
Multi-Client Oblivious RAM Secure Against
Malicious Servers

Erik-Oliver Blass1, Travis Mayberry2, and Guevara Noubir3

1 Airbus Group Innovations, Munich, Germany
erik-oliver.blass@airbus.com

2 US Naval Academy, Annapolis MD, USA
mayberry@usna.edu

3 Northeastern University, Boston MA, USA
noubir@ccs.neu.edu

Abstract. This paper tackles the open problem whether an Oblivious RAM can
be shared among multiple clients in the presence of a fully malicious server. Cur-
rent ORAM constructions rely on clients knowing the ORAM state to not reveal
information about their access patter. With multiple clients, a straightforward ap-
proach requires clients exchanging updated state to maintain security. However,
clients on the internet usually cannot directly communicate with each other due
to NAT and firewall settings. Storing state on the server is the only option, but a
malicious server can arbitrarily tamper with that information.
We first extend the classical square-root ORAM by Goldreich and the hierarchi-
cal one by Goldreich and Ostrovsky to add muti-client security. We accomplish
this by separating the critical portions of the access, which depend on the state
of the ORAM, from the non-critical parts (cache access) that can be executed se-
curely in any state. Our second contribution is a secure multi-client variant of Path
ORAM. To enable secure meta-data update during evictions in Path ORAM, we
employ our first result, small multi-client secure classical ORAMs, as a building
block. Depending on the block size, the communication complexity of our multi-
client secure construction reaches a low O(logN) communication complexity
per client, similar to state-of-the-art single-client ORAMs.

1 Introduction
The main metric of an ORAM’s performance, communication overhead, has improved
by orders of magnitude over the last few years. However, at least one significant hurdle
to actual adoption remains: security of modern ORAMs relies on there being only a sin-
gle client at all times. While there already exist multi-client ORAMs secure in the face
of a semi-honest server [17], existence of an ORAM secure against a fully malicious
server is still an open question. The main challenge here stems from the fact that to-
day’s ORAMs modify some of the data on the server after every access. If a malicious
server “rewinds” the data and presents an old version to a client, further interactions
may reveal details about the access pattern. In single client scenarios, this is typically
solved by storing a small token on the client, such as the root of a hash tree [21]. This
token authenticates and verifies freshness of all data retrieved from the server, ensuring
that no such rewind attack is possible.

Table 1: Communication and storage worst-case complexity for existing single-client
ORAMs and our new multi-client versions. φ is the number of different clients sup-
ported by the ORAM. Ô denotes amortized complexity.

Communication Storage

Single Client Multi Client Single Client Multi Client

Square-Root [7] Ô(
√
N) Ô(φ ·

√
N) O(N) O(φ ·N)

(Deamortized) Hierarchical [8, 14] O(log3N) O(φ · log3N) O(N · logN) O(φ ·N · logN)

Tree-based [24] O(logN) O(φ · logN) O(N · logN) O(φ ·N · logN)

In this paper, we address the fundamental problem how multiple clients can share
data stored in a single ORAM. With multiple clients, an authentication token is not
sufficient. Data may not pass one client’s authentication, simply because it has been
modified by one of the other clients. If clients could communicate with each other
using a secure out-of-band channel, then it becomes trivial to continually exchange and
update each other with the most recent token. However, existence of secure out-of-band
communication is often not a reasonable assumption for modern devices. As we will
see, it is the absence of out-of-band-communication which makes multi-client ORAM
technically challenging.

Current solutions for multi-client ORAM work only in the presence of semi-honest
(honest-but-curious) adversaries, which cannot perform rewind attacks on the clients.
Often, this is not a very satisfying model, since rewind attacks are very easy to exe-
cute for real-world adversaries and would be difficult to detect. Consequently, we only
address fully malicious servers. Goodrich et al. [11], in their paper examining multi-
client ORAM, recently proposed as an open question whether one could be secure for
multiple clients against a malicious server.

Technical Highlights We introduce the first construction for a multi-client ORAM
and prove access pattern indistinguishability, even if the server is fully malicious. Our
contribution is twofold, specifically:
– We start by focusing on two ORAM constructions that follow a “classical” approach,

the square-root ORAM by Goldreich [7] and the hierarchical ORAM by Goldreich
and Ostrovsky [8]. We adapt these ORAMs for multi-client security. Our approach
is to separate client accesses into two parts: non-critical portions, which can be per-
formed securely in the presence of a malicious server and critical portions, which
cannot but contains efficient integrity checks which will reveal any malicious behav-
ior and allow the client to terminate the protocol.

– The “classical” ORAM constructions have been largely overshadowed by more re-
cent tree-based ORAMs [22, 24]. Consequently, we go on to demonstrate how a
multi-client secure Path ORAM [24] can be constructed. We solve the key chal-
lenge of realizing a multi-client secure version of the read protocol by storing Path
ORAM’s metadata using small “classical” ORAMs as building blocks. For block
sizes in Ω(log4N), this results in a multi-client ORAM which has overall commu-
nication complexity of O(φ · logN).

Table 1 summarizes asymptotic behavior for our new multi-client ORAMs and com-
pares them to their corresponding single-client ORAMs.

2 Motivation: Multi-Client ORAM
Instead of a single ORAM accessed by a single client, we envision multiple clients se-
curely exchanging or sharing data stored in a single ORAM. For example, imagine mul-
tiple employees of a company that read from and write into the same database stored at
an untrusted server. Similar to standard ORAM security, sharing data and jointly work-
ing on the database should not leak the employees’ access patterns to the server. Alter-
natively, we can also envision a single person with multiple different devices (laptop,
tablet, smartphone) accessing the same data hosted at an untrusted server (e.g., Drop-
box). Again, working on the same data should not reveal access patterns. Throughout
this paper, we consider the terms “multi-client” and “multi-user” to be equivalent. As
suggested by Goodrich et al. [11], we assume that clients all trust each other and leave
expansion of our results for more fine-grained access control as future work. In the
multi-device scenarios above, it is reasonable that clients trust each other since they
belong to a single user.

To provide security, ORAM protocols are stateful. Hiding client accesses to a certain
data block is typically achieved by performing shuffling or reordering of blocks, such
that two accesses are not recognizable as being the same. An obvious attack that a
malicious server can do is to undo or “rewind” that shuffling after the first access and
present the same, original view (state) of the data to the client when they make the
second access. If the client was to blindly execute their access, and it was the same
block of data as the first access, it would result in the same pattern of interactions
with the server that the first access did. The server would immediately have broken
the security of the ORAM scheme. This is a straightforward attack that can be easily
defeated in case of a single client: as an internal state, the client stores and updates a
token for authentication and freshness, see Ren et al. [21].

However, with two or more clients sharing data in an ORAM, this attack becomes
a new challenge. After watching one client retrieve some data, the adversary rewinds
the ORAM’s state and present the original view to the second client. If the second
client accesses the same data (or not) that the first client did, the server will recognize
it, therefore violating security. Without having some secure side-channel to exchange
authentication tokens after every access, it is difficult for clients to detect such an attack.

2.1 Technical Challenges

A multi-client ORAM has to overcome a new technical challenge. Roughly speaking,
the server is fully malicious and can present different ORAM states to different clients,
i.e., different devices of the same user. As different clients do not have a direct commu-
nication channel to synchronize their state, it is difficult for them to synchronize on an
ORAM state. We expand on this challenge below.

Adversary model: This paper tackles the scenario of φ trusted clients sharing storage
on a fully malicious server (the adversary). Other works such as Maffei et al. [17] have
addressed the problem against a semi-honest server, but in many scenarios that may not
be sufficient. Real-world attacks that clients need to defend against include, e.g., insider

attacks from a cloud provider hosting the server and outside hackers compromising
the server. Such attacks would allow for malicious adversarial behavior. In general,
there is no strong line between the two adversarial models that suggests that one is
more reasonable to defend against. To cope with all possible adversaries, it is therefore
important to protect against malicious adversaries, too.

