
Cryptanalysis of a public key cryptosystem based on
Diophantine equations via weighted LLL reduction

Jintai Ding∗ Momonari Kudo† Shinya Okumura‡

Tsuyoshi Takagi‡ Chengdong Tao§

January 28, 2016

Abstract

In this paper, we give an attack against a public key cryptosystem based on Diophantine
equations of degree increasing type (DEC) proposed by the third author ([Oku15]). We show
that the security of DEC depends on the difficulty of finding special (relatively) short vectors in
some lattices obtained from a public key and a ciphertext. The most important target vector in
our attack is not necessarily a shortest vector in a lattice of low rank but only some entries are
relatively small. In our attack, the LLL algorithm does not work well for finding such vectors.

The technical point of our method is to change a norm dealt with in the usual LLL algorithm
from the Euclidean norm to a special norm called a weighted norm (this idea is equivalent to
changing a inner product from the Euclidean inner product to a weighted inner product as in
[FGR13]). We call the LLL algorithm with respect to a weighted norm the “weighted LLL
algorithm” in this paper. Our heuristic analysis suggests that the most important target vector
in our attack becomes a shorter vector with respect to a weighted norm for an appropriate weight
among the vectors in the lattice of low rank. Our experimental results by a standard PC with
Magma suggest that our attack with the weighted LLL algorithm can recover a plaintext without
finding a secret key for 128 bit security proposed in [Oku15] with sufficiently high probability.

Key words— Weighted LLL reduction, Public-key cryrtosystem, Post-quantum cryptosystem,
Diophantine equation

∗Department of Mathematical Sciences, University of Cincinnati.
†Graduate School of Mathematics, Kyushu University. E-mail: m-kudo@math.kyushu-u.ac.jp
‡Institute of Mathematics for Industry, Kyushu University. E-mail: s-okumura@imi.kyushu-u.ac.jp
§South China University of Technology.

1

Contents

1 Introduction 3
1.1 Our Contribution . 3
1.2 Weighted LLL . 4
1.3 Experimental Verification of Our Attack . 4

2 Descriptions of Weighted Lattices and Weighted LLL Reduction 6
2.1 Definition of Weighted Lattice . 6
2.2 Weighted LLL Reduction . 6

3 Overview of DEC 7
3.1 Polynomials of Degree Increasing Type . 7
3.2 Key Generation . 8
3.3 Encryption . 9
3.4 Decryption . 9
3.5 Parameter Size . 10
3.6 Toy Example of DEC . 11

4 Attack against DEC in Polynomial Time via Weighted LLL Reduction 11
4.1 Idea of Our Attack . 12

4.1.1 Step 1: Determination of sj
′ (j = 1, 2) . 12

4.1.2 Step 2: Fixing of A Candidate of f . 13
4.1.3 Step 3: Recovery of m̃ . 13

4.2 Algorithm of Our Attack . 15
4.3 Cryptanalysis of Toy Example . 16

4.3.1 Step 1: Determination of s′j = sj − sj+1 (j = 1, 2) 17
4.3.2 Step 2: Fixing of A Candidate of f . 18
4.3.3 Step 3: Recovery of m̃ . 18

5 Complexity Analysis 20
5.1 The Complexity of Step 1 . 21
5.2 The Complexity of Step 2 . 22
5.3 The Complexity of Step 3 and The Total Complexity of Our Attack 22

6 Experimental Results 24

7 Conclusion 26

References 26

2

1 Introduction

The Post-Quantum Cryptography has been studied actively since Shor proposed quantum algo-
rithms for factorizing integers and solving the discrete logarithm problem over finite groups in
polynomial time ([Sho97]). So far, various candidates of post-quantum cryptosystems have been
proposed, e.g. lattice-based cryptosystems, code-based cryptosystems and multivariate public key
cryptosystems (see [BBD08] and [DGS06] for details). In order to construct such cryptosystems,
we need computationally-hard problems which are infeasible to solve even with quantum comput-
ers. The Diophantine problem is expected to be one of such problems. (The Diophantine problem
here means that for given multivariate polynomials with integer coefficients, find common integral
or rational zeros of them.) Indeed, a public key cryptosystem ([LCL95]) and key exchange proto-
cols ([BHHKP14], [HP13], [Yos11]) which are based on the difficulty of the Diophantine problem
have been already proposed. However, the one-wayness of the cryptosystem in [LCL95] is trans-
formed to solving certain linear congruences, and thus the cryptosystem is broken in polynomial
time ([Cus95]). Moreover, as for the key exchange protocols in [BHHKP14], [HP13] and [Yos11],
one can get secret keys in these protocols by performing them a few times ([HP13], Proposition 2),
and these three protocols are said to be impractical.

The Diophantine problem can be generalized to problems over arbitrary rings (the Diophantine
problem mentioned above is the problem over Z). The problems over some rings are proved to be
unsolvable ([Vid94], [DMR76], [Eis07], [Phe91]) in general. The Algebraic Surface Cryptosystem
(ASC) proposed in [AGM09] is based on the difficulty of the section finding problem, which can be
viewed as the Diophantine problem over a global function field. In [AGM09], it is analyzed that
ASC may have resistance to all the known attacks ([Iwa08], [UT07], [Vol07]) against the previous
versions of ASC ([AG04], [AG06], [AG08]). However, the one-wayness of ASC is broken by the ideal
decomposition attack proposed in [FS10].

In [Oku15], Okumura proposed a public key cryptosystem based on the difficulty of solving
Diophantine equations of degree increasing type over Z (see Section 3 in this paper for the definition
of a polynomial of degree increasing type). We refer to the cryptosystem as DEC for short. In
Remark 3.2 of [Oku15], Okumura showed that Diophantine equations of degree increasing type
are generally unsolvable. DEC is proposed as a number field analogue of ASC and a candidate of
post-quantum cryptosytem. One of advantages of DEC is that sizes of a public key and a secret
key are smaller than other candidates of post-quantum cryptosystem (see Table 4 in [Oku15] and
Table 2 in this paper). The main idea of avoiding the analogues of the attacks including the ideal
decomposition attack against ASC is to twist a plaintext by using some modular arithmetic and to
use some random polynomials with large coefficients. In Section 4 of [Oku15], it is analyzed that by
the above idea, the number of possible parameters increases, and thus finding the correct plaintext
will become infeasible. In addition, the reason why polynomials of degree increasing type are used
in DEC is to decode a plaintext uniquely even if the plaintext is twisted. In Section 3, we give a
brief review of DEC and the recommended parameters for DEC.

1.1 Our Contribution

In this paper, we propose an attack against DEC. We show that the one-wayness of DEC can
be transformed to a problem of finding special relatively short vectors in lattices obtained from a
public key and a ciphertext. Our attack can be divided roughly into three steps. In each step, we
have a linear system and need to find its appropriate solution, which is equivalent to a problem of

3

finding an appropriate vector in the lattice obtained by solving the linear system. We use a solution
obtained in the first (resp. second) step to construct a linear system in the second (resp. third) step.
After finding appropriate solutions of the linear systems in all the steps, it is possible to recover a
plaintext with sufficiently high probability by applying Babai’s nearest plane algorithm ([Bab86])
and some modular arithmetic.

As we will see in Section 4, if we find a correct solution in the first step, then we can break DEC
with sufficiently high probability. More precisely, after we find a correct solution in the first step,
we can solve the linear systems in the second and third steps (note that in the third step, we may
use an incorrect solution obtained in the second step). Thus, the key point of our attack is whether
the first step succeeds or not.

The lattice obtained in the first step of our attack has low rank, (e.g. 3-rank in many cases), and
thus finding a target vector in the lattice seems to be performed by basis reduction algorithms such
as the LLL algorithm ([LLL82]). However, in Section 4.3, we show an example that the usual LLL
algorithm fails in finding the target vector in the first step. Our heuristic analysis on the failure of
the example is as follows: the target vector is not necessarily shortest in the lattice of low rank but
only some entries are relatively small, i.e., the target vector is a relatively short vector with entries
of unbalanced sizes.

1.2 Weighted LLL

In order to deal with such situations, we apply the weighted LLL algorithm, which is the LLL
algorithm with respect to a special norm called weighted norm for some weight, to our attack. We
find heuristically a new weighted norm so that the target vector becomes the (or nearly) shortest
in some lattice of low rank with respect to this new norm. By a weighted norm for a vector
X = (x1, ..., xn), we means the norm:

∥X∥ =
√∑

α2
i x

2
i ,

where αi are positive real numbers, which we call the weight factors. Our method can be also
viewed as changing the scale of a lattice to carefully control the entries of a LLL reduced basis of
the lattice. Such a method has been used in Coppersmith’s method [Cop97] (see also Chapter 19
of [Gal12]) and in [FGR13]. In particular, we consider 2-power integers as αi (i = 1, . . . , n) to use
the knowledge of the bit length of our target vector, such as [FGR13].

1.3 Experimental Verification of Our Attack

In our attack, we assume that the target vector in the first step is a shortest vector with respect to
a weighted norm for some weight chosen appropriately by a heuristic way. Our experimental results
in Section 6 show that we can find correct vectors in the first step with probability being about from
70 to 90% for recommended parameters in Section 3 via the weighted LLL algorithm. Moreover,
our experimental results also show that we can break the one-wayness of DEC with probability
being about from 20 to 30%. From this and the complexity analysis on our attack, we infer that our
attack can break DEC in polynomial time for all the parameters with sufficiently high probability.

This paper is organized as follows: In Section 2, we give the definition of a weighted norm and
describe the weighted LLL algorithm. In Section 3, we give a brief review of DEC. In Section 4,
we describe the outline and some assumptions of our attack, and we also give a toy example to

4

illustrate our attack completely. In Section 5, we give the complexity analysis on our attack. In
Section 6, we give some experimental results on the attack.

