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Abstract Invalid curve attacks are a well-known class of attacks against implementations of elliptic curve cryp-
tosystems, in which an adversary tricks the cryptographic device into carrying out scalar multiplication not on the
expected secure curve, but on some other, weaker elliptic curve of his choosing. In their original form, however,
these attacks only affect elliptic curve implementations using addition and doubling formulas that are independent of
at least one of the curve parameters. This property is typically satisfied for elliptic curves in Weierstrass form but not
for newer models that have gained increasing popularity in recent years, like Edwards and twisted Edwards curves. It
has therefore been suggested (e.g. in the original paper on invalid curve attacks) that such alternate models could
protect against those attacks.

In this paper, we dispel that belief and present the first attack of this nature against (twisted) Edwards curves, Jacobi
quartics, Jacobi intersections and more. Our attack differs from invalid curve attacks proper in that the cryptographic
device is tricked into carrying out a computation not on another elliptic curve, but on a group isomorphic to the
multiplicative group of the underlying base field. This often makes it easy to recover the secret scalar with a single
invalid computation.

We also show how our result can be used constructively, especially on curves over random base fields, as a fault
attack countermeasure similar to Shamir’s trick.
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1 Introduction

Elliptic curve cryptography (ECC) was introduced in the 1980s by Miller [44] and Koblitz [38], following the
successful application of elliptic curves to integer factorization [39]. Compared to its finite field alternatives,
ECC offers shorter keys, higher speeds, and additional structure that enables constructions such as bilinear
pairings. ECC rests on the hardness of the elliptic curve discrete logarithm problem (ECDLP), which has
remained intractable so far—for well-chosen curves.

Regardless of the theoretical security of elliptic curve cryptosystems, attacks targeting their implemen-
tations are numerous. One particularly powerful attack class is the fault attack [12, 13], which consists in
injecting faults before or during a cryptographic operation, and inspecting the resulting output to recover key
information. Fault attacks directed at elliptic curve scalar multiplication implementations were first published
in [9] and further developed in many other works, including [11, 15, 20, 36].

A conceptually simpler attack pointed out by Antipa et al. [1] and extended in several further works [35,
37], the invalid curve attack, exploits implementations that fail to verify that input points to a scalar multipli-
cation belong to the correct elliptic curve, and where point addition and doubling formulas are independent
of at least one curve parameter. In such cases, the attacker can query its target with a specially-crafted point
outside of the correct elliptic curve. Then, because the formulas used in the scalar multiplication do not



depend on all curve parameters, the implementation really computes a normal scalar multiplication by the
same scalar, but on a different curve depending on the invalid input point. Choosing invalid points in such a
way that the corresponding curves are weak, the attacker can then quickly recover secret keys from observing
the outputs (or the hashed outputs) of the scalar multiplications. Although the attack and recommended
countermeasures are well-known to cryptographers, recent research has found that a number of widely-used
cryptographic libraries in the wild are vulnerable [29].

The attack of Antipa et al. was originally introduced in the context of elliptic curves in Weierstrass form
y2 = x3 + ax+ b, where the usual formulas for point addition and doubling are independent of the curve
parameter b. Nowadays, however, alternate elliptic curve models and addition laws are gaining prominence:
models such as Montgomery [4, 45] and Edwards [7, 18] curves are being proposed for wide Internet usage3,
and several others are known to have desirable properties for cryptographic applications [10, 33, 34, 40, 52].

Invalid curve attacks generalize directly to those alternate models provided that the crucial property of
independence of the arithmetic on at least one curve parameter is satisfied. But many of the newer models for
elliptic curves, including Edwards curves, use all parameters in their most common addition formulas. It is
thus reasonable to expect, then, that invalid curve attacks would not apply to those curves. In fact, the use of
addition formulas depending on all curve parameters was specifically mentioned by Antipa et al. [1] as a
possible countermeasure to thwart their attack.

Our contribution. In this paper, we re-examine the feasibility of invalid curve attacks against newer elliptic
curve models like Edwards curves, and find that a new variant of the attack of Antipa et al. will indeed
break the security of implementations that do not carry out proper point validation. The new attack works by
reducing the problem of finding the secret scalar to solving discrete logarithms not on a weaker elliptic curve,
but in the multiplicative group of the base field, which is easy for typical curve sizes.

