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Abstract

Unclonable Encryption is a technique similar to Quantum Key Distribution and authentica-
tion of quantum states; it quantum-protects classical ciphertext so that it cannot be copied by
eavesdroppers. We propose an improved variant which has higher efficiency and much better
noise tolerance. Our variant uses four cipherstate bases that are equally spaced on the Bloch
sphere, instead of the usual + and × basis.

1 Introduction

1.1 Quantum physics in cryptography and security

Quantum physics is markedly different from classical physics regarding information processing.
For instance, performing a measurement on an unknown quantum state typically destroys state
information. Furthermore, it is impossible to clone an unknown state by unitary evolution [1].
These two properties are very interesting for security applications, since they provide a certain
amount of inherent confidentiality, unclonability and tampering detection. Quantum physics also
has entanglement of subsystems, which allows for feats like teleportation [2, 3] that have no classical
analogue.

The laws of quantum physics have been exploited in numerous (cryptographic) schemes, such
as Quantum Key Distribution (QKD) [4, 5, 6], quantum anti-counterfeiting [7], quantum Oblivious
Transfer [8, 9], authentication and encryption of quantum states [10, 11, 12], quantum authenti-
cation of PUFs [13, 14], and quantum-secured imaging [15], to name a few. A recent overview of
quantum-cryptographic schemes is given in [16].

1.2 Unclonable ciphertext

A less known primitive is Unclonable Encryption (UE), introduced by Daniel Gottesman in 2003
[17].1 The context here is that there is a quantum channel from Alice to Bob, but, in contrast to
QKD, no (cheap) channel from Bob to Alice. This scenario is relevant for instance when a message
is sent into the future, or in the case of significant time lags in long-distance communication, or if
multiple-round protocols are too costly. The aim of Unclonable Encryption is to send a classical
ciphertext to Bob, quantum-protected in such a way that one of the following two outcomes occurs:
Either (i) Bob successfully recovers the plaintext and verifies its authenticity. Eve learns nothing
about the ciphertext. Or (ii) Eve learns some of the ciphertext. Bob is not able to recover&verify
the plaintext, i.e. the attack has been noticed.

Gottesman listed a number of use cases for Unclonable Encryption,

1. Alice and Bob use a classical One Time Pad (OTP). When an OTP has not yet been used,
it needs to be strictly protected. After it has been used, it must be completely erased from
memory. With today’s computer infrastructure both data protection and data erasure are
nontrivial tasks. Eve copies the classical ciphertext and she may later obtain information
about the OTP. UE thwarts this attack by denying Eve the ability to copy the ciphertext.

1That work was presaged by an unpublished manuscript by Bennett, Brassard and Breidbart in 1982 [18].
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2. Similar to use case 1, but with cryptography based on computational assumptions. Instead
of an OTP, Alice and Bob repeatedly use the same short key to encrypt large plaintexts.
Now, even if she cannot get hold of the encryption key, Eve’s ability to make a copy of each
ciphertext allows her to launch brute force attacks. Again, UE thwarts the attack.

3. Quantum Key Distribution with less interaction than standard schemes, and fewer bits spent
for eavesdropping detection.

Gottesman’s UE scheme protects the classical ciphertext by encoding each ciphertext bit in a qubit
state, either in the standard basis (“+”) or in the Hadamard basis (“×”). The sequence of bases
is a secret known only by Alice and Bob. Any attempt by Eve, who does not know the sequence,
to measure a qubit state will cause a disturbance at Bob’s side with substantial probability.

The scheme does not need any entanglement (which is difficult to create and preserve) or
complicated unitary transformations, and can be implemented using purely “prepare and measure”
techniques such as in BB84.

One interesting aspect of the scheme is that, as long as no disturbance is noticed, Alice and
Bob can keep re-using their secret bases sequence.2 Remarkably, this holds even if the sequence
is generated pseudorandomly from a short secret: Eve must break the pseudo-randomness before
Bob receives the qubits.

UE is similar to Quantum Key Recycling Schemes (QKRSs) [19], but there are subtle differ-
ences. A QKRS protects the plaintext but does allow the attacker to obtain knowledge about the
ciphertext. Furthermore, QKRSs typically require multi-qubit operations during encryption and
decryption, whereas Gottesman’s UE is entirely based on single-qubit operations.

1.3 Contributions and outline

We propose an improvement of Gottesman’s Unclonable Encryption scheme. We use the well
known two-bit encryption of qubit states, and encode a classical ciphertext bit into one of eight
states which are maximally spread apart on the Bloch sphere. We refer to this as the eight-state
system. Making use of the full Bloch sphere, instead of just the one circle containing the “+”
and “×” basis, brings a number of advantages. Eve’s knowledge about the classical ciphertext is
drastically reduced, even to zero in case of a fully random sequence of bases. Furthermore, the
probability of detecting eavesdroppers increases. These advantages reduce the amount of privacy
amplification (compression) needed in the scheme and thereby reduce the number of qubits needed
to send a message and improve the noise tolerance. From our improved UE we construct a QKD
variant that is more efficient than Gottesman’s QKD-from-UE construction.

The outline of this paper is as follows. In Section 2 we briefly review Gottesman’s scheme
and encryption of quantum states. Section 3 discusses the privacy amplification in Gottesman’s
scheme. In Section 4 we introduce our 8-state system and the improved UE. In Section 5 we
analyse the privacy amplification needs of the improved scheme, and in Section 6 we analyse the
security of the classical ciphertext and of the quantum encryption key in cases where keys are
generated pseudorandomly. In Section 7 we discuss the implications for QKD. Section 8 concludes
with a discussion of implementation options and potential uses of the improved UE.

2 Preliminaries

2.1 Notation and terminology

Random Variables (RVs) are denoted with capital letters, and their realisations with lowercase
letters. The probability that a RV X takes value x is written as Pr[X = x]. The expectation with
respect to RV X is denoted as Exf(x) =

∑
x∈X Pr[X = x]f(x). Sets are denoted in calligraphic

font. The notation ‘log’ stands for the logarithm with base 2. The min-entropy of X ∈ X is
denoted as Hmin(X) = − log maxx∈X Pr[X = x], and the conditional min-entropy as Hmin(X|Y ) =

2The aim of [18] was to re-use the classical OTP.
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− log Ey maxx∈X Pr[X = x|Y = y]. The notation h stands for the entropy function h(p) =
p log 1

p + (1−p) log 1
1−p . Bitwise XOR is written as ‘⊕’. In the treatment of error-correcting codes

we write messages, codewords and syndromes as column vectors.
For quantum states we use Dirac notation, with the standard qubit basis states |0〉 and |1〉

represented as
(
1
0

)
and

(
0
1

)
respectively. The Pauli matrices are denoted as σx, σy, σz, and we write

σ = (σx, σy, σz). The standard basis is the eigenbasis of σz, with |0〉 in the positive z-direction. We
write 1n for the n×n identity matrix. The fully mixed N -qubit state is denoted as τN = 2−N12N .
We will use the Positive Operator Valued Measure (POVM) formalism. The notation ‘tr’ stands
for trace.

