
Simple Security Definitions for and Constructions
of 0-RTT Key Exchange

Britta Hale1 and Tibor Jager3 and Sebastian Lauer2 and Jörg Schwenk2

1 Norwegian University of Science and Technology, NTNU, Trondheim
britta.hale@item.ntnu.no

2 Horst Görtz Institute, Ruhr-University Bochum
{sebastian.lauer, joerg.schwenk}@rub.de

3 Paderborn University
tibor.jager@upb.de

Abstract. Zero Round-Trip Time (0-RTT) key exchange protocols al-
low for the transmission of cryptographically protected payload data
without requiring the prior exchange of messages of a cryptographic key
exchange protocol, while providing perfect forward secrecy. The 0-RTT
KE concept was first realized by Google in the QUIC Crypto proto-
col, and a 0-RTT mode has been intensively discussed for inclusion in
TLS 1.3.
In 0-RTT KE two keys are generated, typically using a Diffie-Hellman key
exchange. The first key is a combination of an ephemeral client share and
a long-lived server share. The second key is computed using an ephemeral
server share and the same ephemeral client share.
In this paper, we propose simple security models, which catch the in-
tuition behind known 0-RTT KE protocols; namely that the first (re-
spectively, second) key should remain indistinguishable from a random
value, even if the second (respectively, first) key is revealed. We call this
property strong key independence. We also give the first constructions
of 0-RTT KE which are provably secure in these models, based on the
generic assumption that secure non-interactive key exchange (NIKE) ex-
ists.

Keywords: Foundations, low-latency key exchange, 0-RTT protocols,
authenticated key exchange, non-interactive key exchange, QUIC, TLS
1.3.

1 Introduction

Efficiency, in terms of messages to be exchanged before a key is established, is a
growing consideration for internet protocols today. Ultimately, the first genera-
tion of internet key exchange protocols did not care too much about efficiency,
since secure connections were considered to be the exception rather than the
rule: SSL (versions 2.0 and 3.0) and TLS (versions 1.0, 1.1, and 1.2) require 2
round-trip times (RTT) for key establishment before the first cryptographically-
protected payload data can be sent. With the increased use encryption,4 effi-
4 For example, initiatives like Let’s Encrypt (https://letsencrypt.org/).

https://letsencrypt.org/

ciency is an aspect of escalating importance for protocols like TLS. Similarly,
the older IPSec IKE version v1 needs between 3 RTT (aggressive mode + quick
mode) and 4.5 RTT (main mode + quick mode). This was soon realized to be
problematic, and in IKEv2 the number of RTTs was reduced to 2.

The QUIC protocol. Fundamentally, the discussion on low-latency key exchange
(LLKE, aka. zero-RTT or 0-RTT key exchange) was opened when Google pro-
posed the QUIC protocol.5 QUIC (cf. Figure 1) achieves low-latency by caching a
signed server configuration file on the client side, which contains a medium-lived
Diffie-Hellman (DH) share Y0 = gy0 .6

When a client wishes to establish a connection with a server and possesses
a valid configuration file of that server, it chooses a fresh ephemeral DH share
X = gx and computes a temporal key k1 from gy0x. Using this key k1, the client
can encrypt and authenticate data to be sent to the server, together with X. In
response, the server sends a fresh DH share Y = gy and computes a session key
k2 from gxy, which is used for all subsequent data exchanges.

Client

(Y0, σS)
πs
C

Server
(sksigS , pksigS)

(Y0, y0)
πt
S

x
$← Zq

X = gx, k1 = Y x
0

−−−−
X,AE(k1;payload)
−−−−−−−−−−−−−−−−−−−→

k1 = Xy0

y
$← Zq

Y = gy, k2 = Xy

←−
AE(k1;Y), AE(k2; payload)
−−−−−−−−−−−−−−−−−−−−−−

k2 = Y x

←−−−−−
AE(k2; payload)
−−−−−−−−−−−−−−−−−→

Fig. 1: Google’s QUIC protocol (simplified) with cached server key configuration
file (Y0, σS). AE denotes a symmetric authenticated encryption algorithm (e.g.,
AES-GCM), (sksigS , pksigS) denotes the server’s long-term signing keys, and πtS
(resp. πsC) denotes the oracle at server S executing the single t-th instance of
the protocol (resp. for client).

5 See https://www.chromium.org/quic
6 If the client does not have a valid file, it has to be requested from the server, which
increases the number of RTTs by 1, but may then be re-used for future sessions.

2

https://www.chromium.org/quic

TLS 1.3. Early TLS 1.3 drafts, e.g. draft-ietf-tls-tls13-08 [24], contained
a 0-RTT key exchange mode where a QUIC-like ServerConfiguration message
is cached by the client. The current version draft-ietf-tls-tls13-16 [25] fol-
lows a different approach, where the initial key establishment between a client
and a server is never 0-RTT. Instead, it defines a method to establish a new
session based on the secret key of a previous session. Even though this is also
called “0-RTT” in the current TLS 1.3 specification, it is rather a “0-RTT session
resumption” protocol, but does not allow for 0-RTT key establishment. Most
importantly, the major difference between the approach of the current TLS 1.3
draft in comparison to a “real” 0-RTT key exchange protocol is that the for-
mer requires to store secret key information on the client between sessions. In
contrast, a 0-RTT key establishment protocol does not require to store secret
information between sessions.

Facebook’s Zero protocol. Very recently, the social network Facebook announced
that it is currently experimenting with a 0-RTT KE protocol called Zero.7 Zero
is very similar to QUIC, except that it uses another nonce and encryption of the
ServerHello message.

It is noteworthy that the main difference between Zero and QUIC was in-
troduced in order to prevent an attack discovered by Facebook, which has been
reported to Google and meanwhile been fixed in QUIC, too. We believe that
this is a good example that shows the demand of simple security definitions and
provably-secure constructions for such protocols.

Security goals. 0-RTT KE protocols like QUIC have ad-hoc designs that aim at
achieving three goals: (1) 0-RTT encryption, where ciphertext data can already
be sent together with the first handshake message; (2) perfect forward secrecy
(PFS), where all ciphertexts exchanged after the second handshake message will
remain secure even after the (static or semi-static) private keys of the server have
been leaked, and (3) key independence, where “knowledge” about one of the two
symmetric keys generated should not endanger the “security” of the other key.

Strong key independence. Intuitively, a 0-RTT KE protocol should achieve strong
key independence between k1 and k2; if any one of the two keys is leaked at any
time, the other key should still be indistinguishable from a random value. In
all known security models, this intuition would be formalized as follows: if the
adversary A asks a Reveal query for k1, he is still allowed to ask a Test query for
k2, and vice versa. If the two keys are computationally independent from each
other (which also includes computations on the different protocol messages),
then the adversary should have only a negligible advantage in answering the
Test query correctly.

The research questions to be answered are the following: Do existing exam-
ples of 0-RTT KE protocols have strong key independence? Can we describe a

7 See https://code.facebook.com/posts/608854979307125/
building-zero-protocol-for-fast-secure-mobile-connections/.

3

https://code.facebook.com/posts/608854979307125/building-zero-protocol-for-fast-secure-mobile-connections/
https://code.facebook.com/posts/608854979307125/building-zero-protocol-for-fast-secure-mobile-connections/

generic way to construct 0-RTT KE protocols that provably achieve strong key
independence?

QUIC does not provide strong key independence. If an attacker A is allowed to
learn k1 by a Reveal-query, then he is able to decrypt AE(k1;Y) and re-encrypt
its own value Y ∗ := gy

∗
as AE(k1;Y

∗). Furthermore, he can then compute the
same k2 = Xy∗ as the client oracle, and can thus distinguish between the “real”
key and a “random” key chosen by the Test query. See [11] for more details on
key dependency in QUIC.

Note that this theoretical attack does not imply that QUIC is insecure. It only
shows that the authenticity of the server’s Diffie-Hellman share, which is sent
in QUIC to establish k2, depends strongly on the security of key k1. Therefore
QUIC does not provide strong key independence in the sense sketched above.

Previous work on 0-RTT Key Exchange. The concept of 0-RTT key exchange
was not developed in academia, but in industry – motivated by concrete prac-
tical demands of distributed applications. Previous works on 0-RTT KE [11,22]
conducted a-posteriori security analyses of the QUIC protocol, with tailored
models. There are no foundational constructions yet, and the relation to other
cryptographic protocols and primitives is not yet well-understood.

At ACM CCS 2014, Fischlin and Günther [11] provided a formal definition of
multi-stage key exchange protocols and used it to analyze the security of QUIC.
Lychev et al. [22] gave an alternate analysis of QUIC, which considers both effi-
ciency and security. They describe a security model which is bespoke to QUIC,
adopting the complex, monolithic security model of [16] to the protocol’s re-
quirements. Günther et al. [14] extended the “puncturable encryption”-approach
of Green and Miers [13] to show that even 0-RTT KE with full forward secrecy
is possible, by evolving the secret key after each decryption. However, their
construction is currently mainly of conceptual interest, as it is not yet efficient
enough to be deployed at large scale in practice.

Security model. In this paper, we use a variant of the Canetti-Krawczyk [7]
security model. This family of security models is especially suited to protocols
with only two message exchanges, with one-round key exchange protocols being
the most important subclass. Popular examples of such protocols are MQV [21],
HMQV [17], SMQV [26], KEA [23,20], and NAXOS [19]. A comparison of dif-
ferent variants of the Canetti-Krawczyk model can be found in [9,28].

The importance of simplicity of security models. Security models for key ex-
change protocols have to consider active adversaries that may modify, replay,
inject, drop, etc., any message transmitted between communicating parties. They
also need to capture parallel executions of multiple protocol sessions, potential
reveals of earlier session keys, and adaptive corruptions of long-term secrets of
parties. This makes even standard security models for key exchange extremely
complex (in comparison to most other standard cryptographic primitives, like
digital signatures or public-key encryption, for example).

4

Naturally, the novel primitive of 0-RTT KE requires formal security defi-
nitions. There are different ways to create such a model. One approach is to
focus on generality of the model. Fischlin and Günther [11] followed this path,
by defining multi-stage key exchange protocols, a generalization of 0-RTT KE.
This approach has the advantage that it lays the foundation for the study of a
very general class of interesting novel primitives. However, its drawback is that
this generality inherently also brings a huge complexity to the model. Clearly, the
more complex the security model, the more difficult it becomes to devise new,
simple, efficient, and provably-secure constructions. Moreover, proofs in complex
models tend to be error-prone and less intuitive, because central technical ideas
may be concealed in formal details that are required to handle the generality of
the model.