The idea behind the attack is roughly to let one of the parameters in the curve family vary, and consider
the degenerate curves (those of genus 0) among them. On those special curves, the group law degenerates
to the multiplicative group (or in rare cases, the additive group), and while in principle the group formulas
should still involve the curve parameter that was made to vary, it often ends up being multiplied by the
constant zero for all points on the degenerate curve. As a result, the same formulas as for scalar multiplication
on the correct curve yield an exponentiation in the degenerate group.

When only a hash value of the result of the scalar multiplication is provided (as in hashed Diffie–Hellman),
our new attack is somewhat less flexible than invalid curve attacks, since it is no longer possible to vary the
weak curve as done by Antipa et al. However, using a baby-step-giant-step-like time-memory tradeoff, we
show that we can still easily break curves over some of the largest fields commonly used for elliptic curve
cryptography, such as F2521−1.

This new attack underscores the importance of point validation even over newer elliptic curve models.
Finally, the properties we exploit in the attack can also be used constructively, to thwart fault attacks. We

present a concrete countermeasure, similar to Shamir’s trick [49], that detects faults injected during scalar
multiplication particularly efficiently. This is done by lifting the computation on the elliptic curve over Fp to
the composite order ring Z/prZ for some small constant r, and making sure that the component modulo r of
the lifted curve is degenerate in the sense mentioned above. Then, verifying that the computation modulo r
was correct becomes a simple field exponentiation, which is much faster than the usual scalar multiplication.
This technique applies to Weierstrass curves as well as newer models.

3 See https://tools.ietf.org/html/draft-irtf-cfrg-curves

2

https://tools.ietf.org/html/draft-irtf-cfrg-curves


Organization of the paper. In §2, we provide a rundown of some of the most common curve models and
addition laws used in elliptic curve cryptography. In §3, we first recall the traditional invalid curve attack, and
then present our extension of it to newer models of elliptic curves using the degenerate curve technique. In
§4, we explain how the new attack can be applied when only a hash of the result of the scalar multiplication
is available. And finally, in §5, we present our concrete fault attack countermeasure using degenerate curves.

2 Elliptic Curve Models

We begin by presenting the elliptic curve forms and respective group laws studied in this paper. This is not
an exhaustive list; there are many other addition laws in the literature, and the interested reader can see an
overview of many of them in [8]. Every base field Fp throughout this paper is assumed to have characteristic
≥ 5.

2.1 Weierstrass model

The canonical short Weierstrass form of an elliptic curve is given by the equation y2 = x3 + ax+ b, with
a point at infinity O = (0 : 1 : 0). Addition on Weierstrass curves is derived directly from the chord and
tangent method [51, Chapter III.2]:

x3 = λ2 − x1 − x2
y3 = λ(x1 − x3)− y1

where λ =

{
y1−y2
x1−x2

if (x1, y1) 6= (x2,±y2),
3x2

1+a
2y1

if (x1, y1) = (x2, y2).
(1)

2.2 Twisted Edwards model

Edwards curves were introduced in 2007 [7, 18]. Here we look at their generalization, twisted Edwards
curves [5], which cover more curves. A twisted Edwards curve is defined by the equation ax2+y2 = 1+dx2y2,
with neutral affine point O = (0, 1). The general complete group law for twisted Edwards curves is

(x3, y3) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2
1− dx1x2y1y2

)
. (2)

An addition formula, no longer complete, which does not require the d parameter, was found by Hisil,
Wong, Carter, and Dawson [25]:

(x3, y3) =


(

x1y1+x2y2
y1y2+ax1x2

, x1y1−x2y2
x1y2−y1x2

)
if (x1, y1) 6= (x2, y2), (−x1,−y1)(

2x1y1
y21+ax2

1
,

y21−ax2
1

2−y21−ax2
1

)
if (x1, y1) = (x2, y2)

. (3)

2.3 Huff’s model

Huff curves are a recently rediscovered elliptic curve model [34] previously used in the study of a certain
Diophantine equation [27]. They are defined by the equation ax(y2 − 1) = by(x2 − 1), and have the affine
neutral point O = (0, 0). Huff’s addition formula, complete for points of odd order, is independent of the
curve’s parameters:

(x3, y3) =

(
(x1 + x2)(1 + y1y2)

(1 + x1x2)(1− y1y2)
,
(y1 + y2)(1 + x1x2)

(1− x1x2)(1 + y1y2)

)
. (4)
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2.4 Hessian model

The Hessian form of an elliptic curve, introduced in [14] (also in [17,24,33,46,52]), is defined by the equation
x3 + y3 + 1 = 3dxy, with a point at infinity O = (1,−1, 0) as neutral element. The group law is given by

(x3, y3) =


(
y21x2−y22x1

x2y2−x1y1
,
x2
1y2−x2

2y1
x2y2−x1y1

)
if (x1, y1) 6= (x2, y2)(

y1(1−x3
1)

x3
1−y31

,
x1(y31−1)
x3
1−y31

)
if (x1, y1) = (x2, y2).