Acknowledgements The authors deeply thank Professor Shun’ichi Yokoyama for many helpful
comments, corrections, suggestions on this research, discussions in the implementations on Magma.
The authors also thank Professor Steven Galbraith for helpful comments on Coppersmith’s method
and thank Professor Masaya Yasuda, the supervisor of the second author, for helpful comments,
corrections. This work was supported by CREST, JST.

Notation

Throughout this paper, we denote the polynomial ring with n variables over a ring R by R[x] :=
R[x1, . . . , xn]. For every i = (i1, . . . , in) ∈ (Z≥0)

n and (a1, . . . , an) ∈ Rn, we denote the element
ai11 · · · ainn ∈ R, the monomial xi11 · · ·xinn ∈ R[x] and the value

∑n
k=1 ik by ai, xi and

∑
i, respectively.

We can write any element f (x) = f (x1, . . . , xn) ∈ R[x] ∖ {0} (sometimes we also write f simply)
in a unique way as a sum of terms:

f (x) =
∑
i∈Λ

cix
i,

where Λ is the finite subset of (Z≥0)
n and ci ∈ R ∖ {0} for i ∈ Λ. We then write ci (f) := ci for

i ∈ Λf := Λ. We call Λf the support of f . We denote the total degree of f by wf . For every element
a = (a1, . . . , an) ∈ Rn and invertible element d ∈ R×, we denote the element (a1/d, . . . , an/d) ∈ Rn

by a/d. Then we denote the value of f (x) at a/d by f (a1/d, . . . , an/d) or f (a/d). In addition, if
R = Z or Q, then we use the following notation:

Γf := {
(
i, bi

)
∈ Λf × Z>0 ; 2bi−1 ≤ |ci (f) | < 2bi},

H (f) := max{|ci (f) | ; i ∈ Λf}.

We call H (f) the height of f . In addition, if for a polynomial f ∈ Z[x], the support Λf =
(
i1, . . . , iq

)
is ordered by the order coming from the lexicographical order on the monomials of f , then we denote

the sequence of the ordered coefficients of f by the vector f =
(
ci1(f), . . . , ciq(f)

)
.

An m-dimensional lattice is defined as a discrete additive subgroup of an m-dimensional vector
space over R. It is well-known that for any lattice L, there exist R-lineary independent vectors
generating L as a Z-module. The rank of L is its rank as a Z-module. For any lattice in Rm and its
basis {b1, . . . ,br}, let U be an r×m matrix whose i-th row vector coincides with bi. Then we call
U the basis matrix of the lattice. Let ⟨·, ·⟩ : Rn × Rn → R be the natural inner product for some
n ∈ Z>0. For a vector v ∈ Rn, we denote the Euclidean norm of v by ∥v∥. We define the rounding
function ⌊·⌉ : R → Z as ⌊c⌉ := ⌊c + 1

2⌋ for any c ∈ R. Let M be an m × n matrix over Z and φM

the homomorphism as additive groups between Zm → Zn defined by v 7→ vM . Then the kernel of
φM is the lattice in Rm, and we call it the kernel lattice of M .

5

2 Descriptions of Weighted Lattices and Weighted LLL Reduction

In this section, we define weighted norms and weighted lattices, and give the weighted LLL algo-
rithm.

2.1 Definition of Weighted Lattice

Basically, a norm on the lattices in Rm means the Euclidean norm or an ℓp-norm for some p > 0
(ℓ2-norm is the same as the Euclidean norm). On the other hand, a weighted lattice is defined as
a lattice endowed with a special norm which we call a weighted norm. The formal definitions of
weighted norms and weighted lattices are as follows:

Definition 2.1.1 For a vector w = (w1, . . . , wm) ∈ (R>0)
m, we define the map ∥ · ∥w : Rm → R as

follows:

∥a∥w :=

√
(a1w1)

2 + · · ·+ (amwm)2 (a = (a1, . . . , am) ∈ R) . (2.1.1)

Then ∥ · ∥w is a norm on Rm, and we call it the weighted norm for w. We define a weighted lattice
for w in Rm as a lattice endowed with the weighted norm for w. For any lattice L ⊂ Rm and a
vector w ∈ (R>0)

m, we denote L by Lw if we consider L as a lattice endowed with the weighted
norm for w.

The following lemma clearly holds.

Lemma 2.1.2 Let L ⊂ Rm be a lattice and w = (w1, . . . , wm) ∈ (R>0)
m a vector. We set the

following diagonal matrix:

W :=

w1

. . .
. . .

wm

 . (2.1.2)

We define the isomorphism fW : Rm −→ Rm by x 7→ xW . Then the following are equivalent for
any x ∈ Lw:

(1) The vector x is a shortest vector in Lw.

(2) The vector xW is a shortest vector in fW (L) with respect to the Euclidean norm.

Remark 2.1.3 Lemma 2.1.2 shows that we can find a shortest vector in Lw if we find a shortest
vector in fW (L) with respect to the Euclidean norm.

2.2 Weighted LLL Reduction

In this subsection, we define a weighted LLL reduced basis and give an algorithm to find such a
basis.

Definition 2.2.1 (weighted LLL reduced bases) Let L, W and fW be as in Lemma 2.1.2. An
ordered basis B = {b1, . . . ,bn} of L is a weighted LLL reduced basis if fW (B) = {b1W, . . . ,bnW}
is an LLL reduced basis of fW (L) with respect to the Euclidean norm.

6

We give an algorithm to find a weighted LLL reduced basis.

The weighted LLL algorithm
Input: a vector w and a basis B = {b1, . . . ,bn} of the weighted lattice L.
Output: a weighted LLL basis B′ = {b′

1, . . . ,b
′
n} of the L.

(1) Compute the basis {b1W, . . . ,bnW} of the lattice fW (L), where W and fW are as in Lemma
2.1.2.

(2) Compute an LLL reduced basis Bw = {bw
1 , . . . ,b

w
n } of fW (L) with respect to the Euclidean

norm.

(3) Compute b
′
i := bw

i W
−1 (i = 1, . . . , n), and return B′ = {b′

1, . . . ,b
′
n}.

It is easy to see that the above algorithm outputs a weighted LLL reduced basis for an input
weight w. Note that the weighted LLL algorithm is performed in polynomial time for any weight
w since the LLL algorithm is performed in polynomial time (see Section 4.4 for details).

In our cryptanalysis (Section 4), the most important vector is not necessarily a shortest vector
in a lattice of low rank but only some entries are relatively small. In order to find such a vector, we
use the weighted LLL algorithm which can carefully control the entries of a weighted LLL reduced
basis (see Sections 4.1.1 and 4.3.1).

Remark 2.2.2 Controlling the entries of a basis which is output by the LLL algorithm have been
used in Coppersmith’s method [Cop97] (see also Chapter 19 of [Gal12]) and in [FGR13]. In their
method, the scale of a lattice (or equivalently an inner product used in the LLL algorithm) is
changed by heuristic ways. Changing the scale of a lattice or an inner product is equivalent to
changing a norm from the Euclidean norm to a weighted norm. In particular, our method for
choosing a weighted norm is the same as the method in [FGR13] (see Section 4.1.1).

3 Overview of DEC

In this section, we give a brief review of DEC (see Section 3 in [Oku15] for details).

3.1 Polynomials of Degree Increasing Type

Definition 3.1.1 A polynomial X (x) ∈ Z[x]∖ {0} is of degree increasing type if the map

ΛX −→ Z≥0 ; i 7→
∑

i

is injective.

Remark 3.1.2 Let X (x) be an element in Z[x]∖ {0}.

(1) The polynomial X (x) is of degree increasing type if and only if the total degrees of the
monomials of X (x) are different each other.

(2) If X is of degree increasing type, the support ΛX is a totally ordered set by the following order
≻: for two elements (i1, . . . , in) and (j1, . . . , jn) of ΛX , we have (i1, . . . , in) ≻ (j1, . . . , jn) if
i1 + · · ·+ in > j1 + · · ·+ jn.

7

Throughout this paper, for a polynomial X of degree increasing type, we endow ΛX with the
total order described in Remark 3.1.2 (2).

Example 3.1.3 The polynomial X (x, y, z) := 3x3y2z − 4x2y2 − xyz + 5yz + y + 11 ∈ Z[x, y, z] is
of degree increasing type. In this case, we have X = (3,−4,−1, 5, 1, 11).

Now, we describe the DEC scheme according to [Oku15]. Note that although in [Oku15] the
security parameter is not suggested, here we set the security parameter λ.

3.2 Key Generation

Secret Key :

• A vector a := (a1, . . . , an) ∈ Zn.

Public Key :

(1) An integer d such that gcd (ai, d) = 1 for each i ∈ {1, . . . , n}.
(2) An integer e such that gcd (e, φ (d)) = 1, where φ is the Euler function.

(3) An irreducible polynomial X (x) ∈ Z[x] of degree increasing type such that X (a/d) = 0 and
♯ΛX ≤ wX .

Construction of X (x) :

(1) Choose a finite subset Λ ⊂ (Z≥0)
n such that ♯{

∑
i ; i ∈ Λ} = ♯Λ ≥ 3 and 0 ∈ Λ, where

0 := (0, . . . , 0) ∈ (Z≥0)
n.

(2) Let k be the maximal element in Λ (note that Λ is a totally ordered set with respect to
the order described in Remark 3.1.2 (2)). Choose a random non-zero integer ci for each
i ∈ Λ∖ {k, 0}. For a choice of ci, see Remark 3.5.1.