Another approach is to devise a model which is tailored to the analysis of one
specific protocol. For example, the complex, monolithic ACCE security model
was developed in [16] to provide an a posteriori security analysis of TLS.8 A
similar approach was followed by Lychev et al. [22], who adopted this model for
an a posteriori analysis of QUIC, by defining the so-called Q-ACCE model. A
drawback of this approach is that such tailor-made models tend to capture only
the properties achieved by existing protocols, but not necessarily all properties
that we would expect from a “good” 0-RTT KE protocol. In general, such tailor-
made models do not, therefore, form a useful foundation for the creation of new
protocols.

In this paper, we follow a different approach. We propose novel “bare-bone”
security models for 0-RTT KE, which aim at capturing all, but also only the
properties intuitively expected from “good” 0-RTT KE protocols. We propose
two different models. One considers the practically-relevant case of server-only
authentication (where the client may or may not authenticate later over the es-
tablished communication channel, similar in spirit to the server-only-authenticated
ACCE model of [18]). The other considers traditional mutual cryptographic au-
thentication of a client and server.

The reduced generality of our definitions – in comparison to the very general
multi-stage security model of [11] – is intended. A model which captures only,
but also all the properties expected from a “good” 0-RTT KE protocol allows
us to devise relatively simple, foundational, and generic constructions of 0-RTT
KE protocols with as-clean-as-possible security analyses.

Importance of foundational generic constructions. Following [3], we use non-
interactive key exchange (NIKE) [8,12] in combination with digital signatures
as a main building block.9 This yields the first examples of 0-RTT KE protocols
with strong key independence, as well as the first constructions of 0-RTT KE
from generic complexity assumptions. There are many advantages of such generic
constructions:
8 A more modular approach was later proposed in [4].
9 Recall that digital signatures are implied by one-way functions, which in turn are
implied by NIKE. Thus, essentially we only assume the existence of NIKE as a
building block.

5

1. Generic constructions provide a better understanding of the structure of pro-
tocols. Since the primitives we use have abstract security properties, we can
directly see which abstract security requirements are needed to implement
0-RTT KE protocols.

2. They clarify the relations and implications between different types of cryp-
tographic primitives.

3. They can generically be instantiated with building blocks based on different
complexity assumptions. For example, if “post-quantum” security is needed,
one can directly obtain a concrete protocol by using only post-quantum
secure building blocks in the generic construction.

Generally, generic constructions tend to involve more computational overhead
than ad-hoc constructions. However, we note that our 0-RTT KE protocols can
be instantiated relatively efficiently, given the efficient NIKE schemes of [12], for
example.

Contributions. Contributions in this paper can be summarized as follows:

– Simple security models. We provide simple security models, which capture
all properties that we expect from a “good” 0-RTT KE protocol, but only
these properties. We consider both the “practical” setting with server-only
authentication and the classical setting with mutual authentication.

– First generic constructions. We give intuitive, relatively simple, and efficient
constructions of 0-RTT KE protocols in both settings.

– Non-DH instantiation. Both QUIC and TLS 1.3 are based on Diffie-Hellman
key exchange. Our generic construction yields the first 0-RTT KE proto-
col which is not based on Diffie-Hellman (e.g., by instantiating the generic
construction with the factoring-based NIKE scheme of Freire et al. [12]).

– First 0-RTT KE with strong key independence. Our 0-RTT KE protocols are
the first to achieve strong key independence in the sense described above.

– Well-established, general assumptions. The construction is based on general
assumptions, namely the existence of secure NIKE and digital signature
schemes. For all building blocks we require only standard security properties.

– Security in the Standard Model. The security analysis is completely in the
standard model, i.e. it is performed without resorting to the Random Oracle
heuristic [1] and without relying on non-standard complexity assumptions.

– Efficient instantiability. Despite the fact that our constructions are generic,
the resulting protocols can be instantiated relatively efficiently.

2 Preliminaries

For our construction in Section 6, we need signature schemes and non-interactive
key exchange (NIKE) protocols. Here we summarize the definitions of these two
primitives and their security from the literature.

6

2.1 Digital Signatures

A digital signature scheme consists of three polynomial-time algorithms SIG =

(SIG.Gen,SIG.Sign,SIG.Vfy). The key generation algorithm (sk, pk)
$←

SIG.Gen(1λ) generates a public verification key pk and a secret signing key sk on
input of security parameter λ. Signing algorithm σ

$← SIG.Sign(sk,m) generates
a signature for message m. Verification algorithm SIG.Vfy(pk, σ,m) returns 1 if
σ is a valid signature for m under key pk, and 0 otherwise.

Consider the following security experiment played between a challenger C
and an adversary A.
1. The challenger generates a public/secret key pair (sk, pk)

$← SIG.Gen(1λ),
the adversary receives pk as input.

2. The adversary may query arbitrary messages mi to the challenger. The chal-
lenger replies to each query with a signature σi = SIG.Sign(sk,mi). Here i
is an index, ranging between 1 ≤ i ≤ q for some q ∈ N. Queries can be made
adaptively.

3. Eventually, the adversary outputs a message/signature pair (m,σ).

Definition 1. We define the advantage on an adversary A in this game as

AdvsEUF-CMA
SIG,A (λ) := Pr

[
(m,σ)

$← AC(λ)(pk) : SIG.Vfy(pk, σ,m) = 1,
(m,σ) 6= (mi, σi) ∀i

]
.

SIG is strongly secure against existential forgeries under adaptive chosen-
message attacks (sEUF-CMA), if AdvsEUF-CMA

SIG,A (λ) is a negligible function in λ
for all probabilistic polynomial-time adversaries A.
Remark 1. Signatures with sEUF-CMA security can be constructed generically
from any EUF-CMA-secure signature scheme and chameleon hash functions
[6,27].

2.2 Secure Non-Interactive Key Exchange

Definition 2. A non-interactive key exchange (NIKE) scheme consists of two
deterministic algorithms (NIKEgen,NIKEkey).

NIKEgen(1λ, r) takes a security parameter λ and randomness r ∈ {0, 1}λ. It
outputs a key pair (pk , sk). We write (pk , sk)

$← NIKEgen(1λ) to denote that
NIKEgen(1λ, r) is executed with uniformly random r

$← {0, 1}λ.
NIKEkey(sk i, pk j) is a deterministic algorithm which takes as input a secret key

sk i and a public key pk j, and outputs a key ki,j.

We say that a NIKE scheme is correct, if for all (pk i, sk i)
$← NIKEgen(1λ) and

(pk j , sk j)
$← NIKEgen(1λ) holds that NIKEkey(sk i, pk j) = NIKEkey(sk j , pk i).

A NIKE scheme is used by d parties P1, . . . , Pd as follows. Each party Pi gen-
erates a key pair (pk i, sk i) ← NIKEgen(1λ) and publishes pk i. In order to com-
pute the key shared by Pi and Pj , party Pi computes ki,j = NIKEkey(sk i, pk j).
Similarly, party Pj computes kj,i = NIKEkey(sk j , pk i). Correctness of the NIKE
scheme guarantees that ki,j = kj,i.

7

CKS-light security. The CKS-light security model for NIKE protocols is rel-
atively simplistic and compact. We choose this model because other (more
complex) NIKE security models like CKS , CKS-heavy and m-CKS-heavy are
polynomial-time equivalent to CKS-light. See [12] for more details.

Security of a NIKE protocol NIKE is defined by a gameNIKE played between
an adversary A and a challenger. The challenger takes a security parameter λ
and a random bit b as input and answers all queries of A until she outputs a bit
b′. The challenger answers the following queries for A:

– RegisterHonest(i). A supplies an index i. The challenger runs NIKEgen(1λ)
to generate a key pair (pki, ski) and records the tuple (honest, pki, ski) for
later and returns pki to A. This query may be asked at most twice by A.

– RegisterCorrupt(pki). With this query A supplies a public key pki. The chal-
lenger records the tuple (Corrupt, pki) for later.

– GetCorruptKey(i, j). A supplies two indexes i and j where pki was registered
as corrupt and pkj as honest. The challenger runs k ← NIKEkey(skj , pki)
and returns k to A.

– Test(i, j). The adversary supplies two indexes i and j that were registered
honestly. Now the challenger uses bit b: if b = 0, then the challenger runs
ki,j ← NIKEkey(pki, skj) and returns the key ki,j . If b = 1, then the chal-
lenger samples a random element from the key space, records it for later,
and returns the key to A.

The game NIKE outputs 1, denoted by NIKEANIKE(λ) = 1, if b = b′ and 0
otherwise. We say A wins the game if NIKEANIKE(λ) = 1.

Definition 3. For any adversary A playing the above NIKE game against a
NIKE scheme NIKE, we define the advantage of winning the game NIKE as

Adv
CKS-light
NIKE,A (λ) =

∣∣∣2 · Pr [NIKEANIKE(λ) = 1
]
− 1
∣∣∣ .

Let λ be a security parameter, NIKE be a NIKE protocol and A an adversary. We
say NIKE is a CKS-light-secure NIKE protocol, if for all probabilistic polynomial-
time adversaries A, the function Adv

CKS-light
NIKE,A (λ) is a negligible function in λ.

3 Low-Latency Key Exchange Protocols: Syntax and
Security with Server-only Authentication

In the model presented in this section, we give formal definitions for 0-RTT
KE with forward secrecy and strong key independence. We start with the case
of server-only authentication, as it is the more important case in practice (in
particular, server-only authentication will be the main operating mode of both
QUIC and TLS 1.3).

8

3.1 Syntax and Correctness

Definition 4. A 0-RTT key exchange scheme with server-only authentication
consists of deterministic algorithms (Genserver,KEclient

init ,KEclient
refresh,

KEserver
refresh).

– Genserver(1λ, r) → (pk , sk): A key generation algorithms that takes as input
a security parameter λ and randomness r ∈ {0, 1}λ and outputs a key pair
(pk , sk). We write (pk , sk)

$← Genserver(1λ) to denote that a pair (pk , sk) is
the output of Genserver when executed with uniformly random r

$← {0, 1}λ.
– KEclient

init (pk j , ri) → (ki,jtmp,mi): An algorithm that takes as input a public key
pk j and randomness ri ∈ {0, 1}λ, and outputs a temporary key ki,jtmp and a
message mi.