2.2 Gottesman’s Unclonable Encryption scheme

We briefly describe Gottesman’s scheme, in particular the second variant presented in [17], and
its main properties.
Preparation phase

Alice and Bob share three classical secrets: an authentication key a ∈ {0, 1}s, a OTP e ∈ {0, 1}N
and a basis sequence b ∈ {0, 1}N . Alice and Bob agree on a message length n and on a Message
Authentication Code (MAC) that uses the key a and produces a string of length s. They agree on
an error-correcting code C with message length k (k > n+ s) and codeword length N , as well as
an error-correcting code D with message length k′ = (n+s)+N−k (k′ < k) and codeword length
N , satisfying3 D⊥ ⊂ C. The parity check matrix of C is contained in the parity check matrix of
D⊥. (See Fig. 1). The purpose of code C is to correct noise on the quantum channel, while D is
used for privacy amplification. For D it is not necessary to have an efficient decoding algorithm.

HC 

extra parity checks 

N−k$

n+s$
k'$HD    = 

N$

�!

Figure 1: Relation between the codes C and D⊥ ⊂ C.

Encryption
Alice performs the following steps.

A1. Take the plaintext x ∈ {0, 1}n and compute a MAC µ ∈ {0, 1}s using the key a. Concatenate
x and µ into y = xµ ∈ {0, 1}n+s.

A2. Find any vector zy ∈ {0, 1}N that satisfies

HD⊥ zy =

(
0N−k

y

)
∈ {0, 1}k′ , (1)

i.e. zy is a codeword of C and has additional syndrome bits y w.r.t. D⊥. Pick a random
codeword r ∈ D⊥ (N − k′ random bits) and compute z = zy ⊕ r.

A3. Apply the One-Time Pad: g = z ⊕ e ∈ {0, 1}N .

A4. For i ∈ {1, . . . , N} encode ciphertext bit gi in the basis “+” if bi = 0 and in the basis “×”
if bi = 1. The resulting state is denoted as |ψ〉i. Send |ψ〉i to Bob.

3The notation D⊥ stands for the dual code, i.e. all vectors in D⊥ are orthogonal to all vectors in D. The
notation D⊥ ⊂ C means that each codeword of D⊥ is also a codeword of C.
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Decryption
Bob performs the following steps.

B1. For i ∈ {1, . . . , N} receive qubit states |ψ′〉i. If bi = 0 measure the qubit in the “+” basis,
otherwise in the “×” basis. The result is g′i ∈ {0, 1}.

B2. Apply the One-Time Pad: z′ = g′ ⊕ e ∈ {0, 1}N .

B3. Apply error correction on z′ using code C. The result is denoted as ẑ ∈ C.

B4. Compute y′ = (HD⊥ ẑ)lastn+s bits.

B5. Parse y′ as the concatenation x′µ′ with x′ ∈ {0, 1}n. Using the key a, verify if µ′ is a correct
MAC on x′.

If the verification in step B5 fails, then either Eve tampered with the transmitted qubits or there
was too much noise on the quantum channel. Step B3 corrects transmission errors. Step B4
achieves privacy amplification, which is necessary since the noise that is tolerated by the protocol
could be due to Eve’s snooping, from which she obtains some information about the ciphertext g.
(See Section 3).
Re-usability
As long as the OTP is fully random in each message and Bob detects no disturbance, the keys a
and b can be safely re-used. Consequently, for asymptotic number of undisturbed messages the
number of key bits required to encrypt a message is practically the same as for a classical OTP,
and the unclonability has been obtained essentially ‘for free’.

If Alice and Bob are re-using b and Eve at some point in time learns b, then (i) Eve can copy
future ciphertexts g but not decrypt them because of the fresh OTPs; and (ii) she can not learn
anything about the ciphertext g of past messages.

If Eve learns the OTP e for a message before/during transmission, then the unclonability
prevents her from learning g (and hence the plaintext). However, she can obtain information
about b, which endangers the unclonability of future transmissions if Alice and Bob re-use b.
Pseudorandom basis sequence
Unclonability still holds if b is generated pseudorandomly from a large enough seed. Eve has to
break the pseudorandomness before Bob receives the qubits, otherwise she cannot clone the qubits.

2.3 Perfect encryption of arbitrary qubit states

An arbitrary unknown qubit state can be perfectly encrypted using a classical two-bit key. Let the
state be a pure state |ψ〉 and let the key be (u,w) ∈ {0, 1}2. The encrypted state is |ψuw〉 = Euw|ψ〉,
with Euw the unitary encryption operator, Euw = |w〉〈0|+ (−1)u|1⊕w〉〈1|. In terms of Pauli spin
matrices: E00 = 1, E01 = σx, E10 = σz, E11 = σxσz, or Euw = σwx σ

u
z . From the point of view

of an attacker Eve who does not know u,w, the state is a mixed state 1
4

∑
u,w |ψuw〉〈ψuw| = 1

21.
In other words, from Eve’s point of view the result of the encryption carries no information at all
about ψ.

3 Privacy amplification parameters in Gottesman’s scheme

The code C is capable of correcting up to Nδ errors, where δ depends on the noise level of the
quantum channel. In [17] it is specified that D must be able to correct N(δ+ η) errors, where for
large N the η is allowed to go to zero. The requirement on D is a consequence of the particular
way in which Gottesman derived his scheme from a quantum authentication protocol.

Below we present heuristic arguments about the privacy amplification requirements. These
arguments give some intuition on the parameter choices.

If Nδ errors are tolerated, then in the worst case all these errors are due to Eve’s eavesdropping
as opposed to random noise. When Eve does a projective measurement on a qubit |ψ〉i, she causes a
disturbance g′i 6= gi at Bob’s side with probability 1

4 . (The 1
4 probability holds for all measurement
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bases of the form cosϕ|0〉 + sinϕ|1〉 that Eve could choose; it is a property of the “+×” bases
system used by Alice and Bob.) Hence, when Nδ errors occur it is prudent to assume that Eve has
performed a measurement on approximately 4Nδ qubits. It is well known that Eve learns most
if she applies the ‘π8 -attack’, i.e. measuring polarisation at an angle ϕ = π/8 which lies exactly
halfway between the “+” and “×” basis. In this way she achieves Hmin(Gi|Eve’s observation) =
− log2(cos π8 )2 ≈ 0.228. Thus, in terms of min-entropy, we can say that Eve has learned NE ≈
4Nδ · 0.772 = 3.09Nδ bits of information about the RV G ∈ {0, 1}N without being detected.

Consider the case where Alice and Bob keep re-using the basis sequence b. Eve collects 2Nδ
qubits from each transmission (e.g. the first 2Nδ qubits) without being noticed. (Now the proba-
bility of causing a bit flip is 1

2 ). After a large number of transmissions, she applies a measurement
on all qubits with the same index i; since they are encrypted with the same key bi, Eve learns
practically everything about the ciphertext bits. She does this for each of the 2Nδ positions. Her
knowledge NE about each transmitted ciphertext is almost 2Nδ.

The privacy amplification step has to turn Eve’s NE bits of knowledge about g into practically
zero knowledge about the n + s last bits of the D⊥-syndrome of g. After the error correction, a
string in {0, 1}N is obtained with k degrees of freedom. Then the privacy amplification maps this
to a syndrome of size n+ s. The number of bits ‘ignored’ by the syndrome is k− (n+ s) = N −k′,
which is precisely the redundancy of the code D. This should exceed Eve’s knowledge NE . Indeed,
[17] suggests a construction with redundancy N − k′ = Nh(2δ + 2η) > 4N(δ + η) > NE . The
paper also states that setting the redundancy of the code C to N − k = Nh(2δ) is achievable
(though closer to the Shannon bound Nh(δ) is of course desirable). According to these somewhat
pessimistic parameter choices, the number of qubits used to send a message of length n+ s would
be N = (n+ s)/[1− h(2δ)− h(2δ + 2η)].

