
Missing a trick: Karatsuba revisited

Michael Scott

MIRACL Labs
mike.scott@miracl.com

January 1st, 2016

Abstract. There are a variety of ways of applying the Karatsuba idea to
multi-digit multiplication. These apply particularly well in the context
where digits do not use the full word-length of the computer, so that
partial products can be safely accumulated without fear of over�ow. Here
we re-visit the �arbitrary degree� version of Karatsuba and show that the
cost of this little-known variant has been over-estimated in the past. We
also attempt to de�nitively answer the question as to the cross-over point
where Karatsuba performs better than the classic method.

1 Introduction

As is well known the Karatsuba idea for calculating the product of two poly-
nomials can be used recursively to signi�cantly reduce the number of partial
products required in a long multiplication calculation, at the cost of increas-
ing the number of additions. A one-level application can save 1/4 of the partial
products, and a two-level application can save 7/16ths etc. However application
of Karatsuba in this way is quite awkward, it attracts a large overhead of extra
additions, and the ideal recursion is only available if the number of digits is an
exact power of two.

One way to make Karatsuba more competitive is to use a number base radix
that is somewhat less than the full register size, so that additions can be accu-
mulated without over�ow, and without requiring immediate carry propagation.
Here we refer to this as a �reduced-radix� representation.

Multi-precision numbers are represented as an array of computer words, or
�limbs�, each limb representing a digit of the number. Each computer word is
typically the same size as the processor's registers, that are manipulated by its
instruction set. Using a full computer word for each digit, or a �packed-radix�
representation [7], intuitively seems to be optimal, and was the method originally
adopted by most multi-precision libraries. However to be e�cient this virtually
mandates an assembly language implementation to handle the �ags that catch
the over�ows that can arise, for example, from the simple act of adding two
digits.

The idea of using a reduced-radix representation of multi-precision numbers
(independent of its suitability for Karatsuba) has long been championed by Bern-
stein and his co-workers. See for example [2] for a discussion of the relative merits
of packed-radix and reduced-radix representation. This approach is supported

by the recent experience of Hamburg in his implementation of the Goldilocks
elliptic curve [7]. A reduced-radix representation is sometimes considered to be
more e�cient [7] � and this is despite the fact that in many cases it will require
an increased number of limbs.

In [1] is described an elliptic curve implementation that uses this technique
to demonstrate the superiority of using the Karatsuba idea in a context where
each curve coordinate is represented in just 16 32-bit limbs. In fact there is much
confusion in the literature as to the break-even point where Karatsuba becomes
superior. One confounding factor is that whereas Karatsuba trades multiplica-
tions for additions, in modern processors multiplications may be almost as fast
as additions.

Elliptic curve sizes have traditionally been chosen to be multiples of 128-bits,
to provide a nice match to standard levels of security. On the face of it, this is
fortuitous, as for example a 256-bit curve might have its x and y coordinates
�t snugly inside of 4 64-bit or 8 32-bit computer words using a packed-radix
representation. Again, as these are exact powers of 2, they might be thought of
as being particularly suitable for the application of the Karatsuba idea. However
somewhat counter-intuitively this is not the case � if Karatsuba is to be compet-
itive the actual number base must be a few bits less than the word size in order
to facilitate addition of elements without carry processing (and to support the
ability to distinguish positive and negative numbers). So in fact a competitive
implementation would typically require 5 64-bit or 9 32-bit words, where 5 and
9 are not ideal polynomial degrees for the application of traditional Karatsuba.

What is less well known is that there is an easy to use �arbitrary degree�
variant of Karatsuba (ADK), as it is called by Weimerskirch and Paar [11], which
can save nearly 1/2 of the partial products and where the polynomial degree is
of no concern to the implementor. In fact this idea has an interesting history.
An earlier draft of the Weimerskirch and Paar paper from 2003 is referenced in
[9]. But it appears to have been discovered even earlier by Khachatrian et al. [8],
and independently by David Harvey, as reported in Exercise 1.4 in the textbook
[3]. Essentially the same idea was used by Granger and Scott [4], building on
earlier work from Granger and Moss [5] and Nogami et al. [10], in the context
of a particular form of modular arithmetic.

Here we consider the application of this variant to the problem of long integer
multiplication. Since the number of partial products required is the same as that
required by the well known squaring algorithm, squaring is not improved, and
so is not considered further here. We restrict our attention to the multiplication
of two equal sized numbers, as arises when implementing modular arithmetic as
required by common cryptographic implementations.