– KEserver
refresh(sk j , rj ,mi) → (kj,imain, k

j,i
tmp,mj): An algorithm that takes as input a

secret key sk j, randomness rj and a message mi, and outputs a key kj,imain, a
temporary key kj,itmp and a message mj.

– KEclient
refresh(pk j , ri,mj) → ki,jmain: An algorithm that takes as input a public key

pk j, randomness ri, and message mj, and outputs a key ki,jmain.

We say that a low-latency key exchange scheme is correct, if for all (pk j , sk j),
$← Genserver(1λ) and for all ri, rj

$← {0, 1}λ holds that

Pr[ki,jtmp 6= kj,itmp or ki,jmain 6= kj,imain] ≤ negl(λ) ,

where (kj,itmp,mi)← KEclient
init (pk j , ri), (k

i,j
tmp, k

i,j
main,mj)← KEserver

refresh(sk j , rj ,mi), and
kj,imain ← KEclient

refresh(pk j , ri,mj).

A 0-RTT KE scheme is used by a set parties which are either clients C or
servers S (cf. Figure 2). Each server Sp, has a generated key pair (skp, pkp)

$←
Genserver(1λ, j) with published pkp. The protocol is executed as follows:

1. The client oracle Ci chooses ri ∈ {0, 1}λ and selects the public key of the
intended partner Sj, (which must be a server, otherwise this value is unde-
fined). Then it computes (ki,jtmp,mi) ← KEclient

init (pk j , ri), and sends mi to Sj .
Additionally, Ci can use ki,jtmp to encrypt some data Mi.

2. Upon reception of message mi, Sj, initializes a new oracle Sj,t. This oracle
chooses rj ∈ {0, 1}λ and computes (kj,imain, k

j,i
tmp,mj) ← KEserver

refresh(sk j , rj ,mi).
The server may use the ephemeral key kj,itmp to decrypt Di. Then, the server
sends mj and optionally some data Mj encrypted with the key kj,imain to the
client.

3. Ci computes ki,jmain ← KEclient
refresh(pk j , ri,mj) and can optionally decrypt Dj .

Correctness of the 0-RTT KE scheme guarantees that ki,jmain = kj,imain.

9

Ci Sj

(skj , pkj)
$← Genserver(1λ, j)

ri
$← {0, 1}λ

(ki,jtmp,mi)← KEclient
init (pk j , ri)

Di ← Encrypt(ki,jtmp,Mi)
mi, Di

rj
$← {0, 1}λ

(kj,imain, k
j,i
tmp,mj)← KEserver

refresh(sk j , rj ,mi)

Dj ← Encrypt(ki,jmain,Mj)
mj , Dj

ki,jmain ← KEclient
refresh(pk j , ri,mj)

Fig. 2: Execution of a 0-RTT KE Protocol with Server-Only Authentication in
Parallel to Encrypted Application Data. Note that the messages Di and Dj cor-
respond to the symmetric encryption protocol used to encrypt payload data, and
are therefore not part of the 0-RTT KE protocol, but a separate protocol. These
messages are only displayed here only to illustrate the basic, parallel application
message flow to that of a 0-RTT KE protocol. While it would in principle be
possible to define the symmetric encryption directly as part of the protocol, this
would require a significantly more complex “ACCE-style” [16] security model,
which we avoid for sake of simplicity.

3.2 Execution Environment

We provide an adversary A against a 0-RTT KE protocol with the following ex-
ecution environment. Clients, which are not in possession of a long-term secret
are represented by oracles C1, . . . ,Cd (without any particular “identity”). We con-
sider ` servers, each server has a long-term key pair (sk j , pk j)10, j ∈ {1, . . . , `},
and each client has access to all public keys pk1, . . . , pk `. Each server is repre-
sented by a collection of k oracles Sj,1, . . . ,Sj,k, where each oracle represents a
process that executes one single instance of the protocol.

We use the following variables to maintain the internal state of oracles.

Clients. Each client oracle Ci, i ∈ [d], maintains
– two variables ktmp

i and kmain
i to store the temporal and main keys of a

session,
– a variable Partneri, which contains the identity of the intended commu-

nication partner, and
– variablesMin

i andMout
i containing messages sent and received by the

oracle.
The internal state of a client oracle is initialized to (ktmp

i , kmain
i ,Partneri,Min

i ,
Mout

i) := (∅, ∅, ∅, ∅, ∅).
Servers. Each server oracle Sj,t, (j, t) ∈ [`]× [k], maintains:

– two variables ktmp
i and kmain

i to store the temporal and main keys of a
session, and

10 We do not distinguish between static (i.e. long-lived) and semi-static (i.e. medium
lived) key pairs. Thus the long-lived keys in this model correspond to the server
configuration file keys of QUIC and TLS 1.3.

10

– variablesMin
j,t andMout

j,t containing messages sent and received by the
server.

The internal state of a server oracle is initialized to (ktmp
j,t , k

main
j,t ,Min

j,t,

Mout
j,t) := (∅, ∅, ∅, ∅).

We say that an oracle has accepted the temporal key if ktmp 6= ∅, and accepted
the main key if kmain = ∅.

In the security experiment, the adversary is able to interact with the oracles
by issuing the following queries.

Send(Ci/Sj,t,m). The adversary sends a message m to the requested oracle.
The oracle processes m according to the protocol specification. Any response
generated by the oracle according to the protocol specification is returned
to the adversary.
If a client oracle Ci receives m as the first message, then the oracle checks if
m consists of a special initialization message (m = (init, j)). If true, then
the oracle responds with the first protocol message generated for intended
partner Sj,, else it outputs ⊥.

Reveal(Ci/Sj,t, tmp/main). This query returns the key of the given stage if it
already has been computed, or ⊥ otherwise.

Corrupt(j). On input of a server identity j, this query returns the long-term
private key of the server. If Corrupt(j) is the τ -th query issued by A, we say
a party is τ -corrupted. For parties that are not corrupted we define τ :=∞.

Test(Ci/Sj,t, tmp/main). This query is used to test a key and is only asked
once. It is answered as follows: If the variable of the requested key is not
empty, a random b

$← {0, 1} is selected, and
– if b = 0 then the requested key is returned, else
– if b = 1 then a random key, according to the probability distribution of

keys generated by the protocol, is returned.
Otherwise ⊥ is returned.

Security Model Security Game G0RT T −sa
A . After receiving a security pa-

rameter λ the challenger C simulates the protocol and keeps track of all variables
of the execution environment: he generates the long-lived key pairs of all server
parties, and answers faithfully to all queries by the adversary.

The adversary receives all public keys pk1, . . . , pk ` and can interact with the
challenger by issuing any combination of the queries Send(), Corrupt(), and
Reveal(). At some point the adversary queries Test() to an oracle and receives
a key, which is either the requested key or a random value. The adversary may
continue asking Send(), Corrupt(), and Reveal()-queries after receiving the bit
and finally outputs some bit b′.

Definition 5 (0-RTT KE-Security with Server-Only Authentication).
Let an adversary A interact with the challenger in game G0RT T −sa

A as it is
described above. We say the challenger outputs 1, denoted by G0RT T −sa

A (λ) = 1,
if b = b′ and the following conditions hold:

11

– if A issues Test(Ci, tmp) all of the following hold:
• Reveal(Ci, tmp) was never queried by A
• Reveal(Sj,t, tmp) was never queried by A for any oracle Sj,t such that
Partneri = j andMin

j,t =Mout
i

• the communication partner Partneri = j, if it exists, is not τ -corrupted
with τ <∞

– if A issues Test(Ci, main) all of the following hold:
• Reveal(Ci, main) was never queried by A
• Reveal(Sj,t, main) was never queried by A, where Partneri = j, Min

j,t =

Mout
i , andMin

i =Mout
j,t

• the communication Partneri = j is not τ -corrupted with τ < τ0, where
Test(Ci, main) is the τ0-th query issued by A

– if A issues Test(Sj,t, tmp) all of the following hold:
• Reveal(Sj,t, tmp) was never queried by A
• there exists an oracle Ci withMout

i =Min
j,t

• Reveal(Ci, tmp) was never queried by A to any oracle Ci with Mout
i =

Min
j,t

• Reveal(Sj,t′ , tmp) was never queried by A for any oracle Sj,t′ with
Min

j,t =Min
j,t′

• j is not τ -corrupted with τ <∞
– if A issues Test(Sj,t, main) all of the following hold:
• Reveal(Sj,t, main) was never queried by A
• there exists an oracle Ci withMout

i =Min
j,t

• Reveal(Ci, main) was never queried by A, ifMin
i =Mout

j,t

else the game outputs a random bit. We define the advantage of A in the game
G0RT T −sa
A (λ) by

Adv0RT T −sa
A (λ) :=

∣∣2 · Pr[G0RT T −sa
A (λ) = 1]− 1

∣∣ .
Definition 6. We say that a low-latency key exchange protocol is test-secure,
if there exists a negligible function negl(λ) such that for all PPT adversaries A
interacting according to the security game G0RT T −sa

A (λ) it holds that

Adv0RT T −sa
A (λ) ≤ negl(λ) .

Remark 2. Our security model captures forward secrecy, because key indistin-
guishability is required to hold even if the adversary is able to corrupt the com-
munication partner of the test-oracle (but only after the test-oracle has ac-
cepted, of course, in order to avoid trivial attacks).

Moreover, strong key independence is modeled by the fact that an adver-
sary which attempts to distinguish a tmp-key from random (i.e., an adversary
which asks Test(X, tmp) for X ∈ {Ci,Sj,t for some i, j, t}) is allowed to learn
the main-key of X. Similarly, an adversary which tries to distinguish a main-key
from random by asking Test(X, main) is allowed to learn the tmp-key of X as
well. Security in this sense guarantees that the tmp-key and the main-key look
independent to a computationally-bounded adversary.

12

Remark 3. Note that the requirements of Mout
i = Min

j,t etc. in the above se-
curity model essentially adopt the notion of matching conversations, defined by
Bellare and Rogaway [2] for general, multi-message key exchange protocols, to
the special case of 0-RTT KE.