(5)

2.5 Twisted Hessian model

The twisted Hessian form [6,8] is defined by equation ax3+y3+1 = dxy, with neutral elementO = (0,−1).
Unlike the original Hessian form, twisted Hessian curves have an affine neutral point and complete addition
formula

(x3, y3) =

(
x1 − y21x2y2
ax1y1x22 − y2

,
y1y

2
2 − ax21x2

ax1y1x22 − y2

)
. (6)

2.6 Twisted Jacobi intersections

Jacobi intersections were suggested by Chudnovsky and Chudnovsky [14], and were among the first com-
petitive candidates for fast single-coordinate arithmetic4. Here we present Hisil et al.’s generalization [26],
defined by the intersection of bs2 + c2 = 1 and as2 + d2 = 1, with neutral affine point O = (0, 1, 1) and
complete addition formula

(s3, c3, d3) =

(
s1c2d2 + c1d1s2

1− abs21s22
,
c1c2 − bs1d1s2d2

1− abs21s22
,
d1d2 − as1c1s2c2

1− abs21s22

)
. (7)

2.7 Extended Jacobi quartics

Extended Jacobi quartics [14, 26] are defined by the equation y2 = dx4 + 2ax2 + 1, with O = (0, 1) and
group law

(x3, y3) =

(
x1y2 + y1x2
1− dx21x22

,
(1 + dx21x

2
2)(y1y2 + 2ax1x2) + 2dx1x2(x

2
1 + x22)

(1− dx21x22)2

)
. (8)

3 Invalid Curve Attacks

3.1 Review of the Weierstrass curve case

We begin by describing the classic invalid curve attack against short Weierstrass curvesEa,b: y
2 = x3+ax+b

over the finite field Fp. The key insight is that formulas defining the arithmetic on that curve, given by Eq. (1),
do not depend on the parameter b of the curve equation. All the curves Ea,b′ for all b′ actually share the same
addition and doubling formulas.

Now consider a cryptographic device that performs scalar multiplications in Ea,b(Fp) by a constant secret
scalar k, and that, furthermore, does not check that input points actually belong to that curve. An attacker
trying to recover k can then query the device on an invalid point P̃ = (x̃, ỹ) 6∈ Ea,b(Fp). That point belongs

4 Miller [44] also suggested x-only arithmetic for Diffie–Hellman. However he suggested using division polynomials for scalar
multiplication, which is far more computationally expensive.
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to a well-defined curve of the form Ea,b′ , namely Ea,b̃ with b̃ = ỹ2 − x̃3 − ax̃. As a result, on input P̃ , the

device actually computes the scalar multiplication k · P̃ in the group Ea,b̃(Fp) and returns that value.

The discrete logarithm problem in the subgroup 〈P̃ 〉 generated by P̃ in Ea,b̃(Fp) will typically be much
easier than in the original group Ea,b(Fp), and the attacker can even choose the invalid point and curve to
make the problem particularly easy. This allows him to efficiently recover k modulo the order of 〈P̃ 〉, and
then all of k by repeating the process a few times with different invalid curves.

The whole attack can thus be summarized as follows:

1. Find a curve Ea,b̃(Fp) and a point P̃ on it such that discrete logarithms in 〈P̃ 〉 are easy;
2. Query the cryptographic device on P̃ to get k · P̃ ;
3. Solve the discrete logarithm in the easy group, revealing k mod ord(P̃ );
4. Repeat until k is recovered in its entirety.

Finding a curve and point such that discrete logarithms are easy can be done in several different ways.
The original approach, inspired by [41], was to use invalid curves containing subgroups of very small orders
and an input point in those subgroups; such curves are easy to find, but quite a few queries are needed to
recover all of k.

