
On the Asymptotic Complexity of Solving LWE

Abstract. We provide for the first time an asymptotic comparison of all known
algorithms for the search version of the Learning with Errors (LWE) problem.
This includes an analysis of several lattice-based approaches as well as the com-
binatorial BKW algorithm. Our analysis of the lattice-based approaches defines a
general framework, in which the algorithms of Babai, Lindner-Peikert and several
pruning strategies appear as special cases. We show that within this framework,
all lattice algorithms achieve the same asymptotic complexity.
For the BKW algorithm, we present a refined analysis for the case of only a poly-
nomial number of samples via amplification, which allows for a fair comparison
with lattice-based approaches. Somewhat surprisingly, such a small number of
samples does not make the asymptotic complexity significantly inferior, but only
affects the constant in the exponent.
As the main result we obtain that both, lattice-based techniques and BKW with
a polynomial number of samples, achieve running time 2O(n) for n-dimensional
LWE, where we make the constant hidden in the big-O notion explicit as a simple
and easy to handle function of all LWE-parameters. In the lattice case this func-
tion also depends on the time to compute a BKZ lattice basis with block size Θ(n).
Thus, from a theoretical perspective our analysis reveals how LWE’s complexity
changes as a function of the LWE-parameters, and from a practical perspective
our analysis is a useful tool to choose LWE-parameters resistant to all known at-
tacks.

Keywords. LWE security, Bounded Distance Decoding, Lattices, BKW

1 Introduction

Lattice-based cryptosystems are currently the best candidates for post-quantum security
and allow for a variety of new functionalities. This led to an impressive amount of
publications within the last decade (see e.g. [43],[19], [41] and their follow-up works).
The security of most lattice-based public-key encryption schemes relies on the hardness
of the Learning with Errors (LWE) problem – an average-case hard lattice problem
introduced into cryptography by Regev ([43]), and formerly studied in the learning
community ([21, 13]). In the search version of LWE, one has to recover a secret vector
s ∈ Zn

q by looking at m samples (ai,〈ai,s〉+ ei), where ai ∈ Zn
q is chosen uniformly at

random and ei is a discrete Gaussian error with (scaled) standard deviation s. Notice
that the input size of such an LWE sample is linear in n, logq and logs.

LWE has been proven to be as hard as quantumly approximating worst-case in-
stances of the so-called Shortest Independent Vectors Problem (SIVP) up to polyno-
mial factors ([43]). SIVP with polynomial approximation factors is not NP-hard under
standard complexity assumptions ([20]), but the currently best algorithms for finding
shortest vectors even with polynomial approximation ratio require either exponential
time and space 2O(n) ([3, 39]) or for polynomial space slightly super-exponential time
2O(n logn) ([26]).

2

While Regev’s quantum reduction from SIVP to LWE is dimension-preserving, Peik-
ert’s classical reduction [40] has a quadratic loss by transforming n-dimensional lattice
problems into n2-dimensional LWE instances in polynomial time (see also [14]) . These
complexity theoretic results stress the need to study LWE’s complexity directly in order
to be able to instantiate LWE in cryptography with a concrete predetermined security
level.

For the LPN problem, which is a special case of LWE for q = 2, Blum, Kalai
and Wasserman (BKW, [13]) designed the currently fastest algorithm with slightly sub-
exponential complexity 2O(n

logn)(see also the discussion in Regev [43]). Unfortunately,
BKW requires the same sub-exponential amount of memory and of LPN samples. Recent
research [4, 5] analyzes BKW’s complexity in the LWE-setting for q = poly(n), where the
authors provide fully exponential (in n) bounds for the runtime, as well as for memory
and sample complexity. BKW’s huge sample complexity makes the algorithm often use-
less for LWE cryptanalysis in practice, since cryptographic primitives like encryption
usually provide no more than a polynomial number of samples to an attacker.

Concerning lattice-based attacks, the algorithm of Lindner and Peikert [32], which
is an adaptation of Babai’s NearestPlane algorithm to the LWE setting, and its im-
provements due to Liu-Nguyen ([33]) and Aono et al. ([8]) are considered as the practi-
cal benchmark standard in cryptanalysis to assess LWE’s security. Unfortunately, the au-
thors do not provide an asymptotic analysis of their algorithms as a function of the LWE
parameters (n,m,q,s). This is an unsatisfactory situation, since it makes lattice-based
approaches somewhat incomparable among themselves and especially to the combina-
torial BKW-algorithm in the LWE scenario [4, 7, 29]. The lattice-based literature often
suggests that lattice-based approaches are most practical for attacking LWE, while the
BKW literature suggests that asymptotically the BKW algorithm always outperforms lat-
tice reduction. Our results show that both statements should be taken with care. It really
depends on the LWE-parameters (and the lattice reduction algorithm) which approach
is asymptotically fastest, even when we use BKW restricted to only a linear number m of
samples.

Whether LWE-type cryptosystems will eventually be used in practice crucially de-
pends on a good understanding of the complexity of LWE-instances. A proper cryptana-
lytic treatment of a complexity assumption such as LWE includes practical cryptanalysis
of reasonably sized instances as well as an extrapolation to cryptographic security level
instances from asymptotic formulas. This is the widely accepted approach for estimat-
ing key sizes [30, 1], which is for instance taken for measuring the hardness of factoring
RSA-1024 [28]. Whereas some practical experiments on concrete LWE instances where
reported in the literature [32, 33, 8], the asymptotics remains unclear. Our work fills this
gap.

Outline of our results. In a survey-paper [6], Albrecht et al. conclude that ‘for most
algorithms, there is no sufficiently precise closed formula which expresses the running
time in terms of the parameters’. We clarify this issue by presenting a unified com-
plexity analysis of the LWE problem that covers techniques such as lattice-based ap-
proaches (lattice-basis reduction+enumeration, embedding) and the combinatorial BKW-
approach. We state the algorithmic complexity regarding the three metrics: expected
running time, memory complexity and number of LWE samples, all as a function of

LWE Decoding 3

the LWE-parameter (n,q,s). For attaining our results, we introduce the following tech-
niques.

1. We propose a new generalized framework for Bounded Distance Decoding (BDD)
enumeration techniques, which we call generalized pruning. Our framework cov-
ers all previously known enumeration approaches such as Babai’s NearestPlane
algorithm, its LWE-extension NearestPlanes of Lindner-Peikert ([32]), Linear
Pruning ([45]) and Extreme Pruning ([17]), which were left without rigorous anal-
ysis in [6]. We show that all these approaches achieve the same expected running-
time ϒ = 2c f (n) having the same constant c. Of course, we should stress once again
that our analysis is purely asymptotic (as opposed to [6]). So in practice some prun-
ing strategies clearly outperform others, as reported in several experiments in the
literature [32, 33, 8], but our analysis shows that this superiority vanishes for in-
creasing n.
To provide a complete picture of lattice-based attacks, in Sect. 5 we also include the
asymptotic complexity analysis of LWE using Kannan’s embedding technique [26].
See Table 1 for the precise complexity estimates.

2. In Sect. 7 we refine the asymptotic complexity analysis of the BKW algorithm in the
case where only m =O(n logn) samples are given. This amplification of samples is
similar to Lyubashevsky’s amplification for the LPN-case [34]. However, whereas
the LPN-case amplification raised the running time from 2O(n

logn) to 2O(n
log logn), in

the LWE case the loss affects only the constant. Again, see Table 1 for a more
precise statement of the running time as a function of the LWE-parameters.

Since any lattice-based attack relies on a basis-reduction as preprocessing, its run-
ning time crucially depends on the complexity of basis reduction. The basis reduc-
tion algorithms of Kannan ([25]) or MV, ADRS, Laarhoven ([39, 2, 29]) have run time
complexities 2Θ(n logn) or 2Θ(n), respectively. We denote in Table 1 by cBKZ the hidden
constant in these run time complexities. We write the LWE parameters q = ncq , s = ncs ,
where typically cq,cs are constants in cryptographic settings. For completeness, we also
include the performance of the Arora-Ge algorithm ([10]) in Table 1, an algebraic attack
on LWE that achieves sub-exponential running time for cs <

1
2 .

Notice that single exponential lattice reduction algorithms such as MV and ADRS
([39, 2]) lead to running time 2cn as in the BKW-case. Also from Table 1 one can already
see that lattice-based attacks asymptotically outperform BKW (even with an exponential
number of samples) as soon as the lattice reduction exponent cBKZ is small enough, since
in all lattice attacks the denominator is quadratic in cq−cs, whereas it is linear in cq−cs
for BKW. Our results show quantitatively how the hunt for the best run time exponent for
lattice reduction [39, 2, 29] directly affects LWE’s security.

In Figure 1 we compare the behaviour of the constant c for various algorithms and
typical values. Here, the (heuristic) probabilistic sieving method of Laarhoven ([29])
with a runtime exponent of cBKZ = 0.33 already outperforms the BKW algorithm for some
parameter-sets.

4

Table 1: Asymptotic comparison of LWE decoding algorithms. We denote q = O(ncq),
s = O(ncs) and cBKZ is the constant hidden in the run time exponent of lattice reduction.
For Arora-Ge, 2≤ ω < 3 is the linear algebra constant.

Complexity
ϒ =

T (ALG)
Psucc(ALG)

, M= Space
#Samples

TBKZ = 2cBKZn logn, MBKZ = poly(n) TBKZ = 2cBKZn, MBKZ = 2Θ(n)

log(ϒ) M log(ϒ) M
ENUM:

2cBKZ·cq

(
√

2cBKZ+cq−cs)2 n logn poly(n) 2cBKZ·cq

(cq−cs)2 n 2Θ(n) Θ(n)
– Babai (Sect. 4.1)
– Lindner-P. (Sect. 4.2)
– GenPruning (S. 4.3)

DUAL (Sect. 6)
2cBKZ·cq

(cq−cs)2 ·n logn
poly(n)

2cBKZ·cq

(cq−cs)2 ·n 2Θ(n) Θ(n logn)
2cBKZ·cq

(cq−cs+1/2)2 ·n logn 2cBKZ·cq

(cq−cs+1/2)2 ·n 2Θ(n)

Embedding (Sect. 5) 2cBKZcq

(cq−cs)2 ·n logn poly(n) 2cBKZcq

(cq−cs)2 ·n 2Θ(n) Θ(n)

log(ϒ) M #Samples
BKW ([4]) 1

2
cq

cq−cs+1/2
·n 2Θ(n) 2Θ(n)

BKW (Sect. 7) 1
2

cq
cq−cs

·n 2Θ(n) Θ(n logn)

BKW2 ([27, 22])
(

1/cq +2ln(cq/cs)
)−1 ·n 2Θ(n) 2Θ(n)

BKW2 (Sect. 7)
(
2ln(cq/cs)

)−1 ·n 2Θ(n) Θ(n logn)

Arora-Ge ([6]), cs < 1/2 ω · (1−2cs) ·n2cs log2(n) O(2ncs log2 n)

Arora-Ge ([6]), cs ≥ 1/2 ω · (2cs−1) ·n log(n) O(2n logn)

Fig. 1: Running time exponents
for single-exponential attacks
on LWE with polynomial num-
ber of samples for parame-
ters cq ∈ [1.6 . . .4.6] and cs ∈
[0.1 . . .0.7]. For reduction step
we have cBKZ = 1 [2] (green
plot) and allowing heuristics as
in [29] cBKZ = 0.33 (black plot).
The BKW algorithm from [4] is in
blue, the red plot is a recent al-
gorithm of [27], [22].