2 The ADK algorithm

This algorithm is described in mathematical terms in [3], [8] and [11]. However
here we have used the subtractive variant of Karatsuba to some advantage to
get a simpler formula, as pointed out to us by [12].

2

xy =
n−1∑
i=1

i−1∑
j=0

(xi − xj)(yj − yi)b
i+j +

n−1∑
i=0

bi
n−1∑
j=0

xjyjb
j

In fact we �nd the mathematical description unhelpful in that it makes the
method look more complex than it is. It also makes it di�cult to determine its
exact complexity. To that end an algorithmic description is more helpful.

Algorithm 1 The ADK algorithm for long multiplication

Input: Degree n, and radix b = 2t

Input: x = [x0, . . . , xn−1],y = [y0, . . . , yn−1] where xi, yi ∈ [0, b− 1]
Output: z = [z0, . . . , z2n−2, 0], where zi ∈ [0, b2 − 1] and z = xy

1: function ADKmul(x, y)
2: for i← 0 to n− 1 do

3: di ← xiyi
4: end for

5: s ← d0
6: z0 ← s
7: for k ← 1 to n− 1 do

8: s ← s+ dk
9: t ← s
10: for i← 1 + ⌊k/2⌋ to k do

11: t ← t+ (xi − xk−i)(yk−i − yi)
12: end for

13: zk ← t
14: end for

15: for k ← n to 2n− 2 do

16: s ← s− dk−n

17: t ← s
18: for i← 1 + ⌊k/2⌋ to n− 1 do

19: t ← t+ (xi − xk−i)(yk−i − yi)
20: end for

21: zk ← t
22: end for

23: return z
24: end function

The number of multiplications and additions required can be con�rmed by a
simple counting exercise. For clarity we have not included the �nal carry propa-
gation, which reduces the product z to a radix b representation. A fully unrolled
example of the algorithm in action for the case n = 4 is given in the next section.

3

3 Comparing Karatsuba variants

As an easy introduction consider the product of two 4 digit numbers, z = xy.
The School-boy method (SB) requires 16 multiplications (muls) and 9 double
precision adds, which is equivalent to 18 single precision adds. In the sequel when
comparing calculation costs a �mul� M is a register-sized signed multiplication
resulting in a double register product. An �add� A is the addition (or subtraction)
of two registers. We also make the reasonable assumption that while add, shift or
masking instructions cost the same on the target processor, an integer multiply
instruction may cost more. So the cost of the SB method here is 16M+18A.

z0 = x0y0

z1 = x1y0 + x0y1

z2 = x2y0 + x1y1 + x0y2

z3 = x3y0 + x2y1 + x1y2 + x0y3

z4 = x3y1 + x2y2 + x1y3

z5 = x3y2 + x2y3

z6 = x3y3

(1)

A �nal �propagation� of carries is also required. Assuming that the number
base is a simple power of 2, this involves a single precision masking followed by
a double precision shift applied to each digit of the result. The carry must then
be added to the next digit. If multiplying two n digit numbers the extra cost is
equivalent to (10n − 7)A adds. Here we will neglect this extra contribution, as
it applies independent of the method used for long multiplication.

Using arbitrary-degree Karatsuba (or ADK), the same calculation takes 10
muls and 11 double precision adds and 12 single precision subs. The total cost
is 10M+34A. So overall 6 muls are saved at the cost of 16 adds

z0 = x0y0

z1 = (x1 − x0)(y0 − y1) + (x0y0 + x1y1)

z2 = (x2 − x0)(y0 − y2) + [x0y0 + x1y1] + x2y2

z3 = (x3 − x0)(y0 − y3) + (x2 − x1)(y1 − y2) + [x0y0 + x1y1] + [x2y2 + x3y3]

z4 = (x3 − x1)(y1 − y3) + x1y1 + [x2y2 + x3y3]

z5 = (x3 − x2)(y2 − y3) + (x2y2 + x3y3)

z6 = x3y3
(2)

Here square brackets indicate values already available from the calculation.
Hopefully the reader can see the pattern in this example in order to easily ex-
trapolate to higher degree multiplications.