Another approach is to use a curve of smooth order [43]: this is somewhat harder to construct, but
may allow a full recovery of k in a single query. Alternatively, using a singular curve [35] yields a discrete
logarithm problem in a form of the multiplicative group over Fp (or the additive group when a = 0), which is
typically easy to solve and again makes the single-query recovery of k possible [28, §3.7].

The attack also extends to the situation when the cryptographic device only returns a hash of the resulting
point of the scalar multiplication (the hashed Diffie–Hellman setting): in that case, the small subgroup
approach is typically the most efficient. That is the approach taken by Jager, Schwenk and Somorovsky in
their paper attacking ECDH key exchange in actually deployed TLS libraries [29].

3.2 Parameter-independent formulas

The invalid curve attack translates easily to the case of alternate curve models for which the addition and
doubling formulas are independent of at least one of the curve parameters: when querying the cryptographic
device on a point P̃ outside of the valid curve E, the computations still amount to a scalar multiplication on a
different curve Ẽ in the same family, obtained by adjusting the independent parameter appropriately.

This is the case for (twisted) Hessian and Huff curves. Additionally, efficient d-less formulas exist for
Edwards curves (cf. Eq. (3)), Jacobian quartics and Jacobian intersections [26].

On the other hand, in the case of addition laws depending on all curve parameters, the result of sending
an arbitrary invalid input point to the device can no longer be interpreted as a scalar multiplication on a
well-defined invalid curve: the attack of Antipa et al. does not generalize directly to that setting.

3.3 Our new approach: the degenerate curve attack against Edwards curves

As is easily observed in Eq. (2), the typical Edwards addition formulas depend on all curve parameters and
are therefore not vulnerable to the original invalid curve attack as described above. However, there is one
interesting property of this addition law that helps us transfer elliptic curve discrete logarithms to the curve’s
underlying field, rendering them solvable by sieve methods [16, 21].

Theorem 1. Let Ea,d be a twisted Edwards curve over Fp. The subset G̃ ⊂ F2
p of the affine plane consisting

of points of the form (0, y), y 6= 0, endowed with the addition law defined by the same formula as Ea,d, given
by Eq. (2), forms a group isomorphic to F∗p under the isomorphism y 7→ (0, y).
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Proof. The map ϕ:F∗p → G̃, y 7→ (0, y) is by definition a bijection. It suffices to check that it is a
homomorphism to conclude. But this is indeed the case since adding the points (0, y1) and (0, y2) yields,
according to Eq. (2):

ϕ(y1) + ϕ(y2) =

(
0 · y2 + y1 · 0

1 + d · 0 · 0 · y1y2
,
y1y2 − a · 0 · 0

1− d · 0 · 0 · y1y2

)
= (0, y1y2) = ϕ(y1y2)

as required. ut

As a result, given a cryptographic device performing scalar multiplications in the group Ea,d(Fp) without
input point validation, as in the original attack of §3.1, an attacker can send as input an invalid point P̃ of the
form (0, ỹ), and receive as result the scalar multiplication of P̃ by the secret k in the group G̃, namely (0, ỹk).
Therefore, recovering k is reduced to solving the discrete logarithm problem in the multiplicative group F∗p,
which as we have mentioned above is much easier than in Ea,d(Fp) owing to well-known subexponential
attacks.

For elliptic curve sizes used in practice (up to 500 or so bits), the finite field discrete log is easy! By
choosing y as a generator of F∗p (which is always a cyclic group), the attacker can thus recover all of k in a
single query. This yields our generalization of invalid curve attacks to the case of Edwards curves: we call
this attack a degenerate curve attack for reasons that will become apparent shortly.

Remark 1. An obvious but important observation is that, while we have described our attack in affine
coordinates, it also works in the (likely) case when the device performs its computation in projective
coordinates, using the projective versions of the same group operations. It is straightforward to check, for
example, that (0 : Y1 : 1) + (0 : Y2 : 1) = (0 : Y1Y2 : 1) (and generalizations with other values of the
Z-coordinates go through similarly).