The ‘overhead’ from the privacy amplification, without counting the error correction, is a factor
N

(n+s)/[1−h(2δ)] = 1−h(2δ)
1−h(2δ)−h(2δ+2η) = 1 + h(2δ+2η)

1−h(2δ)−h(2δ+2η) . Even for η → 0 the overhead factor is

considerable and explodes to infinity around δ = 0.055. This would imply that the scheme does
not work at noise levels higher than approximately 5.5%. The numbers improve if we move closer
to the Shannon bound. In the most optimistic case, we set η = 0, N−k = Nh(δ) and N−k′ = NE
resulting in an overhead factor 1 + NE/N

1−h(δ)−NE/N
. Now the overhead explodes only at δ ≈ 0.137;

however, the overhead is still considerable, e.g. a factor 2 at δ ≈ 0.09.

4 Eight-state Unclonable Encryption

Intuitively, it should be possible to obtain an Unclonable Encryption scheme better than [17] from
the perfect encryption scheme of Section 2.3. However, we observe that it makes no sense to apply
the perfect encryption scheme to a classical bit if that bit is represented in the standard basis
|0〉, |1〉.4 All the eight encrypted states are proportional either to |0〉 or to |1〉. While the plaintext
value is perfectly hidden, Eve can learn the encrypted state with 100% accuracy, completely
breaking the unclonability property that we are aiming for. What has in fact been achieved is a
wasteful two-bit masking of a single classical bit.

We propose a system in which a classical bit is nontrivially quantum-encrypted using the 2-bit
key; this results in 8 entirely different states which are maximally spread out over the Bloch sphere.
Although our 8-state set is very simple and has interesting properties, we are not aware that it
has ever been used.

4Which is in fact what happens in Appendix B of [17].
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4.1 Maximally separated cipherstates

We define cosα
def
= 1/

√
3, α ≈ 0.96.5 We write

√
i = eiπ/4. We encode the classical ‘0’ and ‘1’ as

qubit states ψ0, ψ1,

|ψ0〉 def=

(
cos α2√
i sin α

2

)
|ψ1〉 def=

(
sin α

2

−
√
i cos α2

)
〈ψ1|ψ0〉 = 0 (2)

which on the Bloch sphere corresponds to the normal vectors (1, 1, 1)T/
√

3 and (−1,−1,−1)T/
√

3
respectively. In spherical coordinates (θ, ϕ) this corresponds to (θ, ϕ) = (α, π4 ) and (θ, ϕ) =
(π − α,− 3

4π). Compactly written in terms of the standard basis |0〉, |1〉,

|ψg〉 = (−
√
i)g cos α2 |g〉+ (

√
i)1−g sin α

2 |1− g〉 g ∈ {0, 1}. (3)

We act on these qubit states with the four encryption operators Euw defined in Section 2.3 and
thus obtain eight different cipherstates,

|ψuwg〉 def= Euw|ψg〉 = (−1)gu
[
(−
√
i)g cos α2 |g ⊕ w〉+ (−1)u(

√
i)1−g sin α

2 |1− g ⊕ w〉
]
. (4)

On the Bloch sphere these correspond to unit-length vectors nuwg as follows,

nuwg =
(−1)g√

3

(−1)u

(−1)u+w

(−1)w

 . (5)

The relation between the Bloch sphere angles θ, ϕ and the elliptic polarisation parameters β (angle
from the x-axis to the major axis) and tan ζ (ratio minor/major, with ζ < 0 left rotating) is
given by cos θ = cos 2ζ cos 2β, sinϕ = sin 2ζ/

√
1− (cos 2ζ cos 2β)2, tan 2β = cosϕ tan θ, sin 2ζ =

sin θ sinϕ. Our eight cipherstates have β ∈ {±π8 ,± 3π
8 }, ζ = ±(π4 − α

2 ) ≈ ±0.308. We will often
write b = 2u+ w, b ∈ {0, 1, 2, 3} as a basis index, with corresponding notation |ψbg〉 and nbg.

u w g x y z θ ϕ β ζ cipherstate |ψuwg〉
0 0 0 + + + α π/4 π/8 + cos α2 |0〉+

√
i sin α

2 |1〉
0 1 0 + − − π − α −π/4 3π/8 − cos α2 |1〉+

√
i sin α

2 |0〉
1 0 0 − − + α −3π/4 −π/8 − cos α2 |0〉 −

√
i sin α

2 |1〉
1 1 0 − + − π − α 3π/4 −3π/8 + cos α2 |1〉 −

√
i sin α

2 |0〉
0 0 1 − − − π − α −3π/4 −3π/8 − sin α

2 |0〉 −
√
i cos α2 |1〉

0 1 1 − + + α 3π/4 −π/8 + sin α
2 |1〉 −

√
i cos α2 |0〉

1 0 1 + + − π − α π/4 3π/8 + sin α
2 |0〉+

√
i cos α2 |1〉

1 1 1 + − + α −π/4 π/8 − sin α
2 |1〉+

√
i cos α2 |0〉

4.2 Properties of the eight-state system

It holds that 〈ψuw0|ψuw1〉 = 0, i.e. opposite bit values encrypted with the same key lead to
orthogonal cipherstates. This trivially follows from the unitarity of the encryption operators,
〈ψuw0|ψuw1〉 = 〈ψ0|E†uwEuw|ψ1〉 = 〈ψ0|ψ1〉 = 0.

More generally, we can readily compute the inner products between all the various cipherstates
from the general rule |〈ψu′w′g′ |ψuwg〉|2 = 1

2 + 1
2nu′w′g′ · nuwg,

|〈ψu′w′g′ |ψuwg〉|2 = δuu′δww′ · δgg′ + (1− δuu′δww′)
[
δgg′

1

3
+ (1− δgg′)

2

3

]
. (6)

5sinα =
√

2/3; tanα =
√

2; cos α
2

=
√

1
2

+ 1
2
√
3

; sin α
2

=
√

1
2
− 1

2
√
3

; tan α
2

=
√
3−1√
2

.
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E00| 0i

E11| 0i
E01| 0i

E10| 0i

Fig. 2. Relation between the codes C and D? ⇢ C..
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Figure 2: The eight cipherstates |ψuwg〉 = Euw|ψg〉 shown (left) on the Bloch sphere, forming the
corner points (±1,±1,±1)/

√
3 of a cube; and (right) as elliptic polarisation states. ‘R’ stands for

righthanded, ‘L’ for lefthanded.

In words: When g gets encrypted with two different keys the two cipherstates have (squared)
inner product 1/3; any encryption of g, g′, g′ 6= g, with unequal keys yields cipherstates that have
inner product 2/3. The squared inner product determines the probability that one cipherstate
gets projected onto another when a projective measurement is performed. Eq. (6) tells us that the
nontrivial encryptions of |ψ1−g〉 look more like |ψg〉 than the nontrivial encryptions of |ψg〉 itself.

The projection operator for the state |ψuwg〉 is given by

|ψuwg〉〈ψuwg| = 1
21 + 1

2nuwg · σ (7)

=
1

2
1 +

(−1)g

2
√

3

(
(−1)w (−1)u

√
2(
√
i)2w−1

(−1)u
√

2(
√
i)1−2w −(−1)w

)
.