It is an interesting exercise to repeat this calculation using one level of �reg-
ular� Karatsuba, and simplifying the result. As can be seen in equation 3 the

4

same calculation requires 12 muls, 10 double precision adds and 4 single precision
subs, or equivalently 12M+24A, so 4 muls are saved at the cost of 6 adds.

z0 = x0y0

z1 = (x1y0 + x0y1)

z2 = (x2 − x0)(y0 − y2) + x0y0 + (x1y1 + x2y2)

z3 = [(x2 − x0)](y1 − y3) + (x3 − x1)[(y0 − y2)] + [x1y0 + x0y1] + [x3y2 + x2y3]

z4 = [(x3 − x1)][(y1 − y3)] + [x1y1 + x2y2] + x3y3

z5 = (x3y2 + x2y3)

z6 = x3y3
(3)

Observe that only z1, z3 and z5 are calculated di�erently. Using two levels
of Karatsuba (equation 4), requires 9M+38A, so 7 muls are saved at the cost of
20 adds.

z0 = x0y0

z1 = (x1 − x0)(y0 − y1) + (x0y0 + x1y1)

z2 = (x2 − x0)(y0 − y2) + [x0y0 + x1y1] + x2y2

z3 = ([x3 − x1]− [x2 − x0])([y0 − y2]− [y1 − y3]) + [(x2 − x0)(y0 − y2)] + [(x3 − x1)(y1 − y3)]

+ [(x1 − x0)(y0 − y1)] + [(x3 − x2)(y2 − y3)] + [x0y0 + x1y1] + [x2y2 + x3y3]

z4 = (x3 − x1)(y1 − y3) + x1y1 + [x2y2 + x3y3]

z5 = (x3 − x2)(y2 − y3) + (x2y2 + x3y3)

z6 = x3y3
(4)

Now only z3 is calculated di�erently from the ADK approach. It is noteworthy
that in [1] the authors deployed two levels of standard Karatsuba, and apparently
did not consider the ADK method. However since the ADK approach works on
a digit-by-digit basis, and thus applies seemlessly independent of the number of
digits, it would appear to o�er a nice easily applied compromise solution that
extracts a big part of the Karatsuba advantage, without causing an explosion in
the number of additions.

In terms of the number of partial products required, its performance is always
at least as good as that obtained by applying one level of regular Karatsuba.
This may represent an easily achieved �sweet spot� of relevance to applications
involving medium sized numbers, as may for example apply in the context of
Elliptic Curve Cryptography.

In passing we observe, as also noted in [3], that the ADK method can be used
as an amusing alternative algorithm for pencil-and-paper long multiplication.
We would not be surprised to learn of its use in the recreational mathematics
literature.

5

4 Numerical stability

Before proceeding we need to address the problem of numerical stability. We
start by assuming that both numbers to be multiplied are fully normalized, that
is each digit of x is in the range 0 ≤ xi < b. If they are not, they can be
quickly normalized using a fast mask and shift operation (which works even if
some of the digits are temporarily negative). For numerical stability of the long
multiplication it is important that the sum of double-precision products that
form each row of equation 1, do not cause a signed integer over�ow. Assume
that b = 2t where t < w on a w-bit wordlength computer. Then the product of
two such numbers could be as big as 22t − 2t+1 + 1. The longest row consists of
n such numbers, plus a carry from the previous row. So each row could not be
larger than (n+ 1)(22t − 2t+1 + 1). Since it must be possible to distinguish the
sign of each partial product this must be strictly less than 22w−1.

For the common wordlengths of w = 32 and w = 64-bits, and for numbers of
the sizes relevant to elliptic curve cryptography, we would expect t to be 28 or
29 on a 32-bit computer, and 61 or 62 for a 64-bit computer. Too large and the
stability criteria will not be met. Too small and too many words will be required
to represent our numbers, with a loss of e�ciency.

We would assume that normally the largest radix possible would be used
that is compatible with this stability condition. However there may be other
factors at play which might dictate a slightly smaller choice for t � for example if
reduction were merged with multiplication [4], or if it were regarded as desirable
that �eld elements could be added without normalization prior to multiplication
[7].

5 The true cost of ADK multiplication

In [11] the number of multiplications and additions required for the application
of the ADK method is calculated, in the context of polynomial arithmetic. There
it is worked out that its performance compared to the school-boy method, given a
multiplication to addition cost ratio of r, is such that they are equivalent for r = 3
irrespective of the degree of the polynomials. The rather neat conclusion might
be that unless multiplication takes more than 3 times as long as an addition, the
method brings no advantage. And for many real-world processors with hardware
support for integer multiplication, this may not be the case.

