκ(Si,j , MAC of root bucket, χi, ei,j);
// Update the block in other client’s ORAMs
for p 6= i do

Retrieve path P(h(tj , up)) from Tp,j and update metadata so block xj is
removed;
Insert block xj into the stash Sp,j of Tp,j ;
Update MAC of root bucket in Ti,j ;

end
output (v, stui = {κ, χi, ei,0, . . . , ei,m});

end
Algorithm 4: Access(OP, Σ, stui), Read or Write on multi-client tree-based ORAM

Input: Address x, new value v, client ui, stui = {k, χi}
Output: The value of block x
for j = 1 to φ do

for r = 1 to m do
Retrieve eviction counter ej,r for Tj,r;
Retrieve path P(ej,r), Sj,r and MAC chain V ;
// Verify integrity of the path and eviction counter
if V 6= MACPath(Σ, stui ,P(leafj), Sj,r, χ′i, ej,r) then Abort ;
Read metadata for path from Mj,r;
Move blocks out of the stash and down the path as far as possible;
Reencrypt P(ej,r) and Sj,r and write back to server;
Update metadata for path Mj,r;
ej,r = ej,r + 1;

end
end

Algorithm 5: Evict(Σ, stui) – Perform Evict on multi-client tree-based ORAM

Input: Σ, stui , path P , stash S, χ, eviction counter e
Output: Updated MAC values
for j = logn to 1 do

V [j] = MACκ(contents of bucket P[j], MAC of left child, MAC of right child);
end
// Root MAC over the stash and tree parameters χ and e
V [0] = MACκ(S, MAC of root bucket, χ, e);
return V

Algorithm 6: MACPath(Σ, stui , path P , stash S, χ, eviction counter e)