From (7) it is readily verified that the mixed state resulting from encryption with a random key
(u,w) is ρ = 1

4

∑
uw |ψuwg〉〈ψuwg| = 1

21, i.e. the fully mixed state. This holds even for known g.

4.3 Eight-state unclonable ciphertext scheme

We finally get to the main contribution, namely the improved Unclonable Encryption scheme.
It closely follows the steps of Gottesman’s scheme, with two differences: we use the eight-state
system instead of the +× bases, and our code parameters are different. We first present the
protocol steps; then we analyze the security.
Preparation phase
Same as Section 2.2, but now bi ∈ {0, 1, 2, 3} with bi = 2ui + wi and ui, wi ∈ {0, 1}.
Encryption

A1. Take the plaintext x ∈ {0, 1}n and compute a MAC µ ∈ {0, 1}s using the key a. Concatenate
x and µ into y = xµ ∈ {0, 1}n+s.

A2. Find any vector zy ∈ {0, 1}N that satisfies HD⊥ zy =

(
0N−k

y

)
∈ {0, 1}k′ . Pick a random

codeword r ∈ D⊥ (N − k′ random bits) and compute z = zy ⊕ r.

A3. Apply the One-Time Pad: g = z ⊕ e ∈ {0, 1}N .

A4. For i ∈ {1, . . . , N} prepare state |χ〉i = |ψuiwigi〉 according to (4). Send |χ〉i.
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Decryption

B1. For i ∈ {1, . . . , N} receive qubit states |χ′〉i. Measure |χ′〉i in the basis |ψuiwi0〉, |ψuiwi1〉.
The result is g′i ∈ {0, 1}.

B2. Apply the One-Time Pad: z′ = g′ ⊕ e ∈ {0, 1}N .

B3. Apply error correction on z′ using code C. The result is denoted as ẑ ∈ C.

B4. Compute y′ = (HD⊥ ẑ)lastn+s bits.

B5. Parse y′ as the concatenation x′µ′ with x′ ∈ {0, 1}n. Using the key a, verify if µ′ is a correct
MAC on x′.

The remarks about re-usability at the end of Section 2.2 apply to the new scheme as well.

5 Privacy amplification requirements

If Alice and Bob use a new random sequence B for each message, then it is impossible for Eve
to get any information about G. No privacy amplification is required, and the code C1 suffices.
This implies a significant reduction of the number of qubits N and an improvement of the noise
tolerance to any noise level that can be error-corrected by a classical code.

If Alice and Bob keep re-using B, then Eve may collect a small number of qubits from each
message and postpone her measurements, as described in Section 3. When she replaces a qubit
by a random state, she causes a bit flip with probability 1

2 . Thus she may learn up to 2Nδ bits of
information about G while avoiding detection. The privacy amplification must discard 2Nδ bits.

In all other use cases we need to know how much disturbance Eve is causing when she does
intercept-and-resend attacks on qubits. Below we show that a measurement causes a bit flip g′i 6= gi
at Bob’s side with probability 1

3 . This is better than the 1
4 of the original scheme.

Theorem 1 Let Eve know g and receive a qubit state |ψuwg〉 randomly drawn from the four
possible cipherstates. Let her choose an arbitrary direction |γ〉 without knowing u,w and perform
a projective measurement in this direction, resulting in a final state |γj〉 with j ∈ {−1,+1}. Next,
when a measurement in the |ψuwg〉, |ψuw,1−g〉 basis is done, the probability of projecting back onto
|ψuwg〉, averaged over u,w, j, is 2

3 .

Proof:

We write |γ〉 = (cos θ2 , e
iϕ sin θ

2 )T which on the Bloch sphere corresponds to nθϕ = (sin θ cosϕ,
sin θ sinϕ, cos θ)T. We use |〈γ|ψuwg〉|2 = 1

2 + 1
2nθϕ · nuwg with nuwg as specified by (5),

nθϕ · nuwg =
(−1)g√

3

[
(−1)u sin θ cosϕ+ (−1)u+w sin θ sinϕ+ (−1)w cos θ

]
. (8)

The probability of projecting back-and-forth, averaged over Eve’s outcome j, is |〈γ|ψuwg〉|4 + (1−
|〈γ|ψuwg〉|2)2 = ( 1

2 + 1
2nθϕ · nuwg)2 + ( 1

2 − 1
2nθϕ · nuwg)2 = 1

2 + 1
2 (nθϕ · nuwg)2 = 1

2 + 1
6 [1 +

2(−1)w sin2 θ sinϕ cosϕ+ 2(−1)u+w sin θ cos θ cosϕ+ (−1)u sin θ cos θ sinϕ]. After averaging over
u,w all terms that depend on θ, ϕ disappear, leaving us with 1

2 + 1
6 = 2

3 . �

Note that Theorem 1 is formulated very generally, with Eve actually having complete knowledge
of gi. As long as B is truly random, the bit flip probability is 1

3 no matter how much Eve knows
about gi.

Interesting use cases could be e.g. having pseudorandom B and/or pseudorandom OTP E.
Here it is important to keep in mind that B provides unclonability of G, while the randomness of
G protects the confidentiality of B.

• If B is pseudorandom, Eve has a small advantage in guessing the keys bi which she may
exploit to choose a measurement basis in which she obtains (partial) information about gi
and has a probability slightly lower than 1

3 of causing a bit flip. Both these effects have to
be taken into account for setting the parameter k′ of the code D.
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• Similarly, if G is pseudorandom (caused by pseudorandom E), then Eve can obtain some
information about B, which limits the re-usability of B. If Alice and Bob decide to re-use B
nonetheless, they have to take into account that Eve’s accumulated knowledge aboutB allows
her to obtain information about G, necessitating a certain amount of privacy amplification.

• If both B and G are pseudorandom, both the above mentioned effects play a role and in fact
amplify each other.

In Section 6 we quantify some of these statements.

6 Security analysis

6.1 Modelling pseudorandomness

We model a pseudorandom basis sequence as follows. Let q be a constant, and Q = 4q ∈ N, with
Q � 4N . Let T be a fully random Q ×N publicly known table6 with elements Tji ∈ {0, 1, 2, 3}.
For each message, uniformly draw a random J ∈ {1, . . . , Q}. Then the pseudorandom sequence B
is the J ’th row of t, i.e. Bi = tJi.

7 We can think of q as the length of the seed that is fed into an
idealized pseudorandom number generator.

We model pseudorandomness of the pad e in a similar way. We introduce a security parameter
` and L = 2` ∈ N, L � 2N . Let Γ be a fully random publicly known L × N binary table. For
each message, uniformly draw a row index V ∈ {1, . . . , L}. The ciphertext Gi is given by γV i. Of
course this is not how ciphertext is created in reality (there is not even a plaintext in this model),
but our model captures the pseudorandomness of a classical pad e ∈ {0, 1}N masking a plaintext
in such a way that the ciphertext has min-entropy ` < N .

6.2 Random G, pseudorandom B

6.2.1 General attacks

Eve steals qubits D ⊆ {1, . . . , N}. We write |D| = d. Alice prepares a state that can be represented
as a quantum state for the classical variable G and the quantum state of the qubits. To this end
orthonormal basis states |g〉 are introduced, in an auxiliary space.