No out-of-band communication: We assume that beyond a single cryptographic key
(possibly derived from a password) the clients do not share any long-term secrets and
cannot communicate with each other except through the malicious server. This matches
with existing cloud settings, since most consumer devices are behind NAT and cannot
be directly contacted from the Internet. Major real-world cryptographic applications, for
instance WhatsApp [25] and Semaphor [23], have all messages between clients relayed
through the server for this reason.

We emphasize that in the malicious setting the server always has the option to sim-
ply stop responding or send purposefully wrong data as a denial-of-service attack. This
cannot be avoided, but is also not a significant problem since it will be easily detected
by clients. In contrast, the attacks we focus on in this paper are those where the server
tries to compromise security without being detected.

2.2 Other Applications

A major application of this work is in supporting private cloud storage that is accessible
from multiple devices. In reality, this is one of the most compelling use cases for cloud
storage a la Dropbox, Google Drive, iCloud, etc. and is a good target for a privacy-
preserving solution. Beyond simple storage, Oblivious RAM is used as a subroutine
in other constructions, such as dynamic proofs of retrievability [2]. Any construction
which uses ORAM and wishes to support multiple clients must rely on an ORAM that
is secure for multiple clients.

Finally, an interesting application comes from the release of Intel’s new SGX-
enabled processors. SGX enables a trusted enclave to run protected code which cannot
be examined from the outside, even by the operating system or hypervisor running on
the machine. The major remaining channel for leakage in this system is in the pattern
of accesses that the enclave code makes to the untrusted RAM lying outside the proces-
sor. It has already been noted that Oblivious RAM may be a valuable tool to eliminate
that leakage [4]. Furthermore, it is expected that systems may have multiple enclaves
running at the same time which wish to share information through the untrusted RAM.
This scenario corresponds exactly with our multi-client ORAM setting, so the solution
here could be used to securely offer that functionality.

2.3 Related Work

Most existing work on Oblivious RAM assumes only a single client. Franz et al. [6]
proposed an solution for multiple clients using the original square-root ORAM, but
relies on a semi-honest server. Goodrich et al. [11] extend that work to more modern
tree-based ORAMs, still relying on a semi-honest server. Recent work by Maffei et al.
[17] supports multiple clients with read/write access control, but again requires a semi-
honest server. Other efficient solutions are possible with an even weaker security model
by using trusted hardware on the server side [12, 16].

There is also a concurrent line of work in Parallel ORAMs which target ORAMs
running on multi-core or multi-processor systems [1, 3, 19]. These schemes either do
not target malicious adversaries or require constant and continuous communication be-
tween clients to synchronize their state. As stated above, this is not a viable solution for
clients which are not always on or may be across different networks.

Currently, no solution exists that allows for multiple clients interacting with a ma-
licious server and without direct client-to-client communication, or constant polling to
create the same effect.

3 Security Definition
We briefly recall standard ORAM concepts. An ORAM provides an interface to read
from and write to blocks of a RAM (an array of storage blocks). It supports Read(x),
to read from the block at address x, and Write(x, v) to write value v to block x. The
ORAM allows storage of N blocks, each of size B.

To securely realize this functionality, an ORAM interacts with a malicious storage
device. Below, we use Σ to represent the interface between a client and the actual
storage device. A client with access to Σ issues Read and Write requests as needed.
We stress that we make no assumptions about how the storage device responds to these
requests, and allow for arbitrary malicious behavior. For instance, an adversary could
respond to a Read request with old or corrupt data, refuse to actually perform a Write
correctly etc. As related work, the (untrusted) storage device is part of a server as in
envisioned applications for a (multi-client) ORAM such as outsourced cloud storage.

Definition 1 (ORAM Operation OP). An operation OP is defined as OP = (o, x, v),
where o = {Read,Write}, x is the virtual address of the block to be accessed and v is
the value to write to that block. v = ⊥ when o = Read.

We now present our multi-client ORAM security definition which slightly augments
the standard, single-client ORAM definition. We emphasize that clients only interact
with the server by read or write operations to a memory location; there are no other
messages sent. Therefore the “protocol” is fully defined by these patterns of accesses.

Definition 2 (Multi-client ORAM Π). A multi-client ORAM Π = (Init,ClientInit,
Access) comprises the following three algorithms.
1. Init(λ,N,B, φ) initializes Π . It takes as input security parameter λ, total number

of blocks N , block size B, and number of clients φ. Init initializes the storage device
represented by Σ and outputs a key κ.

2. ClientInit(λ,N,B, j, κ) uses security parameter λ, number of blocks N , block size
B, and a secret key κ to initialize client uj . It outputs a client state stuj .

3. Access(OP, Σ, stuj) performs operation OP on the ORAM using client uj’s state
stuj and interface Σ. Access outputs a new state stuj for client uj .

In contrast to single-client ORAM, a multi-client ORAM introduces the notion of
clients. This is modeled by different per-client states, stui for client ui. After initializ-
ing the multi-client ORAM with Init, Algorithm ClientInit is run by each client (with
no communication between them) separately and outputs their initial local states stui .
The ClientInit function only requires that each client have a shared key κ, which could

be derived from a password. Whenever client ui executes Access on the multi-client
ORAM, they can attempt to update the multi-client ORAM represented by Σ, and up-
date their own local state stui , but not the other clients’ local states.

Finally, we define the security of a multi-client ORAM against malicious servers.
Consider the game-based experiment SecORAM

A,Π (λ) below. In this game, A has com-
plete control over the storage device and how it responds to client requests. For ease
of exposition, we model this as A outputting their own compromised version ΣA of an
interface to the storage device. It is this malicious interface ΣA that clients will sub-
sequently use for their Access operations. Interface ΣA is controlled by the adversary
and updates state stA. That is, A learns all clients’ calls to the interface, therewith the
clients’ requested access pattern, and can adaptively react to clients’ interface requests.
To initialize the ORAM, φ time steps are used to do the setup for each client, then the
game continues for poly(λ) additional steps where the adversary interactively specifies
operations and maliciously modifies the storage.

Experiment 1 (Experiment SecORAM
A,Π (λ))

1 b
$← {0, 1}

2 (κ,Σ)← Init(λ,B,N, φ)
3 for i = 1 to φ do
4 stui ← ClientInit(λ,N,B, κ, i)
5 end
6 (OPφ+1,0,OPφ+1,1, i, stA, ΣA)← A(λ,N,B, φ,Σ)
7 for j = φ+ 1 to poly(λ) do
8 stui ← Access(OPj,b, ΣA, stui)
9 (OPj+1,0,OPj+1,1, i, stA)← A(P, stA)

10 end
11 b′ ← A(stA)
12 output 1 iff b = b′

In summary, A gets oracle access to the ORAM and can adaptively query it dur-
ing poly(λ) rounds. In each round, A selects a client ui and determines two operations
OPj,0 and OPj,1. The oracle performs operation OPb as client ui with state stui , in-
teracting with the adversary-controlled ΣA using protocol Π . Eventually, A guesses
b.

Definition 3 (Multi-client ORAM security). An ORAM Π = (Init,Access) is multi-
client secure iff for all PPT adversaries A, there exists a function ε(λ) negligible in
security parameter λ such that

Pr[SecORAM
A,Π (λ) = 1] <

1

2
+ ε(λ).

Our game-based definition is equivalent to ORAM’s standard security definition
with two exceptions: we allow the adversary to arbitrarily change the state of the on-
server storage Σ, and we split the ORAM algorithm into φ different “pieces” which
cannot share state among themselves.

As discussed above, this work assumes that all clients trust each other and do not
conspire. For ease of exposition, we assume that all client share key κ used for encryp-
tion and MAC computations that we will introduce later.