3.3 Composing a 0-RTT KE Protocol with Symmetric Encryption

The security model described above considers only the 0-RTT KE protocol,
without symmetric encryption of payload data (that is, without the messages
Di and Dj displayed in Figure 2). A protocol secure in this sense guarantees
the indistinguishability of keys in a hypothetical setting, where the key is not
used for symmetric encryption of payload messages potentially known to the
adversary. One may think that this is not sufficient for 0-RTT KE, because the
key will be used to encrypt payload data, and this will enable an adversary to
trivially distinguish a “real” key from a “random” key (this holds for both the
“temporal” key ki,jtmp and the actual “main” session key ki,jmain). Note that this
argument applies not only to the above 0-RTT KE security model, but actually
to any security model for (authenticated) key exchange which is based on the
indistinguishability of keys, such as the classical model of Bellare and Rogaway
and many similar models [2,5,7,19,10,26]. In practice, this key will usually be
used in a cryptographic protocol, e.g. to encrypt messages, and therefore trivially
allow to distinguish “real” from “random” keys. The security of the composition
of a protocol secure in the sense of [2,5,7,19,10,26] with a symmetric encryption
protocol follows from a standard two-step hybrid argument, which essentially
proceeds as follows:

1. In the original security experiment, the adversary interacts with a composed
protocol, where the KE protocol is first used to derive a key k, which is then
used to encrypt payload data with the symmetric encryption protocol.

2. In the next hybrid experiment, the adversary interacts with a composed
protocol, where the symmetric encryption does not use the key k computed
by the KE protocol, but an independent random key. Note that an adver-
sary that distinguishes this hybrid from the original game can be used to
distinguish a “real” key of the KE protocol from a “random” one.
Now the adversary interacts with an encryption protocol that uses a key
which is independent of the KE protocol. This allows for a reduction of the
security of the composed protocol to the security of the symmetric protocol.

A similarly straightforward hybrid argument applies to the composition of
0-RTT KE with symmetric encryption, which works as follows.

1. In the original security experiment, the adversary interacts with a composed
protocol, where the 0-RTT KE protocol is first used to derive a key ki,jtmp,
which is then used to encrypt the payload data sent along with the first
protocol message. Then the 0-RTT KE protocol is used to derive the main
key ki,jtmp, which in turn is used to encrypt all further payload data.

13

2. In the first hybrid experiment, the adversary interacts with a composed
protocol, where only ki,jtmp is replaced with an independent random value. An
adversary that distinguishes this hybrid from the original game can be used
to distinguish a “real” ki,jtmp from a “random” one.
Now the adversary interacts with an encryption protocol that encrypts the
first payload message with a key which is independent of the 0-RTT KE
protocol. This allows for a reduction of the security of the first payload
message to the security of the symmetric protocol.

3. In the second hybrid experiment, the adversary interacts with a composed
protocol, where ki,jmain is now also replaced with an independent random value.
An adversary that distinguishes this hybrid from the previous one can be
used to distinguish a “real” ki,jmain from a “random” one. This allows for a
reduction of the security of all further payload messages to the security of
the symmetric protocol.

Following the long tradition of previous works on indistinguishability-based
key exchange security models [2,5,7,19,10,26], we can thus consider an
indistinguishability-based security model for 0-RTT KE even though in prac-
tice key exchange messages will be interleaved with messages of the symmetric
encryption protocol. This allows for simple security models, and enables a mod-
ular analysis of the building blocks of a composed protocol.

4 Generic Construction of 0-RTT KE from NIKE

Now we are ready to describe our generic NIKE-based 0-RTT KE protocol and
its security analysis.

4.1 Generic Construction

Let NIKE = (NIKEgen,NIKEkey) be a NIKE scheme according to Definition 2
and let SIGN = (SIG.Gen,SIG.Sign,SIG.Vfy) be a signature scheme. Then we
construct a 0-RTT KE scheme 0-RTT = (Genserver,KEclient

init ,KEclient
refresh,KE

server
refresh),

per Definition 4, in the following way (cf. Figure 3).

– Genserver(1λ, r) computes key pairs using the NIKE key generation algorithm
(pknike, sknike)

$← NIKEgen(1λ) and signature keys using the SIGN algorithm
(pk sg, sk sg)

$← SIG.Gen, and outputs

(pk , sk) := ((pknike−static, pk sg), (sknike−static, sk sg)) .

– KEclient
init (pk j , ri) samples ri

$← {0, 1}λ, parses pk j = (pknike−static
j , pk sg

j), runs
(pknike

i , sknike
i) ← NIKEgen(1λ, ri) and knikei,j ← NIKEkey(sknike

i , pknike−static
j),

and outputs
(ki,jtmp,mi) := (knikei,j , pk

nike
i) .

14

Ci Sj
((pknike−static

j , pk sg
j), (sknike−static

j , sk sg
j))

ri
$← {0, 1}λ

(pknike
i , sknike

i)← NIKEgen(1λ, ri)

ki,jtmp ← NIKEkey(sknike
i , pknike−static

j)

mi := pknike
i

Check true← SIG.Vfy(pk sg
i , σj , pk

nike
j)

kj,imain ← NIKEkey(sknike
i , pknike

j)

ki,j := kj,imain

mi

rj
$← {0, 1}λ

kj,itmp ← NIKEgen(sknike−static
j , pknike

i)

(pknike
j , sknike

j)← NIKEgen(1λ, rj)

σj ← SIG.Sign(sk sg
j , pk

nike
j)

kj,imain ← NIKEkey(sknike
j , pknike

i)

mj := (pknike
j , σj)

ki,j := kj,imain

mj

Fig. 3: 0-RTT KE from NIKE. Again, it is possible to include the parallel exe-
cution of a symmetric encryption protocol which would behave as in Figure 2
for encrypted application data. As such a protocol is not part of the 0-RTT KE
protocol, we omit it here for simplicity.

– KEserver
refresh(sk j , rj ,mi) takes inmi = pknike

i , parses sk j = (sknike−static
j , sk sg

j), and

samples rj
$← {0, 1}λ. It then computes knikei,j ← NIKEkey(sknike−static

j , pknike
i),

(pknike
j , sknike

j) ← NIKEgen(1λ, rj), and σj ← SIG.Sign(sk sg
j , pk

nike
j). If mi =

pknike−static
j then it samples knikemain uniformly random, else it computes knikemain ←

NIKEkey(sknike
j , pknike

i), outputting

(kj,imain, k
j,i
tmp,mj) := (knikemain, k

nike
i,j , (pk

nike
j , σj)) .

– KEclient
refresh(pk j , ri,mj) parses pk j = (pknike−static

j , pk sg
j) and mj = (pknike

j , σj).
It then checks true← SIG.Vfy(pk sg

j , σj , pk
nike
j) and computes

knikemain ← NIKEkey(sknike
i , pknike

j), outputting

ki,jmain := knikemain .

Ultimately, the construction follows by applying the NIKE NIKEgen algo-
rithm and the SIGN SIG.Gen algorithm to generate a server configuration file
which is comprised of the server public key and a server public signature key
which a client can then employ for generating the first protocol flow. In order
for the 0-RTT KE construction to abstract the security guarantees of the un-
derlying NIKE, the appropriate client (pknike

i , sknike
i) must be available for use

in the NIKEkey algorithm. Consequently, the (pknike
i , sknike

i) values are generated
locally by the client, with pknike

i passed to the server as a message. Note that this
construction naturally foregos client-side authentication. Figure 3 demonstrates
the construction.

15

Remark 4. One may wonder why we define KEserver
refresh(sk j , rj ,mi) such that it

samples a random key when it takes as input a client message mi which is equal
to its own static NIKE key, that is, if mi = pknike−static

j . We note that this is
necessary for the security the constructed 0-RTT KE scheme to be reducible to
that of the NIKE scheme, because in some cases we will not be able to simulate
the key computed by a server oracle that receives as input a message which is
equal to the “static” NIKE public key contained in its 0-RTT KE public key. Note
that this incurs a negligible correctness error. However, it is straightforward to
verify the correctness of the protocol according to Definition 4.

4.2 Security Proof

We prove security of 0-RTT in the model of Section 3.2 with server-only authen-
tication.

Theorem 1. Let 0-RTT be executed with d clients, ` servers with long-term
keys, and k server oracles modeling each server. From each attacker A, we can
construct attackers Bsig, according to Definition 1, and Bnike, according to Def-
inition 3, such that

Adv0RT T −sa
A (λ) ≤ 2kd` ·

(
Adv

CKS-light
NIKE,Bnike

(λ) + AdvsEUF-CMA
SIG,Bsig

(λ)
)

+ d` ·
(
k · AdvCKS-light

NIKE,Bnike
(λ) + AdvsEUF-CMA

SIG,Bsig
(λ)
)

+ d` ·
(
Adv

CKS-light
NIKE,Bnike

(λ) + AdvsEUF-CMA
SIG,Bsig

(λ)
)
+ 4 · AdvCKS-light

NIKE,Bnike
(λ) .

The running time of Bsig and Bnike is approximately equal to the time required
to execute the security experiment with A once.

We distinguish between four types of attackers:

– adversary A1 asks Test() to a client oracle and the temporary key (CT-
attacker)

– adversary A2 asks Test() to a client oracle and the main key (CM-attacker)
– adversary A3 asks Test() to a server oracle and the temporary key (ST-

attacker)
– adversary A4 asks Test() to a server oracle and the main key (SM-attacker)

From these, Lemmas 1-4 complete the proof of Theorem 1.

CT-attacker We start with the first attacker that asks Test(Ci, tmp).

Lemma 1. From each CT-attacker A1, we can construct attackers Bsig, ac-
cording to Definition 1, and Bnike, according to Definition 3, such that

Adv0RT T −sa
A1

(λ) ≤ d` ·
(
Adv

CKS-light
NIKE,Bnike

(λ) + AdvsEUF-CMA
SIG,Bsig

(λ)
)
+Adv

CKS-light
NIKE,Bnike

(λ) .

The running time of Bsig and Bnike is approximately equal to the time required
to execute the security experiment with A1 once.

16

Proof. The proof is a sequence of different games played between the attacker
and a challenger according to the security experiment from Definition 5. Hence-
forth, let Advi := |2 · Pr[Game i = 1]− 1| denote the advantage of A in Game i.

Game 0. This is the original security experiment. By definition we have

Adv0 = Adv0RT T −sa
A1

(λ) .

Game 1. Game 1 is identical to Game 0, except that we add an abort condition.
We raise event abort, abort the game, and output a random bit, if there ever
exist two oracles which compute the same NIKE public key (either in messages
or in their long-term public keys). We have

Adv1 ≥ Adv0 − Pr[abort] .