LWE Decoding 5

2 Background

We use bold lower-case letters for vectors b and we let ‖b‖ denote their Euclidean
norm. We compose vectors column-wise into matrices. For a linearly independent set
B = (b1, . . . ,bk) ∈ Rn, the fundamental domain P1/2(B) is

{
∑

k
i=1 cibi : ci ∈ [− 1

2 ,
1
2)
}

.
The Gram-Schmidt orthogonalisation (basis) B̃ = (b̃1, . . . , b̃k) is obtained iteratively
by setting b̃1 = b1 and b̃i as the orthogonal projection of bi on (b1, . . . ,bi−1)

⊥ for
i = 2, . . . ,k. In this work we deal with so-called q-ary lattices Λ (i.e. qZn ⊆ Λ ⊆ Zn)
generated by a basis B = (b1, . . . ,bn) ∈ Zn

q:

Λ = L (B) =
{ n

∑
i=1

zi ·bi mod q : zi ∈ Z
}
.

There are several hard problems that we can instantiate on lattices. The closest vector
problem (CVP) asks to find a lattice point v closest to a given point t ∈ Rn. In the
promise variant of this problem, known as Bounded Distance Decoding (BDD), we
have some bound R on the distance between the lattice and t: ‖v− t‖ ≤ R, where R is
usually much smaller than the lattice’s packing radius.

For two discrete random variables X and Y with range S, the statistical distance be-
tween X and Y is SD(X ;Y) = 1

2 ∑s∈S |Pr[X = s]−Pr[Y = s]|. The min-entropy function
is denoted H∞(X) =− logmaxs∈S{Pr[X = s]}.
Discrete Gaussian Distribution. To each lattice-vector v ∈ Λ we can assign a proba-
bility proportional to exp(−π‖v‖2/s2) for the Gaussian parameter1 s > 0 (see e.g. [19]
for a sampling algorithm). We call the resulting distribution having Λ as support the
discrete Gaussian distribution.

For integer lattices, a sufficiently wide discrete Gaussian blurs the discrete struc-
ture of Λ (more formally, s = poly(n) exceeds the smoothing parameter [37] of Zn for
cs >

1
2), such that the distribution becomes very close to a continuous Gaussian ([41],

[32]). In our analysis, we make use of continuous Gaussians to estimate the success
probability of our decoding algorithms.

We use the following well-known tail bound for Gaussians. For fixed s and y→ ∞:

1−
∫ y
−y exp(− πx2

s2)dx
s = e−Θ(y2

s2) 1−
∑

y
x=−y exp(− πx2

s2)

∑
∞
x=−∞ exp(− πx2

s2)
= e−Θ(y2

s2) . (1)

Learning with Errors. The Learning with Errors problem ([43]) is parametrized by
a dimension n ≥ 1, an integer modulus q = poly(n) and an error distribution D on Z.
Typically, D is a discrete Gaussian on with parameter s. For secret s ∈ Zn

q, an LWE
sample is obtained by choosing a vector a ∈ Zn

q uniformly at random, an error e← D,
and outputting the pair (a, t = 〈a , s〉+ e mod q) ∈ Zn

q×Zq. Having a certain number m
of such pairs, we can write this problem in matrix form as (A, t = Ats+ e mod q) for
t = (t1, . . . , tm), e = (e1, . . . ,em) and the columns of matrix A ∈ Zn×m

q are composed of
the ai. Overall, the LWE problem is given by parameters (n,q,s) and m (this parameter
we can choose ourselves). Typically, (n,q,s) are related as q = O(ncq),s = O(ncs),

1 For s→ ∞, the standard deviation is s/
√

2π +o(s), the o(s) being due to discretization.

6

and 0 < cs < cq are constants. If not specified otherwise, we assume these relations
throughout.

The search version of the LWE problem asks to find s, the decision version asks to
distinguish t from a uniform vector, given A. The LWE problem is an average-case hard
Bounded Distance Decoding problem for the q-ary lattice Λ(At) = {z ∈ Zm : ∃s ∈ Zn

q
s.t. z = Ats mod q}. Assuming A is full-rank, its determinant is det(Λ(At)) = qm−n.
Lattice basis reduction. The goal of lattice basis reduction algorithms is to make some
input basis as short and orthogonal as possible. The algorithm that is most relevant
in practice is a block-wise generalization of the LLL-algorithm, called BKZ algorithm.
There are two approaches to express the complexity of the BKZ algorithm. The first
approach is via the so-called Hermite factor defined as δ m = ‖b1‖/vol(L)

1
m , for an m-

dimensional lattice L, where b1 is the shortest vector of the output basis. The Hermite
factor, introduced in [18], indicates how orthogonal the output basis is (we have δ ≥ 1,
with equality for an orthogonal basis).

The second approach – rather than relying on the output parameter δ – relates the
running time of the BKZ to the input block-size β . As a subroutine, BKZ calls an SVP-
solver in a sub-lattice of dimension β . In [23], the authors show that after a polynomial
(in m) number of SVP-calls, BKZ will produce a basis where the first (i.e. shortest)
vector satisfies

‖b1‖ ≤ 2(β)
m
2β · (detL)

1
m . (2)

Thus, the running time of BKZ is TBKZ = poly(m) ·TSVP(β), where TSVP(β) is the running
time of an SVP-solver in dimension β . With current algorithms, it is at least exponential
in β , and has been improved from 2O(β 2) ([16]), to 2O(β logβ) in [25], and recently to
2O(β) in [39] (the latter has also 2O(β) memory complexity). There is no analogous
result proven for the complexity of BKZ in terms of δ .
Geometric Series Assumption (GSA), proposed by Schnorr ([44]), provides an esti-
mate on the length of the Gram-Schmidt vectors of a BKZ-reduced basis B. It assumes

that the sequence of ‖b̃i‖’s decays geometrically in i, namely, ‖b̃i‖
‖b̃i+1‖

≈ δ 2. Thus, GSA

allows us to predict the lengths of all Gram-Schmidt vectors as ‖b̃i‖ ≈ ‖b1‖ · δ 2(1−i).
From the analysis of [23], it follows that in terms of β , GSA can be stated as

‖b̃i‖ ≈ ‖b1‖ ·β
− i

β . (3)

In our asymptotic analysis we treat the above Eq. (3) as an equality2, which is the
worst-case for the length of the shortest vector returned by BKZ reduction: we have
‖b1‖= β

m
2β ·(detL)

1
m . Equivalently, for an LWE lattice Λ(At), ‖b1‖= β

m
2β ·q1− n

m . This
follows from the fact that the product of all Gram-Schmidt vectors is equal to the lattice-
determinant.

We note here that according to [23], the above relation should only hold for the first
m− β Gram-Schmidt vectors. Indeed, a worst-case analysis [24] shows that the last
Gram-Schmidt vectors behave like ‖b̃i‖ ≈ exp(− 1

4 log(d− i)2), showing a faster decay
than GSA suggests. In this paper, however, we stick to Eq. (3), as it greatly simplifies
the exposition. Note that we can ameliorate the effect of this discrepancy on our analysis

2 Our runtime analysis is in all cases robust against small deviations from exact equality.

LWE Decoding 7

by BKZ-reducing the dual of the lattice and taking the dual of the returned basis, so the
faster decay occurs during the first (rather than the last) Gram-Schmidt vectors.

3 LWE Decoding

This section gives an extended roadmap to the subsequent sections: we briefly describe
the existing methods to solve the search LWE problem, for each of which we present a
complexity analysis. For all the approaches considered, we are interested in the quantity
ϒ (ALG) = T (ALG)

Psucc(ALG) , the time/success trade-off. The decoding of an LWE instance
(A, t = Ats+ e mod q) is successful, when the returned error-vector is indeed e (or,
equivalently, we return the lattice-vector Ats).

Currently, there are three conceptually different ways to approach LWE: lattice-
based methods, combinatorial methods and algebraic methods. The lattice-based meth-
ods, in turn, can also be divided into three approaches: we can first view LWE as a BDD
instance for the lattice Λ(At), or second we apply Kannan’s homogenization technique
to convert the BDD instance into a unique-SVP instance by adding the target vector t to
a basis of Λ(At) and search for the shortest vector in a lattice of increased dimension,
or third, we can target the decision LWE problem by solving approximate-SVP in the
dual lattice. In this work, we primarily focus on BDD, while presenting only shortly
the complexity of unique-SVP embedding for LWE in Sect. 5 and the dual approach in
Sect. 6.

As for combinatorial BKW-type methods ([13], [4]), to recover s we apply a Gaussian
elimination approach in the presence of errors, where we allow to multiply our equa-
tions only by ±1 to keep the error small. In other words, we query LWE samples (a, t)
until we find pairs that match (up to sign) on some fixed coordinates, add them up to
obtain zeros on these coordinates and proceed on the remaining non-zero parts. Once
a sample with only one non-zero coordinate (a′0s0 + e′0, t0) is obtained, we brute-force
on s0 (the error e′0, being the sum of all the errors used to generate this sample, is very
large compared to the initial ei’s and we cannot conclude on s0 immediately). Recent
improvements ([27, 22]) only require small coordinates (rather than zero). As opposed
to the lattice-based attacks, these BKW-type methods succeed with high probability on
a random matrix A, provided we can query for exponentially many samples. This con-
dition, however, is unrealistic: the number of LWE samples exposed by a primitive is
typically only poly(n), possibly only O(n). Thus, in Sect. 7, we are mainly concerned
with the analysis of the so-called amplification technique, where out of Θ(n logn) (or
even Θ(n)) LWE samples, one is able to construct ‘fresh’ samples suitable for BKW.

As for lattice-based methods, BDD decoding is a two-phase algorithm: first, a ba-
sis for Λ(At) is preprocessed via BKZ-reduction to obtain a guarantee on the quality
of the output basis (the length of the Gram-Schmidt vectors). With this, we form a
search space for the second phase, where we enumerate candidates for the error-vector
e within this search space. Among various ways to enumerate, we start with the greedy
approach: Babai’s NearestPlane algorithm ([11]), then consider its extension, Linder-
Peikert NearestPlanes ([32]), and finally, pruning strategies ([17], [33]) applied to
LWE. The algorithms differ in the shape of the search space and thus, the enumerated
candidates are different. Our analysis reveals that for all these techniques, the quantity

8

ϒ (ENUM) = T (ENUM)
Psucc(ENUM) for the second phase takes the same value in the leading-order

term, including the constant in front. Of course, the ‘real’ trade-off of the whole LWE
attack is ϒ (BDD) = T (BKZ)+T (ENUM)

Psucc(BDD) , but as we show below, the second phase – enu-
meration – dominates over the reduction phase. Now we give a high-level idea of the
mentioned enumeration algorithms, where we focus on their geometric meaning. A
BDD instance (B = {b1, . . . ,bm}, t ∈L (B)+ e) with a promise on ‖e‖ is received as
input.
Babai’s NearestPlane. A recursive description of this algorithm is convenient for
our later analysis. Given a target t ∈ Zm and an m-dimensional lattice3 L (b1, . . . ,bm),
we search for cm ∈ Z such that the hyperplane Um = cmb̃m + Span(b1, . . . ,bm−1) is
the closest to t. In other words, Um is the span of the closest translate of the (m− 1)-
dimensional lattice L (b1, . . . ,bm−1). We save this translate (storing cm), set t′ as the
projection of t on Span(b1, . . . ,bm−1) and call the algorithm recursively with new lower-
dimensional target t′ and L (b1, . . . ,bm−1). After m recursive calls, we trace back the
translates ci’s and the lattice-vector ∑

m
i=1 cibi is returned. In Figure 2a, a 2-dimensional

example is shown: the hyperplane U spans the closest translate of L (b1) to t(m). The
algorithm is clearly polynomial-time in m, but how can we guarantee that the returned
lattice-vector is indeed the closest?