Consistency: An orthogonal concern to security for multi-client schemes is consis-
tency, whether the clients each see the same version of the database when they access
it. Because the clients in our model do not have any way of communicating except
through the malicious adversary, it is possible for A to “desynchronize” the clients so
that their updates are not propagated to each other. Our multi-client ORAM guarantees
that in this case the clients still have complete security and access pattern privacy, but
consistency cannot be guaranteed. This is a well known problem with the only solution
being fork consistency [15], which we achieve.

4 Multi-client Security for Classical ORAMs
We start by transforming two classical ORAM constructions, the original square-root
solution by Goldreich [7] and the hierarchical one by Goldreich and Ostrovsky [8],
into multi-client secure versions, retaining the same communication complexity per
client. Our exposition focuses in the beginning on details for the multi-client square-
root ORAM, as the hierarchical ORAM is borrowing from the same ideas.

Recall that the square-root ORAM algorithm works by dividing the server storage
into two parts: the main memory and the cache, which is of size O(

√
N)). The main

memory is shuffled by a pseudo-random permutation π. Every access reads the entire
cache, plus one block in the main memory. If the block the client wants is found in the
cache, a “dummy” location is read in the main memory, otherwise the actual location
of the target block is read and it is inserted into the cache for later accesses. After

√
N

accesses, the cache is full and the client must download the entire ORAM and reshuffle
it into a fresh state.

Specific Challenge: When considering a multi-client scenario, it becomes easy for a
malicious server to break security of the square-root ORAM. For example, client u1
can access a block x that is not in the cache, requiring u1 to read π(x) from main
memory and insert it into the cache. The malicious server now restores the cache to the
state it was in before u1’s access added block x. If a second client u2 also attempts to
access block x, the server will now observe that both clients read from the same location
π(x) in main memory and know that u1 and u2 have accessed the same block (or not).
Without the clients having a way to communicate directly with each other and pass
information that allows them to verify the changes to the cache, the server can always
“rewind” the cache back to a previous state. This will eventually force one client to leak
information about their accesses.

Rationale: Our approach for multi-client security is based on the observation that the
cache update part of the square-root solution is secure by itself. Updating the cache
only involves downloading the cache, changing one element in it, re-encrypting, and
finally storing it back on the server. Downloading and later uploading the cache implies
always “touching” the same

√
N blocks. This is independent of what the malicious

server presents to a client as Σ and also independent of the block being updated by the
client. Changing values inside the cache cannot leak any information to the server, as
its content is always newly IND-CPA encrypted. Succinctly, being similar to a trivial
ORAM, updating a cache is automatically multi-client secure.

However, reading can leak information. Reading from the main ORAM is condi-
tional on what the client finds in the cache. We call this part the critical part of the ac-

Input: Storage interface Σ, Security parameter λ, number of blocks in each ORAM N ,
block size B, client number i, key κ

Output: Client state stui
1 Generate permutation πi,0 from key κ;
2 Initialize

√
N +N main memory blocks (size B, shuffled with πi,0) and

√
N cache

blocks;
3 Set cache counter χi = 0; Set epoch counter γi = 0;
4 datai = Encκ(main memory)||Encκ(cache||χi||γi);
5 maci = MACκ(Encκ(cache||χi||γi));
6 ORAMi = datai||maci;
7 On Σ, replace the ith ORAM by ORAMi;
8 output stui = {κ, χi};

Algorithm 1: ClientInit(Σ,λ,N,B, i, κ), initialize client square-root ORAM

cess, and the cache update correspondingly non-critical. To counteract this leakage, we
implement the following changes to enable multiple clients for the square-root ORAM:

1. Separate ORAMs: Instead of a single ORAM, we use a sequence of ORAMs,
Σ = ORAM1,ORAM2, . . . ,ORAMφ, one for each client. Client ui will perform
the critical part of their access only on ORAMi’s main memory and cache. Thus,
each client can guarantee they will not read the same address from their ORAM’s
main memory twice. However, any change to the cache as part of ORAM Read(x) or
Write(x, v) operations will be written to every ORAM’s cache. Updating the cache
on any ORAM is already guaranteed to be multi-client secure and does not leak
information.

2. Authenticated Caches: For each client ui to guarantee that they will not repeat
access to the main memory of ORAMi, the cache is stored together with an encrypted
access counter χ on the server. Each client stores locally a MAC over both the cache
and the encrypted access counter χ of their own ORAM. Every access to their own
cache increments the counter and updates the MAC. Since clients read only from
their own ORAMs, and they can always verify the counter value for the last time
that they performed a read, the server cannot roll back beyond that point. Two reads
will never be performed with the cache in the same state.

4.1 Details

We detail the above ideas in two algorithms: Algorithm 1 shows the per client initial-
ization procedure ClientInit, and Algorithm 2 describes the way a client performs an
Access with our multi-client secure square-root ORAM. The Init algorithm is trivial in
our case, as it initializesΣ to φ empty arrays ORAMj . Each array is of sizeN+2 ·

√
N

blocks, each block has size B bits.

Before explaining ClientAccess, we first introduce the notion of an epoch. In gen-
eral, after

√
N accesses to a square-root ORAM, its cache is “full”, and the whole

ORAM needs to be re-shuffled. Re-shuffling requires computing a new permutation π.
Per ORAM, a permutation can be used for

√
N operations, i.e., one epoch. The next√

N operations, i.e., the next epoch, will use another permutation and so on. In the two
algorithms, we use an epoch counter γi. Therewith, πi,γi denotes the permutation of

Input: Mult-client ORAM Σ, address x, new value v, client ui, stui = {κ, χi}
Output: Value of block x, new state stui

1 From ORAMi in Σ: read ci = Encκ(cache||χi||γi) and maci;
2 mac′i = MACκ(ci);
3 if mac′i 6= maci then output Abort;
4 Decrypt ci to get cache and counter χ′i;
5 if χ′i < χi then output Abort;
6 if block x 6∈ cache then
7 Read and decrypt block πi,γi(x) from ORAMi’s main memory;
8 else
9 Read next dummy block from ORAMi’s main memory;

10 if v = ⊥ then // operation is a Read
11 ν ← existing value of block x;
12 else // operation is a Write
13 ν ← v ;
14 Append block (x, ν) to cache;
15 if cache is full then
16 γi = γi + 1; Compute new permutation πi,γi ;
17 Read and decrypt ORAMi’s main memory;
18 Shuffle cache and main memory using πi,γ ;
19 Update ORAMi with Encκ(main memory);
20 χi = χ′i + 1; maci = MACκ(Encκ(cache||χi||γi));
21 Update ORAMi with Encκ(cache||χi||γi) and maci;
22 for j 6= i do // for all ORAMj 6= ORAMi

23 Read and decrypt cache and χj from ORAMj ; Read and verify maci from ORAMj ;
24 Append block (x, ν) to cache;
25 if cache is full then
26 γj = γj + 1; Compute new permutation πj,γj ;
27 Read and decrypt ORAMj’s main memory;
28 Shuffle cache and main memory using πj,γj ;
29 Update ORAMj with Encκ(main memory);
30 macj = MACκ(Encκ(cache||χj ||γj));
31 Update ORAMj with Encκ(cache||χj ||γj) and macj ;
32 end
33 output (ν, stui = {κ, χi});

Algorithm 2: Access(OP, Σ, stui), Read,Write for multi-client square-root ORAM

client ui in ORAMi’s epoch γi. For any client, to be able to know the current epoch of
ORAMi, we store γi together with the ORAM’s cache on the server.

On a side note, we point out that there are various ways to generate pseudo-random
permutations πi,γi onN elements in a deterministic fashion. For example, in the a cloud
context, one can use PRFκ(i||γi) as the seed in a PRG and therewith perform Knuth’s
Algorithm P (Fisher-Yates shuffle) [13]. Alternatively, one can use the idea of random
tags followed by oblivious sorting by Goldreich and Ostrovsky [8].