Note that in the whole experiment at most (k+1)l+d NIKE keys are generated.
By a straightforward reduction to the security of the NIKE scheme, we can
construct a trivial NIKE adversary Bnike, which retrieves a public key pknike from
the NIKE security experiment, and then generates additional (k+1)`+d−1NIKE
key pairs (pknike

i , sknike
i)← NIKEgen(1λ, ri), exactly like the security experiment

in Game 1. If there exist i ∈ [k+ d+ d`− 1] with pknike
i = pknike, then Bnike can

trivially break the security of the NIKE scheme. Thus we have

Pr[abort] ≤ Adv
CKS-light
NIKE,Bnike

(λ)

and therefore
Adv1 ≥ Adv0 − Adv

CKS-light
NIKE,Bnike

(λ) .

Game 2. This game is identical to Game 1 with one exception. We guess i $← [d]
uniformly random and let the game abort if A1 does not issue a Test(Ci′ , main)-
query with i′ = i. That means, in this game we guess the “Test-oracle”.

Note that we are considering the case of CT-attackers, which always ask
a Test-query against a client-oracle. Therefore the probability of guessing this
oracle correctly is 1/d, which implies

Adv2 =
1

d
· Adv1

Game 3. Now, we want to guess the partner of the Test-oracle. We choose j $← [`]
uniformly random, and abort if Partneri 6= j. We may assume that Ci “accepts”
(as otherwise the Test-query returns⊥ unconditionally and the adversary cannot
win), we must have Partneri ∈ [`] and therefore

Adv3 =
1

`
· Adv2 .

17

Game 4. In this game we add another abort condition to make sure that Ci does
not receive the static public key of the server as input. We abort and output a
random bit ifMin

i = (pknike−static, σ) where true← SIG.Vfy(pk sg
j , σ, pk

nike−static),
but there exists no t ∈ [k] withMout

j,t =Min
i . Here we can use the fact that the

message received by Ci is digitally signed.
Clearly, we have

Adv4 ≥ Adv3 − Pr[abort′] .

We claim that we can construct a signature adversary Bsig with Pr[abort′] ≤
AdvsEUF -CMA

SIG,Bsig
(λ).

Bsig proceeds as follows. It receives as input a public key pk sg and sets
pk sg

j := pk sg. In order to compute signatures to simulate the oracles of server
j, Bsig uses the signing oracle provided by the sEUF-CMA security experi-
ment. If event abort′ occurs, then this means that Ci receives as input a tuple
Min

i = (pknike−static, σ) with true ← SIG.Vfy(pk sg
j , σ, pk

nike−static), but there ex-
ists no server oracle which has output this tuple. Thus, (pknike−static, σ) is a valid
sEUF-CMA forgery for pk sg

j . This proves our claim, and therefore we have

Adv4 ≥ Adv3 − AdvsEUF -CMA
SIG,Bsig

(λ) .

The final reduction to the security of the NIKE scheme. We claim that we are
now able to construct an efficient attacker Bnike which is able to answer all
queries correctly of A1 such that

Adv4 ≤ Adv
CKS-light
NIKE,Bnike

(λ) .

Bnike interacts with the challenger exactly as it is describe in Definition 3 and
runs A as subroutine, by simulating the experiment as it is described in Game 4.
In the reduction, Bnike registers two honest parties Pi and Pj and receives the
public keys {pknike

i , pknike
j }. Bnike sets the public key of Sj,t to pknike−static

j = pknike
j

and generates the signing keys Sj,t. Then, Bnike sets the first message of Ci to
mi = pknike

i . Next, Bnike answers all Send()-, Reveal()-, and Corrupt()-queries
of A as follows.

– Corrupt-queries: A1 asks only Corrupt-queries for server oracles Sj′,t (see
security definition of the model in Definition 5) for j 6= j′. Bnike can an-
swer all these queries correctly by using the RegisterCorrupt()-query and the
SIG.Gen-algorithm.

– Reveal-queries: Here, we have to distinguish between the different keys and
stages.
• Reveal(Ci′ , tmp): In this case, Bnike is able to reveal all keys for i′ 6= i,

because he can generate the secret keys himself. The query for i′ = i is
not allowed by the security definition.

• Reveal(Ci′ , main): For i′ 6= i, Bnike can again use the self-generated
secret keys. In the case of i′ = i, Game 1) guarantees that the message
received by the client is not equal to the static public key of the server.
For all other messages we can use the RegisterCorrupt()-query and the
GetCorruptKey()-query.

18

• Reveal(Sj′,t, tmp): If it holds that Min
j,t = Mout

i and j = j′ then by
security definition this query is not allowed. In contrast, the other two
cases are addressed as follows. If j 6= j′ then Bnike is able to generate all
necessary keys to answer the query. For j = j′ andMin

j,t 6=Mout
i he has

to use the RegisterCorrupt()-query and the GetCorruptKey(). Bnike has to
generate a random key ifMin

j,t = pknike
j to simulate the environment for

A1. This is also defined in the generic construction.
• Reveal(Sj′,t, main): In this case, Bnike can generate the secret keys him-

self to answer the query correctly.
– Send-queries: Bnike is able to answer all of this queries using the keys that

are self-generated and with the messages answered by the NIKE oracle.

After the Test-query A1 has to get a random value or a key depending on the
keys (sknike

i , pknike−static
j). This is exactly the same input which Bnike receives

after querying Test(i, j) in the NIKE experiment.
Combining all the above games completes the reduction.

CM-attacker The next proof is about attackers that ask Test(Ci, main).

Lemma 2. From each CM-attacker A2, we can construct attackers Bsig, ac-
cording to Definition 1, and Bnike, according to Definition 3, such that

Adv0RT T −sa
A2

(λ) ≤ d` ·
(
k · AdvCKS-light

NIKE,Bnike
(λ) + AdvsEUF-CMA

SIG,Bsig
(λ)
)

+ Adv
CKS-light
NIKE,Bnike

(λ) .

The running times of Bsig and Bnike are approximately equal to the time required
to execute the security experiment with A2 once.

Proof. Again, we proceed in a sequence of games.

Game 0. This is the original security experiment. By definition we have

Adv0 = Adv0RT T −sa
A2

(λ) .

Game 1. Game 1 is identical to Game 0, except that we add an abort condition.
Like in Game 1 in the proof of Lemma 1, we raise event abort and abort the
game if there ever exists two oracles which compute the same NIKE key. With
exactly the same argument as in Game 1 from the proof of Lemma 1, we have

Adv0 ≤ Adv1 + Adv
CKS-light
NIKE,Bnike

(λ) .

Game 2. This game is identical to Game 1, except that we guess the “Test-oracle”.
More precisely, we guess an index i $← [d] uniformly at random and abort the
game if A2 does not issue a Test(Ci′ , main)-query with i′ = i.

Note that we are considering the case of CM-attackers, which always ask
a Test-query against a client-oracle. Therefore the probability of guessing this
oracle correctly is 1/d, which implies

Adv2 =
1

d
· Adv1 .

19

Game 3. Next, we guess the identity of the partner of oracle Ci. More precisely,
we choose j $← [`] uniformly random and abort if Partneri 6= j. We may assume
that Ci “accepts” (as otherwise the Test-query returns ⊥ unconditionally and
the adversary cannot win) and thus we must have Partneri ∈ [`]. Therefore

Adv3 =
1

`
· Adv2 .

Game 4. Now we want to make sure that there exists a server-oracle, which
has output the message received by client Ci. Here we can use the fact that the
message received by Ci is digitally signed, and that the partner of the Test-oracle
must not be corrupted before Ci “accepts”.

Formally, Game 4 is identical to Game 3, with the exception that we add an-
other abort condition. We raise event abort′, let the experiment abort, and out-
put a random bit, if Min

i = (pknike
j , σj) where true ← SIG.Vfy(pk sg

j , σj , pk
nike
j),

but there does not exist t ∈ [k] withMout
j,t =Min

i . Clearly, we have

Adv4 ≥ Adv3 − Pr[abort′] .

We claim that we can construct a signature adversary Bsig with Pr[abort′] ≤
AdvsEUF -CMA

SIG,Bsig
(λ).

Bsig proceeds as follows. It receives as input a public key pk sg and sets
pk sg

j := pk sg. In order to compute signatures to simulate the oracles of server
j, Bsig uses the signing oracle provided by the sEUF-CMA security experi-
ment. If event abort′ occurs, then this means that Ci receives as input a tu-
pleMin

i = (pknike
j , σj) with true← SIG.Vfy(pk sg

j , σj , pk
nike
j), but there exists no

server oracle which has output this tuple. Thus, (pknike
j , σj) is a valid sEUF-CMA

forgery for pk sg
j . This proves our claim, and therefore we have

Adv3 ≤ Adv4 + AdvsEUF -CMA
SIG,Bsig

(λ) .

Game 5. In this game, we guess the partner oracle of Ci, which is guaranteed to
exist due to Game 4. That is, we choose t $← [k] uniformly at random and abort
the game ifMin

i 6=Mout
j,t .

Due to Game 4 we know that there exists (j, t′) withMin
i =Mout

j,t′ . (More-
over, (j, t′) is unique, due to Game 1). Thus, we have Pr[t = t′] = 1/k, and
thus

Adv5 =
1

k
· Adv4 .

The final reduction to the security of the NIKE scheme. Finally, we claim that
we can build Bnike, which is able to answer all queries of A2 and it holds that

Adv5 ≤ Adv
CKS-light
NIKE,Bnike

(λ) .

First, Bnike registers two honest parties Pi and Pj and receives the public keys
{pknike

i , pknike
j }. In this case, Bnike sets the message mj of Sj,t to mj = pknike

j and
the message mi of Ci to mi = pknike

i . Then, Bnike generates all long term keys of
the server oracles and answers the queries as follows:

20

– Corrupt-queries: A2 asks only Corrupt-queries for server oracles Sj′,t for j 6=
j′. Bnike can answer all these queries correctly by using the RegisterCorrupt()-
query and the SIG.Gen-algorithm. After querying the Test-query, the at-
tacker is allowed to receive the long-term keys of Sj′,t for j = j′.

– Reveal-queries: Here, we have to distinguish between the different keys and
stages.
• Reveal(Ci′ , tmp): In this case, Bnike is able to reveal all keys, because he

knows all the long term keys of the server oracles.
• Reveal(Ci′ , main): For i′ 6= i, Bnike can use again the self-generated

secret keys. In the case of i′ = i, it holds that the queried key depends
on the keys sknike

i and pknike
j , else the game would abort by definition of

Game1. For the keys sknike
i and pknike

j the attacker A2 is not allowed to
ask the Reveal-query.