It is easy to verify that the algorithm succeeds if the error vector of the BDD instance
lies in P1/2(B̃), the fundamental parallelepiped of the Gram-Schmidt basis B̃. Indeed,
the distance to the closest translate on each call is bounded by 1

2‖b̃i‖. Thus, we stay
inside P1/2(B̃) during the execution. How likely is it that the original e is in P1/2(B̃)?
This depends on the quality of the input basis B, i.e. the length of the Gram-Schmidt
vectors. As we have a guarantee on ‖e‖ and the quality of B, in Sect. 4.1 we estimate
the success probability of Babai’s algorithm, and hence, the ratio T (BABAI)

Psucc(BABAI) .
Lindner-Peikert NearestPlanes. The success probability of Babai’s algorithm is low,
in fact, super-exponentially low for small choices of block size β . Roughly, the length of
the error-vector output by Babai’s algorithm can be as large as ∑

m
i=1 ‖b̃i‖2, and so might

be even larger than b1, which contradicts the BDD promise. An extension of Babai’s al-
gorithm was proposed in [32], where the authors suggest to consider not only the closest
translate, but rather several close ones on each recursive call. Thus, we have several can-
didate solutions in the end. The approach takes into account the skewness of the input
basis: taking a further hyperplane in one call might result in much closer hyperplanes
on subsequent calls, thereby decreasing the overall error-length. This is illustrated in
Figure 2c, where the 3 closest translates of L (b1) are chosen and the solution lies on a
further translate. The number of hyperplanes Ui = cib̃i +Span(b1, . . . ,bi−1) we choose
on level i depends on the length of b̃i: the shorter this vector is, the more skewed the
lattices in this dimension is, the more hyperplanes we should choose to offset the error.
Following [32], by di we denote the number of different ci’s on ith level. The resulting
search-space is then a stretched fundamental parallelepiped P1/2(B̃ ·D), where D is the
diagonal matrix of all di’s. Babai’s algorithm is the special case with D = I.

3 The target and the lattice do not have to agree on dimension in general, but for LWE this is the
case (we project t onto Span(L (B)) otherwise and work with the projection).

LWE Decoding 9

What can we say now about the running-time/success probability? For the latter, we
surely can guarantee a constant success probability by making the di’s sufficiently large.
In Sect. 4.2, we estimate the running time for the case of constant success probability.

Length-pruning and variations. The choices of hyperplane(s) in NearestPlane(s)

do not depend on the error-length we have accumulated so far: we hope that our cur-
rently chosen projection (target) will have relatively close hyperplanes in the subsequent
recursive calls contributing to the error-length as little as possible. In other words, ex-
pressing the output error-vector via the Gram-Schmidt basis, e′ =∑

m
i=1 e′i

b̃i
‖b̃i‖

, we bound
the coordinates |e′i| individually.

Algorithms that put constraints on the so far accumulated total error-length while
choosing a hyperplane, so-called length-pruning strategies, were proposed for SVP in
[45], extensively studied in [17] and adapted to BDD in [33]. The bound Ri that we
impose on the accumulated total length at the ith level is specific to the length-pruning
strategy under consideration.

For instance, taking into account the Gaussian nature of LWE-error, one can use tail-
bounds for Gaussians and estimate the final error length as R =Θ(s

√
m). So we could

use Ri =R as a trivial bound, having a spherical search space, which guarantees constant
success probability. We refer to this as spherical pruning. More interesting is setting
Ri = (m−i+1

m)
1
2 ·R as bounds on the error-length on the ith level (counting i downwards).

This case is called linear pruning ([45]). Furthermore, instead of having a linear decay,
one can think of other bounding functions. [17] considers various choices for Ri and
analyzes the running-time/success probability ratio ϒ (ENUM) of these algorithms by
comparing ϒ (ENUM) with the corresponding ratio of spherical pruning.

In Chapter 4.3, we take a more general approach: we consider generalized pruning
algorithms that put bounds on the current |e′i|, where the bound arbitrarily depends on
the already accumulated e j’s for j > i. This covers Babai’s, the Lindner-Peikert algo-
rithm, as well as length-pruning strategies. We then give conditions that a reasonable
pruning strategy should meet and analyze the trade-off ϒ = T (ENUM)

Psucc(ENUM) . We show that ϒ

is asymptotically the same for any reasonable generalized pruning strategy.

4 LWE Decoding: General Strategies

In this section, we consider algorithms for solving the LWE problem via bounded dis-
tance decoding. In this approach, we first compute a reduced basis for Λ(At) (the re-
duction phase) and then find a close lattice point to t = Ats+ e mod q in the decoding
phase. The more work we put into basis reduction, the easier the decoding phase will
be, so there is a trade-off between the two phases. Since we consider several different
algorithms for the decoding phase, we first analyze each decoding algorithm without
considering the reduction phase (but on input bases that follow GSA) in Sect. 4.1–4.3
and then discuss the trade-off in Sect. 4.4 for all our algorithms simultaneously. We start
by Babai’s NearestPlane algorithm from [11].

10

4.1 Babai’s NearestPlane(s) algorithm

Suppose we are a given a shift4 x ∈Qm and a basis B = B(m) = {b1, . . . ,bm} ∈ Zm for
the shifted lattice x+L (B(m)) as well as a target point t = x+v+e ∈ x+SpanL (B).
In the context of LWE decoding, the shift is x = 0 in the inital call and we know that e is
small. Our task is to recover x+v or, equivalently, the error vector e. Babai’s algorithm
for this works as follows: we can write x+L (B(m)) as

x+L (B(m)) =
⋃
i∈Z

x+ ibm +L (b1, . . . ,bm−1).

x+ ibm +L (b1, . . . ,bm−1)⊂Ui is contained in the m−1-dimensional hyperplane

Ui :=
{

y ∈ Rm
∣∣∣ 〈y , b̃m

‖b̃m‖2

〉
= i+

〈
x , b̃m
‖b̃m‖2

〉}
. (cf. Fig. 2a)

Babai’s algorithm orthogonally projects t = t(m) onto the Ui that is closest to t(m) to ob-
tain t(m−1) and then recursively solves the problem for t(m−1) and the shifted sublattice
(x+ ibm)+L (b1, . . . ,bm−1). Formally, we obtain the following algorithm:

Algorithm 1 Babai’s NearestPlane (B,x, t,e′)
Input: B = (b1, . . . ,bk) ∈ Zm×k,x ∈Qm, t ∈ x+SpanB,e′ ∈Qm (e′ = x = 0 in inital call)
Output: v ∈ x+L (B) close to t and e′ = t−v corresponding error vector
1: x(k)← x, t(k)← t,e′(k)← e′. Let B̃← GSO(B). . For notational purposes
2: if k = 0 then return (x,e′)
3: Compute u(k)old ←

〈
t(k) , b̃k

‖b̃k‖2

〉
4: Choose u(k)new =

〈
x(k) , b̃k

‖b̃k‖2

〉
+ i(k) closest to u(k)old with i(k) ∈ Z.

5: x(k−1)← x(k)+ i(k)bk . x(k−1)+L (B(k−1)) is nearest plane
6: e′(k−1)← e′(k)+(u(k)old −u(k)new)b̃k, t(k−1) = t(k)− (u(k)old −u(k)new)b̃k . Project onto this plane
7: return NearestPlanes((b1, . . . ,bk−1),x(k−1), t(k−1),e′(k−1))

For notational consistency with later algorithms, the argument e′ keeps track of the error
vector accumulated so far and is 0 in the initial call. Note that the algorithm constructs
the error vector e′ coordinate-wise (wrt. the Gram-Schmidt basis B̃), starting from b̃m.
Analysis. Babai’s NearestPlanes algorithm runs in polynomial time. In the context
of LWE decoding, we want that e′ output by the algorithm equals the LWE noise e.
Write e = ∑k ek

b̃k
‖b̃k‖

in the Gram-Schmidt basis. We have e = e′ if all the algorithm’s

choices of nearest planes are the correct ones, which happens whenever |ek| < 1
2‖b̃k‖

for all k, i.e. if e is in the interior of P1/2(B̃). The algorithm fails if |ek| > 1
2‖b̃k‖ for

any k.5 For the analysis, we approximate the discrete Gaussian noise e by a continuous
one, so the ek are independent Gaussians with parameter s. For our parameters, the

4 This is equivalent to the problem for target vector t−x and without shift. We use shifts to write
the algorithms in a cleaner way via recursion, where shifts will appear in the recursive calls.

5 On the boundary of P1/2(B̃), it depends on how equally close hyperplanes are handled in line 4
of Alg. 1; this case will not affect our analysis.

LWE Decoding 11

case of interest is ‖b̃m‖ � s� ‖b̃1‖: in the first steps of the algorithm, we have s�
‖b̃m‖,‖b̃m−1‖, . . ., which contributes to a superexponentially small success probability.
The ‖b̃k‖ increase geometrically (under GSA) from ‖b̃m‖ to ‖b̃1‖. At some intermediate
critical k∗, we have s ≈ ‖b̃k∗‖ and the subsequent steps do not contribute much to the
failure probability. More precisely:

Lemma 1. Let the sequence ‖b̃1‖> .. . > ‖b̃n‖ be geometrically decreasing with decay
rate ‖b̃i‖/‖b̃i+1‖ = δ 2 > 1. Let e1, . . . ,en be independent continuous Gaussians with
density 1

s exp(−πx2

s2). Let pi := Pr
[
|ei|< ‖b̃i‖

]
. Then

– If ‖b̃n‖> s(logn)
1
2+ε for fixed ε =Θ(1),ε > 0, then ∏i pi = 1−o(1).

– If ‖b̃n‖= s, then ∏i pi = 2−O(n).
– If ‖b̃1‖= s, then ∏i pi = 2−O(n) ·2nδ−n(n−1).

Proof. By Eq. (1), 1− pi is superpolynomially small if ‖b̃i‖ > s(logn)
1
2+ε . The first

statement then follows by a union bound. The second statement is trivial, as we have
mini pi = Ω(1). For the third statement, we estimate for ‖b̃i‖< s

pi =
∫ +‖b̃i‖

−‖b̃i‖

1
s

e−π
x2

s2 dx =Θ(1)
∫ +‖b̃i‖

−‖b̃i‖

1
s

dx =Θ(1)
‖b̃i‖
s/2

.

So ∏i pi = 2−O(n) ∏‖b̃i‖
(s/2)n = 2−O(n) 2n

(
‖b̃1‖‖b̃n‖

)n/2

sn = 2−O(n) 2n‖b̃n‖n/2

sn/2 = 2−O(n)2nδ−n(n−1).

This implies the following theorem for Babai’s NearestPlanes algorithm:

Theorem 2. Under the Geometric Series Assumption (GSA) on a β = Θ(n) reduced-
basis that arises from m = (cm +o(1))n LWE samples with parameters (n,q = O(ncq),
s = O(ncs)) for cm and cs < cq constants, Babai’s NearestPlanes algorithm solves
the search-LWE problem in polynomial time with success probability

Psucc(BABAI) =

2−
1
2

(
m
2β
−cq+c−1

m cq+cs

)2
(1+o(1))β logβ

, if m
2β
− cq + c−1

m cq + cs > 0

1−o(1), if m
2β
− cq + c−1

m cq + cs < 0,

if we assume that the LWE error follows a continuous Gaussian distribution.

Note that the two cases in the theorem relate to whether ‖b1‖ is larger or smaller than s.

Proof. Under GSA, we have ‖b̃i‖= β
m
2β q1−c−1

m δ−2i with δ = β
1

2β . A simple computa-
tion shows that ‖b̃k∗‖= ncs for the critical k∗ = β (m

2β
+cq−cqc−1

m −cs). Consequently,

m− k∗ = β
(m

2β
− cq +

n
m cq + cs

)
. (4)

If m
2β
−cq+c−1

m cq+cs > 0, we actually have k∗>m and ‖b̃m‖> s ·poly(n). The success
probability is 1−o(1) by the first part of Lemma 1. If m

2β
− cq + c−1

m cq + cs < 0, by the
third part of that lemma, we have

Psucc(BABAI) = 2−O(m)2m−k∗
δ
(m−k∗)2

= 2−
1
2

(
m
2β
−cq+

n
m cq+cs+o(1)

)2
β logβ

.