ρG,[N ] =
1

2N

∑
g∈{0,1}N

|g〉〈g| ⊗ ρ[N ]
g

ρ[N ]
g = Ej

N⊗
i=1

|ψtjigi〉〈ψtjigi | = Ej

N⊗
i=1

( 1
21 + 1

2ntjigi ·σ). (9)

The matrix t is known to Eve. The part that is shared between Alice and Eve is

ρG,D =
1

2N

∑
g∈{0,1}N

|g〉〈g| ⊗ ρDg

ρDg = Ej
⊗
i∈D
|ψtjigi〉〈ψtjigi | = Ej

⊗
i∈D

( 1
21 + 1

2ntjigi ·σ). (10)

Note that EgρDg = τd. The min-entropy of G, given Eve’s knowledge of T and her possession of
the stolen qubits, can be expressed [20] as

Hmin(G|T, subsystem D) = − log Et max
M

EgtrMgρ
D
g (11)

6We will occasionally write T = 2U +W , where U and W are binary matrices.
7Note that the case q → N is not entirely equivalent to a fully random B. Perfect randomness would correspond

to a structured table of size 4N ×N , e.g. with row j given by the base-4 representation of the integer j.
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where the vector M = (Mg)g∈{0,1}N is a POVM satisfying Mg ≥ 0 (positive semidefinite) and∑
gMg = 12d . The loss of min-entropy due to the attack is

Hmin(G)− Hmin(G|T, subsystem D) = log Et max
M

tr
∑
g

Mgρ
D
g . (12)

Instead of solving the maximisation problem in (12) we look at the scaling behaviour of the min-
entropy. The expression tr (ρDg )2 is an indicator for the quality of the quantum-encryption: such

a trace evaluates to 1 in the case of a pure state and to 2−d in the case of the fully mixed state.

Lemma 1 Ettr (ρDg )2 = 1
2d

+ 1
Q (1− 1

2d
).

Proof: From (10) we have tr (ρDg )2 = EjEj′
∏
i∈D |〈ψtjigi |ψtj′igi〉|2 = EjEj′

∏
i∈D ( 1

2 + 1
2ntjigi ·

ntj′igi) = 1
Q + 1

Q2

∑
jj′:j′ 6=j

∏
i∈D( 1

2 + 1
2ntjigi · ntj′igi). When we average over t, all the n · n

average to zero since tji and tj′i are independent. The result is 1
Q + Q2−Q

Q2 ( 1
2 )d. �

We introduce notation σ(i) = (σ
(i)
x , σ

(i)
y , σ

(i)
z ) for the 2d × 2d matrices that represents the spin

for the i’th qubit. We note that (10) can be written as

ρDg = τd + ( 1
2 )dωg ; ωg =

∑
A⊆D:A6=∅

Ej
∏
i∈A

ntjigi · σ(i). (13)

We have trωg = 0, which leads to tr (ρDg )2 = 2−d+ 2−2dtrω2
g . Lemma 1 can also be understood as

follows. The ω2
g consists of 2d−1 squared spin operators which are each equal to 1, and cross terms

which are all spin operators and therefore traceless. The second order statistical fluctuations are
of order 1/Q.

This insight helps us to estimate the min-entropy loss (12). We have tr
∑
gMgρ

D
g = tr

∑
gMg(τd+

2−dωg) = tr τd + 2−dtr
∑
gMgωg.

Let us first look at the |A| = 1 terms in ωg. For them, the summation
∑Q
j=1 in the Ej in

(13) is a Q-step random walk in four dimensions (four possible bases), which typically reaches
distance O(

√
Q) in each dimension. When divided by Q, this yields a contribution of order 1/

√
Q

to the min-entropy loss (12). For general size |A| the dimension8 of the random walk is 4|A|, and
the average number of steps taken in each dimension is Q/4|A| = 4q−|A|. When the number of
steps per dimension is of order 1 or smaller, the typical result of the random walk is Q size-one
steps in Q different directions. After division by Q, the result is a matrix with entries of order
1/Q. The bulk of the A-terms occurs around |A| = d/2. Hence, if q < d/2 then practically all
the built up entries in ωg are of order 1/Q instead of 1/

√
Q. For the min-entropy loss this yields

log(1 + const. 2
d−1
Q ) ≈ d− 2q. This indicates, unsurprisingly, that each bit of key material reduces

the leakage by one bit. A full analysis including all the constants is left for future work.
The above result has the interesting consequence, just as in [17], that it can be sufficient in

practice to use pseudorandom keys. Let Alice and Bob use q = βN , where β is the bit error
rate of the quantum channel. Then Eve could steal d = 2βN qubits while Bob still accepts, and
the maximum leakage about G would be d − 2q = 0. Alternatively, Eve could steal d > 2βN
qubits and potentially learn d−2q > 0 bits, but then Bob only accepts if Eve manages to perform
a difficult quantum-computational task in real-time. This kind of security is not unconditional,
but it is far better than the usual (quantum-)computational assumptions where the adversary has
unlimited time.

Theorem 2 Let Alice and Bob use fully random G. Let B be pseudorandom as described in
Section 6.1. Let Eve perform an arbitrary measurement on her system of d qubits. Then she
obtains no knowledge about B that she did not already have.

8This is the number of different matrix degrees of freedom in ωg that are being addressed. They are different
for every A.
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Proof: Eve’s qubits are correlated to B (i.e. the index J in table t) in a manner similar to (10),

namely ρJ,D = 1
Q

∑
j |j〉〈j| ⊗ ρDj with ρDj = Eg

⊗
i∈D |ψtjigi〉〈ψtjigi |. However, all the gi are

independent, which yields ρDj =
⊗

i∈D Egi [
1
21 + 1

2ntjigi · σ] = τd. The conditional min-entropy

becomes Hmin(J |T, subsystemD) = − log Et maxM EjtrMjρ
D
j = − log Et maxM

1
Q

∑
j trMjτd =

− log Et maxM
1
Q tr τd = logQ, which equals Hmin(J). �

6.2.2 Qubit-by-qubit attacks

We investigate three simple qubit-by-qubit attacks: (i) Eve measures in the standard basis or,
equivalently, in the eigenbasis of σx or σy; (ii) she measures in a random u,w basis; (iii) at
position i she picks the u,w basis that is most frequent in the i’th column of T . The results are
presented in the theorems below.

Lemma 2 Let the RV Gi ∈ {0, 1} be uniform, independent of Bi. Let Eve perform a measurement
on the i’th qubit, in a basis independent of the table T , with result Ri ∈ {−1,+1}. Then

Pr[Gi = g|Bi = b, Ri = r] = Pr[Ri = r|Gi = g,Bi = b]. (14)

Proof: We have (in abbreviated notation) Pr[g|br] = Pr[gbr]
Pr[br] = Pr[b] Pr[g|b] Pr[r|gb]

Pr[b] Pr[r|b] = Pr[g|b] Pr[r|gb]
Pr[r|b] .

Since Gi is independent of Bi and uniform, we have Pr[g|b] = 1
2 . Eve measures in some direction

θ, ϕ. We have Pr[r|b] = EgPr[r|gb] = Eg[ 12 + r
2nθϕ · nbg] where nθϕ · nbg is given by (8). Finally,

Egnbg = 0 yields Pr[r|b] = 1
2 . �

Theorem 3 (Standard basis attack) Let Alice and Bob use fully random G. Let B be pseu-
dorandom as described in Section 6.1. Let Eve measure each individual qubit i ∈ D in the
standard basis, yielding a sequence R ∈ {−1,+1}d of measurement results. Then Eve’s knowl-
edge about G can be summarized as

Hmin(G)− Hmin(G|TR) = d log

[
1 +

2√
3
· 1

2Q

(
Q− 1

bQ/2c

)]
≈ d log

[
1 +

√
2√

3π
· 1

2q

]
. (15)

For each individual qubit the probability of causing g′i 6= gi is 1
3 .