• Reveal(Sj′,t, tmp): In this case, Bnike can use the self-generated long
term keys of the server to answer the query correctly.

• Reveal(Sj′,t, main): If j′ = j and Min
j′,t =Mout

i then this query is not
allowed by the security definition. For all other cases, Bnike can use the
RegisterCorrupt()-query and the GetCorruptKey() to answer the query or
the self-generated keys.

– Send-queries: Bnike is able to answer all of this queries using the keys that
are self-generated and with the messages answered by the NIKE oracle.

Summarily, the last part of the proof follows that of Lemma 1.

ST-attacker We now turn to attackers that ask Test(Sj,t, tmp).

Lemma 3. From each ST-attacker A3, we can construct attackers Bsig, accord-
ing to Definition 1, and Bnike, according to Definition 3, such that

Adv0RT T −sa
A3

(λ) ≤ kd`·
(
Adv

CKS-light
NIKE,Bnike

(λ) + AdvsEUF-CMA
SIG,Bsig

(λ)
)
+AdvCKS-light

NIKE,Bnike
(λ) .

The running times of Bsig and Bnike are approximately equal to the time required
to execute the security experiment with A3 once.

Proof. Again, we proceed in a sequence of games.

Game 0. This is the original security experiment. By definition we have

Adv0 = Adv0RT T −sa
A3

(λ) .

Game 1. Game 1 is identical to Game 0, except that we add an abort condition.
We raise event abort and abort the game, outputting a random bit, if there ever
exists two oracles which compute the same NIKE key.

Reducing to the security of the NIKE scheme as in Game 1 of Lemma 1,
yields

Adv0 ≤ Adv1 + Adv
CKS-light
NIKE,Bnike

(λ) .

21

Game 2. This game is identical to Game 1, except that we guess the “Test-
oracle” Sj,t via uniformly random indices (j, t) $← [`]× [k], and abort and output
a random bit if the guess is wrong. As before, we have

Adv1 = `k · Adv2 .

Game 3. Note that there must exist an oracle Ci which has output the message
received by Sj,t (by the corresponding condition in the security experiment,
which rules out trivial attacks). We guess this “partner” oracle Ci, by choosing
i

$← [d] uniformly at random and aborting the experiment, outputting a random
bit, ifMin

j,t 6=Mout
i . We may assume that Sj,t “accepts” (as otherwise the Test-

query returns ⊥ unconditionally and the adversary cannot win). Therefore

Adv2 = d · Adv3 .

Game 4. Now we want to make sure that the client oracle Ci receives only a valid
message generated by an oracle of server j as input. We can use the fact that
party j must not be corrupted to use the security of the signature scheme as an
argument.

Game 4 is identical to Game 3, with the exception that we add another
abort condition. We raise event abort′, let the experiment abort, and output
a random bit, if Min

i = (pknike
j , σj) where true ← SIG.Vfy(pk sg

j , σj , pk
nike
j), but

Mout
j,t 6=Min

i for any t ∈ [k]. As in Lemma 1, Game 4, we have

Adv4 ≥ Adv3 − Pr[abort′] ,

and claim that we can construct a signature adversary Bsig with Pr[abort′] ≤
AdvsEUF -CMA

SIG,Bsig
(λ).

Bsig proceeds as follows. It receives as input a public signature key pk sg

and sets pk sg
j := pk sg. In order to compute signatures to simulate the oracles

of server j, Bsig uses the signing oracle provided by the sEUF-CMA security
experiment. If event abort′ occurs, then this means that Ci receives as input
a tuple Min

i = (pknike
j , σj) with true ← SIG.Vfy(pk sg

j , σj , pk
nike
j), but which Sj,

has not output. Thus, (pknike
j , σj) is a valid sEUF-CMA forgery for pk sg

j . Ergo
we have

Adv3 ≤ Adv4 + AdvsEUF -CMA
SIG,Bsig

(λ) .

Finally, we claim that we can build Bnike, which is able to answer all queries
of A4 and it holds that

Adv4 ≤ Adv
CKS-light
NIKE,Bnike

(λ) .

Bnike interacts with A4 the same way as it interacts in the proof of Lemma 1
with one exception. The query Reveal(Sj′,t′ , tmp) withMin

j′,t′ =Min
j,t and j = j′

is not allowed (see Definition 5).

22

Lemma 4. From each SM-attacker A4, we can construct attackers Bsig, ac-
cording to Definition 1, and Bnike, according to Definition 3, such that

Adv0RT T −sa
A4

(λ) ≤ kd`·
(
AdvsEUF-CMA

SIG,Bsig
(λ)+Adv

CKS-light
NIKE,Bnike

(λ)
)
+Adv

CKS-light
NIKE,Bnike

(λ) .

The running time of Bsig and Bnike is approximately equal to the time required
to execute the security experiment with A4 once.

Proof. As in the proofs of Lemmas 1–3, we use a sequence of games.

Game 0. This is the original security experiment. By definition we have

Adv0 = Adv0RT T −sa
A4

(λ)

Game 1. Game 1 is identical to Game 0, except that we add an abort condition.
We raise event abort and abort the game, outputting a random bit, if there ever
exists two oracles which compute the same NIKE key.

Reducing to the security of the NIKE scheme as in Lemma 1, Game 1, yields

Adv0 ≤ Adv1 + Adv
CKS-light
NIKE,Bnike

(λ)

Game 2. This game is identical to Lemma 2, Game 2 for a Sj,t, guessing the
“Test-oracle” via an index (j, t)

$← [`]× [k] uniformly at random, which gives

Adv1 = `k · Adv2

Game 3. Next, we guess the identity of the partner of oracle Ci. More precisely,
we choose i $← [d] uniformly at random and abort the experiment, outputting
a random bit, if Min

j,t 6= Mout
i . We may assume that Sj,t “accepts” (as other-

wise the Test-query returns ⊥ unconditionally and the adversary cannot win).
Therefore

Adv2 = d · Adv3

Game 4. Now we want to make sure that the client oracle Ci receives only a valid
message which has been output by the server if the message is the ephemeral
public key of the server. Game 4 is identical to Game 3, with the exception
that we add another abort condition. We raise event abort′, let the experi-
ment abort, and output a random bit, if Min

i = (pknikej,t , σj) where true ←
SIG.Vfy(pk sg

j , σj , pk
nike
j,t), but there does not exist t ∈ [k] with Mout

j,t = Min
i .

Clearly, we have
Adv4 ≥ Adv3 − Pr[abort′] .

We claim that we can construct a signature adversary Bsig with Pr[abort′] ≤
AdvsEUF -CMA

SIG,Bsig
(λ).

23

Bsig proceeds as follows. It receives as input a public key pk sg and sets
pk sg

j := pk sg. In order to compute signatures to simulate the oracles of server
j, Bsig uses the signing oracle provided by the sEUF-CMA security experi-
ment. If event abort′ occurs, then this means that Ci receives as input a tu-
pleMin

i = (pknike
j,t , σj) with true← SIG.Vfy(pk sg

j , σj , pk
nike
j,t), but there exists no

server oracle which has output this tuple. Thus, (pknike
j,t , σj) is a valid sEUF-CMA

forgery for pk sg
j . This proves our claim, and therefore we have

Adv3 ≤ Adv4 + AdvsEUF -CMA
SIG,Bsig

(λ) .

Finally, we claim that we can build Bnike, which is able to answer all queries of
A4 and it holds that

Adv4 ≤ Adv
CKS-light
NIKE,Bnike

(λ) .

Bnike interacts with A4 the same way as it interacts in the proof of Lemma 2,
except that we allow the corruption of all server oracles.

5 0-RTT Key Exchange Protocols: Syntax and Security
with Mutual Authentication

Building on the work of Section 3, we define 0-RTT KE in the context where
mutual authentication is possible. Since such a situation requires the presence of
client long-term keys, it requires intrinsic assumptions that are not necessary for
a general 0-RTT protocol. Consequently, we separately define protocols where
mutual authentication is possible, and provide a corresponding security model
that takes this into account.

Definition 7. A 0-RTT key exchange with an option for mutual authentica-
tion (0-RTT-M) scheme consists of four deterministic algorithms (Gen,KEclient

init ,
KEclient

refresh,KE
server
refresh).

– Gen(1λ, r) → (pk , sk): A key generation algorithms that takes as input a
security parameter λ and randomness r ∈ {0, 1}λ and outputs a key pair
(pk , sk).
We write (pk , sk)

$← Gen(1λ) to denote that a pair (pk , sk) is the output of
Gen when executed with uniformly random r

$← {0, 1}λ.
– KEclient

init (pk j , sk i, ri) → (ki,jtmp,mi): An algorithm that takes as input a pub-
lic key pk j, a secret key sk i, and randomness ri ∈ {0, 1}λ, and outputs a
temporary key ki,jtmp and a message mi.

– KEserver
refresh(sk j , rj , pk i,mi)→ (kj,imain, k

j,i
tmp,mj): An algorithm that takes as input

a secret key sk j, randomness rj, a public key pk i, and a message mi, and
outputs a key kj,imain, a temporary key kj,itmp and a message mj.

– KEclient
refresh(pk j , sk i, ri,mj) → ki,jmain: An algorithm that takes as input a public

key pk j, a secret key sk i, randomness ri, and message mj, and outputs a
key ki,jmain.

24

We say that a 0-RTT-M key exchange scheme is correct, if for all (pk i, sk i),
(pk j , sk j)

$← Gen(1λ) and for all ri, rj
$← {0, 1}λ holds that

Pr[ki,jtmp 6= kj,itmp or ki,jmain 6= kj,imain] ≤ negl(λ) ,

where (kj,itmp,mi) ← KEclient
init (pk j , sk i, ri), (k

i,j
tmp, k

i,j
main,mj) ← KEserver

refresh(sk j , rj , pk i,

mi), and k
j,i
main ← KEclient

refresh(pk j , sk i, ri,mj).

A 0-RTT-M scheme is used by a set parties which are either clients C or
servers S. Each principal has a generated a key pair (pkp, skp)

$← Gen(1λ, p) and
with published pkp. The protocol is executed as follows:

1. The client oracle Ci,s chooses ri ∈ {0, 1}λ and selects the public key of the
intended partner Sj,. Then it computes (ki,jtmp,mi)← KEclient

init (pk j , sk i, ri), and
sends mi to Sj . Additionally, Ci,s can use ki,jtmp to encrypt some data Mi.