12

b2

b1

t(k)
U

t(k−1) v

(a) Babai’s NearestPlane Algorithm for a
good basis. A target point t(k) is projected on
a closest hyperplane 2b2 +Span(b1). The re-
cursive call for the chosen one-dimensional
subspace U (thicker) projects on the closest
zero-dimensional hyperplane - the shaded lat-
tice point v.

b2 b1

t(k)

U

t(k−1)

v

(b) Babai’s NearestPlane Algo-
rithm for a bad basis. Now the closest
hyperplane is b2 +Span(b1). The cho-
sen one-dimensional subspace U has
changed, so has the vector v. Obvi-
ously, this lattice vector is not the so-
lution.

b2 b1

t(k)

v

(c) In Lindner-Peikert’s general-
ization, we stretch the bad ba-
sis case by setting d2 = 3 in di-
rections 2b2,b2,0b2, and recurse
on each. The process collects all
shaded points and therefore also the
closest one.

Fig. 2: NearestPlane(s) Algorithms

4.2 Lindner-Peikert NearestPlanes Algorithm

Babai’s algorithm is characterized by its search region VBabai =P1/2(B̃). Indeed, it returns
the unique6 v ∈L (B) with t ∈ v+P1/2(B̃). Therefore, the more orthogonal the input
basis B is, the better v approximates the lattice-vector closest to t (in Figure 2a the
basis vectors are fairly orthogonal). However, the procedure performs far worse if a
given basis is ‘long and skinny’ (Figure 2b) and the error increases as the dimension
grows. In terms of the LWE decoding problem this means that Babai’s NearestPlane
will solve the search LWE-problem iff the error vector e lies in P1/2(B̃). For typical
parameters, this is rather unlikely since the last Gram-Schmidt vectors in a BKZ reduced
basis are fairly short.

To address this problem, Lindner and Peikert suggested to choose several (di ≥ 1)
close hyperplanes in the ith level of the recursion (Figure 2c). Geometrically, this means
that we stretch the elongated parallelepiped P1/2(B̃) to a cube-like shape by increasing
the last and therefore short Gram-Schmidt vectors. In the end, we have dm · · ·d1 candi-
date solutions to check. Formally, the algorithm works as follows:

6 This can be made to hold true even if there are two equally close hyperplanes in the algorithm;
these cases do not affect our analysis.

LWE Decoding 13

Algorithm 2 Lindner-Peikert’s NearestPlanes (B,x, t,e′)
Input: B = (b1, . . . ,bk) ∈ Zm×k,x ∈Qm, t ∈ x+SpanB,e′ ∈Qm (e′ = x = 0 in inital call)
Output: A set of pairs (v,e′) with v ∈ x+L (B) and e′ = t−v corresponding error vector
1: x(k)← x, t(k)← t,e′(k)← e′. Let B̃← GSO(B). . For notational purposes
2: if k = 0 then return {(x,e′)}
3: Compute u(k)old ←

〈
t(k) , b̃k

‖b̃k‖2

〉
4: Let u(k)j =

〈
x(k) , b̃k

‖b̃k‖2

〉
+ i(k)j for i(k)j ∈ Z, j = 1, . . . ,dk be the dk closest numbers to u(k)old .

5: Let x(k−1)
j ← x(k)+ i(k)j bk for 1≤ j ≤ dk . x(k−1)

j +L (B(k−1)) are the dk nearest planes

6: e′(k−1)
j ← e′(k)+(u(k)old −u(k)j)b̃k, t(k−1)

j = t(k)− (u(k)old −u(k)j)b̃k, . Project onto them

7: return
⋃

j NearestPlanes((b1, . . . ,bk−1),x
(k−1)
j , t(k−1)

j ,e′(k−1)
j)

Analysis. Our search region is now extended to VLP = P1/2(B̃ ·D), which, as estimated
in [32], amplifies the success probability for LWE decoding to

PLP := Pr[e ∈P1/2(B̃ ·D)] =
m

∏
i=1

Pr
[∣∣〈e , b̃i

〉∣∣< di·‖b̃i‖2
2

]
=

m

∏
i=1

erf
(

di‖b̃i‖
√

π

2s

)
,

where D is the diagonal matrix composed of the di’s, and erf(x) = 2√
π

∫ x
0 e−t2

dt. Here,
like in Sect. 4.2, we estimate the discrete Gaussian error e by a continuous one. We wish
to set the parameters di such that the success probability is at least constant. It follows
from Eq. (1) that if min1≤i≤m

di‖bi‖
s =ω(

√
logm), then PLP = 1−o(1). Conversely, if we

have min1≤i≤m
di‖bi‖

s = o(1), then PLP = o(1). So we set di =
⌈ s·(logm)α

‖b̃i‖

⌉
for sufficiently

large α > 1/2 (which will not affect the asymptotic running time anyway). Note that for
our parameter choices, ‖b̃1‖ will be much larger than s, so the first di’s in the algorithm
are all equal to 1 and the sequence of the di’s has the form (1,1, . . . ,1,2, . . .).

Let us turn our attention to the running time. The recursive calls to the Linder-
Peikert algorithm have the structure of a rooted tree, where the root corresponds to the
initial call and every node calls its dk children. The leaves correspond to the candidate
solutions we need to check in the end. Note that every node at level k (the root has level
m and the leaves have level 0) corresponds to a partial solution, where we already fixed
the last m− k coefficients of e′ (wrt. the B̃-basis) and of x (wrt. the B-basis). Let Nk
be the number of nodes at level k and N be the total number of nodes. Clearly, Nk =

∏
m
i=k+1 di and N = ∑

m
k=0 Nk. As the running time per node is polynomial, estimating the

running time amounts to estimating N. For this, we have the following result.

Theorem 3. Under the Geometric Series Assumption (GSA) on a β = Θ(n)-reduced
basis that arises from m = (cm +o(1))n LWE samples with parameters (n,q = O(ncq),
s=O(ncs)) for cm and cs < cq constants, NearestPlanes with our choice of di’s solves
search-LWE problem with success probability 1−o(1) in time

TLP = poly(n)N =

2
1
2

(
m
2β
−cq+c−1

m cq+cs

)2
(1+o(1))β logβ

, if m
2β
− cq + c−1

m cq + cs > 0

poly(n), if m
2β
− cq + c−1

m cq + cs < 0

14

and polynomial memory (using depth-first search), if we assume that the LWE error
follows a continuous Gaussian distribution.

Proof. If m
2β
−cq+c−1

m cq+cs < 0, we have ‖b̃m‖> s ·poly(m), so for sufficiently large
m, all di = 1 and the result follows from Thm. 2. So consider the case m

2β
−cq+c−1

m cq+

cs > 0. Since Nk ≤ N0 for all k, we have N0 ≤ N ≤ (m+ 1) ·N0. So up to polynomial
factors, the running time is given by N0 = ∏di. Let the critical k∗ be maximal, s.t.
‖b̃k∗‖> s. By Eq. (4), m−k∗

β
= m

2β
− cq +

n
m cq + cs. We compute for N0 = ∏i di:

m

∏
i=k∗+1

s

‖b̃i‖
≤

m

∏
i=1

⌈
s·(logm)α

‖b̃i‖

⌉
= ∏

i
di = N0 and

N0 ≤ (1+(logm)α)m
m

∏
i=1

⌈ s

‖b̃i‖

⌉
≤ (1+(logm)α)m2m−k∗

m

∏
i=k∗+1

s

‖b̃i‖
.

We already computed (the inverse of) ∏
m
i=k∗+1

s
‖b̃i‖

in the analysis of Babai’s algorithm
(cf. Lemma 1 and Thm. 2), so

m

∏
i=k∗+1

s

‖b̃i‖
= 2
(
(m−k∗)2

2β2 +o(1)
)

β logβ
,

which is exactly what we want. The error term (1+(logm)α)m2m−k∗ = 2O(m log logm)

only contributes to the o(1)-term.

4.3 Generalized Pruning Strategies

In Babai’s or Lindner and Peikert’s algorithm, at every node at level k in the search
tree, we have already fixed the coordinates e′m, . . . ,e

′
k+1 of the output error vector e′ =

∑i e′i
b̃i
‖b̃i‖

(in the Gram-Schmidt basis). These coordinates are contained in the argument

e′(k) = ∑
m
i=k+1 e′i

b̃i
‖b̃i‖

that we pass on during recursion. In particular, we already know
that the final error vector will have length at least ‖e′(k)‖2. We then recurse on exactly
dk children (i.e. the dk closest hyperplanes), where dk = 1 for Babai and dk ≥ 1 for
Lindner-Peikert. But actually, it makes sense to make the number of children variable,
depending on the error vector accumulated so far. If e′(k) is very small, the node is more
likely to lead to the correct solution, hence we should choose more children, whereas
if ‖e′(k)‖ �

√
ms, this node will probably not lead to the correct solution, so we might

choose no children at all. We now generalize Babai’s / Lindner and Peikert’s algorithm
to allow for arbitrary dependency of the number of children on the error accumulated so
far. For any (efficiently computable) family of bounding functions B(k) : Qm−k

≥0 →Q≥0,
1≤ k ≤ m, we consider the following generalized pruning algorithm GenPruning:

LWE Decoding 15

Algorithm 3 Generalized Pruning Algorithm GenPruning(B,x, t,e′) for a family of
bounding functions B(k)

Input: B = (b1, . . . ,bk) ∈ Zm×k,x ∈Qm, t ∈ x+SpanB,e′ ∈Qm (e′ = x = 0 in inital call)
Output: A set of pairs (v,e′) with v ∈ x+L (B) and e′ = t−v corresponding error vector
1: x(k)← x, t(k)← t,e′(k)← e′. Let B̃← GSO(B). . For notational purposes
2: if k = 0 then return {(x,e′)}
3: Compute u(k)old ←

〈
t(k) , b̃k

‖b̃k‖2

〉
.

4: Let e′i = 〈e′(k) ,
bi
‖bi‖ 〉 for k < i≤ m. . Coefficients of e′

5: Let D2
max = B(k)(e′2m , . . . ,e

′2
k+1) . bound on distance of next hyperplanes

6: Let u(k)j =
〈
x(k) , b̃k

‖b̃k‖2

〉
+ i(k)j , j = 1, . . . be all possible numbers s.t.

|u(k)old −u(k)j |
2 · ‖b̃k‖2 ≤ D2

max and i(k)j ∈ Z.

7: Let x(k−1)
j ← x(k)+ i(k)j bk for all j . Consider the nearby planes x(k−1)

j +L (B(k−1))

8: e′(k−1)
j ← e′(k)+(u(k)old −u(k)j)b̃k, t(k−1)

j = t(k)− (u(k)old −u(k)j)b̃k, . Project onto them

9: return
⋃

j GenPruning((b1, . . . ,bk−1),x
(k−1)
j , t(k−1)

j ,e′(k−1)
j)

The algorithm recurses on all hyperplanes, s.t. (e′k)
2 ≤ B(k)(e′2m , . . . ,e

′2
k+1). So the search

region of GenPruning is given by

VGP =
{

e′ = ∑
i

e′i
b̃i
‖b̃i‖

∣∣∣ e′2k ≤ B(k)(e′2m , . . . ,e
′2
k+1) for all k

}
and the algorithm is successful if the LWE error vector is contained in VGP. GenPruning
captures what is known as pruned enumeration [45]: in pruned enumeration, we keep
only partial candidate solutions where the partial error vectors e′(k) satisfy ‖e′(k)‖ ≤ Rk
for some level-dependent bounds Rk that are defined by the particular pruning strategy.
This is achieved by setting

B(k)(e′2m , . . . ,e
′2
k+1) = R2

k−∑
i

e′2i . (5)

For instance, we get the following algorithms for those specific choices of B(k):

– B(k)(e′2m , . . . ,e
′2
k+1) =

(‖b̃k‖
2

)2: Babai’s algorithm7.