In addition to the epoch counter, we also introduce a per client cache counter χi.
Using χi, client ui counts the number of accesses of ui to the main memory and cache
of their own ORAMi. After each access to ORAMi by client ui, χi is incremented. Each
client ui keeps a local copy of χi and therewith verifies freshness of data presented by
the server. As we will see below, this method ensures multi-client ORAM security.

Note in Algorithm 2 that a client uj never increases χi of another client ui. Only ui
ever updates χi.

In our algorithms, Encκ is an IND-CPA encryption such as AES-CBC. For con-
venience, we only write Encκ(main memory), although the main memory needs to be
encrypted block by block to allow for the retrieval of specific blocks. Also, for the en-
cryption of main memory blocks, Encκ offers authenticated encryption such as encrypt-
then-MAC.

A client can determine whether a cache is full in Algorithm 2 by the convention
that empty blocks in the cache decrypt to ⊥. As long as there are blocks in the cache
remaining with value ⊥, the cache is not full.

ClientInit: Each client runs the ClientInit algorithm to initialize their ORAM. The server
stores the ORAMs (with MACs) computed with a single key κ. Each client receives
their state from the ClientInit algorithm, comprising the cache counter. Note that al-
though not captured in the security definition, our scheme also allows for dynamic
adding and removing of clients. Removing is as simple as just asking the server to
delete one of the ORAMs, and adding could be done by running ClientInit, but in-
stead of initializing the blocks to be empty, the client first downloads a copy of another
client’s ORAM to get the most recent version of the database.

Access: After verifying the MAC for ORAMi and whether its cache is not from before
ui’s last access, ui performs a standard Read or Write operation for block x on ORAMi.
If the cache is full, ui re-shuffles ORAMi updating π. In addition, ui also adds block x
to all other clients’ ORAMs. Note that for this, ui does not read from the other ORAMs,
but only completely downloads and re-encrypts their cache.

Our scheme is effectively running φ traditional square-root ORAMs in parallel,
making the overall complexity O(φ

√
N). Due to limited space, see Appendix A for

detailed complexity and security analysis.

4.2 Hierarchical Construction

In addition to the square-root ORAM, Goldreich and Ostrovsky [8] also propose a gen-
eralization which achieves poly-log overhead. In order to do this, it has a hierarchical
series of caches instead of a single cache. Each cache has 2j slots in it, for j from 1
to logN , where each slot is a bucket holding O(logN) blocks. At the bottom of the
hierarchy is the main memory which has 2 ·N buckets.

The reader is encouraged to refer to the original paper [8] for full details, but the
main idea is that each level of the cache is structured as a hash table. Up to 2j−1 blocks
can be stored in cache level j, half the space is reserved for dummies like in the previous
construction. After accessing 2j−1 blocks, the entire level is retrieved and shuffled into
the next level. Shuffling involves generating a new hash function and rehashing all the
blocks into their new locations in level j + 1, until the shuffling percolates all the way
to the bottom, and the client must shuffle main memory to start again. Level j must be
shuffled after 2j−1 accesses, resulting in an amortized poly-logarithmic cost.

To actually access a block, a client queries the caches in order using the unique hash
function at each level. When the block is found, the remainder of the queries will be on
dummy blocks to hide that the block was already found. After reading, and potentially

changing the value of the block, it is added back into the first level of the cache and the
cache is shuffled as necessary.

Multi-client security: As this scheme is a generalization of the square-root one, our
modifications extend naturally to provide multi-client security. Again, each client should
have their own ORAM which they read from. Writing to other clients’ ORAMs is done
by inserting the block into the top level of their cache and then shuffling as necessary.
The only difference this time is that each level of the cache must be independently au-
thenticated. Since the cache levels are now hash tables, and computing a MAC over
every level for each access would require downloading the whole data structure, we
can instead use a Merkle tree [18]. This allows for efficient verification and updating
of pieces of the cache without having access to the entire thing, and it maintains poly-
logarithmic communication complexity. The root of the Merkle tree will contain the
counter that is incremented by the ORAM owner when they perform an access.

Deamortizing: Other authors have proposed deamortized versions of the hierarchical
construction that achieve worst-case poly-logarithmic complexity, such as Kushilevitz
et al. [14] and Ostrovsky and Shoup [20]. We will use as an example the “warm-up”
construction from Kushilevitz et al. [14], Section 6.1. This is a direct deamortization of
the original hierarchical scheme described above. They deamortize by using three sepa-
rate hash tables at each level of the ORAM, labelled “active”, “inactive”, and “output”.
Instead of shuffling all at one time after 2j−1 accesses (which would lead to worst case
O(N) complexity), their approach is now different. When the cache fills up at level j,
it is marked “inactive”, and the old “inactive” buffer is cleared and marked “active”.
The idea will be that the “inactive” buffer is shuffled over time with each ORAM ac-
cess, so that no worst-case O(N) operations are required. As it is shuffled, the contents
are copied into the “output” buffer. Accesses can continue while the “inactive” buffer
is being shuffled, as long as a read operation searches both the “active” and “inactive”
buffers (since a block could be in either one).

When the shuffle completes, the “output” buffer will contain the newly shuffled
contents that go into level j + 1. This buffer is marked as “active” for level j + 1, the
“active” buffer on level j is marked “inactive” and the “inactive” buffer is cleared and
marked “active”, restarting the whole process. Since the shuffle is spread out over 2j−1

accesses, and the shuffling was the only part that was worst-case O(N), this makes a
full construction that now has worst-case O(log3N) communication complexity.

In terms of multi-client security, the only important aspects of this process (analo-
gous to Lemma 1) is that no elements be removed from “active” or “inactive” buffers
that the owner of the ORAM has put there – until a shuffle is complete, starting a new
epoch. The shuffling itself is automatically data oblivious and therewith “non-critical”,
in the terms we have established in this paper. Using a Merkle tree and counters, as de-
scribed in the amortized version, will assure that the server cannot roll back the cache
to any state prior to the last access by the owner, guaranteeing security.

Kushilevitz et al. [14] also propose an improved hierarchical scheme that achieves
O(log2N/ log logN) complexity, which is substantially more involving. As the deamor-
tized hierarchical ORAM as described above is sufficient for our main contribution in
Section 5, we leave it to future research to adapt Kushilevitz et al. [14]’s scheme for
multi-client security.

5 Tree-based Construction
While pioneering the research, classical ORAMs have been outperformed by newer
tree-based ORAMs which achieve better average and worst-case complexity and low
constants in practice. We now proceed to show how these constructions can be modified
to also support multiple clients. Our strategy will be similar to before, but with one
major twist: in order to avoid linear worst case complexity, tree-based ORAMs do only
small local “shuffling,” which turns out to make separating a client access into critical
and non-critical parts much more difficult. When writing, one must not only add a new
version of the block to the ORAM, but also explicitly mark the old version as obsolete,
requiring a conditional access. This is in contrast with our previous construction where
old versions of a block would simply be discarded during the shuffle.

5.1 Overview

For this section, we will use Path ORAM [24] as the basis for our multi-client scheme,
but the concepts apply similarly to other tree-based schemes.

Although the interface exposed to the client by Path ORAM is the same as other
ORAM protocols, it is easiest to understand the Access operation as being broken down
into three parts: ReadAndRemove, Add, and Evict [22]. ReadAndRemove, as the name
suggests, reads a block from the ORAM and removes it, while Add adds it back to the
ORAM, potentially with a different value. These two operations used together form
the basis of the Access operation, but it begins to illustrate the difficulty we have mak-
ing this scheme multi-client secure: changing the value of a block implicitly requires
reading it, meaning that both reading and writing are equally critical and not easily
separated as our previous construction. The third operation, Evict, is a partial shuffling
that is done after each access in order to maintain the integrity of the tree.