2. Upon reception of message mi, Sj, initializes a new oracle Sj,t. Sj,t chooses
rj ∈ {0, 1}λ and computes (kj,imain, k

j,i
tmp,mj) ← KEserver

refresh(sk j , rj , pk i,mi). The
server may use the ephemeral key kj,itmp to decryptMi. Then, the server sends
mj and optionally some data Mj encrypted with the key kj,imain to the client.

3. Ci computes ki,jmain ← KEclient
refresh(pk j , sk i, ri,mj) and can decrypt Mj . Correct-

ness of the 0-RTT-M scheme guarantees that ki,jmain = kj,imain.

5.1 Security under Mutual Authentication

In a similar manner to security experiment and model under server-only au-
thentication, we define the experiment and execution environment for the Key-
Security game under mutual authentication.

Execution Environment. The security experiment provides the adversary with
an execution environment that simulates d clients and ` servers. Each client is
represented by a collection of n oracles Ci,1, . . . ,Ci,n and every server is repre-
sented by a collection of k oracles Sj,1, . . . ,Sj,k. Each oracle represents a process
that executes one single instance of the protocol. Each principal has a long-term
key pair (sk i, pk i). We use the following variables to maintain the internal state
of oracles. Temporary and main session stages are referenced as tmp and main.
Each oracle Ci,s, (i, s) ∈ [d]× [n] (or Sj,t, (j, t) ∈ [`]× [k], respectively), main-

tains:
– two variables ktmp

i and kmain
i to store the temporal and main keys of a

session,
– a variable Partneri, which contains the identity of the intended commu-

nication partner, and
– variablesMin

i,s andMout
i,s containing messages sent and received by the

oracle.
The internal state of an oracle is initialized to (ktmp

i , kmain
i ,Partneri,Min

i ,
Mout

i) := (∅, ∅, ∅, ∅, ∅).
We say that an oracle has accepted the temporal key if ktmp 6= ∅, and accepted
the main key if kmain = ∅.

25

Adversarial Model. Queries allowed to an adversary under the security experi-
ment when mutual authentication is possible correlate to those found in Section
3, with the inputs that an adversary may call the query on modified to the
following.

– Send(Ci,s/Sj,t,m)
– Reveal(Ci,s/Sj,t, tmp/main)
– Corrupt(i/j)
– Test(Ci,s/Sj,t, tmp/main)

Security Model. As in Section 3.2, a challenger follows the key-secrecy game
G0RT T −sa
A , eventually outputting a bit guess b′. However, the win conditions

allowed to an adversary are modified as follows, and the game played according
to these conditions is denoted G0RT T −ma

A .

Definition 8 (Key-Secrecy (under Mutual Authentication)). Let an at-
tacker A play the game G0RT T −ma

A as it is described above. We say the challenger
outputs 1, denoted by G0RT T −sa

A (λ) = 1, if b = b′ and the following conditions
hold:

– if A issues Test(Ci, tmp) all of the following hold:
• Reveal(Ci,s, tmp) was never queried by A
• Reveal(Sj,t, tmp) was never queried by A, for any oracle Sj,t such that

Partnersi = j andMin
j,t =Mout

i,s

• Ci is not τ -corrupted with τ <∞
• the communication partner Partnersi = j, if it exists, is not τ -corrupted
with τ <∞

– if A issues Test(Ci,s, main) all of the following hold:
• Reveal(Ci,s, main) was never queried by A
• Reveal(Sj,t, main) was never queried by A, where Partnersi = j, Min

j,t =

Mout
i,s , andMin

i,s =Mout
j,t

• the communication Partnersi = j is not τ -corrupted with τ < τ0, where
Test(Ci,s, main) is the τ0-th query issued by A

– if A issues Test(Sj,t, tmp) all of the following hold:
• Reveal(Sj,t, tmp) was never queried by A
• there exists an oracle Ci,s withMout

i,s =Min
j,t

• Reveal(Ci,s, tmp) was never queried by A where Partnertj = i and
Mout

i,s =Min
j,t

• Reveal(Sj,t′ , tmp) was never queried by A for any Sj,t′ withMin
j,t =Min

j,t′

• Sj, is not τ -corrupted with τ <∞
• the communication Partnertj = i is not τ -corrupted with τ <∞

– if A issues Test(Sj,t, main) all of the following hold:
• Reveal(Sj,t, main) was never queried by A
• there exists an oracle Ci,s withMout

i,s =Min
j,t

• Reveal(Ci,s, main) was never queried by A, where Partnertj = i and
Min

j,t =Mout
i,s

26

else the game outputs a random bit. We define the advantage of A to win the
game G0RT T −ma

A by

Adv0RT T −ma
A (λ) :=

∣∣∣∣2 · Pr[G0RT T −ma
A (λ) = 1]− 1

∣∣∣∣ .
Definition 9. We say that a low-latency key exchange protocol under mutual
authentication is test-secure if for all PPT adversaries A interacting according
to the security game G0RT T −sa

A (λ) it holds that

Adv0RT T −ma
A (λ) ≤ negl(λ) .

6 Generic Construction of 0-RTT-M from NIKE

In this section we describe our generic construction of 0-RTT KE with mutual
cryptographic authentication. Both the construction and its security analysis
are very similar to their respective counterparts in the case of server-only au-
thentication, the main differences are that now the message sent by the client
is digitally signed, to authenticate the client. Accordingly, the security proof is
adopted to the mutual-authentication case.

6.1 Generic Construction

Using the NIKE definition (2), we show how to generically construct a 0-RTT-M
scheme from a NIKE scheme.

Let NIKE = (NIKEgen,NIKEkey) be a NIKE scheme according to Definition 2
and let SIGN = (SIG.Gen,SIG.Sign,SIG.Vfy) be a signature scheme. Then we con-
struct a 0-RTT-M scheme 0-RTT-M = (Gen,M.KEclient

init ,M.KEclient
refresh,

M.KEserver
refresh), per Definition 7, in the following manner.

– Gen(1λ, r) computes key pairs using the NIKE key generation algorithm
(pknike, sknike)

$← NIKEgen(1λ) and signature keys using the SIGN algorithm
(pk sg, sk sg)

$← SIG.Gen, and outputs

(pk , sk) := ((pknike, pk sg), (sknike, sk sg)) .

– M.KEclient
init (pk j , sk i, ri) samples ri

$← {0, 1}λ, parses (sknike−static
i , sk sg

i)) and
pk j = (pknike−static

j , pk sg
j), and runs (pknike

i , sknike
i) ← NIKEgen(1λ, ri) and

knikei,j ← NIKEkey(sknike
i , pknike−static

j). It then computes σi ← SIG.Sign(sk sg
i ,

pknike
i) and outputs

(ki,jtmp,mi) := (knikei,j , (pk
nike
i , σi)) .

– M.KEserver
refresh(sk j , rj , pk i,mi) parses mi = (pknike

i , σi), pk i = (pknike−static
i ,

pk sg
i), and sk j = (sknike−static

j , sk sg
j), samples rj

$← {0, 1}λ, and checks true←

27

SIG.Vfy(pk sg
i , σi, pk

nike
i). It then computes knikei,j ← NIKEkey(sknike−static

j ,

pknike
i), (pknike

j , sknike
j) ← NIKEgen(1λ, rj), σj ← SIG.Sign(sk sg

j , pk
nike
j), and

knikemain ← NIKEkey(sknike
j , pknike

i), and outputs

(kj,imain, k
j,i
tmp,mj) := (knikemain, k

nike
i,j , (pk

nike
j , σj)) .

– M.KEclient
refresh(pk j , sk i, ri,mj) parses pk j = (pknike−static

j , pk sg
j) andmj = (pknike

j ,

σj). It then checks true ← SIG.Vfy(pk sg
j , σj , pk

nike
j) and computes knikemain ←

NIKEkey(sknike
i , pknike

j), and outputs

ki,jmain := knikemain .

6.2 Proof of Security for 0-RTT-M from NIKE Construction

Theorem 2. Let 0-RTT-M be executed with d clients, n oracles modeling each
client, ` servers with long-term keys, and k server oracles modeling each server.
From each attacker A, we can construct attackers Bsig, according to Definition
1, and Bnike, according to Definition 3, such that

Adv0RT T −ma
A (λ) ≤
d`n ·

(
Adv

CKS-light
NIKE,Bnike

(λ) + AdvsEUF-CMA
SIG,Bsig

(λ) + AdvsEUF-CMA
SIG,Bcsig

(λ)
)

+ d`n ·
(
k · AdvCKS-light

NIKE,Bnike
(λ) + AdvsEUF-CMA

SIG,Bsig
(λ) + AdvsEUF-CMA

SIG,Bcsig
(λ)
)

+ 2kd`n ·
(
Adv

CKS-light
NIKE,Bnike

(λ) + AdvsEUF-CMA
SIG,Bsig

(λ) + AdvsEUF-CMA
SIG,Bcsig

(λ)
)

+ 4 · AdvCKS-light
NIKE,Bnike

(λ) .

The running time of Bsig and Bnike is approximately equal to the running time
of A for the simulation of the security experiment for A.(
Bcsig Proof Sketch. Again we distinguish between four attackers:

– adversary A5 asks Test() to a client oracle and the temporary key (CT-
attacker)

– adversary A6 asks Test() to a client oracle and the main key (CM-attacker)
– adversary A7 asks Test() to a server oracle and the temporary key (ST-

attacker)
– adversary A8 asks Test() to a server oracle and the main key (SM-attacker)

From these, Lemmas 5-8 complete the proof of Theorem 2.

28

Lemma 5. From each CT-attacker A5, we can construct attackers Bsig and
Bcsig, according to Definition 1, and Bnike, according to Definition 3, such that

Adv0RT T −ma
A5

(λ) ≤ d`n ·
(
Adv

CKS-light
NIKE,Bnike

(λ) + AdvsEUF-CMA
SIG,Bsig

(λ)

+ AdvsEUF-CMA
SIG (Bcsig)

)
+ Adv

CKS-light
NIKE,Bnike

(λ) .

The running time of Bsig and Bnike is approximately equal to the running time
of A5 for the simulation of the security experiment for A5.