– B(k)(e′2m , . . . ,e
′2
k+1) =

(dk‖b̃k‖
2

)2: Linder-Peikert algorithm.
– B(k)(e′2m , . . . ,e

′2
k+1) =Θ(ms2)−∑

m
i=k+1 e′2i : Spherical Pruning.

– B(k)(e′2m , . . . ,e
′2
k+1) =Θ((m− k−1)s2)−∑

m
i=k+1 e′2i : Linear Pruning.

We also cover the extreme pruning approach of [17] and potential algorithms where
B(k) has a more complicated dependency on the individual e′i’s. For technical reasons,
we require that B(k) is extended to real-valued arguments in a continuous way, so the
algorithm becomes meaningful for error vectors following a continuous Gaussian and
we analyze it for such continuous errors. Furthermore, the bounding functions do not
get the Gram-Schmidt vectors or their lengths ‖b̃i‖ as explicit inputs, but we rather

7 Again, we ignore the case of equally close hyperplanes for NearestPlane(s).

16

treat these lengths as a promise. Essentially, this mean that we restrict to enumeration
algorithms that are oblivious to the actual geometry of the lattice.
Analysis. We are interested in the ratio of expected running time to success probability
ϒ (GP) = T (GP)

Psucc(GP)
if the LWE error vector e follows a continuous Gaussian with parameter

s. Let Vk be the search region at level k, i.e.

Vk =
{

e′ =
m

∑
i=k+1

e′i
b̃i
‖b̃i‖

∣∣∣ e′2j ≤ B(j)(e′2m , . . . ,e
′2
j+1),k < j ≤ m

}
and Nk be the number of nodes at level k during a run of GenPruning. Let Pk be the
probability that we retain the correct solution at level k (i.e. we have a partial solution
at level k that can be extended to the solution of the search-LWE problem). Note that Nk
is the number of points in e−Vk that belong to the lattice πk(L (B)), where πk is the
projection onto the orthogonal complement of Span(b1, . . . ,bk). So, we expect that

Nk ≈
volVk

‖b̃m‖· · ·‖b̃k+1‖
(6)

by what is known as the Gaussian Heuristic. Interestingly enough, we only require
Eq. (6) to hold up to a factor 2O(m), which we can prove rigorously for convex Vk and
taking the expected value (over e) of Nk, using a variant [42] of Minkowski’s Convex
Body Theorem. We will prove matching lower and upper bounds for ϒ (GP), where for
the upper bound we need to impose some (weak) restrictions on the bounding functions.

Definition 4. Assume that the ‖b̃i‖ follow the GSA and that our correct error vector
follows a continuous Gaussian with parameter s. Assume that ‖b̃1‖ > s > ‖b̃m‖ and
let k∗ be maximal s.t. ‖b̃k∗‖ > s. We call B(k) resp. the associated generalized pruning
algorithm reasonable for the given parameters if the following conditions are satisfied:

1. B(k)(e′2m , . . . ,e
′2
k+1)+∑

m
i=k+1 e′2i = O(ms2).

2. Psucc(GP)≥ 2−O(m)Pk∗ .
3. Nk ≤ 2O(m)Nk∗ for k ≤ k∗.
4. Nk−1

Nk
= Ω(1) for k ≥ k∗.

5. Vk∗ is convex.

Condition 1 means that we do not consider partial solution where the accumulated error
vector up to that level point is already larger than the expected the final error vector.
Conditions 2 and 3 tell us that, up to exponential factors, we can find the correct so-
lution at little cost, provided it survived until level k∗. Note that switching to Babai’s
algorithm from level k∗ on will ensure that conditions 2 and 3 hold. Condition 4 tells
us that the average number of children nodes at level i is at least constant as long as
‖b̃i‖< s. Note that ‖b̃i‖< s implies that we always have Ω(1) plausible candidate hy-
perplanes at distance at most s. The convexity property holds for all pruned enumeration
strategies that use Eq. (5) and may be replaced by asking that heuristic Eq. (6) holds up
to exponential error.

It is not hard to see that Babai’s algorithm, Linear Pruning, Spherical Pruning and
all pruning algorithms considered in [17] are reasonable. The Lindner-Peikert algorithm
is literally a corner case: in the corners of the parallelepiped-shaped search region, con-
dition 1 is (barely) violated, which is why we analyzed it separately.

LWE Decoding 17

Theorem 5. Under the Geometric Series Assumption (GSA) on a β = Θ(n)-reduced
basis that arises from m = (cm +o(1))n LWE samples with parameters (n,q = O(ncq),
s = O(ncs)) for cm and cs < cq constants, such that m

2β
− cq + c−1

m cq + cs > 0, any
reasonable generalized pruning algorithm GP has an expected running time to success
probability ratio ϒ of

ϒ (GP) =
E[T (GP)]
Psucc(GP)

= 2
1
2

(
m
2β
−cq+c−1

m cq+cs

)2
(1+o(1))β logβ

.

Furthermore, if Eq. (6) holds up to at most an exponential factor then, even if GP is not
reasonable, the above is also a lower bound for ϒ (GP).

Proof. The running time is clearly poly(m) ·∑i Ni. If the pruning strategy is reasonable,
we have

Psucc(GP) = 2O(−m)Pk∗ and T (GP) = poly(m)∑
i

Ni = 2O(m)Nk∗ ,

because Ni ≤ 2O(m)Nk∗ for all i, no matter whether i > k∗ or i < k∗. Now, Nk∗ is the
number of points from e−Vk∗ in the lattice πk∗(L (B)). Hence, the expected value
(over the choice of e) of Nk∗ is given by

E
e
[Nk∗] = ∑

x∈πk∗ (L (B))
f (x) where f (x) =

∫
Vk∗

1
sk∗ exp(−π‖y‖2

s2)dy.

Since Vk∗ is convex, its characteristic function is log-concave. The Gaussian density is
log-concave. So f is the convolution of two log-concave functions, hence log-concave
itself. In particular, f is centrally symmetric and quasiconcave. It follows by a variant
of Minkowsi’s Convex Body Theorem due to R. Rado [42] that

E
e
[Nk∗] =

2±O(m)

det(πk∗(L (B)))

∫
f (x)dx =

2±O(m) volVk∗

det(πk∗(L (B)))
. (7)

By Condition 1 in Def. 4, we have 1≥ exp(−πx2

s2)≥ e−O(m) for every x ∈Vk∗ . So

E[T]
Psucc(GP)

=
2±O(m) volVk∗

‖b̃m‖···‖b̃k+1‖∫
x∈Vk∗

1
sm−k∗ exp(−π‖x‖2

s2)dx
=

2±O(m)sm−k∗

‖b̃m‖· · ·‖b̃k+1‖

∫
x∈Vk∗

1dx∫
x∈Vk∗

exp(−π‖x‖2
s2)dx

=
2±O(m)sm−k∗

‖b̃m‖· · ·‖b̃k+1‖

∫
x∈Vk∗

1dx∫
x∈Vk∗

1dx
= 2

1
2

(
m
2β
−cq+c−1

m cq+cs

)2
(1+o(1))β logβ

.

(8)

If the pruning strategy is not reasonable, we still have Psucc(GP) ≤ Pk∗ , T ≥ poly(m)Nk∗

and 1 ≥ exp(−πx2

s2) as trivial bounds. Eq (7) holds by assumption. This is sufficient to
prove Eq. (8) with ≥ instead of an equality.

4.4 Balancing the reduction and enumeration phases

So far we have been concerned with the quantityϒ (ENUM)= T (ENUM)
Psucc(ENUM) , but, as pointed

out in Sect. 3, the BDD attack is actually a two-phase attack, where the enumeration

18

(phase 2) is performed on a β -reduced basis. Thus, the ratio one should look at is
ϒ (BDD) = T (BKZ)+T (ENUM)

Psucc(ENUM) . We want to minimize ϒ (BDD).
On input β , a lattice reduction algorithm calls as a subroutine an SVP-solver in a

sublattice of dimension β . The running time of this solver essentially determines the
complexity of the whole reduction. There are two ways to instantiate this SVP solver:
the first is due to [25] with super-exponential running time of 2O(β logβ) (and polyno-
mial space) and algorithms of [39] and [2] that achieve single-exponential complexity
2O(β), but requiring exponential storage. These two cases give rise to the following two
theorems that state the complexity of the whole BDD attack. For the enumeration phase
we consider any reasonable generalized pruning strategy (Def. 4) or the Lindner-Peikert
algorithm. We make a distinction between pruning strategies that achieve constant (e.g.
Lindner-Peikert, spherical pruning) and arbitrarily small (e.g. Babai, extreme pruning)
success probability.

Theorem 6. With a β = Θ(n)-reduced basis reduction running in time 2cBKZ·β logβ and
any reasonable generalized pruning algorithm GP (or Lindner-Peikert), the complexity
of solving the LWE problem with parameters (n,q =O(ncq),s =O(ncs)) via BDD using
the optimal choice of m = n · (2cq√

2cBKZ+cq−cs
+o(1)) samples is

T (BDD) =Θ(ϒ (BDD)) = 2

(
cBKZ·

2cq
(
√

2cBKZ+cq−cs)2
+o(1)

)
·n logn

, if Psucc(ENUM) = 1−o(1).

For Psucc(ENUM) arbitrary, the above quantity is a lower bound for ϒ (BDD).

Proof. We start with the case Psucc(ENUM) = 1−o(1). Since the running time T (ENUM)
drops if T (BDD) is increased, the total running time T (BDD) = T (BKZ)+T (ENUM) is
minimized (up to a factor of at most 2) when the two phases of the attack are balanced:
T (BKZ) = T (ENUM). On a logarithmic scale, using the result of Thms. 3 and 5, this
condition is equivalent to (ignoring the o(1) term):

1
2

(m
2β
− cq +

n
m cq + cs

)2
β logβ = cBKZβ logβ , (9)

from where we easily derive β = 1
2

m√
2cBKZ+(1−n/m)cq−cs

=Θ(m).

The obtained expression for β is minimized when we take m = n · 2cq√
2cBKZ+cq−cs

sam-
ples. For such a choice, the first statement of the theorem follows.

If Psucc(ENUM) is arbitrary, the running time to success probability ratio satisfies
ϒ (BDD) = T (BKZ)+T (ENUM)

Psucc(ENUM) = T (BKZ)
Psucc(ENUM) +ϒ (ENUM)≤ T (BKZ)+ϒ (ENUM) and we re-

ally just bounded T (BKZ)+ϒ (ENUM).

Now we consider the case when the lattice-reduction has complexity TBKZ = 2Θ(β).
Thm. 5 shows that for any generalized pruning strategy, the trade-off ϒ (ENUM) is
lower-bounded by 2Θ(β logβ) when run on a β =Θ(n)-reduced basis as long as ‖b1‖ is
larger than s by a polynomial factor. Conversely, if ‖b1‖ is smaller than s by any poly-
nomial factor, enumeration becomes very easy: we achieve success probability 1−o(1)
in polynomial time by Babai’s algorithm.

Thus, if we have a fast single-exponential reduction, the asymptotically optimal
trade-off is to reduce the basis to the transition point where the cost of enumeration

LWE Decoding 19

switches from super-exponential to polynomial. We might not know the behavior of
enumeration algorithms at exactly the transition point, but increasing β even slightly
will not affect reduction in leading order and make enumeration truly polynomial.

Hence, the complexity of the whole attack boils down to the complexity of the
lattice-reduction step, as the enumeration is comparatively cheap. What remains is to
determine for which values of β we should run the reduction.