(3) Choose random integers ck and c0 such that

cka
k + c0d

w = −
∑

i∈Λ∖{k,0}

cia
idw−

∑
i, (3.2.1)

where w := max{
∑

i ; i ∈ Λ}.

(4) Set ΛX := Λ and X (x) :=
∑

i∈ΛX
cix

i.

For a choice of X and sizes of e, d and ai (i = 1, . . . , n), see Section 3.5 below.

Remark 3.2.1 There exist integers ck and c0 such that the equality (3.2.1) is satisfied because ai
and d are mutually prime for each i ∈ {1, . . . , n} from the assumption.

8

3.3 Encryption

Plaintext : A polynomial m ∈ Z[x1, . . . , xn] such that

(a) Λm = ΛX ,

(b) 1 < ci1,...,in (m) < d for all (i1, . . . , in) ∈ Λm,

(c) gcd (ci1,...,in (m) , d) = 1 for all (i1, . . . , in) ∈ Λm.

Encryption Process :

(1) Choose an integer N ∈ Z>0 uniformly such that Nd > 2λH (X). For an upper bound of N ,
see Section 3.5 below.

(2) Construct the twisted plaintext m̃ (x) ∈ Z[x] by putting Λm̃ := Λm and ci (m̃) := ci (m)e (mod Nd)
(0 < ci (m̃) < Nd, i ∈ Λm̃).

(3) Choose a random f (x) ∈ Z[x] uniformly such that

(a) Λf = ΛX ,

(b) H (m̃) < ck (f) < Nd and gcd
(
ck (f) , d

)
= 1, where k is the maximal element in Λf .

(4) Choose random polynomials sj (x) , rj (x) ∈ Z[x] uniformly with Γsj = ΓX and Γrj = Γf

(j ∈ {1, 2, 3}).

(5) Put cipher polynomials F1 (x), F2 (x) and F3 (x) as follows:

Fj (x) := m̃ (x) + sj (x) f (x) + rj (x)X (x) (1 ≤ j ≤ 3) .

Finally, send (F1 (x) , F2 (x) , F3 (x) , N).

3.4 Decryption

Decryption Process :

(1) By substituting a/d, a zero of X (x), into Fj (x) (j ∈ {1, 2, 3}), we obtain

hj := Fj (a/d) = m̃ (a/d) + sj (a/d) f (a/d) (1 ≤ j ≤ 3) .

Compute

H1 := (h1 − h2) d
2wX = (s1 (a/d)− s2 (a/d)) f (a/d) d2wX ,

H2 := (h1 − h3) d
2wX = (s1 (a/d)− s3 (a/d)) f (a/d) d2wX .

(2) Compute g := gcd (H1,H2). If gcd (g, d) > 1, then let d′ be the smallest factor of g satisfying
gcd (d, g/d′) = 1 and replace g by g/d′.

(3) Compute H := h1d
2wX (mod g) and µ := Hd−wX (mod g).

(4) Obtain the plaintext polynomial m (x) from µ or µ − g by using an algorithm described in
Sections 3.4 and 3.5 of [Oku15].

Remark 3.4.1 In the algorithm in Sections 3.4 and 3.5 of [Oku15], we need to compute φ(d)
efficiently. From this, we should choose a prime number as d.

9

3.5 Parameter Size

In [Oku15], the sizes of public/secret keys and the ciphertext are estimated so that DEC can be
expected to have 128 bit security under some assumptions. In the following, we give their sizes
under the same assumptions as [Oku15] to analyze the complexity of our attack (see Section 5 in
[Oku15] for details).

(1) The sizes of a, d, e and N :

2
λ
2 ≤ d < 2

λ
2
+1, (λ+ 1) + (

λ

2
+ 1)wX ≤ e < 2

(
(λ+ 1) + (

λ

2
+ 1)wX

)
,

2⌈
λ

n−1
⌉

φ (d)
d ≤ |ai| <

2⌈
λ

n−1
⌉+1

φ (d)
d (i ∈ {1, . . . , n}), 2λ+(λ

2
+1)(wX−1) ≤ N < 2λ+1+(λ

2
+1)(wX−1).

We assume that |ci (X) | < 2b for any i ∈ ΛX ∖ {k, 0}, where k is the maximal element of ΛX (cf.
[Oku15], Section 5).

(2) The size of a secret key is at most(
⌈ λ

n− 1
⌉+ 1

)
n+ ⌈log2 d− log2 φ (d)⌉

bits.

(3) The size of a public key is at most(
⌈ λ

n− 1
⌉+ (

λ

2
+ 2 + b) + ⌈log2 d− log2 φ (d)⌉

)
wX + (λ+ 1) + ⌈log2 e⌉

bits.

(4) The size of a ciphertext is at most

3

2

(
wX

2 + wX

)
(λ+ 1 + (λ+ 2)wX + ⌈log2 wX⌉) + λ+ 1 + (

λ

2
+ 1) (wX − 1) (3.5.1)

bits. Note that the size of each coefficient of Fi is at most λ+1+ (λ+2)wX + ⌈log2 wX⌉ bits
for i = 1, 2, 3.

Remark 3.5.1 (1) In Section 4.5 of [Oku15], it is pointed out that we should use a polynomial X
satisfying wX ≥ 5, n ≥ 3 and some conditions as a public key in order to avoid finding rational
solutions to X = 0. However, polynomials of degree increasing type are in a special class of
polynomials, and finding rational zeros of such polynomials may be easier than finding those
of general polynomials. Moreover, although finding rational zeros of polynomials of higher
degree seems to be difficult in general, we should consider sizes of public keys and ciphertexts.
Thus we recommend to use X of degree 10 as a public key.

(2) In Section 5 of [Oku15], it is pointed out that for a public key X, we may choose ci ≤ 210

(i ∈ Λ∖ {k, 0}), where k is the maximal element of ΛX . However, since solving Diophantine
equations of degree increasing type may be easier than solving more general Diophantine
equations as we mentioned above, we should also consider using larger b to deal with a wide
class of polynomials of degree increasing type. In our experiments of Section 6, we choose
b = 10, 50, 100.

10

(3) The above choice of X is independent of the security level suggested in [Oku15] of the DEC.
(The above sizes of ai for i = 1, . . . , n are determined so that the number of possible choices
of secret keys are at most 2128.)

3.6 Toy Example of DEC

In the following, we give a toy example of DEC in the case of n = 2.

Secret Key :
• a = (a, b) = (47, 49) ∈ Z2.

Public Key :
(d, e,X) = (5, 17, 125x3 + 675y − 110438)
(ΛX = {(3, 0) , (0, 1) , (0, 0)}, k = (3, 0), H (X) = 110438.)

Plaintext : m (x) = m (x, y) = 3x3 + 3y + 2.

Objects for Encryption :

(1) N = 353408 (Nd = 1767040).

(2) m̃ (x) = m̃ (x, y) = 146243x3 + 146243y + 131072 (H (m̃) = 146243).

(3) f (x) = f (x, y) = 949843x3 + 1324952y + 1109775.
(ck (f) = 949843, H (m̃) = 146243 < ck (f) = 949843 < 1767040 = Nd.)

(4) sj and rj (j = 1, 2, 3) :

s1 = 115x3 + 924y + 126337,

s2 = 82x3 + 962y + 89939,

s3 = 67x3 + 977y + 121816,

r1 = 691019x3 + 1363650y + 1329029,

r2 = 852655x3 + 1584164y + 2007688,

r3 = 940020x3 + 2016302y + 1144882.

(5) Cipher Polynomials : Fj (x) := m̃ (x) + sj (x) f (x) + rj (x)X (x) (1 ≤ j ≤ 3).

F1 (x) = F1 (x, y)

= 195609320x6 + 1666918487x3y + 43979457762x3 + 2144719398y2 + 18714355042y − 6569529455,

F2 (x) = F2 (x, y)

= 184469001x6 + 1795957655x3y − 8395474520x3 + 2343914524y2 − 53364106711y − 121912862547,

F3 (x) = F3 (x, y)

= 181141981x6 + 1903319645x3y + 12109757546x3 + 2655481954y2 − 59418815676y + 8750004156.

4 Attack against DEC in Polynomial Time via Weighted LLL Re-
duction

In this section, we present an attack against DEC via the weighted LLL algorithm. Under the
conditions of Section 3, it is sufficient for breaking the one-wayness of DEC to recover m̃ (x). Recall
that ΛX = Λm = Λm̃ = Λf = Λsj = Λrj (j = 1, 2, 3). Suppose that ΛF1 = ΛF2 = ΛF3 . Throughout
this section, put q := ♯ΛX and ΛX = {i1, . . . , iq}.

11

4.1 Idea of Our Attack

Before we give an algorithm of our attack, we describe the idea of our attack. Recall from Section
3 that in DEC, we use the cipher polynomials of the forms

Fj (x) := m̃ (x) + sj (x) f (x) + rj (x)X (x) (j = 1, 2, 3).

We reduce recovering m̃ to finding special solutions of linear systems obtained from the public key
X and the ciphertext (F1, F2, F3, N) by linearization techniques described below.

We have the following equality from the way to construct the cipher polynomials for j = 1, 2:

Fj (x)− Fj+1 (x) = (sj (x)− sj+1 (x)) f (x) + (rj (x)− rj+1 (x))X (x) . (4.1.1)

Since the cipher polynomials F1 (x), F2 (x), F3 (x) and the public key X (x) are known, we may
obtain f (x) if we can determine s1 (x)− s2 (x) and s2 (x)− s3 (x). We set

sj
′ (x) := sj (x)− sj+1 (x) ,

rj
′ (x) := rj (x)− rj+1 (x) ,

Fj
′ (x) := Fj (x)− Fj+1 (x)

= sj
′ (x) f (x) + rj

′ (x)X (x) (j = 1, 2) ,

g (x) := s2
′ (x) r1

′ (x)− s1
′ (x) r2

′ (x) .