The RAM in Path ORAM is structured as a tree with N leaf nodes. Each node in
the tree holds up to Z blocks, where Z is a small constant. Each block is tagged with
a value uniform in the range [0, N). As an invariant, blocks will always be located on
the path from the root of the tree to the leaf node corresponding to their tag. Over the
lifecycle of the tree, blocks will enter at the root and filter their way down toward the
leaves, making room for new blocks to in turn enter at the root. The client has a map
storing for every block which leaf node the block is tagged for.

ReadAndRemove: To retrieve block x, the client looks up in the map which leaf
node it is tagged for and retrieves all nodes from the root to that leaf node, denoted
P(x). By the tree invariant, block x will be found somewhere on the path P(x). The
client then removes block x from the node it was found in, reencrypts all the nodes and
puts them back in the RAM.

Add: To put a block back in the ORAM, the client simply retrieves the root node
and inserts the block into one of its free slots, reencrypting and writing the node back
afterwards. The map is updated with a new random tag for this block in the interval
[0, N). If there is not enough room in the root node, the client keeps the block locally
in a “stash” of size Y = O(logN), waiting for a later opportunity to insert the block
into the tree.

Evict: So that the stash does not become too large, after every operation the client
also performs an eviction which moves blocks down the tree to free up space. Eviction

consists of picking a path in the tree (using reverse lexicographic order [5]) and moving
blocks on that path as far down the tree as they can go, without violating the invariant.
Additionally, the client inserts any matching block from the stash into the path.

Recursive Map: Typically, the client’s map, which stores the tag for each block,
has size O(N · logN) bit and is often too large to store locally. Yet, if block size B
is at least 2 · logN bit, the map can itself be stored recursively in an ORAM on the
server, inducing a total communication complexity of O(log2N) blocks. Additionally,
Stefanov et al. [24] show that if B = Ω(log2N) bit, communication complexity can be
reduced to O(logN) blocks.

Integrity: Because of its tree structure, it is straightforward to ensure integrity in Path
ORAM. Similar to a Merkle tree, the client can store a MAC in every node of the
tree that is computed over the contents of that node and the respective MACs of its two
children. Since the client accesses entire paths in the tree at once, verifying and updating
the MAC values when an access is done incurs minimal overhead. This is a common
strategy with tree-based ORAMs, which we will make integral use of in our scheme. We
will also include client ui’s counter χu in the root MAC as before, to prevent rollback
attacks (see below).

Challenge Looking at Path ORAM, there exist several additional challenges when try-
ing to add multi-client capabilities with our previous strategy. First, recursively storing
the map into ORAMs imposes a problem. To resolve a tag, each path accessed in the
recursive ORAMs has to be different for each client. If we separate the map into φ sepa-
rate ORAMs (which we will do), the standard recursive lookup results in a large blowup
in communication costs. At the top level of the recursion, we would have φ ORAMs,
one for each client. Yet, each of those will fan out to φ ORAMs to obliviously support
the next level of recursion, each of which will have φ more, going down log n levels.
The overall communication complexity for the tag lookup would be φlogN ∈ Ω(N).

Second, an Add in Path ORAM cannot be performed without ReadAndRemove, so
we cannot easily split the access into critical and non-critical parts like before.

Rationale To remedy these problems, we institute major changes to Path ORAM:
1. Unified Tagging: Instead of separately tagging blocks in each of the ORAMs and

storing the tags recursively, we will have a unified tagging system where the tag for
a block can be computed for any of the separate ORAMs from a common “base tag.”
This is crucial to avoiding the O(N) communication overhead that would otherwise
be induced by the recursive map as described above. For a block x, the map will
resolve to a base tag value t. This same tag value is stored in every client’s recursive
ORAM. Let h be a PRF mapping from [0, 2λ) × [1, φ] to [0, N). The idea is now
that the leaf that block x will be percolating to in the recursive ORAM tree differs
for every ORAM of every client ui and is pseudo-randomly determined by value
h(t, i). This way, (1) the paths accessed in all recursive map ORAMs for all clients
differ for the same block x, and (2) only one lookup is necessary at each level of the
recursive map to get the leaf node tag for all φ ORAMs.

2. Secure Block Removal: The central problem with ReadAndRemove is that it is re-
quired before every Add so that the tree will not fill up with old, obsolete blocks
which cannot be removed. Unlike the square-root ORAM, the shuffling process

(eviction) happens locally and cannot know about other versions of a block which
exist on different paths. We solve this problem by including metadata on each bucket.
For every node in the tree, we include an encrypted array which indicates the ID of
every block in that node. Removing a block from the tree can then be performed by
simply changing the metadata to indicate that the slot is empty. It will be overwritten
by the eviction routine with a real block if that slot is ever needed. If B is large, this
metadata is substantially smaller than the real blocks. We can then store it in a less
efficient classical ORAM described above which is itself multi-client secure. This
allows us to take advantage of the better complexity provided by tree-based ORAMs
for the majority of the data, while falling back on a simpler ORAM for the metadata
which is independent of B.
We also note that Path ORAM’s stash concept cannot be used in a multi-client

setting. Since the clients do not have a way of communicating with each other out of
band, all shared state (which includes the stash) must be stored in the RAM. This has
already been noted by Goodrich et al. [11], and since the size of the stash does not
exceed logN , storing it in the RAM (encrypted and integrity protected) does not affect
the overall complexity. As before, we also introduce an eviction counter e for each
ORAM. Client ui will verify whether, for each of their recursive ORAMs, this eviction
counter is fresh.

5.2 Details
To initialize the multi-client ORAM (Algorithm 3), φ separate ORAMs are created and
the initial states (containing the shared key) are distributed to each client. For each
client ui, the ORAM takes the form of a series of trees Tj,i. The first tree stores the
data blocks, while the remaining trees recursively store the map which relates block
addresses to leaf nodes. In addition to this, as described above, each tree has its own
sub-ORAM to keep track of block metadata. The stash of each (sub-)ORAM is called
S0,i, and the metadata (classical) ORAM Mj,i.

To avoid confusion between different ORAM initialization functions, MInit is a
reference to Algorithm 1, i.e., initialization of a multi-client secure classical ORAM.

For simplicity, we assume that Encκ encrypts each node of a tree separately, there-
with allowing individual node access. Also, we assume authenticated encryption, using
the per node integrity protection previously mentioned.

As noted above, the functions (ReadAndRemove,Add) can be used to implement
(Read,Write), which in turn can implement a simple interface (Access). Because our
construction introduces dependencies between ReadAndRemove and Add, in Algo-
rithm 4 we illustrate a unified Access function for our scheme. The client starts with
the root block and traverses the recursive map upwards, finds the address of block x,
and finally retrieves it from the main tree. For each recursive tree, it retrieves a tag value
t allowing to locate the correct block in the next tree. After retrieving a block in each
tree, the client marks that block as free in the metadata ORAM so that it can be over-
written during a future eviction. This is necessary to maintain the integrity of the tree
and ensure that it does not overflow. At the same time, the client also marks that block
free in the metadata of each other client and inserts the new block value into the root
of their trees. This is analogous to the previous scheme where a client reads from their

Input: Security parameter λ, number of blocks in each ORAM N , block size B, number
of clients φ, initialization sub-routine for multi-client classical ORAM MInit

Output: Initial ORAM state Σinit, initial per client states {stu1 , . . . , stuφ}
1 κ

$←− {0, 1}λ;
2 for j = 1 to φ do
3 i = 0;
4 N0 = N ;
5 while Ni > 1 do
6 Initialize a tree Tj,i with Ni leaf nodes;
7 Set eviction counter ej,i = 0;

// The stash must also be stored on the server
8 Create array Sj,i with Y blocks;

// Use a sub-ORAM to hold block metadata
9 Mj,i = MInit(λ, 2ni · Z,Z · logni, φ);

10 Ni+1 = Ni · dlogNi/Be;
11 i = i+ 1;
12 end

// Let m be number of recursive trees made in previous loop
13 m = i;
14 Create a root blockRj ;
15 Set ORAM counter χj = 0;
16 ORAMj = Encκ((Tj,0,Mj,0, Sj,0, ej,0)|| . . . ||(Tj,m,Mj,m, Sj,m, ej,m)||χj ||Rj);
17 Send stuj = {κ, χj , ej,0, . . . , ejm} to client uj ;
18 end
19 Initialize Σ to hold {ORAM1, . . . ,ORAMφ};

Algorithm 3: Init(λ,N,B, φ), initialize multi-client tree-based ORAM

own ORAM and writes back to the ORAMs of the other clients. We use a simple MAC
technique for paths MACPath, Algorithm 6, which we have moved to the appendix.