Theorem 7. With a β -reduced basis reduction running in single-exponential time 2cBKZβ ,
the complexity of solving the LWE problem with parameters (n,q = O(cq),s = O(cs))

via BDD using the optimal choice of m = n ·
(2cq

cq−cs
+ o(1)

)
samples and block size

β = n ·
(2cq
(cq−cs)2 +o(1)

)
is

T (BDD) = 2

(
cBKZ·

2cq
(cq−cs)2

+o(1)
)
·n
, with Psucc(BDD) = 1−o(1).

Proof. To guarantee a constant success probability for a polynomial-time enumeration
step, we set (cf. Thm. 2) m

2β
− (1−n/m)cq + cs < 0, yielding

β > 1
2

m
(1−n/m)cq−cs

.

This value attains its minimum for m = n · 2cq
cq−cs

, from where we get β > n · 2cq
(cq−cs)2 .

5 Embedding

A standard technique to convert a CVP instance (L (B), t) to an SVP instance is due
to Kannan ([26]): we consider a higher-dimensional lattice LEmbed(B, t) spanned by
{(L (B)×{0}),(t,τ)}, where the so-called embedding factor τ should be large enough
(half of a shortest vector of L (B) in the worst-case). Once a shortest vector in LEmbed(B)
is of the form (v,e) and e 6= 0, then v is a solution to the original CVP instance.

Similarly, a BDD instance can be reduced to a so-called γ-unique-SVP problem,
where we have the promise that the so-called gap λ2

λ1
is at least γ . Here, λ1 resp. λ2 are

the first resp. second minima of the lattice. In the LWE case, a bound on the length of the
error-vector allows us to estimate λ1 and λ2 in LEmbed(B, t) as follows: λ 2

1 = ‖e‖2 + τ2

and λ2 = λ1(L (B)). This gives us a bound γ on λ2
λ1

and thus it is enough to approximate
the shortest vector by a factor of γ . We refer the reader to [35] for a reduction between
unique-SVP and BDD.

The obvious tool to solve the γ-unique-SVP problem is lattice-basis reduction.
Eq. (2) indicates that a β -BKZ-reduced basis of an m-dimensional lattice achieves an
approximation factor of ≈ β m/(2β) to a shortest vector. Thus, knowing the gap for an
LWE lattice, we can estimate the required block-size β as follows (an analogous result,
but in terms of the Hermite-root factor δ , is presented in [6]; also our choice of m is
different):

Theorem 8. With a β -BKZ basis reduction running in time 2cBKZ· f (β), with f (β) = β

or f (β) = β logβ , the complexity of solving the LWE problem with parameters (n,q =
O(ncq),s = O(ncs)) via embedding is

T (EMBED) = 2

(
cBKZ·

2cq
(cq−cs)2

+o(1)
)

f (n)
with m =

(2+o(1))cq
cq−cs

·n samples.

20

Proof. Let us first estimate the gap for LEmbed(B), spanned by {(L (B)×{0}),(t,‖e‖)},
where B is a basis for an m-dimensional lattice and ‖e‖=Θ(s

√
m). Then,

λ1(LEmbed(B)) =Θ(s
√

m), and λ2(LEmbed(B)) = λ1(L (B))≤
√

mq1−n/m,

by Minkowski’s bound (more precisely, λ1(L (B)) ≤ min{q,
√

mq1−n/m}, since we
have a q-ary lattice, but for our choice of m, Minkowski’s bound is always smaller).
The value for β that achieves a sufficient approximation for given LWE-gap satisfies

β
m/(2β) = λ2(LEmbed(B))

λ1((LEmbed(B))) =Θ
(q1−n/m

s

)
,

if we assume that Minkowski’s bound λ1(L (B))≤
√

mq1−n/m holds with equality (the
so-called Minkowski Heuristic). We obtain β = 1

2
m

(1−n/m)cq−cs
+o(m). Its global mini-

mum is at m =
(2+o(1))cq

cq−cs
·n, leading to β =

(2+o(1))cq
(cq−cs)2 ·n.

Thus the embedding technique achieves the same constant in the exponent as the
single-exponential reduction + polynomial-time enumeration algorithm (cf. Thm. 7).
From the algorithmic point of view, both methods are nearly equivalent: performing
polynomial-time enumeration (Babai) on a reduced basis can be seen as embedding the
target vector in such a reduced basis and then size-reducing it.

6 Lattice Reduction on the Kernel

Another approach to solve the LWE problem is by lattice reduction on the (scaled) dual
lattice. This attack already appears in [38] (but is analyzed in terms of the root-Hermite
factor δ and not in our setting). An analysis matching our asymptotic approach is given,
e.g. in [27, Full Version], which we briefly recall.

The main difference to the lattice attacks from section Sect. 4 is that we directly
solve an instance of the (approximate) shortest vector problem SVP (rather than a
promise version of CVP) and that this attack is more naturally viewed as an attack
against the decision version of LWE.

More precisely, given an LWE instance (A, t = Ats+ e mod q) with A ∈ Zn×m
q we

consider the q-ary lattice

Λ
⊥
q (At) =

{
z ∈ Zm : Az mod q = 0

}
.

Its dimension is m and, provided A has full rank, its determinant is detΛ⊥q (At) = qn.
We use BKZ to reduce this lattice and find a short non-zero vector v ∈ Λ⊥q (At). Given
such a vector v, we can compute w := 〈v , t〉 mod q = vt(Ats+e) mod q = vte mod q =
〈v , e〉 mod q. If e is uniform, the resulting 〈v , t〉 mod q is uniform, whereas if e is
Gaussian with standard deviation s, then 〈v , t〉=∑i viei is Gaussian again (if we pretend
for a moment that the discrete Gaussians ei were continuous) with standard deviation
s · ‖v‖. The statistical distance of w mod q to a uniform random variable mod q is then

given by α = 2−O
(

s‖v‖
q

)2

. This still holds true for our discrete Gaussian setting and

LWE Decoding 21

efficient distinguishers reaching advantage Θ(α) exist[7]. This means that we should
aim for ‖v‖ = O(n1/2+cq−cs−ε) for any ε > 0 to obtain sub-exponential advantage. By
Eq. (2), we have ‖v‖= O(β

m
2β q

n
m). Optimization and letting ε → 0 leads to

m =
(2cq

1/2+ cq− cs
+o(1)

)
·n, β =

(2cq

(1/2+ cq− cs)2 +o(1)
)

n .

To solve the search problem with constant probability, we can use the generic reduc-
tion from [43] or use a more efficient Fourier-based approach [7], losing a factor of
poly(n) ·α−2 in the running time, which does not affect the asymptotics for ε > 0. The
memory complexity of the reduction can be made polynomial. Note that the resulting
running time is better than those from Sect. 4 due to the additional 1

2 -term in the de-
nominator. However, solving the search problem entails repeating the algorithm against
the decision problem poly(n)α−2 many times with independent inputs. If we only have
polynomially many inputs, as is typically the case, we can either lower the bound on ‖v‖
or use sample amplification as detailed in Sect. 7. This directly leads to the following
running times, where we interpolate between these cases using ‖v‖ = O(ncq−cs+γ/2).
Note that amplification leads to the same results as lowering ‖v‖ for γ ∈ {0,1}. For
0 < γ < 1, we conjecture that this holds as well (cf. Rmk. 12).

Theorem 9. With a β -BKZ reduction running in time 2cBKZ f (β), with f (β)= β or f (β)=
β logβ , the complexity of solving the LWE problem with parameters (n,q =O(ncq),s =
O(ncs)) via lattice reduction on the dual is

T (DUAL) = 2

(
cBKZ·

2cq
(cq−cs)2

+o(1)
)
· f (n)

using m = Ω(n logn) many samples or

T (DUAL) = 2

(
cBKZ·

2cq
(γ/2+cq−cs)2

+o(1)
)
· f (n)

using m= 2O(nγ) samples for 0< γ ≤ 1. The success probability is 1−o(1). The memory
complexity is dominated by the β -BKZ reduction where β =Θ(n).

Note that for γ > 0, we need not store all the samples simultaneously, but rather
need to query m samples.

7 BKW

7.1 Original BKW

The BKW algorithm [13] is an algorithm designed originally for LPN (i.e. LWE with
q = 2 and Bernoulli distributed noise) and later generalized to LWE in [4]. It consists
of two main phases. The BKW algorithm uses a very large initial number m of samples
of the form (a,〈ai , s〉+ e), where m = 2Θ(n/ logn) in the case of LPN and m = 2Θ(n) for
LWE with our parameters. In the first phase, it adds/subtracts pairs of such samples to
construct new samples of the form (a′,〈a′ , s〉+ e′) where the pairs are selected via a

22

collision finding algorithm such that several chosen coordinates of a′ are 0. Iterating
this process k times, we obtain a large number of final samples (a′′,〈a′′ , s〉+ e′′) where
only a small number of coordinates of a′′ are possibly non-zero. In the second phase,
it determines s with high probability on those coordinates (e.g. by exhaustive search
over the possible values of s on those coordinates). The rest of the coordinates of s can
be obtained in the same fashion. We refer to [13] resp. [4] for more details. Note that
the BKW algorithm for LWE can be viewed as a way to find short vectors in the kernel
lattice Λ⊥q (At) in a combinatorial way rather than via lattice reduction as in Sect. 6: if
we combine samples until actually all coordinates of a′′ are 0, the selection of original
samples used to create a′′ corresponds to a short v ∈Λ⊥q (At) with entries from {0,±1}
such that ‖v‖2 = 2k.8 In particular, the same considerations as in Sect. 6 on the allowed
length of ‖v‖ apply. Not reducing all coordinates to 0 can be viewed as a way to make
the search-to-decision reduction more efficient and can also be done in Sect. 6. In fact,
there are various improvements for BKW (e.g. [5, 7]) that improve the second phase.
While relevant in practice, these do not change the asymptotics, since the second phase
is not relevant for the asymptotics.

Since we need an exponential number of samples anyway, both initially and at every
intermediate step, it is not a problem to produce an exponentially large amount of final
samples and we should set ‖v‖ = O(n1/2+cq−cs), so the noise in the final samples has
standard deviation O(

√
nq).

For the LWE setting with parameters q = O(ncq),s = O(ncs), by the result of [27],
the complexity of the BKW algorithm is single-exponential, namely

T (BKW) = 2
(

cq
2·(1/2+cq−cs)

+o(1)
)
·n

(10)

(in time, memory and LWE samples). The success probability is close to 1. Note that
the original analysis of [4] lacks the 1/2-term, because the authors chose a suboptimal
‖v‖= ncq−cs .

7.2 BKW2

Recently, [27] and [22] independently proposed a modification to the first phase of BKW
that changes the asymptotics. We will call the resulting algorithm BKW2 for comparison.
At the expense of n+o(n) samples, we can achieve that the entries of the secret follow
the same distribution as the noise and are thus small[9]. In the original BKW, most/all
coordinates of a′′ were 0 in the final samples (a′′,〈a′′ , s〉+ e′′). In BKW2 this is relaxed
to only requiring that ‖a′′‖ be small. The term 〈a′′ , s〉 can then be treated as another
noise term (which is chosen to have about the same order of magnitude as e′′). For our
setting with q = O(ncq),s = O(ncs), the analysis of [27] yields

T (BKW2) = 2
(

1
cq +2ln(cq

cs)+o(1)
)−1
·n (11)

8 This depends on to what extent we allow reusing the same initial sample in several combina-
tions, as allowed by some variants [31] of BKW at the expense of a heuristic analysis. These
modifications have no impact on the asymptotics.

LWE Decoding 23

(in time, memory and LWE samples). The success probability is close to 1. Note that
this assumes that the coefficients of the secret follow the same distribution as the noise
for simplicity and easier comparison. If the distribution of s is such that the coefficients
of the secret are even smaller than those of the noise, the BKW2 algorithm becomes even
better than that.

7.3 Amplification

In most cases, an LWE-based scheme produces only m = poly(n) number of LWE sam-
ples (where the polynomial bound can be as small as m = Θ(n)). The BKW algorithm,
however, requires exponentially many of them. Thus, we would like to be able to pro-
duce many new random-looking LWE samples out of m given ones (“sample amplifica-
tion”) and run BKW on those new samples.