We then have the following equalities:

F1
′ (x) = s1

′ (x) f (x) + r1
′ (x)X (x) , (4.1.2)

F2
′ (x) = s2

′ (x) f (x) + r2
′ (x)X (x) , (4.1.3)

g (x)X (x) = s2
′ (x)F1

′ (x)− s1
′ (x)F2

′ (x) . (4.1.4)

4.1.1 Step 1: Determination of sj
′ (j = 1, 2)

Here, we describe how to determine sj
′ for i = 1, 2. (As we metioned in Section 1, the vectors

sj
′ (i = 1, 2) are the most important target vectors). In the equality (4.1.4), we regard the co-

efficients of sj
′ (x) and g (x) as variables. We then obtain the linear system uA = 0, where A is

a ((2q + ♯ΛX2)× ♯ΛX3) matrix. We denote the kernel lattice of A by L1
′. Let L1 be the lattice

spanned by the vectors consisting of the 1-(2q)th entries of the elements of L1
′. Experimentally,

the rank of L1 is equal to 3 in many cases (see Remark 6.0.2 in Section 6). Thus, we assume the
following condition:

Assumption 4.1.1 The rank of L1 is equal to 3.

Moreover, as we will see in Section 4.3, the correct (s′1, s
′
2) has the property described in Sections

1 and 2 so that the usual LLL algorithm does not work well to find (s′1, s
′
2). Note that this is true

in many cases because of the construction of X (cf. Section 3.2). Thus, we use the weighted LLL
algorithm for a weight w described below. Put w′ = (w1

′, . . . , wq
′) as follows:

wi
′ :=

{
1 (Xi = H (X)) ,

2

⌊
log2

(
H(X)
Xi

)⌋
(otherwise) ,

12

where X := (X1, . . . , Xq) denotes the vector of the coefficients of X (x). From the construction of
s′i for i = 1, 2 (cf. Section 3.3), We set w :=

(
w′
1, . . . , w

′
q, w

′
1, . . . , w

′
q

)
. We assume the following

condition.

Assumption 4.1.2 The (s′1, s
′
2) is a shortest vector in Lw

1 .

Let fW be the isomorphism described in Section 2 from R2q to R2q as R-vector spaces. From
Assumption 4.1.1, the rank of fW (L1) is equal to 3. This means that we can expect the weighted
LLL algorithm to output a shortest vector in Lw

1 with high probability. Thus it is expected to find
the correct (s′1, s

′
2) via the weighted LLL algorithm for the weight w because of Lemma 2.1.2 and

Assumption 4.1.2.

Remark 4.1.3 We may not determine sj
′ (j = 1, 2) if we apply the LLL algorithm to the lattice

L1 as we will see in Section 4.3. Thus, the above assumptions and applying the weighted LLL
algorithm to L1 are crucial for our attack.

4.1.2 Step 2: Fixing of A Candidate of f

Here, we describe how to determine a candidate of f . We substitute s1
′ (x) and s2

′ (x) obtained in
Step 1 into (4.1.2) and (4.1.3). In the same way as Step 1, by regarding the coefficients of f (x) and
rj

′ (x) (j = 1, 2) as variables, we have the linear system. We then fix f ′ (x) such that (4.1.2) and
(4.1.3) hold and that f ′ (x) is close to the correct f (x), i.e., the absolute values of all coefficients
of the polynomial f ′ (x) − f (x) are small. Note that f ′ (x) does not necessarily coincide with the
correct f (x) to recover m̃ (cf. Remark 4.1.9 and Steps 3-3 and 3-4 in Section 4.2).

4.1.3 Step 3: Recovery of m̃

Here, we describe how to recover m̃. It is sufficient for recovering m̃ (x) to find s1 (cf. Remark 4.1.9
and Steps 3-3 and 3-4 in Section 4.2). From the form of the ciphertext (see Section 3.3), we consider
the following equality:

F1 (x) = m̃ (x) + s1 (x) f
′ (x) + r1 (x)X (x) , (4.1.5)

where f ′ (x) is the polynomial obtained in Step 2 and other polynomials m̃ (x), s1 (x) and r1 (x)
are unknown. Note that if we have the correct solution in Step 1 and gcd (X, s1

′) = 1, then there
exists a unique polynomial r (x) such that the correct m̃ (x), s1 (x) and f ′ (x) (not necessarily f (x))
satisfy the equality F1 = m̃+ s1f

′ + rX (cf. Remark 4.1.9). In the same way as Steps 1 and 2, by
regarding the coefficients of m̃ (x), s1 (x) and r1 (x) as variables, we have the linear system wC = c,
where C is a (3q × ♯ΛX2) matrix and c ∈ Z♯ΛX2 . We denote the kernel lattice of C by L3. The
rank of L3 is low and equal to 3 with high probability (see Remark 6.0.2). From this, we assume
the rank of L3 as follows:

Assumption 4.1.4 The rank of L3 is equal to 3.

13

Let w0 be one solution of wC = c and {w1,w2,w3} a basis of L3. Note that every integral
solution of the system is represented as w0+a1w1+a2w2+a3w3 (ai ∈ Z, i = 1, 2, 3). The 1-♯ΛX -th
entries of w0, w1, w2 and w3 correspond to the coefficients of m̃. We also note that wC = 0 has a
solution w′ such that its 1-♯ΛX -th entries are equal to 0 (see Remark 4.1.8). Thus it is possible to
choose w3 so that its 1-♯ΛX -th entries are equal to 0.

Assumption 4.1.5 The vector s1 coincides with the vector consisting of the (♯ΛX + 1)-2♯ΛX -th
entries of w0 +w3 − z, where z is a closest vector in ⟨w1,w2⟩Z to w0 +w3.

The L3
′ is a lattice of 2-rank, and so we can expect that we will find s1 in polynomial time by

Babai’s nearest plane algorithm for solving CVP ([Bab86]) with sufficiently high probability under
Assumption 4.1.5.

Remark 4.1.6 The reason why we assume Assumption 4.1.5 is the following: From the choice of
s1, the absolute values of the entries of s1 are sufficiently smaller than those of m̃ and r1. Thus we
can expect that the value of ∥w0 + w3 − (a1w1 + a2w2) ∥ is sufficiently small if certain entries of
w0 +w3 − (a1w1 + a2w2) coincide with those of s1.

Remark 4.1.7 In Step 2, any solution (f ′ (x) , r′′1 (x)) of the linear system can be written as f ′ (x) =
f (x) + aX (x) and r′′1 (x) = r′1 (x) − as′1 (x), respectively (a ∈ Z) if gcd (X, s′1) = 1 and if the
solution in Step 1 is the correct (s′1 (x) , s

′
2 (x)). In fact, by putting p (x) := f ′ (x) − f (x) and

q (x) := r′′1 (x)− r′1 (x), we have

F ′
1 (x) = s′1 (x) f

′ (x) + r′′1 (x)X (x)

= s′1 (x) (f (x) + p (x)) +
(
r′1 (x) + q (x)

)
X (x)

=
(
s′1 (x) f (x) + r′1 (x)X (x)

)
+
(
s′1 (x) p (x) + q (x)X (x)

)
= F ′

1 (x) +
(
s′1 (x) p (x) + q (x)X (x)

)
.

It implies s′1 (x) p (x) = −q (x)X (x). Thus if gcd (X, s′1) = 1, there exists an integer a ∈ Z such that
p (x) = aX (x) and q (x) = −as′1 (x) because deg p ≤ deg X and deg q ≤ deg s′1. This fact implies
that the rank of the kernel lattice in Step 2 is equal to 1 with high probability. If the solution obtained
in Step 1 is (−s′1 (x) ,−s′2 (x)), then (f ′ (x) , r′′1 (x)) can be written as f ′ (x) = −f (x) + aX (x) and
r′′1 (x) = r′1 (x)−as′1 (x), respectively (a ∈ Z) by the same argument. Note that since X is irreducible
from the construction of X in Section 3, we have gcd(X, s′1 (x)) = 1 with high probability.

Remark 4.1.8 In Step 3, the linear system wC = 0 has a solution w′ such that its 1-♯ΛX -th
entries are equal to 0. Let (m′, s′, r′) be one solution of wC = c, i.e., F1 = m′ + s′f ′ + r′X. The
vector (m′, s′, r′) + (0,X,−f ′) is also a solution of wC = c. Indeed,(

m′ + 0
)
+

(
s′ +X

)
f ′ +

(
r′ − f ′)X =

(
m′ + s′f ′ + r′X

)
+Xf ′ − f ′X = F1.

Thus (0,X,−f ′) is an element of the kernel lattice of C.

Remark 4.1.9 If we succeed in finding the correct s1 (x) in Step 3 and gcd(X, s1
′) = 1, there exists

r (x) satisfying the equality F1 (x) − s1 (x) f
′ (x) = m̃ (x) + r (x)X (x). In fact, f ′ (x) obtained in

14

Step 2 can be written as f ′ (x) = f (x) + aX (x) or f ′ (x) = −f (x) + aX (x) (a ∈ Z) from Remark
4.1.7. We may assume that f ′ (x) = f (x) + aX (x). Then we have

F1 (x)− m̃ (x)− s1 (x) f
′ (x) = s1 (x) f (x) + r1 (x)X (x)− s1 (x) f

′ (x)

= s1 (x)
(
f ′ (x)− aX (x)

)
+ r1 (x)X (x)− s1 (x) f

′ (x)

= (r1 (x)− as1 (x))X (x) .