One can wonder why, despite the dependence of the group law Eq. (2) on all curve parameters, we can
still find an invalid curve in the affine plane where the same formulas induce a group structure. A rough
explanation is as follows. First, the y-axis Y :x = 0 in the plane is actually a limit (in the usual sense of
one-parameter families) of the twisted Edwards curves Ea,d for fixed d: it is the fiber above a = ∞. This
is easily seen by rewriting the equation of Ea,d in terms of a′ = 1/a, as x2 + a′y2 = a′(1 + dx2y2), and
setting a′ = 0. Since Y is of genus 0, the Edwards group law should degenerate on Y (minus a finite number
of points) as the additive or the multiplicative group. The expression of the group law need not a priori be the
same as on the original curve Ea,d itself, but it does turn out to be the case, because the only term depending
on the parameter a cancels out along Y :x = 0.

Now the line Y is not itself singular (although it should perhaps really be seen as the non-reduced double
line x2 = 0), but it is where the family degenerates, hence the name of our attack.

3.4 Degenerate curve attacks against other models

The idea of the previous attack generalizes easily to other models of elliptic curves, including all of those
mentioned in §2. We now describe those generalizations in affine coordinates below; they of course also work
in projective coordinates.

Extended Jacobi quartics. Let Ea,b: y
2 = dx4 + 2ax2 + 1 be an extended Jacobi quartic curve over Fp,

and consider the set G̃ of points in F2
p of the form (0, y), y 6= 0. Endow this set with the same addition law
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as Ea,d, defined by Eq. (8). It then forms a group isomorphic to F∗p under the isomorphism ϕ: y 7→ (0, y).
Indeed, this map is a bijection and we have:

ϕ(y1) + ϕ(y2) =

(
0 · y2 + y1 · 0
1− d · 0 · 0

,
(1 + d · 0 · 0)(y1y2 + 2a · 0 · 0) + 2d · 0 · 0 · 0

(1− d · 0 · 0)2

)
= (0, y1y2) = ϕ(y1y2),

so ϕ is an isomorphism as required.
Therefore, we can carry out our attack as before, by sending to a device performing scalar multiplications

on Ea,d the invalid input point (0, y) for some generator y of F∗p.
In this case, the y-axis appears as the degenerate limit of the family Ea,d for fixed a and varying d, taken

for d =∞.

Twisted Jacobi intersections. Let Ea,b: as
2 + c2 = bs2 + d2 = 1 be a twisted Jacobi intersection over Fp,

and consider the sets G̃1 and G̃2 of points in F3
p of the form (0, c, 0), c 6= 0, and (0, 0, d), d 6= 0, respectively.

Endow both of these sets with the same addition law as Ea,b, defined by Eq. (7). Then they form groups
isomorphic to F∗p under the isomorphisms ϕ1: c 7→ (0, c, 0) and ϕ2: d 7→ (0, 0, d) respectively. Indeed, those
maps are both bijections and we have:

ϕ1(c1) + ϕ1(c2) =

(
0 · c2 · 0 + c1 · 0 · 0

1− ab · 0 · 0
,
c1c2 − b · 0 · 0 · 0 · 0

1− ab · 0 · 0
,
0 · 0− b · 0 · c1 · 0 · c2

1− ab · 0 · 0

)
= (0, c1c2, 0) = ϕ1(c1c2)

and similarly for ϕ2 by symmetry.
This provides two families of invalid points using which we can carry out our attack exactly as before.

Twisted Hessian curves. The case of twisted Hessian curves is somewhat less interesting, since this model
has a group law independent of the curve parameter d, and hence the original invalid curve attack applies to it.
Nevertheless, we can mention for completeness that our approach generalizes rather directly to those curves
as well.

Indeed, if Ea,d: ax
3 + y3 + 1 = dxy is a twisted Hessian curve, the map ϕ: y 7→ (0,−y) defines an

isomorphism between F∗p and the set of elements of the form (0, y), y 6= 0 in F2
p endowed with the same

addition law as Ea,d, defined by Eq. (6). Indeed:

ϕ(y1) + ϕ(y2) =

(
0 + y21 · 0 · y2
−a · 0 · y1 · 0 + y2

,
−y1y22 − a · 0 · 0
−a · 0 · y1 · 0 + y2

)
= (0,−y1y2) = ϕ(y1y2).

Huff curves. As with Hessian curves, Huff curves have a parameter-independent group law and hence are not
the most relevant setting for us, but we can again extend our attack to them.