Proof Sketch. As the proof of for 0-RTT-M follows closely to that of Lemma 1,
we highlight the main differences for conciseness.

– In Lemma 1, Game 2, we additionally choose a random s′
$← {1 . . . n},

aborting the experiment if the attacker A5 does not ask the Test-query
to Ci,s for i = i′ and s = s′.

– After Lemma 1, Game 4 we add the additional condition we abort the game
and output a random bit ifMin

j,t = (pknike
i,s , σi) where true ← SIG.Vfy(pk sg

i ,

σi, pk
nike
i,s) and no oracle of i has previously computed the pair (pknike

i,s , σi).
Now the game is indistinguishable from Lemma 1, Game 4, else it would be
possible to build an attacker Bcsig that could generate a valid client signature.

– Bnike continues to simulate the experiment as in the proof of Lemma 1.
• A may ask Corrupt-queries for any server oracle Sj′,t, such that j 6= j′,

and any client oracle Ci′s, such that i 6= i′.
Reveal- and Send-queries are handled as in the proof of Lemma 1.

Lemma 6. From each CM-attacker A6, we can construct attackers Bsig, ac-
cording to Definition 1, and Bnike, according to Definition 3, such that

Adv0RT T −ma
A6

(λ) ≤ d`n ·
(
k · AdvCKS-light

NIKE,Bnike
(λ) + AdvsEUF-CMA

SIG,Bsig
(λ)

+ AdvsEUF-CMA
SIG (Bcsig)

)
+ Adv

CKS-light
NIKE,Bnike

(λ) .

The running time of Bsig and Bnike is approximately equal to the running time
of A6 for the simulation of the security experiment for A6.

Notably, the main differences between the proofs of Lemma 2 and Lemma
6 are exactly those described in the proof sketch of Lemma 5 above, with the
following addition.
A may ask Corrupt-queries on any server oracle Sj′,t, such that j 6= j′, and

any client oracle Ci′s, such that i 6= i′. However, it may also ask its τ -th query
as a Corrupt-query on Sj,t or Ci,s if τ > τ0, where Test(Sj,t, main) was the τ0-th
query.

Lemma 7. From each ST-attacker A7, we can construct attackers Bsig, accord-
ing to Definition 1, and Bnike, according to Definition 3, such that

Adv0RT T −ma
A7

(λ) ≤ kd`n ·
(
Adv

CKS-light
NIKE,Bnike

(λ) + AdvsEUF-CMA
SIG,Bsig

(λ)

+ AdvsEUF-CMA
SIG (Bcsig)

)
+ Adv

CKS-light
NIKE,Bnike

(λ) .

29

The running time of Bsig and Bnike is approximately equal to the running time
of A7 for the simulation of the security experiment for A7.

Proof Sketch. Here again, the proof follows that of Lemma 3, adapted as in
that of Lemma 5.

Lemma 8. From each SM-attacker A8, we can construct attackers Bsig, ac-
cording to Definition 1, and Bnike, according to Definition 3, such that

Adv0RT T −ma
A8

(λ) ≤ kd`n ·
(
AdvsEUF-CMA

SIG,Bsig
(λ) + Adv

CKS-light
NIKE,Bnike

(λ)

+ AdvsEUF-CMA
SIG (Bcsig)

)
+ Adv

CKS-light
NIKE,Bnike

(λ) .

The running time of Bsig and Bnike is approximately equal to the running time
of A8 for the simulation of the security experiment for A8.

Here the proof follows according to that of Lemma 4, edited according to
the description in the proof sketch of Lemma 5. Additionally, in the experiment
simulation by Bnike, A may ask Corrupt-queries on any server oracle Sj′,t, such
that j 6= j′, and any client oracle Ci′s, such that i 6= i′. However, it may also ask
its τ -th query as a Corrupt-query on Sj,t or Ci,s if τ > τ0, where Test(Sj,t, main)
was the τ0-th query.

References

1. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In V. Ashby, editor, ACM CCS 93, pages 62–73,
Fairfax, Virginia, USA, November 3–5, 1993. ACM Press.

2. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution.
In Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 232–249,
Santa Barbara, CA, USA, August 22–26, 1994. Springer, Heidelberg, Germany.

3. Florian Bergsma, Tibor Jager, and Jörg Schwenk. One-round key exchange with
strong security: An efficient and generic construction in the standard model. In
Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 477–494, Gaithers-
burg, MD, USA, March 30 – April 1, 2015. Springer, Heidelberg, Germany.

4. Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti,
Pierre-Yves Strub, and Santiago Zanella Béguelin. Proving the TLS handshake
secure (as it is). In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 235–255, Santa Barbara, CA, USA, Au-
gust 17–21, 2014. Springer, Heidelberg, Germany.

5. Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key agreement protocols
and their security analysis. In Michael Darnell, editor, 6th IMA International Con-
ference on Cryptography and Coding, volume 1355 of LNCS, pages 30–45, Cirences-
ter, UK, December 17–19, 1997. Springer, Heidelberg, Germany.

6. Dan Boneh, Emily Shen, and Brent Waters. Strongly unforgeable signatures based
on computational Diffie-Hellman. In Yung et al. [29], pages 229–240.

7. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In Birgit Pfitzmann, editor, EUROCRYPT 2001, vol-
ume 2045 of LNCS, pages 453–474, Innsbruck, Austria, May 6–10, 2001. Springer,
Heidelberg, Germany.

30

8. David Cash, Eike Kiltz, and Victor Shoup. The twin Diffie-Hellman problem and
applications. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS,
pages 127–145, Istanbul, Turkey, April 13–17, 2008. Springer, Heidelberg, Ger-
many.

9. Cas Cremers. Examining indistinguishability-based security models for key ex-
change protocols: the case of CK, CK-HMQV, and eCK. In Bruce S. N. Cheung,
Lucas Chi Kwong Hui, Ravi S. Sandhu, and Duncan S. Wong, editors, ASIACCS
11, pages 80–91, Hong Kong, China, March 22–24, 2011. ACM Press.

10. Cas J. F. Cremers. Session-state reveal is stronger than ephemeral key reveal:
Attacking the NAXOS authenticated key exchange protocol. In Michel Abdalla,
David Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud, editors, ACNS 09,
volume 5536 of LNCS, pages 20–33, Paris-Rocquencourt, France, June 2–5, 2009.
Springer, Heidelberg, Germany.

11. Marc Fischlin and Felix Günther. Multi-stage key exchange and the case of Google’s
QUIC protocol. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS
14, pages 1193–1204, Scottsdale, AZ, USA, November 3–7, 2014. ACM Press.

12. Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Paterson.
Non-interactive key exchange. In Kaoru Kurosawa and Goichiro Hanaoka, editors,
PKC 2013, volume 7778 of LNCS, pages 254–271, Nara, Japan, February 26 –
March 1, 2013. Springer, Heidelberg, Germany.

13. Matthew D. Green and Ian Miers. Forward secure asynchronous messaging from
puncturable encryption. In IEEE S&P 2015 [15], pages 305–320.

14. Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer. 0-RTT key exchange
with full forward-secrecy. EUROCRYPT, 2017.

15. 2015 IEEE Symposium on Security and Privacy, San Jose, California, USA,
May 17–21, 2015. IEEE Computer Society Press.

16. Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security
of TLS-DHE in the standard model. In Reihaneh Safavi-Naini and Ran Canetti,
editors, CRYPTO 2012, volume 7417 of LNCS, pages 273–293, Santa Barbara, CA,
USA, August 19–23, 2012. Springer, Heidelberg, Germany.

17. Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In
Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 546–566, Santa
Barbara, CA, USA, August 14–18, 2005. Springer, Heidelberg, Germany.

18. Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security of the
TLS protocol: A systematic analysis. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 429–448, Santa Barbara, CA,
USA, August 18–22, 2013. Springer, Heidelberg, Germany.

19. Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of
authenticated key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors,
ProvSec 2007, volume 4784 of LNCS, pages 1–16, Wollongong, Australia, Novem-
ber 1–2, 2007. Springer, Heidelberg, Germany.

20. Kristin Lauter and Anton Mityagin. Security analysis of KEA authenticated key
exchange protocol. In Yung et al. [29], pages 378–394.

21. Laurie Law, Alfred Menezes, Minghua Qu, Jerry Solinas, and Scott Vanstone. An
efficient protocol for authenticated key agreement. Designs, Codes and Cryptogra-
phy, 28(2):119–134, 2003.

22. Robert Lychev, Samuel Jero, Alexandra Boldyreva, and Cristina Nita-Rotaru. How
secure and quick is QUIC? provable security and performance analyses. In IEEE
S&P 2015 [15], pages 214–231.

23. NIST. Skipjack and kea algorithm specifications, 1998. http://csrc.nist.gov/
groups/STM/cavp/documents/skipjack/skipjack.pdf.

31

http://csrc.nist.gov/groups/STM/cavp/documents/skipjack/skipjack.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/skipjack/skipjack.pdf

24. E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3: draft-ietf-
tls-tls13-08. Technical report, August 2015. Expires February 29, 2016.

25. E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3: draft-ietf-
tls-tls13-16. Technical report, September 2016. Expires March 26, 2017.

26. Augustin P. Sarr, Philippe Elbaz-Vincent, and Jean-Claude Bajard. A new security
model for authenticated key agreement. In Juan A. Garay and Roberto De Prisco,
editors, SCN 10, volume 6280 of LNCS, pages 219–234, Amalfi, Italy, Septem-
ber 13–15, 2010. Springer, Heidelberg, Germany.

27. Ron Steinfeld, Josef Pieprzyk, and Huaxiong Wang. How to strengthen any weakly
unforgeable signature into a strongly unforgeable signature. In Masayuki Abe,
editor, CT-RSA 2007, volume 4377 of LNCS, pages 357–371, San Francisco, CA,
USA, February 5–9, 2007. Springer, Heidelberg, Germany.

28. Kazuki Yoneyama and Yunlei Zhao. Taxonomical security consideration of au-
thenticated key exchange resilient to intermediate computation leakage. In Xavier
Boyen and Xiaofeng Chen, editors, ProvSec 2011, volume 6980 of LNCS, pages
348–365, Xi’an, China, October 16–18, 2011. Springer, Heidelberg, Germany.

29. Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors. PKC 2006,
volume 3958 of LNCS, New York, NY, USA, April 24–26, 2006. Springer, Heidel-
berg, Germany.

32

	Simple Security Definitions for and Constructions of 0-RTT Key Exchange
	!-1cm