Thus we have F1 (x)− s1 (x) f
′ (x) = m̃ (x) + r (x)X (x) by putting r (x) := r1 (x)− as1 (x).

4.2 Algorithm of Our Attack

We write down an algorithm of the attack proposed in Section 4.1. Recall from Section 3 that a
public key, a secret key and a ciphertext are (d, e,X) ∈ Z2 × (Z[x]), a = (a1, . . . , an) ∈ Zn and
(F1, F2, F3, N) ∈ (Z[x])3 × Z, respectively, such that X (a1/d, . . . , an/d) = 0. Let m ∈ Z[x] be a
plaintext. Note that Fj = m̃ + sjf + rjX, where m̃, f , sj and rj are the twisted plaintext and
random polynomials chosen uniformly according to Section 3.3, respectively. We also recall that ΛX

and wX denote the support of X and the total degree of X, respectively (see Notation in Section
1). We fix ♯ΛX and wX . Let k be the maximal element of ΛX with respect to the order in Remark
3.1.2 (2).

Algorithm of Proposed Attack
Input: a public key (d, e,X) and a ciphertext (F1, F2, F3, N).
Output: a twisted plaintext m̃ (x).

Step 1. Determination of s′j := sj − sj+1 (j = 1, 2)
Step 1-1. Put F ′

i := Fi − Fi+1 (i = 1, 2) and g := s′2r
′
1 − s′1r

′
2. Solve the linear system uA = 0

obtained by comparing the coefficients of the equality

s′2 (x)F
′
1 (x)− s′1 (x)F

′
2 (x) = g (x)X (x) , (4.2.1)

where A is a (2♯ΛX + ♯ΛX2)× ♯ΛX3 matrix. Let {u′
1,u

′
2,u

′
3} be the basis of the kernel lattice of A.

Step 1-2. Let ui be the vector consisting of the 1-(2♯ΛX)-th entries of u′
i for i = 1, 2, 3. Execute

the weighted LLL algorithm for the weight described in Section 4.1 to the lattice L1 := ⟨u1,u2,u3⟩,
and then obtain s1

′ and s2
′.

Step 2. Fixing of a candidate of f (x)
Step 2-1. Put r′i := ri − ri+1 (i = 1, 2). Solve the linear system vB = b obtained by comparing the
coefficients of the equalities

F ′
1 (x) = s′1 (x) f (x) + r′1 (x)X (x) , (4.2.2)

F ′
2 (x) = s′2 (x) f (x) + r′2 (x)X (x) , (4.2.3)

where B is a (3♯ΛX × ♯ΛX2) matrix. Let v0 be a solution of vB = b and {v1} a basis of the kernel
lattice L2 of B. Note that if gcd(X, s′1) = 1, then L2 is always a lattice of 1-rank (cf. Remark 4.1.7).

15

Step 2-2. Let v′
0 := v0 − ⌊⟨v0,v1⟩/⟨v1,v1⟩⌉v1 be the other solution of vB = b. Let v′′

0 be the
vector consisting of the 1-(♯ΛX)-th entries of v′

0. Construct f
′ (x) ∈ Z[x] so that f ′ = v′′

0 . Note that
v′
0 provides the polynomial closer to the correct f than v0 in many cases (cf. Step 2 in Section 4.3).

Step 3. Recovery of m̃ (x)
Step 3-1. Solve the linear system wC = c obtained by comparing the coefficients of the equality

F1 (x) = m̃ (x) + s1 (x) f
′ (x) + r1 (x)X (x) , (4.2.4)

where C is a 3♯ΛX × ♯ΛX2 matrix and f ′ is the polynomial obtained in Step 2-2. Let w0 be a
solution of wC = c and {w1,w2,w3} a basis of the kernel lattice L3 of C.

Step 3-2. Execute Babai’s nearest plane algorithm to find a closest vector z in the lattice L′
3 :=

⟨w1,w2⟩Z tow0+w3. Let s1 be the vector consisting of the (♯ΛX + 1)-2♯ΛX -th entries ofw0+w3−z.

Step 3-3. Solve the linear system xH = h obtained by comparing the coefficients of the equality

F1 (x)− m̃ (x)− s1 (x) f
′ (x) = r (x)X (x) , (4.2.5)

where the coefficients of m̃ and r are variables and H is a (2♯ΛX × ♯ΛX2) matrix. Let x be a solution
of xH = h. Let r′ be the vector consisting of the entries corresponding to r of x. Then we obtain
a polynomial r′ whose coefficients coincide with those of r except the constant part, i.e., r = r′ + t
for some t ∈ Z.
Step 3-4. Compute

e′ := e−1 mod φ (d) ,

H1 (x) := F1 (x)− s1 (x) f
′ (x)− r′ (x)X (x) ,

µ := ck (H1) , (k : maximal element of ΛX)

ck
(
m′) := µe′ (mod d)

(
0 < ck

(
m′) < d

)
,

ck (m̃) :=
(
ck

(
m′))e (mod Nd)

(
0 < ck (m̃) < Nd

)
,

t :=
(
µ− ck (m̃)

)
/ck (X) ,

m̃ (x) := F1 (x)− s1 (x) f
′ (x)−

(
r′ (x) + t

)
X (x) .

Output m̃ (x).

Remark 4.2.1 Let k be the maximal element of ΛX . In Step 3-4 of the above algorithm, we use
the fact that ck(X) is divisible by d to compute an integer t (see (3.2.1) for the divisibility of ck(X)).

4.3 Cryptanalysis of Toy Example

We break the one-wayness of the instance in Section 3.6 of DEC. We use the notation in Section
3.6. In this case, Λg = ΛX2 = {(6, 0) , (3, 1) , (3, 0) , (0, 2) , (0, 1) , (0, 0)}. We recover m̃ (x, y) only
from known Fj (x, y) (j = 1, 2, 3), X (x, y) and ΛX .

16

4.3.1 Step 1: Determination of s′j = sj − sj+1 (j = 1, 2)

Here, we determine s′j = sj − sj+1 for j = 1, 2. Compute

F ′
1 (x, y) := F1 (x, y)− F2 (x, y)

= 11140319x6 − 129039168x3y + 52374932282x3 − 199195126y2 + 72078461753y + 115343333092,

F ′
2 (x, y) := F2 (x, y)− F3 (x, y)

= 3327020x6 − 107361990x3y − 20505232066x3 − 311567430y2 + 6054708965y − 130662866703.

We put

s′j (x, y) := c
(j)
1 x3 + c

(j)
2 y + c

(j)
3 (j = 1, 2) ,

g (x, y) := c
(g)
1 x6 + c

(g)
2 x3y + c

(g)
3 x3 + c

(g)
4 y2 + c

(g)
5 y + c

(g)
6 ,

where c
(j)
i ’s and c

(g)
i ’s are variables. By comparing the coefficient of xi for each i ∈ ΛX3 in the

equation (4.1.4), we have the linear system uA′ = 0, where A′ is a (9× 9) matrix.
The rank of the kernel lattice L′

1 of A′ is equal to 3. Compute a basis {u′
1,u

′
2,u

′
3} of L′

1, and let uj

be the vector of the 1-6th entries of u′
j for j = 1, 2, 3. We then have u1

u2

u3

 =

 1 11464 −3475226 80 5520 916415
0 27025 −8194204 0 12000 2328055
0 0 0 125 675 −110438

 .

By applying the LLL algorithm to the lattice L1 spanned by u1,u2,u3, we have

 a1
a2
a3

 =

 1568 3927 −8708 −435 −4365 −6789
−1792 −4488 9952 515 5085 −8018
3841 9499 15250 −1095 −10905 −1034

 .

However, actually, the target vector (s′1, s
′
2) is(

s′1, s
′
2

)
= (33,−38, 36398, 15,−15,−31877) .

Thus ai does not coincide with both of (s′1, s
′
2) and − (s′1, s

′
2) for any i = 1, 2, 3. Note that 1-2nd

and 4-5th entries of the correct (s′1, s
′
2) are much smaller than its other entries. This is true in many

cases from the constructions of X, s′1 and s′2 described in Sections 3 and 4. On the other hand,
the absolute values of all entries of ai almost have the same sizes for i = 1, 2, 3. Moreover, the
norm ∥ (s′1, s′2) ∥ is larger than max{∥a1∥, ∥a2∥, ∥a3∥}. Indeed, we have ∥ (s′1, s′2) ∥ ≈ 48383.47 and
max{∥a1∥, ∥a2∥, ∥a3∥} ≈ 21418.08. This means that our target vector (s′1, s

′
2) is not shortest in L1

of 3-rank. Thus, the LLL algorithm does not seem to work for finding (s′1, s
′
2).

To obtain (s′1, s
′
2), we apply the weighted LLL algorithm for the weight w described below to

L1 since the above situation is good for the weighted LLL algorithm (see Section 4 in [FGR13]).
Recall that X = (125, 675,−110438). We have(

H (X)

125
,
H (X)

675
,
H (X)

110438

)
=

(
110438

125
,
110438

675
, 1

)
.

17

Put

w =
(
2⌊log2(

110438
125)⌋, 2⌊log2(

110438
675)⌋, 1, 2⌊log2(

110438
125)⌋, 2⌊log2(

110438
675)⌋, 1

)
=

(
29, 27, 1, 29, 27, 1

)
.

We obtain the following weighted LLL reduced basis of Lw
1 : b1

b2

b3

 =

 33 −38 36398 15 −15 −31877
−33 38 −36398 110 690 −78561
−158 −637 74040 −15 15 31877

 .

Note that b1 coincides with the target vector (s′1, s
′
2).