For the Huff curve Ea,b: ax(y
2 − 1) = by(x2 − 1) with the group law of Eq. (4), we can consider the set

G̃ of points in F2
p of the form (0, y). The sum of two such points under the addition law given by the same

formula is given by:

(0, y1) + (0, y2) =

(
0 · (1 + y1y2)

1 · (1− y1y2)
,
(y1 + y2) · 1
1 · (1 + y1y2)

)
=

(
0,

y1 + y2
1 + y1y2

)
.
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Thus, if we consider the map ϕ:F∗p → G̃ defined outside −1 by ϕ(t) = (0, (1 − t)/(1 + t)), it is easy to
check that ϕ(t1) + ϕ(t2) = ϕ(t1t2), and therefore we again have a group isomorphic to F∗p to carry out our
attack.

Remark 2. It may be worth noting that for some curve models, we are also able to find degenerate curves on
which the addition law induces a group structure isomorphic to the twisted form of the multiplicative group
(i.e. the subgroup of order p+ 1 of elements of norm 1 in F∗p2). Huff curves offer a simple concrete example:
consider the set of points of the form (x, x) ∈ F2

p with the Huff addition law of Eq. (4). The sum of two such
points is given by (x1, x1) + (x2, x2) = (x3, x3) where

x3 =
x1 + x2
1− x1x2

.

When −1 is a quadratic nonresidue in Fp, this is well-known to be the so-called “compressed form” of the
twisted multiplicative group [48].

4 The Hashed Case

Alice Bob
kA ∈ Z/nZ, A = kA · P kB ∈ Z/nZ, B = kB · P

A−−−−−−−−−−−−−−−−−−−−−−−−−−−→
B←−−−−−−−−−−−−−−−−−−−−−−−−−−−

K = KDF(kA ·B) K = KDF(kB ·A)
M = E(K, “Hello”)

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
assert(E−1(K,M) = “Hello”)

Figure 1. Basic unauthenticated elliptic curve Diffie–Hellman protocol, under which invalid curve attacks may be mounted. The
protocol works over a curve Ea,b(Fp), with a generator point P of prime order n. KDF(·) is an arbitrary key-derivation function
taking points of Ea,b(Fp) as input; E(K,M) is taken to be some authenticated encryption primitive, e.g., AES–GCM.

The previous section considered attacks on a cryptographic device that performs elliptic curve scalar
multiplications without validation of input points, and returns the actual result of the scalar multiplication.
This is a somewhat idealized attack model, however.

One real-world protocol where a similar situation arises is (static) Diffie–Hellman key exchange over
elliptic curves, one variant of which is presented in Fig. 1. In an invalid curve attack on that protocol, Bob
would send Alice his invalid point B, and Alice would use it to compute the product kA · B where kA is
her static secret key. The resulting point kA ·B is not directly sent back to Bob, however, but used to derive
a key K = KDF(kA ·B) used in subsequent communication. In effect, what Bob receives is the image of
kA ·B under a fixed, public one-way function, usually with low collision probability (in Fig. 1, it would be
the authentication message M ).

We model that situation by considering an oracle which, on input of a point P (still unvalidated), computes
the scalar multiplication k · P by a fixed secret k, and returns the image H(k · P ) of the result under a public
hash function H . In that more restrictive setting, degenerate curve attacks are not as devastating as previously
described, but we will see that it is often still possible to recover k quite quickly in practice, depending on the
smoothness of the order p− 1 of F∗p (or of p+ 1 in the case of degenerate groups isomorphic to the twisted
multiplicative group; we will describe the attack in the F∗p case to fix ideas).
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The idea is simply to apply the Pohlig–Hellman algorithm [47]. Using the naive variant of the algorithm,
the attacker can, for each prime divisor ` of p− 1, choose a point P̃ of order ` in the degenerate group, obtain
H(k · P̃ ) from the oracle, and perform an exhaustive search in the subgroup 〈P̃ 〉 to find the point Q̃ such that
H(k · P̃ ) = H(Q̃), revealing k mod `. Prime powers are dealt with similarly, and in the end the attacker
recovers all of k with only a few oracle queries, in time quasilinear in the largest prime factor P1(p− 1) of
p − 1. Furthermore, if a higher query complexity is acceptable, we can use Shanks’ baby-step giant-step
time-memory tradeoff [50] to recover k in time quasilinear in

√
P1(p− 1), also using a number of queries

and a space complexity quasilinear in
√
P1(p− 1).