For the LPN (i.e. q = 2) case, an analysis of such amplification was made by Lyuba-
shevsky in [34]. One generates exponentially many samples given only m = n1+ε initial
ones by xor-ing a random sparse subset of the m given samples.

To ensure that we can use the LPN samples of the form (a′,c′) ∈ Zn
2×Z2 gener-

ated by this amplification process in BKW, [34] verifies that the following conditions are
satisfied: up to a statistically small deviation D,

1. a′ is uniformly distributed and independent of the initial m samples.
2. the new noise in c′ is independent from a′, even conditioned on the initial samples.
3. the BKW algorithm can work with the new noise distribution in c′.

To argue about the first two condition, [34] invokes the Leftover Hash Lemma. As for
the third condition, the noise-rate in the new output samples is much larger than the
noise of the input samples, which in turn slows down the BKW algorithm from 2O(n

logn)

to 2O(n
log logn). Note that the statistically small deviation D not only has to be negligi-

bly small, but rather has to be small compared to the inverse of number of samples
consumed by BKW.

Similar techniques are known for LWE (e.g. [9, 19], as mentioned in [4]), requiring
n logn many samples to simulate a wider Gaussian within negligibly small statistical
distance. Unfortunately, negligibly small statistical distance is not quite enough, so we
need a more detailed analysis. The same technique as in [34] has been used for LWE in
[7]. However, the authors do not provide a complete argumentation of why the recycled
LWE samples meet the aforementioned requirements, in particular, [7, Theorem 18]
argues only about the first one. Actually, since the first phase of BKW is collision-finding,
a non-uniform distribution of a′ would improve the running time of BKW, so we do
not even need the first requirement. The crucial point really is showing the second
requirement.

The recent [27] adapts Döttling’s reduction (which is a computational argument,
avoiding the statistical Leftover Hash Lemma)[15] from the LPN to the LWE case to
prove this. However, in turning this into a statistical argument in[27, Corollary 6 in
Full Version], there is a flaw in the proof (The hypothesis of the Corollary should read
ω(logk) rather than ω(1)), making the proof inapplicable for cs > 0.

Regarding the third requirement, note that the BKW algorithm (or BKW2 or the ap-
proach from Sect. 6) expects the error to follow a discrete Gaussian. The error e′′ in the

24

final samples after the first phase of BKW will be an appropriate sum of discrete Gaus-
sians. If we change the input to BKW to a sum of discrete Gaussians, e′′ is still a sum
of discrete Gaussians, with more summands and the individual summands following a
narrower distribution. This will not affect the asymptotic behavior of BKW. A refined
analysis of this effect of using a discrete Gaussian (so sums of independent Gaussians
are no longer Gaussian) was performed in [7], using the logarithmic bias to measure
the width of the involved distributions and also using it to distinguish (appearing more
explicitly in [27]). More precisely, for a noise distribution χ on Zq (q odd prime) with

χ(−x) = χ(x), consider LB(χ) := −q2 log χ̂(1) for χ̂(u) = ∑x χ(x)e
2πixu

q . The loga-
rithmic bias LB is additive for sums of independent variables (due to the convolution
theorem) and is the only relevant quantity we care for in our noise distributions. We can
distinguish from uniform in sub-exponential time as long as

√
LB(χ) = O(qn1/2−ε)

for ε > 0. As we have V(χ) = Θ(1) ·LB(χ) for all relevant noise distributions we
encounter, we will consider the more familiar notions of standard deviation/variance
instead in our proofs.

In the theorem below we refine the analysis of LWE sample amplification and show
how the noise-rate growth affects the running time of the BKW algorithms. Our sample
amplification works as follows: Given m initial LWE samples (A, t = Ats+ e mod q),
A ∈ Zn×m

q , we produce new samples by taking x from a discrete Gaussian on Zm of
some width ω and output(

Ax mod q,〈t ,x〉 mod q
)
=
(

Ax mod q,〈Ax , s〉+ 〈e ,x〉 mod q
)
.

Lemma 10. Consider m initial LWE samples (A, t = Ats+ e mod q) with parameters
q =Θ(ncq) and s =Θ(ncs) for cq,cs =Θ(1) with cq > cs +

1
2 . Let x be a Gaussian on

Zm for some parameter ω = Ω(1) and set e′ = 〈e ,x〉. We treat A, t,s,e,x,e′ as random
variables. For any fixed ẽ ∈ Zm, we consider the statistical distance

Dẽ := SD((A,s,e,Ax mod q,e′ mod q) | (e = ẽ);(A,s,e,u,e′ mod q) | (e = ẽ)),

where u ∈ Zm
q is uniform (and independent of anything else). Then the following holds:

1. e′ | (e = ẽ) follows a distribution with variance Θ(ω2 ‖ẽ‖2
2).

2. With probability 1−o(1), we have 0 < ‖e‖
∞
< s logm and ‖e‖2 < 10

√
ms.

3. For any ẽ s.t. 0< ‖ẽ‖
∞
< s logm, we have that Dẽ < 2−Ω(n logn), provided that either

• m =Θ(n logn) and ω a sufficiently large constant or
• m = cm ·n,ω =Θ(ncω) with cm,cω =Θ(1) and cq

cm
< cω < cq− 1

2 .

Note that we consider the entries of e,e′,x as elements from Z and not from Zq.

The lemma, whose proof will be given below, readily implies the following theorem:

Theorem 11. The BKW algorithms (BKW and BKW2), given m =Θ(n logn) LWE samples
with parameters (n,q = ncq ,s = ncs) for constants cq > cs +

1
2 , solve the search-LWE

problem in time and memory

T (BKWAmplfied) = 2
(

cq
2cq−2cs +o(1)

)
·n resp.

T (BKW2Amplfied) = 2
(

1
2ln(cq/cs)

+o(1)
)
·n

LWE Decoding 25

with success probability 1− o(1). Given only m = (cm + o(1)) · n LWE samples with
cm =Θ(1) such that cq > cs +

1
2 +

cq
cm

and cq
cm

< cq− 1
2 for BKW resp. cq > cs +

1
2 +

cq
cm−1

and cq
cm−1 < cq− 1

2 for BKW2, the BKW algorithms solve the search-LWE problem with
success probability 1−o(1) in time and memory

T (BKWAmplfied) = 2
(

cq
2cq−2cs−2cq/cm

+o(1)
)
·n
,

T (BKW2Amplfied) = 2
(

2ln(cq−cq/(cm−1)
cs)+o(1)

)−1
·n .

Proof (of Thm. 11). We use our amplification strategy from above and run BKW on
the simulated samples. With probability 1− o(1), the noise in the initial m samples
is small enough so we can apply Lemma 10. Since BKW only requires an exponential
number of samples and the statistical distance is superexponentially small, BKW works
with those amplified samples. Note for BKW2 that we lose n+ o(n) samples to change
the distribution of the coefficients of the secret to that of the noise prior to amplification,
hence the cm−1-term. Then, sample amplification increases the level of noise, but not
the size of the secret. Due to that, the running time of BKW2 is better that what we would
obtain by plugging in cs +

1
2 resp. cs +

1
2 +

cq
cm−1 into Eq. (11). We rather used [27,

Thm. 4/Thm. 5].

Proof (of Lemma 10). The variance V[e′ | (e = ẽ)] of e′ | (e = ẽ) is given by

V
[m

∑
i=1

xiẽi

]
=

m

∑
i=1

ẽ 2
i V[xi] = ‖ẽ‖2 ·Θ(ω2).

Statement 2 follows from Eq. (1) and a union bound. For statement 3, we write Dẽ
as an expected value of statistical distances between conditional distributions: since
SD((A,B);(A,C)) = EA[SD(B | A;C | A)] for any A,B,C, we have

Dẽ = E
e′|(e=ẽ)

[
SD
(
(A,Ax mod q) | (e = ẽ,e′);(A,u)

)]
. (12)

For fixed ẽ and ẽ′ with 0 < ‖ẽ‖∞ < s logm, let us define sets

Xẽ,ẽ′ = {x̃ | 〈x̃ , ẽ〉= ẽ′} ⊂ Zm and Xq
ẽ,ẽ′ = {x̃ mod q | 〈x̃ , ẽ〉= ẽ′ (in Z)} ⊂ Zm

q

and the lattice Lẽ = {x̃ | 〈x̃ , ẽ〉= 0} ⊂ Zm.

Since ẽ 6= 0, Lẽ has dimension m− 1. Its determinant is det(Lẽ) =
‖ẽ‖

gcd(ẽ) . Note that
Xẽ,ẽ′ is empty if gcd(ẽ) does not divide ẽ′. We ignore this case, as is does not contribute
to Eq. (12) anyway. So Xẽ,ẽ′ is a shifted copy of Lẽ. The set Xẽ,ẽ′ carries a probability
distribution with probability density proportional to

ρω(x̃) = exp(−π‖x̃‖2/ω
2),

which induces a probability distribution on Xq
ẽ,ẽ′ by reducing mod q. For fixed ẽ, ẽ′, the

family of hash functions
H ẽ,ẽ′

A : Xq
ẽ,ẽ′ → Zq, x̃ 7→ Ax̃

26

(with hash key A ∈ Zn×m
q) is universal. Hence, by the Leftover Hash Lemma, we obtain

SD
(
(A,Ax mod q) | (e = ẽ,e′ = ẽ′);(A,u)

)
≤ 2−

1
2 (H∞(X

q
ẽ,ẽ′)−cqn logn)

,

where H∞(X
q
ẽ,ẽ′) denotes the min-entropy of Xq

ẽ,ẽ′ wrt. the distribution from above. So it
suffices to show that H∞(X

q
ẽ,ẽ′)− cqn logn = Ω(n logn). Let x∗ be a vector in Xẽ,ẽ′ with

minimal ‖.‖2-norm. By construction, Xẽ,ẽ′ = x∗+Lẽ and we can translate everything
from Xẽ,ẽ′ to Lẽ. Under this translation by −x∗, the distribution on Xẽ,ẽ′ induces the
probability distribution ρω,u on Lẽ, which is a discrete Gaussian with parameter ω ,
centered around some u ∈ SpanLẽ. We claim that ‖u‖2 = o(q):

by minimality of x∗, the origin is a closest lattice point to u in Lẽ, so ‖u‖ is at most
the covering radius of Lẽ (cf. [36, Def. 7.10]). To estimate the covering radius, note
that for i < j, we have vectors of the form vi j = (0, . . . ,0, ẽ j,0, . . . ,0,−ẽi,0, . . .) ∈Lẽ
and these vectors span an m− 1-dimensional space. It follows via [36, Thm. 7.9] that
‖u‖2 ≤

√
m−1 ·

√
2‖ẽ‖

∞
= o(q).

To estimate the min-entropy of Xq
ẽ,ẽ′ , we need to bound

max
x̃∈Lẽ

ρω(x̃−u+qLẽ)

ρω(−u+Lẽ)

from above. Note that the qLẽ = (qZm∩Lẽ)-term accounts for the difference between
Xq

ẽ,ẽ′ and Xẽ,ẽ′ . To get rid of it, we use that

ρω

(
x̃−u+qLẽ

)
= ρω

((
x̃−u+qLẽ

)
∩B(q

2)
)
+ρω

((
x̃−u+qLẽ

)
\B(q

2)
)
, (13)

where B(q
2) denotes a Ball with radius q

2 in SpanLẽ around the origin. We have

ρω

((
x̃−u+qLẽ

)
∩B(q

2)
)
≤ ρω(−u) = exp(−π‖u‖2

ω2), (14)

because a ball of radius q
2 can contain at most one point of qLẽ and ρω(x̃−u)≤ ρω(−u)

for any x̃ ∈Lẽ by minimality of x∗. By [12, Lemma 1.5], setting c := q
2ω
√

m−1
, we get

ρω

((
x̃−u+qLẽ

)
\B(q

2)
)
≤ 2
(√

2πece−πc2)m−1
ρω(qLẽ)= 2O(m logm)e−

πq2

4ω2 ρω(qLẽ).