Again, we avoid confusion between different ORAM access operations by referring
to the multi-client secure classical ORAM access operation of Algorithm 2 as MAccess.

Algorithm 5 illustrates the eviction procedure. Since eviction does not take as input
any client access, it is non-critical. The client simply downloads a path in the tree which
is specified by eviction counter e and retrieves it in its entirety. The only modification
that we make from the original Path ORAM scheme is that we read block metadata from
the sub-ORAM that indicates which blocks in the path are free and can be overwritten
by new blocks being pushed down the tree.

The overhead from the additional metadata ORAMs that we have in our construction
is fortunately not dependent on the block size B. Therefore, if B is large enough, we
can achieve as low as the overhead of single-client Path ORAM, O(logN), or a total
complexity of O(φ logN) for φ users. However, this only applies if the block size B is
sufficiently large, at least Ω(log4N). Otherwise, for smaller B, the complexity can be
up to O(φ log5N). Due to limited space, see Appendix B for a detailed complexity and
security analysis.

6 Conclusion
We have presented the first techniques that allow multi-client ORAM, specifically se-
cure against fully malicious servers. Our multi-client ORAMs are reasonably efficient

Input: Address x, client ui, stui = {κ, χi}, sub-routine for multi-client classical ORAM MAccess
Output: The value of block x
// Let m be recursion depth, nj the number of blocks in tree j

1 Retrieve root blockR;
2 pos = x/n; xm = bpos · (B/λ)c; tm = R[xm]// Find tag tm of address x;

3 t′m
$← [0, 2λ)// Compute new tag t′m for x;

4 for j = m to 0 do
5 leafj = h(tj , ui)// Compute leaf of client ui’s ORAMi;
6 Read path P(leafj) and Si,j from Ti,j , locating block xj ;
7 Retrieve MAC values for P(leafj) as V and the stored counter as χ′i;
8 if V 6= MACPath(Σ, stui ,P(leafj), S, χ′i) ∨ χ′i 6= χi then Abort ;
9 Re-encrypt and write back P(leafj) and Si,j to Ti,j ;

// Let (a, b) be the node and slot that xj was found at
10 MAccess(Mj , (write, a · Z + b,⊥), ui);
11 if j 6= 0 then
12 t′j

$← [0, 2λ) // Sample a new value for t;
// Block xj contains multiple t values

13 Extract tj−1 from block xj ;
14 Update block xj with new value t′j−1 and new leaf tag t′j ;
15 else
16 Set v to the value of block xj ;
17 If OP is a write, update xj with new value;
18 Insert block xj into the stash Si,j ;
19 χi = χi + 1;
20 Update MAC of stash to MACκ(Si,j , MAC of root bucket, χi, ei,j);

// Update the block in other client’s ORAMs
21 for p 6= i do
22 Retrieve path P(h(tj , up)) from Tp,j and update metadata so block xj is

removed;
23 Insert block xj into the stash Sp,j of Tp,j ;
24 Update MAC of root bucket in Tp,j ;
25 end
26 output (v, stui = {κ, χi, ei,0, . . . , ei,m});
27 end
Algorithm 4: Access(OP, Σ, stui), Read or Write on multi-client tree-based ORAM

with communication complexities as low as O(logN) per client. Future work will fo-
cus on efficiency improvements, including reducing worst-case complexity to sublinear
in φ. Additionally, the question of whether tree-based constructions are more efficient
than classical ones is not as clear in the multi-client setting as it is for a single client.
Although tree ORAMs are more efficient for a number of parameter choices, they incur
substantial overhead from using sub-ORAMs to hold tree metadata. This is not required
for the classical constructions. Future research may focus on achieving a “pure” tree-
based construction which does not depend on another ORAM as a subroutine. Finally,
it may be interesting to investigate whether multiple clients can be supported with a
more fine-grained access control, secure against fully malicious servers.

Input: Address x, new value v, client ui, stui = {k, χi}, the number of recursive trees m
Output: The value of block x

1 for j = 1 to φ do
2 for r = 1 to m do
3 Retrieve eviction counter ej,r for Tj,r;
4 Retrieve path P(ej,r), Sj,r and MAC chain V ;

// Verify integrity of the path and eviction counter
5 if V 6= MACPath(Σ, stui ,P(leafj), Sj,r, χ′i, ej,r) then Abort ;
6 Read metadata for path from Mj,r;
7 Move blocks out of the stash and down the path as far as possible;
8 Reencrypt P(ej,r) and Sj,r and write back to server;
9 Update metadata for path Mj,r;

10 ej,r = ej,r + 1;
11 end
12 end

Algorithm 5: Evict(Σ, stui) – Perform Evict on multi-client tree-based ORAM

References
[1] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel ram and applications. In

Theory of Cryptography Conference, pages 175–204. Springer, 2016.
[2] D. Cash, A. Küpçü, and D. Wichs. Dynamic proofs of retrievability via oblivious ram. In

Conference on the Theory and Applications of Cryptographic Techniques, pages 279–295.
Springer, 2013.

[3] T-H. Hubert Chan and Elaine Shi. Circuit opram: A (somewhat) tight oblivious parallel
ram. Cryptology ePrint Archive, Report 2016/1084, 2016. http://eprint.iacr.org/
2016/1084.

[4] V. Costan and S. Devadas. Intel SGX explained. Technical report, Cryptology ePrint Archive,
Report 2016/086, 2016. https://eprint. iacr. org/2016/086, 2016.

[5] C.W. Fletcher, L. Ren, A. Kwon, M. Van Dijk, E. Stefanov, and S. Devadas. Tiny ORAM:
A Low-Latency, Low-Area Hardware ORAM Controller. Cryptology ePrint Archive, Report
2014/431, 2014. http://eprint.iacr.org/.

[6] M. Franz, P. Williams, B. Carbunar, S. Katzenbeisser, A. Peter, R. Sion, and M. Sotakova.
Oblivious outsourced storage with delegation. In International Conference on Financial
Cryptography and Data Security, pages 127–140. Springer, 2011.

[7] O. Goldreich. Towards a Theory of Software Protection and Simulation by Oblivious RAMs.
In Symposium on Theory of Computing, pages 182–194, New York, USA, 1987.

[8] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs.
Journal of the ACM, 43(3):431–473, 1996. ISSN 0004-5411.

[9] Michael T. Goodrich. Zig-zag sort: A simple deterministic data-oblivious sorting algorithm
running in o(n log n) time. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, STOC’14, pages 684–693, 2014. ISBN 978-1-4503-2710-7.

[10] M.T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. Oblivious RAM sim-
ulation with efficient worst-case access overhead. In Proceedings of Workshop on Cloud
Computing Security Workshop, pages 95–100, Chicago, USA, 2011.

[11] M.T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia. Privacy-preserving
group data access via stateless oblivious ram simulation. In Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 157–167, 2012.

[12] A. Iliev and S.W. Smith. Protecting Client Privacy with Trusted Computing at the Server.
IEEE Security & Privacy, 3(2):20–28, 2005.