Proof: see Appendix A.

Theorem 4 (Random basis attack) Let Alice and Bob use fully random G. Let B be pseudo-
random as described in Section 6.1. Let Eve measure each individual qubit |χ〉i in a random basis
λi ∈ {0, 1, 2, 3} which is one of the four possible bases used by Alice and Bob, yielding a sequence
R ∈ {0, 1}d of measurement results. Then Eve’s knowledge about G can be bounded as

Hmin(G)− Hmin(G|TRΛ) < d log

[
1 +

1√
3
· 1

2q

]
. (16)

For each individual qubit the probability of causing g′i 6= gi is 1
3 .

Proof: see Appendix B

Theorem 5 (Most-frequent-basis attack) Let Alice and Bob use fully random G. Let B be
pseudorandom as described in Section 6.1. Let Eve measure each individual qubit |χ〉i in a basis
βi ∈ {0, 1, 2, 3} which is equal to the most frequently occurring basis in the i’th column of t, yielding

a sequence R ∈ {0, 1}d of measurement results. Then Eve’s knowledge about G can be bounded as

Hmin(G)− Hmin(G|TR) < d log

(
1 +

1

2q

{
4

3
+

2
√

2

3

√
q ln 2 + ln 3

})
. (17)

For each individual qubit the probability of causing a disturbance is lower bounded as

Pr[Gi 6= gi] >
1

3
− 1

9 · 2q−2
(

1 +
1√
2

√
ln 3 + q ln 2

)
. (18)
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Proof: see Appendix C.
The inequality (17) is not tight, but it shows the order O(

√
q/2q) of the attacker’s knowledge,

i.e. exponentially small in q.
We see that all the investigated single-qubit attacks perform more or less the same. They are

far less powerful than generic attacks on the whole set of d qubits.

6.3 Pseudorandom G, random B

The security analysis is completely analogous to the case of pseudorandom B. Eve’s qubits are
correlated to the key B ∈ {0, 1, 2, 3}N as

ρB,D = 4−N
∑
b

|b〉〈b| ⊗ ρDb

ρDb = Ev
⊗
i∈D
|ψbiγvi

〉〈ψbiγvi
| = Ev

⊗
i∈D

( 1
21 + 1

2nbiγvi
· σ) (19)

and Eve’s potential knowledge can be bounded using the min-entropy Hmin(B|Γ, subsystemD)=
− log Eγ maxM EbtrMbρ

D
b . It holds that EbρDb = τd. The ρDb can be rewritten as

ρDb = τd + ( 1
2 )dωb ; ωb =

∑
A⊆D:A6=∅

Ev
∏
i∈A

nbiγvi
· σ(i) (20)

and the proximity of ρDb to the fully mixed state is given by the equivalent of Lemma 1,

Eγtr (ρDb )2 = 1
2d

+ 1
L (1− 1

2d
). (21)

The min-entropy loss is of order d − `. Hence setting ` = 2βN may be sufficient in practice to
enable re-use of B.

Again we look at a simple qubit-by-qubit attack.

Theorem 6 Let B be fully random and let G be pseudorandom as described in Section 6.1. Let
Eve choose d arbitrary (u,w)-bases to measure in, yielding a sequence R ∈ {0, 1}d. Then Eve’s
knowledge about B can be upper bounded as

Hmin(B)− Hmin(B|RΓ) ≤ d log

(
1 +

2/3

2`/2

)
(22)

and for each individual qubit the probability of causing g′i 6= gi is 1
3 .

Proof: see Appendix D.
Again this kind of simple attack is far less powerful than generic attacks on d qubits.

6.4 Pseudorandom G and B

We look at the security of the index V which identifies the classical ciphertext. We introduce
shorthand notation |ψivj〉 = |ψtjiγvi

〉 and nivj = ntjiγvi
. The relevant state matrices are

ρV,D =
1

L

L∑
v=1

|v〉〈v| ⊗ ρDv

ρDv = Ej
⊗
i∈D
|ψivj〉〈ψivj | = Ej

⊗
i∈D

( 1
21 + 1

2n
i
vj ·σ). (23)

Note that EvρDv 6= τd. The relevant min-entropy is Hmin(V |ΓT, subsystem D) = − log Etγ maxM
EvtrMvρ

D
v . We have Ettr (ρDv )2 = 1

2d
+ 1

Q (1 − 1
2d

), just as in the case of fully random G, and

ρDv = τd + ( 1
2 )dωv, with

ωv =
∑

A⊆D:A6=∅

Ej
∏
i∈A

nivj · σ(i). (24)
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The difference with ωg (13) is that the directions nivj = ntjiγvi
at different i are now more strongly

correlated since γ is a finite table of length L � 2N . This allows for somewhat more powerful
attacks. A full analysis is left for future work.

7 Implications for Quantum Key Distribution

Gottesman [17] identified the implication chain quantum authentication =⇒ UE =⇒ QKD and
gave a construction for building QKD from UE. We briefly review this construction. It works in a
scenario where Bob is able to temporarily store the qubits he receives, and Alice&Bob communicate
over an authenticated insecure classical channel.
1. Alice generates a random message x and a random key κ.
2. Alice uses UE with key κ to send x to Bob.
3. Bob confirms receipt.
4. Alice sends κ.
5. Bob decrypts, checks if the message is valid and reports the yes/no result.
This construction has reduced interaction, and the overhead for detecting eavesdropping is less
than in typical schemes, where Alice and Bob sacrifice a significant number of bits to estimate the
error rate. If the temporary storage of qubits at Bob’s side is a problem, a modified version of
steps 2–4 can be used to reduce the duration of Bob’s qubit storage, e.g. by doing the steps in a
bit-by-bit fashion.9

Our improvement of UE has the effect that the above construction becomes (i) even more
efficient in terms of the required number of qubits; (ii) more noise-tolerant. However, even with
8-state UE the noise tolerance is not improved beyond the state of the art in QKD. It was already
argued in [21] that going to more than 6-state QKD does not improve security, as six states already
make use of the full Bloch sphere. We briefly illustrate this. Let the 8-state UE scheme make use
of a classical error-correcting code (ECC) with codeword length N that can repair up to t = Nβ
errors. If t errors occur, then the worst case assumption is that Eve has stolen 2t qubits, replaced
these by random qubits sent to Bob, and upon receipt of κ decrypted her stored qubits. (The
2t random states each cause a bit flip at Bob’s side with 50% probability, typically resulting in t
flips). If 2t erasures occur, which the ECC can also deal with, then the worst case assumption is
that Eve has stolen 2t qubits, without sending anything to Bob, and decrypted them. Hence Eve’s
knowledge about x can be at most 2t bits. Let’s assume that the ECC is close to the Shannon
bound, with rate r = 1− h(β + η), where η is very small. Then the min-entropy of x given Eve’s
knowledge is at worst as low as N [r − 2β] = N [1 − h(β + η) − 2β]. This expression hits zero at
β ≈ 0.171, i.e. this QKD construction cannot be proven secure at bit error rate higher than 17.1%.
The 6-state QKD has the same eavesdropping properties and the same reasoning applies there.