4.3.2 Step 2: Fixing of A Candidate of f

Here, we fix a candidate of f . We set

f (x, y) := c
(f)
1 x3 + c

(f)
2 y + c

(f)
3 ,

r′j (x, y) := c
(j)
1 x3 + c

(j)
2 y + c

(j)
3 (j = 1, 2) ,

where c
(f)
i ’s and c

(j)
i ’s are variables. By substituting s′1 and s′2 obtained in Step 1 into the equalities

(4.1.2) and (4.1.3), and by comparing the coefficient of xi for each i ∈ ΛX2 , we have the linear
system vB = b, where B is a (9× 6) matrix. The rank of the kernel lattice L2 of B is equal to 1.
We obtain a solution v0 of vB = b and a basis {v1} of L2 as follows:(

v0

v1

)
=

(
−32 −3804373 840328137 89131 −509276 275909743 26620 −546123 −241370517
125 675 −110438 −33 38 −36398 −15 15 31877

)
.

Compute another solution v′
0 := v0 − ⌊⟨v0,v1⟩/⟨v1,v1⟩⌉v1 of vB = b. Let v′′

0 be the vector
consisting of the 1-3rd entries of v′

0. We then have

v′′
0 = (950468, 1328327, 557585) .

We set

f ′ (x, y) := 950468x3 + 1328327y + 557585. (4.3.1)

Note that the polynomial f ′ obtained from v′′
0 is closer to the correct f than the one obtained from

v0. We also note that it is possible to proceed to the next step even if f ′ does not coincide with f
(cf. Remark 4.1.9).

4.3.3 Step 3: Recovery of m̃

Finally, we recover m̃ (x, y). We find s1 (x, y) before recovering m̃ (x, y). Put

m̃ (x, y) := c1x
3 + c2y + c3, (4.3.2)

s1 (x, y) := c4x
3 + c5y + c6, (4.3.3)

r1 (x, y) := c7x
3 + c8y + c9, (4.3.4)

18

where ci’s are variables. By substituting f ′ obtained in Step 2 into the equalities (4.1.5), and by
comparing the coefficient of xi for each i ∈ ΛX2 , we have the linear system wC = c, where C is a
(9× 6) matrix. The rank of the kernel lattice L3 of C is equal to 3. We fix a solution w0 of the
system and a basis {w1,w2,w3} of L3 as follows:

w0

w1

w2

w3

 =

225204073068 315361848743 −6569529455 −10 249 0 1640912 2687357 0

1 163580614 −36132895073 0 0 43 0 0 −326961
0 475525025 −105037483109 0 0 125 0 0 −950468
0 0 0 125 675 −110438 −950468 −1328327 −557585

 .

We find a vector z of the lattice ⟨w1,w2⟩Z close to w0 + w3 by applying Babai’s nearest plane
algorithm. We then have the matrix(

225203926700 315361701825 −6569550089 0 0 −236775 0 0 −1254928
146368 146918 20634 115 924 126337 690444 1359030 697343

)
,

where 1st and 2nd rows are the vectors z and w0 +w3 − z, respectively. The vector consisting of
the 4-6th entries of w0 +w3 − z is equal to the correct s1.
Next, we compute r (x) satisfying F1 (x)− m̃ (x)− s1 (x)

′ (x) = r (x)X (x). Note that there exists
a polynomial r satisfying the above equality, and that we can recover m̃ if we obtain such an r (cf.
Remark 4.1.9 and Step 3-4 in Section 4.2). We set

r (x, y) := c1x
3 + c2y + c3, (4.3.5)

m̃ (x, y) := c4x
3 + c5y + c6, (4.3.6)

where ci’s are variables. In the equality F1 (x) − s1 (x) f
′ (x) = m̃ (x) + r (x)X (x), by comparing

the coefficient of xi for each i ∈ ΛX2 , we have the linear system xH = h, where H is a (6× 6)
matrix. The rank of the kernel lattice L4 of H is equal to 1. We fix a solution x0 of xH = h and a
basis {x1} of L4 as follows:(

x0

x1

)
=

(
2591380 4015684 0 226710493 1223593193 −200170290060

0 0 1 −125 −675 110438

)
.

We set

r′ (x, y) := 2591380x3 + 4015684y + 1. (4.3.7)

There exists a unique t ∈ Z such that r (x) = r′ (x) + t. Our aim is to find such an integer t (cf.
Steps 3-3 and 3-4 in Section 4.2). Let k be the maximal element of ΛX . Put

e′ := e−1 mod φ (d)

= 1,

H1 (x) := F1 (x)− s1 (x) f
′ (x)− r′ (x)X (x)

= 226710368x3 + 1223592518y − 200170179622,

µ := ck (H1)

= −200170179622,

ck
(
m′) := µe′ (mod d)

(
0 < ck

(
m′) < d

)
= 3,

ck (m̃) =
(
ck

(
m′))e (mod Nd)

(
0 < ck (m̃) < Nd

)
= 146243,

19

t =
(
µ− ck (m̃)

)
/ck (X)

= 1812513,

m̃ (x) = F1 (x)− s1 (x) f
′ (x)−

(
r′ (x) + t

)
X (x)

= 146243x3 + 146243y + 131072.

We succeeded in recovering m̃ (x) in Section 3.6.

5 Complexity Analysis

In this section, we investigate the complexity of the algorithm in Section 4.2. We analyze our
attack according to the parameter sizes in Section 3.5 (cf. [Oku15]). To simplify the notations,
we set w := wX , assume w = ♯ΛX , and fix b. We show that the attack performs in polynomial
time with respect to the parameters w and λ. The parameters d and e are O

(
2λ
)
and O (wλ),

respectively. Note that the size of each coefficient of Fj is O (wλ) bits for j = 1, 2, 3 (see Section
3.5 for the representation of the parameters by w and λ).

Remark 5.0.1 First, let us determine the bit complexity of the computation of polynomials with
integer coefficients in the algorithm. We suppose the arithmetic operations of addition and subtrac-
tion of two polynomials F,G ∈ Z[x] are O (min{qF , qG}) in Z, where qF and qG are the number of
the terms of F and G, respectively. Moreover, the arithmetic operations of multiplication of them

are O
(
(max{qF , qG})2

)
in Z. We compute F1

′ := F1 − F2 and F2
′ := F2 − F3 at the beginning of

the algorithm. Note that the number of the terms of F1, F2 and F3 are at most w2. The sizes of
the coefficients of Fj are O (wλ) for j = 1, 2, 3. Thus the arithmetic complexity of computing F ′

1

and F ′
2 is O

(
w2

)
, and its bit complexity is

O
(
w2 (wλ)

)
= O

(
w3λ

)
. (5.0.8)

We do such computations in (4.2.1)-(4.2.5). Actually the arithmetic complexity of (4.2.1)-(4.2.5)
is negligible because we regard the coefficients of certain polynomials as variables. For example, in
(4.2.1), we regard the coefficients of s1

′, s2
′ and g as variables. On the other hand, we compute

H1 := F1 − s1f
′ − rX in Step 3-4. In this case, we do not regard any coefficient as variables. Since

the number of the terms of s1, f
′, r and X are w, we require O

(
w2

)
arithmetic operations for

computing s1f
′ and rX. In addition, the number of the terms of F1, s1f

′ and rX are O
(
w2

)
. From

this, we require O
(
w2

)
additions and subtractions. Here recall that the size of each coefficient of

the polynomials F1, s1f
′ and rX is O (wλ) bits. Thus the bit complexity of computing H1 is

O
(
w2 (wλ)2

)
= O

(
w4λ2

)
. (5.0.9)

Remark 5.0.2 Second, we solve one or two linear systems in each step of our attack. Then, we
obtain one solution and the kernel lattice for each linear system. We assume that the bit complexity
of solving a linear system is equivalent to the bit complexity of computing the Hermite Normal Form
(HNF) of the augmented matrix of the system. According to Chapter 2 in [Gal12], we assume that
the computation of the HNF of an n × m matrix M = (Mi,j) requires O(nm4(log(∥M∥∞))2) bit
operations, where ∥M∥∞ := maxi,j{|Mi,j |}.

20

To simplify the notations, we assume the sizes of the entries of one solution and an output basis
of the kernel lattice of each linear system are O (ℓ) bits if the sizes of the entries of its augmented
matrix are O (ℓ) bits.

Remark 5.0.3 Third, we discuss the size of the norm of a vector with integer entries. Let a =
(a1, . . . , ak) ∈ Zk be a vector with |ai| ≤ 2l (i = 1, . . . , k). Since ∥a∥ ≤

√
k22l, the size of ∥a∥

is bounded by log
(√

k22l
)

= log
(
k1/2

)
+ l = O (log (k) + l) bits. Similarly, the size of ∥a∥2 is

O (log (k) + l) bits.

5.1 The Complexity of Step 1

Step 1-1. We estimate the bit complexity for solving the linear system uA = 0 with at most 2w+w2

variables and w3 equations. The size of each entry of A is O (wλ) bits, and thus Step 1-1 requires

O
(
w16λ2

)
(5.1.1)

bit operations from Remark 5.0.2. In addition, we note that the sizes of the entries of u′
1,u

′
2,u

′
3,

that are basis vectors of the kernel lattice L′
1 of A, are O (wλ) bits from Remark 5.0.2.