[13] D.E. Knuth. The Art of Computer Programming, Seminumerical Algorithms, volume 2, chap-
ter 3.4.2, pages 139–140. Addison Wesley, 2nd edition, 1981. ISBN 978-0201896848.

[14] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in)security of hash-based oblivious RAM
and a new balancing scheme. In Proceedings of Symposium on Discrete Algorithms, pages
143–156, Kyoto, Japan, 2012.

[15] J. Li, M.N. Krohn, D. Mazières, and D. Shasha. Secure Untrusted Data Repository (SUNDR).
In Proceedings of Operating System Design and Implementation, pages 121–136, San Fran-
cisco, USA, 2004.

[16] J.R. Lorch, B. Parno, J. Mickens, M. Raykova, and J. Schiffman. Shroud: Ensuring private
access to large-scale data in the data center. In USENIX Conference on File and Storage
Technologies, pages 199–213, 2013.

[17] M. Maffei, G. Malavolta, M. Reinert, and D. Schröder. Privacy and access control for out-
sourced personal records. In IEEE Symposium on Security and Privacy, pages 341–358.
IEEE, 2015.

[18] R.C. Merkle. A digital signature based on a conventional encryption function. In Advances
in Cryptology, pages 369–378. Springer, 1988.

[19] K. Nayak and J. Katz. An oblivious parallel ram with o(log2 n) parallel runtime blowup.
Cryptology ePrint Archive, Report 2016/1141, 2016. http://eprint.iacr.org/
2016/1141.

[20] R. Ostrovsky and V. Shoup. Private Information Storage. In Proceedings of Symposium on
Theory of Computing, pages 294–303. ACM, 1997.

[21] L. Ren, C.W. Fletcher, X. Yu, M. v. Dijk, and S. Devadas. Integrity Verification for Path
Oblivious-RAM. In Proceedings of High Performance Extreme Computing Conference,
pages 1–6, Waltham, USA, 2013.

[22] E. Shi, T.-H.H. Hubert Chan, E. Stefanov, and M. Li. Oblivious RAM with O(log3(N))
Worst-Case Cost. In Proceedings of Advances in Cryptology – ASIACRYPT , volume 7073,
pages 197–214, Seoul, South Korea, 2011. ISBN 978-3-642-25384-3.

[23] SpiderOak. Semaphor, 2016. URL https://spideroak.com/solutions/
semaphor.

[24] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path ORAM:
An Extremely Simple Oblivious RAM Protocol. In Proceedings of Conference on Computer
& Communications Security, pages 299–310, Berlin, Germany, 2013. ISBN 978-1-4503-
2477-9.

[25] WhatsApp. Whatsapp encryption overview, 2016. URL https://www.whatsapp.
com/security/WhatsApp-Security-Whitepaper.pdf.

A Security and Complexity Analysis of Square Root Construction
First, we ensure with Lemma 1 that once a block xi,j enters the cache of ORAMi, it can
never be removed without client ui noticing or the end of an epoch (and a new shuffle)
occurring.

Lemma 1. Let Γi,j be the state of the cache of ORAMi when client ui begins execution
of their jth access. Let R(Γ, x) be the predicate x ∈ Γ which indicates if block x is
already resident in the cache Γ . Let xi,j be the virtual block that client ui accesses
during operation j. E(i, j) is the epoch that ORAMi is in (as represented by the data
returned from the adversary) when client ui executes operation number j.

For all PPT adversaries A and security parameter λ, there exists a negligible func-
tion ε such that

Pr [If R(Γi,j , xi,j), then

(∀k > j with E(i, j) = E(i, k) ∧ xi,j = xi,k) :

R(Γi,k, xi,k) or client ui outputs Abort] = 1− ε(λ).

Proof. The claim immediately follows from the security of MAC and the fact that no
client will remove a block from the cache unless they are performing a shuffle. Let

MAC be a message authentication code with an adversarial advantage in the existential
forgery game that is negligible in λ. If during access j a client ui sees a counter equal
to the counter value at the end of access j − 1, and the MAC verifies, then there exists
a negligible function ε such that the client is sure with probability 1 − ε(λ) that every
element in the cache during access j − 1 is also in the cache during access j (unless
there was a shuffle between). ut

That is, if two accesses to the same block occur in the same epoch, at the start of the
second access either the block will be in the client’s cache or they will output Abort.

Theorem 1. For all PPT adversaries A and security parameter λ, there exists a negli-
gible function ε such that (Init,Access) is a multi-client Oblivious RAM secure against
A with probability 1− ε(λ).

Proof. To prove security according to Experiment 1, we must show that the adversary
cannot adaptively choose two access patterns, < OP0,0, . . . , OP0,` > and < OP1,0,
. . . , OP1,` >, such that the induced access pattern on the server by the clients executing
one of those access patterns allows him to distinguish which pattern it is, with non-
negligible advantage. For our construction, this reduces to showing indistinguishability
of induced access patterns for the two parts of the access: the cache operation, and the
access to main memory.

The first part of a Read or Write operation always reads and writes the same strings
α ∈ Σ, namely the cache and its authentication data (counters and mac). For any two
operations, this is an indistinguishable induced access pattern. If the MAC verifies, then
the client continues, and if it does not then he outputs Abort. By security of the MAC
(negligible adversarial advantage in λ against existential forgery), the client only out-
puts Abort if the server tampers with the data. Thus, an adversary seeing Abort does not
learn anything besides what they already know: whether the adversary has tampered or
not. The actual data read and written during this part will be indistinguishable for any
two operations under the security of the IND-CPA encryption scheme used. Therefore,
with secure encryption (negligible adversarial advantage in λ during IND-CPA game)
and MAC, any pair of operations OP0 and OP1 results in computationally indistin-
guishable induced access patterns for this segment of the access.

The main memory segment on the other hand contains a conditional access to main
memory. The goal is to show that this access does not leak any information that would
allow an adversary to distinguish between two accesses. Lemma 1 ensures that with all
except negligible probability in λ there will not be two operations in the same epoch
where the client requests a block and it is not in the cache. Since a block in main mem-
ory is only accessed if it does not already exist in the cache, this guarantees that each
client i will never access the same block in main memory twice in the same epoch. Re-
call that every block is mapped to a random location, following a permutation π. If π is
a (pseudo-)random permutation, then the access pattern to main memory will be indis-
tinguishable from random accesses, and the adversary’s view will be indistinguishable
for all pair of operations OP0 and OP1.

Between epochs, main memory is re-shuffled and the ORAM is effectively reini-
tialized, with security of this new epoch being ensured as was the previous. Since each
client only accesses their own main memory, and they keep a counter of what epoch

they were in during the last access, there is no way that the server can “roll back” to a
previous epoch without the client noticing. If the client see’s that their ORAM is in a
higher epoch than the last time they accessed it, and all MACs verify, then they know
that another client has performed a shuffle for them and they update their epoch counter
to the new epoch. At that point, no accesses to the main memory can have been made
since only the owner of that ORAM would read the main memory, and they have not
performed an access since it rolled over to a new epoch.

In conclusion, given a secure MAC and IND-CPA encryption, we achieve multi-
client ORAM security with probability 1− ε(λ) for some negligible function ε. ut

Fork consistency: When a client makes an access, they add an element to the cache for
all φ clients. Therefore, at any given timestep, if the server is not maliciously changing
caches, all caches will have the same number of elements in them. Since each cache
is verified by a MAC, the server cannot remove individual elements from a cache. The
only viable attack is to present an old view of a cache which was at one point valid,
but does not contain new updates that have been added by other clients. If the server
chooses to do this, he creates a fork between the views of the clients which have seen the
update and those that have not. Since the server can never “merge” caches together, but
only present entire caches that have been verified with a MAC by a legitimate client,
there is no way to reconcile two forks that were created without a client finding out.
This achieves fork consistency for our scheme.