We introduce an alternative way of deriving QKD from UE. Alice and Bob have an original
short secret (which they would normally use only for the authentication of Bob’s one-bit yes/no
acknowledgement) which they now employ for an additional purpose: as key material for UE. Just
as in Gottesman’s QKD-from-UE construction, Alice transmits an UE message that contains a
random payload x, but now she does not reveal B to Bob (and Eve) because Bob already knows B.
She reveals only e. The e is random, while B is pseudorandom. Both are renewed every time.
The entropy of the payload x is approximately N [1 − h(β)] for large N . From this, 2q bits are
spent on creating a new seed for the next B; what is left over is the final QKD yield. For proper
protection Alice and Bob have to set at least q ≈ βN (see Section 6.2). This again leads to a
QKD rate 1−h(β)− 2β. Nothing has been gained in terms of noise resilience. There are however
two advantages: (i) Bob does not have to store qubits, and (ii) a reduction in the amount of
communication.10

It might be interesting to look at the case of insufficient key length: q < βN . With such
parametrisation Alice and Bob achieve a positive QKD rate at a noise level that would otherwise
be unreachable, but the price they pay is that Eve can potentially learn 2βN − 2q > 0 bits of

9That specific adaptation would remove the advantage of reduced interaction, but the advantage of efficient
eavesdropping detection remains.

10It could be further reduced by entirely omitting the pad e.
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information about the distributed key. Eve can get this information only by performing a quantum-
computational task (not real-time) that is very different from single-qubit operations. This could
be an interesting tradeoff: noise resilience at the cost of quantum-computational security instead
of unconditional security.

8 Summary and discussion

We have modified Gottesman’s UE scheme by introducing the |ψ000〉 and |ψ001〉 states as the
logical ‘0’ and ‘1’ state to be quantum-encrypted. This leads to the 8-state system as described
in Section 4.1, with eight cipherstates that are maximally spread out over the Bloch sphere. The
immediate result is that the perfect quantum-encryption prevents Eve from learning anything
about the classical ciphertext, in contrast to the situation with the +× bases. At the same
time the probability that eavesdropping causes a disturbance increases from 1

4 to 1
3 . Due to the

reduction of Eve’s knowledge, the scheme’s need for privacy amplification is reduced (even to zero
in the case of non-reused random B) which in turn allows for more error correction. All this
requires only single-qubit operations.

In Section 6 we analyzed the min-entropy loss due to attacks. In the case of pseudorandom
basis sequence B, the min-entropy loss in the ciphertext G is approximately d − 2q for general
attacks, and of order d/2q for qubit-by-qubit attacks. In the case of pseudorandom G the loss
in B is approximately d − ` for general attacks, and of order d/2`/2 for qubit-by-qubit attacks.
The optimal attacks are much stronger than qubit-by-qubit attacks. Full security proofs are left
for future work. In Section 7 we proposed a novel QKD-from-UE construction that reduces the
amount of communication and does not require Bob to store qubits.

Implementation of the 8-state system using photon polarisation states should not be more
difficult than implementing ordinary polarisation-based QKD. However, this may not be the tech-
nology of choice. Standard QKD schemes can simply discard protocol rounds in which photon
loss occurs; UE on the other hand has to handle such erasures in the error-correcting code, which
becomes unwieldy at high erasure rates. As already mentioned in [17], going to continuous-variable
techniques such as squeezed states [22] may solve the problem of particle loss. Another option is
to use Orbital Angular Momentum techniques [23].

Finally we mention that 8-state UE can also be useful for primitives such as revocable time-
release encryption [24] which need an unclonable form of commitment.
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A Proof of Theorem 3

Below we will use shorthand notation g ∈ {0, 1}d for gD, the restriction of the full string g to
Eve’s part D. In abbreviated notation we write Pr[g|tr] = EjPr[g|tjr] where j is the random row
index in the table t. Knowledge of t and j implies knowledge of b; we use Lemma 2 and obtain
Pr[g|tr] = EjPr[r|gtj]. Next we make use of Pr[ri|gibi] = 1

2 + ri
2 nbigi · nθϕ and (8) with θ = 0,

which gives Pr[g|tr] = Ej
∏
i∈D( 1

2 + 1
2
√
3
(−1)gi+ri+wji). Here the notation wji ∈ {0, 1} stands for

the w-part of the basis tji, i.e.wji = tji mod 2. Now we define wi ∈ {0, 1}Q as the i’th column of
w, and ν(wi) ∈ {0, 1} as the most frequent symbol in wi. Then the sequence g∗ that maximizes
Pr[g|tr] is given by g∗i = ri ⊕ ν(wi) and we obtain

max
g

Pr[g|tr] = Ej
∏
i∈D

[ 12 + 1
2
√
3
(−1)ν(wi)+wji ]. (25)
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The dependence on r has vanished. Averaging over t and r is now equivalent to averaging over w.
Since all the elements of w are generated independently, everything factorizes and we get

Etr max
g

Pr[g|tr] = Ej
∏
i∈D

[ 12 + 1
2
√
3
Ewi

(−1)ν(wi)+wji ]. (26)

We write Ewi
→ Ewji

Eν(wi)|wji
where wji is uniform. The ν(wi) conditioned on wji has a

cumulative binomial distribution: Pr[ν(W i) = 0|Wji = wji] =
∑bQ/2c−wji

a=0

(
Q−1
a

)
( 1
2 )Q−1. We get

Ewji
Eν(wi)|wji

(−1)ν(wi)+wji =

1
2 (Pr[ν(W i) = 0|Wji = 0]− Pr[ν(W i) = 1|Wji = 0])

− 1
2 (Pr[ν(W i) = 0|Wji = 1]− Pr[ν(W i) = 1|Wji = 1])

= Pr[ν(W i) = 0|Wji = 0]− Pr[ν(W i) = 0|Wji = 1]

=

(
Q− 1

bQ/2c

)
( 1
2 )Q−1. (27)

The final expression in (15) follows by using Stirling’s approximation n! ≈
√

2πn(n/e)n and
Q = 22q.
Disturbance probability. Each of the eight states has projection probabilities 1

2 ± 1
2
√
3

onto the

±z state. Then Pr[G′i = gi] = (1
2 + 1

2
√
3
)2 + ( 1

2 − 1
2
√
3
)2 = 2( 1

4 + 1
12 ) = 2

3 . �

B Proof of Theorem 4

Again we write g instead of gD. From Lemma 2 and (6) we get Pr[gi|tjriλi] = δλitjiδrigi + (1 −
δλitji)(

1
3δrigi + 2

3 [1− δrigi ]). We introduce tally variables τia =
∑Q
j=1 δtjia and write Pr[gi|triλi] =

EjPr[gi|tjriλi] = (τiλi/Q)δrigi + (1− τiλi/Q) ( 1
3δrigi + 2

3 [1− δrigi ]). From this expression we see,
after some reshuffling, that maxgi Pr[gi|triλi] = 1

2 + 2
3 |τiλi/Q− 1

4 |, which yields maxg Pr[g|trλ] =∏
i(

1
2 + 2

3 |τiλi/Q− 1
4 |). The dependence on r has vanished. Taking the expectation over t reduces

to taking the expectation over τiλi
for each column of t independently, Etrλ maxg Pr[g|trλ] =