Step 1-2. In the beginning of this step, we compute UW , where U is a basis matrix of L1 with
3 × 2w entries and W is a (2w × 2w) diagonal matrix. The arithmetic complexity of multiplying
these matrices is 3 · (2w) = O (w). Since the size of each entry of U and W is O (wλ) bits, the
multiplying runs in

O
(
w · (wλ)2

)
= O

(
w3λ2

)
(5.1.2)

bit operations. We note that the size of each entry of UW is O (wλ) bits. After the mul-
tiplying, we execute the LLL algorithm to the 2w-dimensional lattice fW (L1) of 3-rank with
the basis matrix UW . According to [LLL82], the complexity of the LLL algorithm requires

O
(
35 (2w)

(
log

(
2w · 22wλ

))3)
bit operations in this case because the norms of the row vectors

of UW are O
(√

2w · 22wλ
)
. Thus the LLL algorithm of this step runs in

O
(
w4λ3

)
(5.1.3)

bit operations. Any entry of the vectors of the LLL reduced basis is O
(√

3 (w · 22wλ)
)
because the

rank of fW (L1) is equal to 3, and because ∥uiW∥2 = O
(
w · 22wλ

)
for i = 1, 2, 3 and row vectors

ui of U . Thus the size of any entry of the basis matrix is O (wλ) bits. We multiple the diagonal
matrix W−1 by the LLL reduced basis matrix. The arithmetic complexity of the multiplying is
3 · 2w = O (w). Thus the multiplying runs in

O
(
w (wλ)2

)
= O

(
w3λ2

)
(5.1.4)

bit operations.

21

5.2 The Complexity of Step 2

Step 2-1. In this step, we solve the linear system vB = b with 3w variables and at most w2

equations. In the same way as Step 1-1, the bit complexity of this step can be estimated as

O
(
w11λ2

)
. (5.2.1)

Every entry of a solution and basis vectors of the kernel lattice L2 has the size of O (wλ) bits from
the same reason as Step 1-1. Note that L2 is a 3w-dimensional lattice of 1-rank. Hence the sizes of

the norms of v0 and v1 are O
(√

(3w · 22wλ)
)
.

Step 2-2. In this step, we compute v′
0 := v0 − ⌊⟨v0,v1⟩/⟨v1,v1⟩⌉v1. This computation requires

O
(
24 (3w)

(
log

(
3w · 22wλ

))2)
bit operations according to Chapter 17 in [Gal12]. Hence Step 2-2

requires

O
(
w3λ2

)
(5.2.2)

bit operations.

5.3 The Complexity of Step 3 and The Total Complexity of Our Attack

Step 3-1. We solve the linear system wC = c with 3w variables and at most w2 equations. In the
same way as Steps 1-1 and 2-1, the computation requires

O
(
w11λ2

)
(5.3.1)

bit operations. Every entry of a solution w0 and basis vectors w1,w2,w3 of the kernel lattice L3

has the size of O (wλ) bits. Note that the the norms of w0, w1, w2 and w3 are O
(√

(3w · 22wλ)
)
.

Step 3-2. We execute Babai’s nearest plane algorithm to the 3w-dimensional lattice L3
′ := ⟨w1,w2⟩

of 2-rank and the vector w0 + w3. Before executing Babai’s nearest plane algorithm, we execute
the LLL algorithm to L3

′. Since L3
′ has 2-rank and 3w-dimension, the LLL algorithm requires

O
(
25 (3w)

(
log

(
3w · 22wλ

))3)
bit operations. Thus the LLL algorithm in Step 3-2 requiresO

(
w4λ3

)
bit operations. The norm of any vector of the LLL reduced basis is O

(√
2 (3w · 22wλ)

)
(cf. Chapter

17 in [Gal12]). Thus Babai’s nearest plane algorithm requires O

(
25

(
log

(√
2 (3w · 22wλ)

))2
)

bit

operations. From this, the bit complexity of Babai’s nearest plane algorithm is O
(
w2λ2

)
in this

case. Hence Step 3-2 runs in

O
(
w4λ3

)
(5.3.2)

bit operations.

Step 3-3. We solve the linear system xH = h with 2w variables and at most w2 equations. The
size of any entry of H and h is O (wλ) bits. Hence Step 3-3 runs in

O
(
w16λ2

)
(5.3.3)

22

bit operations.

Step 3-4. At the beginning of this step, we compute e′ := e−1 mod φ (d) by using the extended
Euclid’s algorithm. According to Remark 3.5 in [Oku15], the integer d should be chosen so that
one can compute φ (d) efficiently because the computation is needed in the decryption process (see
[Oku15], Section 3.4). In Remark 3.5 of [Oku15], the integer d is expected to be a prime number as
such an example. From this, we assume d is a prime number, and then we have φ (d) = d− 1.
Next, we compute ck (m

′) := µe′ (mod d)
(
0 < ck (m

′) < d
)
, where e′ := e−1 (mod φ(d)) and µ is

a certain coefficient of H1 (x) (cf. Step 3-4 in Section 4.2). Recall that the bit sizes of e′, µ and d
are O (λ), O (wλ) and O (λ), respectively. Thus this computation can be done in O

(
wλ2 + λ3

)
bit

operations by the square-and-multiply algorithm for modular exponentiation.
Third, we compute ck (m̃) :=

(
ck (m

′)
)e

(mod Nd)
(
0 < ck (m̃) < Nd

)
. Note that the sizes of

ck (m
′), e and Nd are O (λ), O (log (wλ)) and O (wλ) bits, respectively. Thus, the square-and-

multiply algorithm requires O
(
(wλ)2 log (wλ)

)
bit operations to compute ck (m̃). As a consequence,

those modular exponential arithmetic can be performed in O
(
λ3 + w2λ2 log (wλ)

)
bit operations.

Finally, the computation of t :=
(
µ− ck (m̃)

)
/ck (X) runs in O

(
w2λ2

)
bit operations.

The total bit complexity of Step 3-4 is

O
(
λ3 + w2λ2log (wλ)

)
. (5.3.4)

Putting all the steps together, namely considering (5.0.8)-(5.3.4), we can determine the complexity
of our attack.

Theorem 5.3.1 The total bit complexity of the attack in Section 4.2 is

O
(
w16λ2

)
+O

(
w4λ3

)
.

Consequently, our attack performs in polynomial time for all the parameters λ and wX .

23

6 Experimental Results

We show experimental results1 on our attack described in Section 4 against the DEC scheme for
n = 3, i.e., the number of variables of a public key X is equal to 3. We conduct experiments for
recommended parameters which can let the DEC have 128 bit security (cf. Section 3.5).

Experimental Procedure
For a public key X, let k be the maximal element in ΛX with respect to the order described in
Remark 3.1.2 (2). For i ∈ ΛX ∖ {k, 0}, we suppose that 2b−1 ≤ |ci (X) | < 2b for some b ∈ Z>0. For
given parameters wX and ΛX we repeat the following procedure 100 times:

1. Make a secret key and a public key according to Section 3.2.

2. By using the public key constructed above, make a ciphertext according to Section 3.3.

3. Execute Algorithm of Proposed Attack in Section 4.2 for the above public key and the
ciphertext.

We count the number of successes and time if m̃ or −m̃ are recovered.

Table 1 shows our experimental results. In Step 1 of Table 1, we show the number of successes
only if we succeed in recovering the target vector (s′1, s

′
2) or − (s′1, s

′
2) (see Sections 4.1 and 4.1.1). In

Step 2 of Table 1, we show the number of successes only if the linear system obtained in Step 2 of our
attack has a solution (see Section 4.1.2). In Step 3 of Table 1, we show the number of successes only
if a twisted plaintext m̃ or −m̃ is recovered. From Table 1, we see that the weighted LLL algorithm
found the target vector in Step 1 of our attack with probability being about from 70 to 90%. We
consider that the success probability of Step 3 is sufficiently high for practical cryptanalysis. As
we mentioned in Section 3.5, from the viewpoint of the efficiency of the key generation, encryption
and decryption of DEC, those parameters in Table 1 are practical (see also Tables 4, 5 and 6 in
Section 6 of [Oku15]). This suggests that our attack with the weighted LLL algorithm can break
the one-wayness of DEC efficiently for practical parameters with sufficiently high probability.

Remark 6.0.2 In Section 4.1, we assume that ranks of some lattices occuring in Steps 1 and 3
of our attack are equal to 3 (see Assumptions 4.1.1 and 4.1.4). These assumptions are important
to analyze the complexity of our attack. We also did experiments for the same instances of DEC
as instances of the above experiments whether those assumptions are satisfied or not. As a result,
those assumptions are satisfied for all the instances.

1We use a standard note PC with 2.60 GHz CPU (Intel Core i5), 16 GB memory and Mac OS X 64 bit. We
implemented the attack in Magma V2.21-3 ([BCP97]).

24

Table 1: Experimental results on Algorithm of Proposed Attack in Section 4.2 against DEC
with three variables of 128 bit security. We did experiments according to Experimental Pro-
cedure described in the beginning of Section 6. Parameters e and d are public keys and N is an
integer chosen in the encryption process of DEC. The parameter b is the bit length of the coefficients
of a public key X except the terms of its maximal degree and constant. “Average Time” means
that the average of time for performing our attack. (We show the timing data in successful cases.)

Recommended parameters for DEC (Section 3.5) Experimental results

Total degree of
a public key X

Number of
monomials of X Value of b

Sizes of
e, d, N (bit)

Number of successes of
Attack Algorithm / 100 Average

time (sec.)e d N Step 1 Step 2 Step 3

10 3 10 11 65 714 80 80 27 0.02

10 4 10 11 65 714 79 79 23 0.03

10 5 10 11 65 714 87 87 24 0.04

10 6 10 11 65 714 87 87 22 0.06

10 7 10 11 65 714 93 93 29 0.08

10 8 10 11 65 714 96 96 40 0.10

10 9 10 11 65 714 88 88 30 0.16

10 10 10 11 65 714 92 92 36 0.24

10 3 50 11 65 712 79 79 22 0.03

10 4 50 11 65 711 81 81 29 0.03

10 5 50 11 65 713 88 88 33 0.04

10 6 50 11 65 712 86 86 40 0.07

10 7 50 11 65 712 92 92 38 0.08

10 8 50 11 65 711 89 89 32 0.11

10 9 50 11 65 712 87 87 22 0.18

10 10 50 11 65 711 94 94 33 0.26

10 3 100 11 65 711 80 80 30 0.02

10 4 100 11 65 711 79 79 28 0.03

10 5 100 11 65 711 84 84 31 0.04

10 6 100 11 65 712 88 88 31 0.07

10 7 100 11 65 712 89 89 33 0.08

10 8 100 11 65 711 88 88 31 0.10

10 9 100 11 65 712 86 86 37 0.18

10 10 100 11 65 713 91 91 32 0.29

In order to show the efficiency of our attack for large wX and ♯ΛX , we show the average time
for performing our attack and present sizes of public keys, secret keys and ciphertexts in Table 2.
Note that Table 2 shows only the results of successful cases.