In general, even
√
P1(p− 1) need not be much smaller than the complexity of the discrete logarithm

problem in the original curve. However, newer models like Edwards curves are often used over special
base fields Fp with particularly efficient arithmetic. Table 1 lists those efficient primes for usual curve sizes
together with the bit size of P1(p− 1), and we can see that for many of them, the degenerate curve attack is
quite efficient: for example, for curves over the Mersenne prime field F2521−1 (used to construct the highest
security elliptic curves, including E-521 [2]), the complexity of an F∗p degenerate curve attack would be
around O(244), which is very practical. And it would be O(257.5), also quite fast, over F2448−2224−1, the field
of definition of Ed448-Goldilocks [22].

Table 1. For primes p suitable for fast elliptic curve cryptography [23], size in bits of the largest prime factor of p− 1 and p+1, and
complexity of our BSGS-style hashed Diffie–Hellman attack in F∗p ((p− 1) attack) and in the twisted multiplicative group ((p+ 1)
attack).

p log2 P1(p− 1) (p− 1) attack log2 P1(p+ 1) (p+ 1) attack

2191 − 19 90 O(245) 93 O(246.5)
2196 − 15 64 O(232) 165 O(282.5)
2216 − 2108 − 1 107 O(253.5) 19 O(29.5)
2221 − 3 73 O(236.5) 42 O(221)
2224 − 296 + 1 46 O(223) 157 O(278.5)
2226 − 5 127 O(263.5) 49 O(224.5)
2230 − 27 101 O(250.5) 136 O(268)
2251 − 9 235 O(2117.5) 70 O(235)
2255 − 19 236 O(2118) 95 O(247.5)
2266 − 3 37 O(217.5) 125 O(262.5)
2285 − 9 237 O(2118.5) 60 O(230)
2291 − 19 259 O(2129.5) 114 O(257)
2322 − 2161 − 1 133 O(266.5) 64 O(232)
2336 − 3 166 O(283) 214 O(2107)
2338 − 15 166 O(283) 204 O(2102)
2369 − 25 192 O(296) 252 O(2126)
2383 − 31 88 O(244) 97 O(248.5)
2389 − 21 247 O(2123.5) 311 O(2155.5)
2401 − 31 48 O(224) 209 O(2104.5)
2416 − 2208 − 1 60 O(230) 96 O(248)
2448 − 2224 − 1 115 O(257.5) 49 O(224.5)
2450 − 2225 − 1 88 O(244) 54 O(227)
2452 − 3 88 O(244) 266 O(2133)
2468 − 17 209 O(2104.5) 164 O(282)
2480 − 2240 − 1 163 O(281.5) 36 O(218)
2489 − 21 263 O(2131.5) 260 O(2130)
2495 − 31 158 O(279) 319 O(2159.5)
2521 − 1 88 O(244) 1 O(20.5)
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Algorithm 1: Fault attack countermeasure for elliptic curves with degenerate points allowing “shortcut”
scalar multiplications.

Input:
A curve E(Fp);
A point P = (x, y) ∈ E(Fp);
A scalar exponent k ∈ Z;
A security parameter b;
An efficiently-computable “shortcut” map f(k, P ) : E(Fr)→ E(Fr) implementing scalar multiplication by k.
Output: k · P
begin

r ← random b-bit prime
Er ← DegenerateCurve(r) // Pick degenerate curve, model-dependent
Pr ← (xr, yr) ∈ Er(Fr) // Pick appropriate degenerate point on Er

E′ ← E × Er / Z/prZ
P ′ ←

(
CRTp,r(x(P ), xr),CRTp,r(y(P ), yr)

)
∈ E′(Z/prZ)

Q′ ← k · P ′
if Q′ mod r 6= f(k, P ′ mod r) then // Check for fault

return “error”
else

return
(
x(Q′) mod p, y(Q′) mod p

)
end

end

5 A fault attack countermeasure

Soon after the announcement of the Bellcore attack on RSA, Shamir proposed a countermeasure [49] that
relies on the Chinese remainder theorem to detect faults during modular exponentiation. The basic idea of
Shamir is to replace computations modulo a prime p by computations in the ring modulo the composite pr,
where r is a small randomly-selected integer, and then compare the result modulo r against an independent
equivalent computation modulo r.