Eλ
∏
i(

1
2 + 2

3E|τiλi/Q − 1
4 |) ≤ Eλ

∏
i(

1
2 + 2

3

√
E|τiλi/Q− 1

4 |2) = Eλ
∏
i(

1
2 + 2

3

√
1
4 · 34/

√
Q) = ( 1

2 +
1

2
√
3
/
√
Q)d. Here we have made use of Jensen’s inequality and of the fact that the tallies are

binomial-distributed. Note that the result also holds for fixed λ independent of T .
Disturbance probability. With probability 1

4 the correct basis is chosen, which results in 100%

probability of having g′i = gi. With probability 3
4 the wrong basis is chosen, resulting in a

probability distribution ( 1
3 ,

2
3 ) for Eve’s measurement, and Pr[G′i = gi] = (1

3 )2 + ( 2
3 )2 = 5

9 . Overall
Pr[G′i = gi] = 1

4 · 1 + 3
4 · 59 = 2

3 . �

C Proof of Theorem 5

Again we write g instead of gD. From Lemma 2 and (6) we get Pr[gi|tjri] = δβitjiδrigi + (1 −
δβitji)(

1
3δrigi + 2

3 [1− δrigi ]). We introduce the notation λi =
∑Q
j=1 δβitji for the number of entries

in the i’th column of t that equal βi, the most frequent value. This allows us to write Pr[gi|tri] =
EjPr[gi|tjri] = λi

Q δrigi + Q−λi

Q ( 1
3δrigi + 2

3 [1− δrigi ]) = δrigi(
1
3 + 2

3 · λi

Q ) + (1− δrigi) 2
3 (1− λi

Q ). Since

λi ≥ Q/4 by definition, the first term satisfies 1
3 + 2

3 · λi

Q ≥ 1
2 and we have maxgi Pr[gi|tri] = 1

3 + 2
3 · λi

Q

and maxg Pr[g|tr] =
∏
i∈D( 1

3 + 2
3 · λi

Q ) which is independent of r. Taking the expectation over

r and t is then equivalent to d independent expectations over λi, yielding Etr maxg Pr[g|tr] =∏
i∈D( 1

3 + 2
3QEλi) = (1

3 + 2
3QEλi)d. In the last step we used that all the entries of t are drawn

independently. The index i in the last expression is arbitrary. We can now write Hmin(G|TR) =
− log Etr maxg Pr[g|tr] = −d log( 1

3 + 2
3QEλi).
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Finally we have to bound Eλi. We write Pr[λi >
Q
4 +κ

√
Q] ≤ 4Pr[binom(Q, 14 ) > Q

4 +κ
√
Q] ≤

4 exp(−2κ2), where in the last step we used Hoeffding’s inequality. We introduce the notation
Pλ = Pr[λi = λ], λ ∈ {Q4 , . . . , Q} and λ∗ = Q

4 + κ
√
Q We have

Eλi =
∑Q

λ=Q/4
λPλ =

∑λ∗

λ=Q/4
λPλ +

∑Q

λ=λ∗+1
λPλ

< λ∗
∑λ∗

λ=Q/4
Pλ +Q

∑Q

λ=λ∗+1
Pλ = λ∗ + (Q− λ∗)Pr[λi > λ∗]

≤ λ∗ + (Q− λ∗)4e−2κ
2

= Q
4 + κ

√
Q+ (3Q− 4κ

√
Q)e−2κ

2

< Q
4 + κ

√
Q+ 3Qe−2κ

2

. (28)

We set κ2 = 1
2 ln(3

√
Q) yielding Eλi <

Q
4 +
√
Q{1 +

√
1
2 ln(3

√
Q)}.

Disturbance probability. As in the random-basis attack, we have Pr[G′i = gi|tj] = δβitji + (1 −
δβitji)

5
9 . This yields Pr[G′i = gi|t] = EjPr[G′i = gi|tj] = λi/Q + (1 − λi/Q) 5

9 and Pr[G′i = gi] =
EtPr[G′i = gi|t] = 5

9 + 4
9QEλi. We use the above given bound on Eλi. �

D Proof of Theorem 6

We write B instead of BD. We have Hmin(B|RΓ) = − log Erγ maxb Pr[b|rγ] = − log Erγ maxb
Pr[b]Pr[γ]Pr[r|γb]

Pr[rγ] = − log( 1
4 )dEγ

∑
r maxb Pr[r|γb] = Hmin(B)−log Eγ

∑
r maxb Pr[r|γb], with maxb Pr[r|γb] =

maxb Ev
∏
i Pr[ri|γvibi]. The v is a row index that applies to all columns of γ at the same

time. If we were allowed to choose a separate row index vi in each column, then we would have
more freedom to select large numbers. Hence maxb Ev

∏
i Pr[ri|γvibi] ≤ maxb

∏
i EviPr[ri|γviibi].

This inequality yields Hmin(B) − Hmin(B|RΓ) ≤ log
∏
i∈D Eγi

∑
ri

maxbi EviPr[ri|γviibi]. We
introduce the notation µi for the number of ‘1’ symbols in the i’th column of γ. We have
EviPr[ri|γviibi] = µi

L Pr[ri|1bi] + (1 − µi

L )Pr[ri|0bi]. Depending on bi being equal to Eve’s basis
or not, this expression takes either of the two following values: µi

L δri1 + (1− µi

L )δri0 or µi

L (δri1
1
3 +

δri0
2
3 )+(1−µi

L )(δri0
1
3+δri1

2
3 ) respectively. After some algebra this yields

∑
ri

maxbi EviPr[ri|γviibi]
= 1+ 4

3L |µi−L/2|. The expectation over γi reduces to an expectation over the binomial-distributed

µi. We use Jensen’s inequality to write Eµi
|µi − L/2| ≤

√
Eµi
|µi − L/2|2 =

√
L · 1/4.

Disturbance probability. Since B is random, the probability of projecting from nbigi to either

of Eve’s basis states and back to nbigi is given by: 02 + 12 = 1 if Eve chose the correct basis;
( 1
3 )2 + ( 2

3 )2 = 5
9 if Eve chose the wrong basis. The overall probability of not causing a bit flip is

1
4 · 1 + 3

4 · 59 = 2
3 . �
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[2] C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.K. Wootters. Teleporting
an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys.
Rev. Lett., 70:1895–1899, 1993.

[3] D.N. Matsukevich and A. Kuzmich. Quantum state transfer between matter and light. Sci-
ence, 306(5696):663–666, 2004.

[4] C.H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and coin
tossing. IEEE International Conference on Computers, Systems and Signal Processing, pages
175–179, 1984.

[5] A.K. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 67:661 – 663,
1991.

16



[6] D. Gottesman and J. Preskill. Quantum Information with Continuous Variables, chap-
ter Secure quantum key exchange using squeezed states, pages 317–356. Springer, 2003.
arXiv:quant-ph/0008046v2.

[7] C.H. Bennett, G. Brassard, S. Breidbard, and S. Wiesner. Quantum cryptography, or un-
forgeable subway tokens. In CRYPTO, pages 267–275, 1982.

[8] I.B. Damg̊ard, S. Fehr, L. Salvail, and C. Schaffner. Cryptography in the bounded quantum-
storage model. In IEEE Symposium on Foundations of Computer Science, page 449, 2005.

[9] C. Schaffner. Simple protocols for oblivious transfer and secure identification in the noisy-
quantum-storage model. Phys. Rev. A, 82:032308, 2010.
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