From the timing (“Average time”) in Table 2, we see that our attack succeeds in recovering
plaintexts in practical time for sufficiently large wX and ♯ΛX . Note that DEC becomes impractical
as wX and ♯ΛX get larger although from our complexity analysis in Section 5, the sizes of wX

and ♯ΛX are deeply affect time for performing our attack. Thus, we infer that our attack via the
weighted LLL algorithm can fully break the one-wayness of DEC.

25

Table 2: Experimental results with three variables for increasing wX and ♯ΛX and for 128 bit
security. We did experiments according to Experimental Procedure described in the beginning
of Section 6. The parameter wX is the total degree of a public key X. The parameter ♯Λ is the
number of terms of X. The parameter b is the bit length of the coefficients of X except the terms
of its maximal degree and constant.

Parameters for DEC Size of
public key

(bit)

Size of
secret key

(bit)

Size of
ciphertext

(bit)

Average
time
(sec.)Total degree of

a public key X
Number of

monomials of X Value of b

Sizes of
e, d, N (bit)
e d N

5 5 10 10 65 387 752 198 29,216 0.03

10 10 10 11 65 714 1,453 198 163,562 0.24

15 15 10 11 65 1,037 2,154 198 473,974 1.27

20 20 10 11 65 1,360 2,778 198 1,036,956 4.98

25 25 10 12 65 1,687 3,555 198 1,924,894 14.20

30 30 10 12 65 2,014 4,257 198 3,208,830 32.62

35 35 10 12 65 2,341 4,957 198 4,965,487 89.88

40 40 10 13 65 2,665 5,658 198 7,259,410 154.76

45 45 10 13 65 2,986 6,358 198 10,157,566 411.52

7 Conclusion

In this paper, we proposed an attack against the one-wayness of the public key cryptosystem based
on Diophantine equations of degree increasing type (DEC) via the weighted LLL algorithm. From
this, we show that the one-wayness of DEC can be transformed to the problem of finding certain
relatively shorter vectors in lattices of low ranks obtained by linearization techniques. Our most
important target vector takes a special form: it is not necessarily shortest in some lattice of low rank
but only some entries are relatively small. The usual LLL algorithm (with respect to the Euclidean
norm) does not work well for finding such vectors in our attack.

In order to find the most important vector mentioned above, we use the same method as in
[FGR13]. More precisely, our heuristic analysis suggests that the target vector becomes a (nearly)
shortest vector with respect to a weighted norm for some weight chosen appropriately. Therefore,
we tried to apply the weighted LLL algorithm, which is the LLL algorithm with respect to the
weighted norm, to our attack. From our complexity analysis and experimental results, we proved
that by choosing an appropriate weight, our attack with the weighted LLL algorithm can break the
one-wayness of DEC in polynomial time for all the parameters with sufficiently high probability
under some assumptions.

References

[AG04] K. Akiyama, Y. Goto, An Algebraic Surface Public-key Cryptosystem, IEICE Technical
Report, 104 (421), pp. 13–20, (2004).

[AG06] K. Akiyama, Y. Goto, A Public-key Cryptosystem using Algebraic Surfaces, In: Proceedings
of PQCrypto., pp. 119–138, (2006), available at
http://postquantum.cr.yp.to/.

26

[AG08] K. Akiyama, Y. Goto, An improvement of the algebraic surface public-key cryptosystem,
In: Proceedings of 2008 Symposium on Cryptography and Information Security, SCIS 2008,
CD-ROM, 1F1-2, (2008).

[AGM09] K. Akiyama, Y. Goto, H. Miyake, An Algebraic Surface Cryptosystem, In: Proceedings of
PKC’09, Lecture Notes in Computer Science, 5443, pp. 425–442, Springer, Berlin Heidelberg,
(2009).

[Bab86] L. Babai, On Lovász’ lattice reduction and the nearest lattice point problem, Combinatorica,
6 (1), pp. 1–13, (1986), (Preliminary version in STACS 1985).

[BHHKP14] A. Bérczes, L. Hajdu, N. Hirata-Kohno, T. Kovács, A. Pethö, A key exchange protocol
based on Diophantine equations and S-integers, JSIAM Letters, 6 (0), pp. 85–88, (2014).

[BBD08] D. J. Bernstein, J. Buchmann, E. Dahmen (Eds.), Post-Quantum Cryptography, Springer-
Verlag, Berlin Heidelberg, (2009).

[BCP97] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language,
Journal of Symbolic Computation, 24 (3-4), pp. 235–265, (1997).

[Cop97] D. Coppersmith, Small Solutions to Polynomial Equations, and Low Exponent RSA Vul-
nerabilities, Journal of Cryptology, 10 (4), pp. 233–260, Springer-Verlag, (1997).

[Cus95] T. W. Cusick, Cryptoanalysis of a public key system based on diophantine equations, Infor-
mation Processing Letters, 56 (2), pp. 73–75, (1995).

[DGS06] J. Ding, J. E. Gower, D. S. Schmidt, Multivariate Public Key Cryptosystems, Advances in
Information Security, 25, Springer, US, (2006).

[DMR76] M. Davis, Y. Matijasevič, J. Robinson, Hilbert’s tenth problem, Diophantine equations:
positive aspects of a negative solution, Mathematical Developments Arising from Hilbert Prob-
lems, pp. 323–378, American Mathematical Society, Providence, RI., (1976).

[Eis07] K. Eisenträger, Hilbert’s Tenth Problem for function fields of varieties over number fields
and p-adic fields, Journal of Algebra, 310 (2), pp. 775–792, (2007).

[FGR13] J. -C. Faugère, C. Goyet, G. Renault, Attacking (EC)DSA Given Only an Implicit Hint,
In: Proceedings of SAC 2012, Lecture Notes in Computer Science, 7707, pp. 252–274, Springer,
Berlin Heidelberg, (2013).

[FS10] J. -C. Faugère, P. -J. Spaenlehauer, Algebraic Cryptanalysis of the PKC’2009 Algebraic
Surface Cryptosystem, In: Proceedings of PKC’10, Lecture Notes in Computer Science, 6056,
pp. 35–52, Springer, Berlin Heidelberg, (2010).

[Gal12] S. D. Galbraith, Mathematics of Public Key Cryptography, Cambridge University Press,
(2012).

[HP13] N. Hirata-Kohno, A. Pethö, On a key exchange protocol based on Diophantine equations,
Infocommunications Journal, 5 (3), pp. 17–21, Scientific Association for Infocommunications
(HTE), (2013).

27

[Iwa08] M. Iwami, A Reduction Attack on Algebraic Surface Public-Key Cryptosystems, Lecture
Notes in Computer Science, 5081, pp. 323–332, Springer, Berlin Heidelberg, (2008).

[LLL82] A. K. Lenstra, H. W. Lenstra, L. Lovász, Factoring polynomials with rational coefficients,
Mathematische Annalen, 261 (4), pp. 515–534, Springer-Verlag, (1982).

[LCL95] C. H. Lin, C. C. Chang, R. C. T. Lee, A new public-key cipher system based upon the
diophantine equations, IEEE Transactions on Computers, 44 (1), pp. 13–19, IEEE Computer
Society Washington, DC, USA, (1995).

[Oku15] S. Okumura, A public key cryptosystem based on diophantine equations of degree increasing
type, Pacific Journal of Mathematics for Industry, 7 (4), pp. 33–45, Springer, Berlin Heidelberg,
(2015).

[Phe91] T. Pheidas, Hilbert’s Tenth Problem for fields of rational functions over finite fields, Inven-
tiones mathematicae, 103 (1), pp. 1–8, Springer-Verlag, (1991).

[Sho97] P. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms
on a Quantum Computer, SIAM Journal on Computing, 26 (5), pp. 1484–1509, Society for
Industrial and Applied Mathematics Philadelphia, PA, USA, (1997).

[UT07] S. Uchiyama, H. Tokunaga, On the Security of the Algebraic Surface Public-key Cryptosys-
tems (in Japanese), In: Proceedings of 2007 Symposium on Cryptography and Information
Security, SCIS 2007, CD-ROM, 2C1-2, (2007).

[Vid94] C. R. Videla, Hilbert’s Tenth Problem for Rational Function Fields in Characteristic 2, Pro-
ceedings of the American Mathematical Society, 120 (1), pp. 249–253, American Mathematical
Society, (1994).

[Vol07] F. Voloch, Breaking the Akiyama-Goto cryptosystem, Contemporary mathematics, Arith-
metic, Geometry, Cryptography and Coding Theory, 487, pp. 113–118, American Mathematical
Society, Providence, RI., (2007).

[Yos11] H. Yosh, The Key Exchange Cryptosystem Used with Higher Order Diophantine equations,
International Journal of Network Security & Its Applications Journal, 3 (2), pp. 43–50, (2011).

28