However here we are interested in multi-precision arithmetic, which is a little
di�erent. While all of the additions in the SB method are double precision, the
subtractions required by the ADK method are only single precision. Furthermore
the cost function used for ADK in [11] appears to be incorrect. The true cost
in terms of single precision additions is actually only 2n2 + 2n− 6 for the ADK
method, compared to the 2n2 − 4n + 2 required by SB. In [11] the number of
additions is calculated as being of the order of 2.5n2. This dramatically changes
the balance between the two contenders. Recall that for SB the number of muls
is n2, while for the ADK method it is n(n + 1)/2. An immediate and striking

6

conclusion is that for n ≥ 12 the total number of muls and adds for ADK becomes
less than the total required for SB.

Interestingly Khachatrian et al. [8] appear to have got it wrong as well, over-
estimating the number of additions required to an even greater extent, as always
requiring 50% more additions than the SB method. However these previous
over-estimates may be explained by the authors considering only a packed-radix
representation.

muls adds

SB n2 2n2 − 4n+ 2
ADK n(n+ 1)/2 2n2 + 2n− 6

Table 1. Complexity

Processor designers go to great lengths to cut the cost in cycles of a mul
instruction, even getting it down to 1 clock cycle, the same as that required for
an add. However a mul will always require more processor resources, and thus a
hidden extra cost will probably show up in actual working code. For example in
a multi-scalar architecture only one processor pipeline might support hardware
multiplication, whereas all available pipelines will allow simultaneous execution
of adds, so whereas one mul can execute in 1 cycle, two or more adds might
execute simultaneously. The actual break-even point between ADK and SB can
only be determined on a case-by-case basis via an actual implementation. In this
next table we calculate the ratio r between the costs of muls and adds that mark
the expected break-even between SB and ADK.

n SB muls SB adds ADK muls ADK adds r

5 25 32 15 54 2.2
9 81 128 45 174 1.28
12 144 242 78 306 0.97
16 256 450 136 538 0.69

Table 2. Operation Counts

This would appear to settle the matter: A variant of Karatsuba should be
used for all multi-precision multiplications that involve numbers with 12 or more
limbs. A caveat might be that the simplicity of the SB method might favour a
compiler in terms of the number of memory accesses and register move instruc-
tions (not considered here) which it might require. However we suspect that any
such advantage would be outweighed by the hidden resource consumption of
even the fastest integer multiply.

On the other hand it remains a real possibility that a packed-radix imple-
mentation of the School-Boy method written in carefully hand-crafted assembly
language might prove superior on particular processors, even beyond the 12 limb

7

limit (bearing in mind that a packed-radix representation may actually require
less limbs). This could only be established experimentally. A useful resource for
comparison purposes would be the well known GMP multi-precision library [6].

6 Some results

We tested our results on an industry standard Intel i3-4025U 1.9GHz 64-bit
processor running in Windows. This is a simple head-to-head comparison of
the reduced-radix SB and ADK methods. The test code was written in C, and
compiled using the GCC compiler (version 5.1.0) with maximum optimization. It
includes the carry propagation code. The multiplication code was fully unrolled,
as a compiler cannot always be trusted to do this automatically. Our experience
would be that optimized compiler output like this for Intel processors is very
hard to improve upon, even using hand-crafted assembly language.

n SB cycles ADK cycles

5 75 78
9 234 185
12 397 324
16 687 577

Table 3. Intel i3-4025U Cycle Counts

These results more than support the conclusion to be drawn from table 2:
In fact on this processor the cross-over point occurs already with just 9 limbs.
On examining the generated code, it was observed that the number of mul and
add-equivalent instructions were as predicted in the analysis above. However an
inspection of the generated code also con�rmed our suspicion that the ADK
code generated more register-register move instructions and memory accesses.
On some processors this could o�set the ADK advantage.

7 Conclusion

In this note we have dusted o� an old oft-rediscovered trick that we would
suggest has not received su�cient attention from those interested in e�cient
cryptographic implementations. We have demonstrated that it is much more
e�cient than previously thought. We have established a concrete break-even
point where Karatsuba variants should be considered ahead of the classic school-
boy method for long multiplication.

An obvious extension of the idea applies to Montgomery's method for mod-
ular reduction without division [?] � details are given in an appendix

Of course we are not claiming that the ADK method is necessarily the best
choice in all circumstances. A classic recursive Karatsuba may well be superior

8

in particular cases. For example Hamburg [7] uses a modulus that chimes par-
ticularly well with 1-level of classic Karatsuba. And Bernstein et al. [1] may well
be correct in applying 2-level Karatsuba in their particular context.