Complexity: Making the square-root solution multi-client secure does not induce any
additional asymptotic complexity, per client. Each access requires downloading the
cache of size

√
N and accessing one block from the main memory. Every

√
N accesses,

the main memory and cache must be shuffled, requiring N communication if the client
has enough storage to temporarily hold the database locally. If not, then Goldreich and
Ostrovsky [8] noticed that one can use a Batcher sorting network to obliviously shuf-
fle the database with complexity O(N log2N), or the AKS algorithm with complexity
O(N logN). One can also reduce the hidden constant using a more efficient Zig-Zag
sort [9]. In the first scenario, the amortized overall complexity is then O(φ

√
N), while

the second is O(φ
√
N logN).

Goodrich et al. [10] also propose a way to deamortize the classical square-root
ORAM such that it obtains a worst-case overhead factor of

√
N ·log2(N). Their method

involves dividing the work of shuffling over the
√
N operations during an epoch such

that when the cache is full there is a newly shuffled main memory to swap in right away.
Since the shuffling is completely oblivious (does not depend on any pattern of data ac-
cesses) and memoryless (the clients only need to know what step of the shuffle they are
on in order to continue the shuffle), it can be considered a “non-critical” portion of the
algorithm and no special protections need to be added for malicious security.

Note on computational complexity: While Algorithm 1 returns the whole updated
state Σ, in practice a client only needs to update the other clients’ caches (up to

√
N

times). In addition to the communication complexity involved, there is also computation
the client must perform in our scheme. Fortunately, the computation is exactly propor-
tional to the communication and easily quantifiable. Every block of data retrieved from
the server has a MAC that must be verified and a layer of encryption that must be re-

Input: Σ, stui , path P , stash S, χ, eviction counter e
Output: Updated MAC values

1 for j = logn to 1 do
2 V [j] = MACκ(contents of bucket P[j], MAC of left child, MAC of right child);
3 end
// Root MAC over the stash and tree parameters χ and e

4 V [0] = MACκ(S, MAC of root bucket, χ, e);
5 return V

Algorithm 6: MACPath(Σ, stui , path P , stash S, χ, eviction counter e)

moved. Since modern ciphers and hash functions are very efficient, and can even be
done in hardware on many computers, communication is the clear bottleneck. For com-
parison, encryption and MACs are common on almost every secure network protocol,
so we consider only the communication overhead in our analysis.

Unified cache: A natural optimization to this scheme is to have one single shared cache
instead of a separate one for each user. If the server behaves honestly, then all caches
will contain the same blocks and be in the same state anyway, so a single cache can
save some communication and storage. To still protect against a malicious server, one
must be careful in this case to store φ different counters with the cache and have each
client only increment their counter when they do an access. This ensures that if a client
inserts a block into the cache it cannot be “rolled back” past the point that they inserted
that block without them noticing. Since the cost to reshuffle the ORAMs dominates
complexity of our scheme, this optimization does not change asymptotic performance.
Resulting in only a small constant improvement and making the presentation and proof
unnecessary difficult, we omit full discussion of this technique.

B Security and Complexity Analysis for Tree-based Construction
We start the security analysis by showing that, due to the MACs authenticating each
data structure, a specific client ui will read the same tag t from a tree in their ORAM
with probability negligible in λ.

Lemma 2. Let ui be a client i. For any two accesses to a map tree Ti,j , 1 ≤ j ≤ m,
by client ui, which do not result in ui aborting, the probability that they both return the
same value t is negligible in λ.

Proof. We start with the root block. Client ui replaces each value with a fresh t0 in the
range [0, 2λ) after each access. So, if the server is honest, ui will read the same value in
two separate accesses only with probability 2−λ. For the case of a malicious server, ui
also keeps a counter χi which is incremented after every access. The root block on the
server additionally stores this counter along with a MAC that authenticates the block-
counter combination. As long as the MAC is unforgeable with chance 1 − 2−λ, the
probability that ui does not abort on a bad block-counter combination is negligible.

After the root block, we continue with the map trees. The client will read a path in
each tree which contains the target block and next value tj . If the server is honest, ui
would have changed tj since the last time it was accessed, and the probability would
again be 2−λ. Client ui also has a MAC chain tied to a (verifiable) counter, so against a
malicious adversary the probability is negligible in λ. ut

With that lemma, we can prove that our construction is secure based on the fact that
the t values induce a uniform distribution of blocks across the leaf nodes and that no
client will have a collision in their t values with any non-negligible probability.

Theorem 2. Our tree-based construction (Init,Access) is a multi-client Oblivious RAM
secure against malicious adversaries.

Proof. If h is a PRF, then assigning leaf nodes to blocks as h(t, i) for client ui will
result in a (pseudo-)random distribution over the leaf nodes for every block in every tree.
By Lemma 2, even against a malicious adversary, with all but negligible probability no
client will make two accesses that return the same value ti. By induction, this means that
the paths read in each tree when a client accesses their own ORAM will be distributed
pseudorandomly, independent of the virtual block being accessed. Thus, a client reading
from their own ORAM cannot leak any information that would allow an adversary to
distinguish between two access patterns.

When clients write to other clients’ ORAMs, they directly and deterministically
access the stash. The clients additionally read and write with the sub-ORAM, which
is in itself multi-client secure. Since they always execute the same number of accesses
(log n per tree) on this ORAM, and the number of accesses is the only thing leaked to
the adversary with a secure ORAM. This information cannot give an advantage to the
adversary in distinguishing access patterns.

The last algorithm is eviction. Since the path chosen during eviction is determin-
istic (based on the counter) and independent of any accesses done by any client, it is
straightforward to see that it also will induce a pattern on the server which is indistin-
guishable. ut

B.1 Complexity
The complexity of our scheme is dominated by the cost of an eviction. For a client to
read a path in each of O(logN) recursive trees, for each of the φ different ORAMs,
it takes O(φ · B · log2N) bits of communication. Additionally, the client must make
O(φ · log2N) accesses to a metadata ORAM. If µ(N,B) denotes the cost of a sin-
gle access in such a sub-ORAM, the overall communication complexity is then O(φ ·
log2N · [B + µ(N, logN)]) bit. The deamortized hierarchical ORAM by Kushile-
vitz et al. [14] has O(log3N) blocks communication complexity, where each block
is of size logN bit (the meta-data we need for our construction). Taking this hier-
archical ORAM as a sub-ORAM, the total communication complexity computes to
O(φ · log2N [B + log4N]) bits. If B ∈ Ω(log4N) then the communication complex-
ity, in terms of blocks, is O(φ log2N), otherwise it is at most O(φ log5N), i.e., with
the assumption B ∈ Ω(logN) (the minimal possible block size for Path ORAM to
work).

Additionally, if we use the recursive optimization trick from Stefanov et al. [24] to
reduce the overhead from the Path ORAM part of the construction from O(log2N) to
O(logN), we can achieve a total complexity ofO(logN) for blocks of sizeΩ(log4N).

Although a complexity linear in φ may seem at first to be expensive, we stress that
this is a substantial improvement over naive solutions which achieve the same level of
security. The only straightforward way to have multi-client security against malicious
servers is for each client to append their updates to a master list, and for clients to scan
this list to find the most updated version of a block during reads. This is not only linear
in the size of the database, but in the number of operations performed over the entire
life of the ORAM.

One notable difference in parameters from basic Path ORAM is that we require a
block size of at least c · λ, where c ≥ 2. Path ORAM only needs c · log n, and for
security parameter λ, λ > logN holds. In our scheme, the map trees do not directly
hold addresses, but t values which are of size λ. In order for the map recursion to
terminate in O(logN) steps, blocks must be big enough to hold at least two t values of
size λ. If the block size is Ω(λ2), we can also take advantage of the asymmetric block
optimization from Stefanov et al. [24] to reduce the complexity to O(φ · (log6 n +
B · logN). Then, if additionally B ∈ Ω(log5N), the total complexity is reduced to
O(logN) per client.