Now, ρω(qLẽ) = ρ ω
q
(Lẽ)≤ ρ ω

q
(Zm) =

(
ρ ω

q
(Z)
)m

= 2O(m), since ω

q = O(1). Further,

since m logm = o(q2

ω2) and ‖u‖
2

ω2 = o(q2

ω2), it follows that

ρω

((
x̃−u+qLẽ

)
\B(q

2)
)
= o(1) · exp(−π‖u‖2

ω2). (15)

Combining Eqns. (13),(14),(15), we get

max
x̃∈Lẽ

ρω (x̃−u+qLẽ)
ρω (−u+Lẽ)

≤O(1) · f (u) with f (u) := ρω (−u)
ρω (−u+Lẽ)

. (16)

LWE Decoding 27

We claim that f (u) attains its maximal value for u = 0: indeed, computing the gradient
grad f (u) of f gives grad f (u) = −2πρω (−u)

ω2ρω (−u+Lẽ)
2 ∑x̃∈Lẽ

x̃ρω(x̃−u). We simplify this as

grad f (u) = −2πρω (−u)
ω2ρω (−u+Lẽ)

2 ∑
x̃∈Lẽ

x̃ρω(x̃−u)

= −2πρω (−u)
ω2ρω (−u+Lẽ)

2

(
1
2 ∑

x̃∈Lẽ

x̃ρω(x̃−u)+ 1
2 ∑

x̃∈Lẽ

−x̃ρω(−x̃−u)
)

= −2πρω (−u)
ω2ρω (−u+Lẽ)

2 ∑
x̃∈Lẽ

1
2 x̃e−

π x̃2+πu2

ω2
(

e
2π〈x̃,u〉

ω2 − e−
2π〈x̃,u〉

ω2
)

= −2πρω (−u)2

ω2ρω (−u+Lẽ)
2 ∑

x̃∈Lẽ

x̃ρω(x̃)sinh
(2π

ω2 〈x̃ ,u〉
)
.

Hence, grad f (0) = 0. Since 〈x̃ , u〉 · sinh
(2π

ω2 〈x̃ , u〉
)
≥ 0, we have 〈u , grad f (u)〉 < 0

whenever u 6= 0. Consequently, the only local extremum of f is at the origin, with
f (0) = ρω(Lẽ)

−1, which must be the global maximum due to the asymptotic behavior
of f . To bound ρω(Lẽ), we write Zm =

⋃
ẽ′∈gcd(ẽ)·Z Xẽ,ẽ′ as a union of translates of Lẽ.

The hyperplane spanned by Xẽ,ẽ′ has distance |ẽ
′|
‖ẽ‖ to the origin, so we have

ρω(Zm) = ∑
ẽ′

ρω(Xẽ,ẽ′) = ∑
ẽ′

ρω(ẽ′/‖ẽ‖)ρω(Lẽ +uẽ′)

≤∑
ẽ′

ρω(ẽ′/‖ẽ‖)ρω(Lẽ) = ρω

(gcd(ẽ)
‖ẽ‖

Z
)
·ρω(Lẽ)

for some shifts uẽ′ ∈ SpanLẽ. It follows that

ρω(Lẽ)≥ ρω(Zm)/ρω

(gcd(ẽ)
‖ẽ‖

Z
)
= (Θ(ω))m/Θ

(
ω‖ẽ‖
gcd(ẽ)

)
= 2±Θ(m)

ω
m

This implies
max
x̃∈Lẽ

ρω (x̃−u+qLẽ)
ρω (−u+Lẽ)

≤ 2Θ(m)
ω
−m,

hence, H∞(X
q
ẽ,ẽ′) ≥ m logω −Θ(m). Under our assumptions on the parameters, this

finally implies H∞(X
q
ẽ,ẽ′)− cqn logn = Ω(n logn), finishing the proof.

Remark 12. Amplifying from m = Ω(n logn) samples essentially increases cs by 1/2,
using x Gaussian with parameter ω = Θ(1). We remark that, using m = Ω(ny) with
y > 1 would only lower the constant ω and still incur a loss of 1/2 in cs (after some
changes in the proof). To reduce this loss from 1/2 to 1/2− γ/2, we conjecture that we
need m = 2nO(γ)

samples. Further, we need to change the actual amplification procedure
to select a sparse (say 0,±1-valued) x with ‖x‖1 or ‖x‖2 fixed to an appropriate value
such as ‖x‖1 = n1−γ . These changes ensure that x has just enough (unconditional) min-
entropy for a′ to have the correct distribution, but render our proof method inapplicable.
If we chose x as a discrete Gaussian, the probability for x = 0 would be too large.

28

References

1. Yearly report on algorithms and keysizes. D.SPA.20 Rev. 1.0, ICT-2007-216676 ECRYPT II,
2012.

2. D. Aggarwal, D. Dadush, O. Regev, and N. Stephens-Davidowitz. Solving the shortest vector
problem in $2ˆn$ time via discrete gaussian sampling. CoRR, 2014.

3. M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector
problem. In Proceedings of STOC, pages 601–610, 2001.

4. M. Albrecht, C. Cid, J.-C. Faugére, R. Fitzpatrick, and L. Perret. On the complexity of the
bkw algorithm on lwe. Designs, Codes and Cryptography, pages 1–30, 2013.

5. M. Albrecht, J.-C. Faugére, R. Fitzpatrick, and L. Perret. Lazy modulus switching for the
bkw algorithm on lwe. 8383:429–445, 2014.

6. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with errors.
Cryptology ePrint Archive, Report 2015/046, 2015.

7. D. Alexandre, T. Florian, and V. Serge. Better algorithms for lwe and lwr. In EUROCRYPT,
2015.

8. Y. Aono, X. Boyen, L. Phong, and L. Wang. Key-private proxy re-encryption under lwe. In
INDOCRYPT 2013, pages 1–18, 2013.

9. B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-
secure encryption based on hard learning problems. In Advances in Cryptology - CRYPTO
2009, volume 5677 of Lecture Notes in Computer Science, pages 595–618. 2009.

10. S. Arora and R. Ge. New algorithms for learning in presence of errors. In Proceedings of
the 38th International Colloquim Conference on Automata, Languages and Programming,
ICALP’11, pages 403–415, 2011.

11. L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem (shortened
version). In STACS, pages 13–20, 1985.

12. W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers.
Mathematische Annalen, 296(1):625–635, 1993.

13. A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and the
statistical query model. J. ACM, pages 506–519, 2003.

14. Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness of learning
with errors. In Proceedings of STOC, pages 575–584, 2013.

15. N. Döttling. Low noise LPN: KDM secure public key encryption and sample amplification.
In Public-Key Cryptography - PKC 2015 - 18th IACR International Conference on Practice
and Theory in Public-Key Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015,
Proceedings, pages 604–626, 2015.

16. U. Fincke and M. Pohst. A procedure for determining algebraic integers of given norm. In
Proceedings of EUROCAL, volume 162 of Lecture Notes in Computer Science, pages 194–
202, 1983.

17. N. Gama, P. Nguyen, and O. Regev. Lattice enumeration using extreme pruning. In EURO-
CRYPT 2010, volume 6110 of LNCS, pages 257–278, 2010.

18. N. Gama and P. Q. Nguyen. Predicting lattice reduction. In EUROCRYPT, pages 31–51,
2008.

19. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new crypto-
graphic constructions. In STOC ’08, pages 197–206, 2008.

20. O. Goldreich and S. Goldwasser. On the limits of nonapproximability of lattice problems.
Journal of Computer and System Sciences, 60(3):540–563, June 2000.

21. O. Goldreich, R. Rubinfeld, and M. Sudan. Learning polynomials with queries: The highly
noisy case. In Proceedings of the 36th Annual Symposium on Foundations of Computer
Science, FOCS, pages 294–303, 1995.

LWE Decoding 29

22. Q. Guo, T. Johansson, and P. Stankovski. Coded-bkw: Solving lwe using lattice codes.
In Advances in Cryptology - CRYPTO 2015, volume 9215 of Lecture Notes in Computer
Science, pages 23–42, 2015.

23. G. Hanrot, X. Pujol, and D. Stehlé. Analyzing blockwise lattice algorithms using dynamical
systems. 6841:447–464, 2011.

24. G. Hanrot and D. Stehlé. Improved analysis of kannans shortest lattice vector algorithm. In
Advances in Cryptology - CRYPTO 2007, volume 4622, pages 170–186, 2007.

25. R. Kannan. Improved algorithms for integer programming and related lattice problems. In
Proceedings of STOC, pages 193–206, 1983.

26. R. Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res.,
12:415–440, 1987.

27. P. Kirchner and P. Fouque. An improved bkw algorithm for lwe with applications to cryp-
tography and lattices. In Advances in Cryptology - CRYPTO 2015, volume 9215 of Lecture
Notes in Computer Science, pages 43–62, 2015.

28. T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos, P. Gaudry, A. Kruppa,
P. L. Montgomery, D. A. Osvik, et al. Factorization of a 768-bit rsa modulus. In Advances
in Cryptology–CRYPTO 2010, pages 333–350. Springer, 2010.

29. T. Laarhoven. Sieving for shortest vectors in lattices using angular locality-sensitive hashing.
In CRYPTO, 2015.

30. A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. J. Cryptology,
14(4):255–293, 2001.

31. É. Levieil and P.-A. Fouque. An improved lpn algorithm. In R. De Prisco and M. Yung,
editors, Security and Cryptography for Networks, volume 4116 of Lecture Notes in Computer
Science, pages 348–359. Springer Berlin Heidelberg, 2006.

32. R. Lindner and C. Peikert. Better key sizes (and attacks) for lwe-based encryption. In CT-
RSA’11, pages 319–339, 2011.

33. M. Liu and P. Q. Nguyen. Solving bdd by enumeration: An update. In CT-RSA, pages
293–309, 2013.

34. V. Lyubashevsky. The parity problem in the presence of noise, decoding random linear
codes, and the subset sum problem. volume 3624 of Lecture Notes in Computer Science,
pages 378–389. 2005.

35. V. Lyubashevsky and D. Micciancio. On bounded distance decoding, unique shortest vectors,
and the minimum distance problem. In Advances in Cryptology - CRYPTO 2009, volume
5677 of Lecture Notes in Computer Science, pages 577–594. 2009.

36. D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: a cryptographic per-
spective. The Kluwer International Series in Engineering and Computer Science. Kluwer
Academic Publishers, 2002.

37. D. Micciancio and O. Regev. Worst-case to average-case reductions based on gaussian mea-
sures. In SIAM J. on Computing, pages 372–381, 2004.

38. D. Micciancio and O. Regev. Lattice-based cryptography. In D. J. Bernstein, J. Buchmann,
and E. Dahmen, editors, Post-Quantum Cryptography, pages 147–191. Springer Berlin Hei-
delberg, 2009.

39. D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm for most
lattice problems based on voronoi cell computations. In Proceedings of STOC ’10, pages
351–358, 2010.

40. C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem: Extended
abstract. In Proceedings of STOC, pages 333–342, 2009.

41. C. Peikert and D. Micciancio. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
EUROCRYPT, pages 700–718, 2012.

42. R. Rado. A theorem on the geometry of numbers. Journal of the London Mathematical
Society, s1-21(1):34–47, 1946.

30

43. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC,
pages 84–93. ACM Press, 2005.

44. C.-P. Schnorr. Lattice reduction by random sampling and birthday methods. In STACS, pages
145–156, 2003.

45. C.-P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and
solving subset sum problems. In Math. Programming, pages 181–191, 1993.