While Shamir’s trick5 works well on RSA, due to its simple structure, it is trickier to apply this counter-
measure to the elliptic curve case. Nevertheless, countermeasures based on Shamir’s trick have been devised.
The first one was invented by Blömer, Otto, and Seifert [11] (BOS), and consisted of two elliptic curve scalar
multiplications—one over Z/prZ, the other over Z/rZ. Baek and Vasyltov [3] suggested the use of the
curve Y 2Z + pY Z3 = X3 + aXZ4 + BZ6 ∈ Z/prZ, where B = y2 + py − x3 − ax, which clearly is
equivalent to the original when reduced modulo p. This method is limited to projective coordinates, since not
every intermediate result may have an inverse in the extended ring. Their method also has some potential
weaknesses owing to its reliance on random integers r instead of adequately selected primes [31].

The first method to take advantage of the completeness of elliptic curve addition formulas was given by
Joye [30, 32]. This method applies to Edwards curves, and relies on both the completeness of its addition
formulas, but also the property k · (αr, 1) = (kαr, 1) (mod r2). While Joye’s method takes advantage of
an isomorphism of the set of points (αr, 1) ∈ Z/r2Z—coupled with the Edwards addition formula—to the
additive group F+

r , we instead take advantage of the multiplicative and additive identities of degenerate curves.
Our proposed countermeasure, taking advantage of these maps, is laid out in a general form in Algorithm 1.

5 Not to be confused with Shamir’s double-exponentiation trick, pointed out by ElGamal [19, p. 471] and originally discovered by
Straus [53].
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One can view our proposed countermeasure as the BOS [11] countermeasure coupled with a “shortcut”
f(k, P ) to compute the second scalar multiplication—k · P in E(Fr)—much faster than by using the
standard formulas. This shortcut takes different forms depending on which curve shape we are working
over. Generically, we begin by picking a curve Er over Fr for which there is at least one point for which
scalar multiplication is easy to compute. Then, the extended curve E′ is the direct product E′(Z/prZ) =
E(Fp)×Er(Fr), and the countermeasure consists of checking whether k ·P ′ ∈ E′, reduced modulo r, equals
the same multiplication performed independently in Er. The correctness of this method follows from the
correctness of BOS [11]; our concrete contribution is the shortcuts taken to reduce the computation overhead
of the scalar multiplication in Er. The following considers two popular shapes—Weierstrass and Edwards
curves—but others are similarly easy to derive.

5.1 Weierstrass curves

In Weierstrass curves, we may take advantage of the unique singular curve y2 = x3. This curve is notable for
degenerating into the additive group F+

r via the map (x, y) 7→ x/y and∞ 7→ 0, with inverse t 7→ (t−2, t−3)
and 0 7→ ∞ [28, §3.7]. This immediately suggests a very efficient shortcut map for Er:

f(k, P ) =
(
(kt)−2, (kt)−3

)
,

where t = x/y or t = 0 if P =∞.
The resulting correctness test only requires a few multiplications modulo r, which is more efficient than

both BOS [11] and Baek–Vasyltsov [3], and is comparable with Joye’s approach [30]. Note that the inversions
are avoidable by using projective coordinates.

5.2 Edwards curves

Unlike Weierstrass curves, Edwards curves do not have any additive degeneration. However, we can use the
results of §3.3 to devise a similar countermeasure using a multiplicative degeneration. The shortcut map for
Er is

f(k, P ) =
(
0, yk

)
,

where P = (0, y) for any y /∈ {0, 1} that generates the group F∗r . In this case the computational overhead is
larger than in the Weierstrass case—a modular exponentiation modulo r—but is still far cheaper than a scalar
multiplication.

5.3 Comparison with previous countermeasures

The above methods offer some advantages relatively to previous Shamir-inspired fault attack countermeasures:

Only one full-fledged scalar multiplication is required. This is in contrast with Blömer–Otto–Seifert [11,
§8] which requires 2 scalar multiplications—one modulo pr, another modulo r. In the case of Weierstrass
curves, our countermeasure is faster than any other targeting the same curve shape.

Works both in affine and projective coordinates This is in contrast with Baek–Vasyltsov [3], which due
to working on Weierstrass curves, breaks down when faced with the corner cases in the addition and
doubling formulas of those curves.
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Although our method may not suit every use case, it is another useful tool for hardened implementations of
elliptic curves. It is particularly suitable for implementations of curves over random primes, which hardware
implementers tend to favor [42], since multiplication modulo pr is straightforward to implement, and the
overhead remains small. On the other hand, highly structured primes, usually very close to a power of 2,
would likely suffer a higher performance impact, since modular reduction would no longer be a linear-time
operation.
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