The fact that a multiplication now requires the calculation of the same num-
ber of partial products as a squaring, might encourage implementors to use this
multiplication algorithm for both squaring and multiplication, so that multipli-
cations and squarings cannot be easily distinguished by some simple kinds of
side-channel attack, like for example a timing attack.

8 Acknowledgements

The author would like to thank Rob Granger, Billy Bob Brumley and Paul
Zimmermann for helpful comments on an earlier draft of this paper.

References

1. Daniel J. Bernstein, Chitchanok Chuengsatiansup, and Tanja Lange. Curve41417:
Karatsuba revisited. Cryptology ePrint Archive, Report 2014/526, 2014. http:

//eprint.iacr.org/2014/526.
2. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.

High-speed high-security signatures. Cryptology ePrint Archive, Report 2011/368,
2011. http://eprint.iacr.org/2011/368.

3. R. Brent and P. Zimmermann. Modern Computer Arithmetic. Cambridge Univer-
sity Press, 2010.

4. R. Granger and M. Scott. Faster ECC over F2521−1. In Public-Key Cryptography

� PKC 2015, volume 9020 of Lecture Notes in Computer Science, pages 539�553.
Springer Berlin Heidelberg, 2015.

5. Robert Granger and AndrewMoss. Generalised Mersenne numbers revisited.Math-

ematics of Computation, 82:2389�2420, 2013. http://arxiv.org/abs/1108.3054.
6. Torbjörn Granlund and the GMP development team. GNU MP: The GNU Multiple

Precision Arithmetic Library, 6.1.0 edition, 2015. http://gmplib.org/.
7. Mike Hamburg. Ed448-Goldilocks, a new elliptic curve. Cryptology ePrint Archive,

Report 2015/625, 2015. http://eprint.iacr.org/2015/625.
8. G. Khachatrian, M. Kuregian, K. Ispiryan, and J. Massey. Faster multiplication of

integers for public-key applications. In Selected Areas in Cryptography, volume 2259
of Lecture Notes in Computer Science, pages 245�254. Springer Berlin Heidelberg,
2001.

9. P. Montgomery. Five, six and seven term karatsuba-like formulae. IEEE Transac-

tions on Computers, 54(3):362�369, 2005.
10. Y. Nogami, A. Saito, and Y. Morikawa. Finite extension �eld with modulus of

all-one polynomial and representation of its elements for fast arithmetic opera-
tions. IEICE Transactions on Fundementals of Electronics, Communications and

Computer Sciences, E86-A(9):2376�2387, 2003.
11. Andre Weimerskirch and Christof Paar. Generalization of the Karatsuba algorithm

for e�cient implementations. Cryptology ePrint Archive, Report 2006/224, 2006.
http://eprint.iacr.org/2006/224.

12. P. Zimmermann. Personal communication, January 2015.

9

More results

We carried out further tests on a variety of platforms. In all cases we used the
GCC compiler tools. Where the well known GMP library could be installed, we
provide a comparison with its assembly language mpn_mul_basecase() packed-
radix SB implementation. However it should be noted that whereas the GMP
code is only partially unrolled, ours is fully unrolled.

First up is a rather old Intel Core i5 chip running under the Ubuntu OS, and
using GCC version 5.2.1.

n SB cycles ADK cycles GMP cycles

5 87 106 99
9 234 248 289
12 400 380 506
16 691 626 921
Table 4. 64-bit Intel i5-M520 Cycle Counts

Next a more modern i5 variant, running on an Apple Mac Mini.

n SB cycles ADK cycles GMP cycles

5 66 60 64
9 195 154 172
12 368 250 286
16 658 491 495

Table 5. 64-bit Intel i5-4278U Cycle Counts

Finally results for an old 32-bit Intel Atom processor, using GCC version
4.8.4

n SB cycles ADK cycles

5 373 313
9 1068 888
12 1824 1441
16 3193 2459

Table 6. 32-bit Intel Atom N270 Cycle Counts

10

Example Code

Here we present an example of the loop unrolled C code for the SB and ADK
methods that we used in our tests. In this small example the number of limbs n
in x and y is 5. Code for carry propagation is included. In practise this code is
automatically generated by a small utility program for any value of n.

typede f int64_t smal l ;
typede f __int128 l a r g e ;
#de f i n e B 61 // b i t s in rad ix
#de f i n e M (((smal l)1<<B)−1) //Mask

void sbmul5 (smal l *x , smal l *y , smal l *z)
{
l a r g e t , c ;
t=(l a r g e)x [0] * y [0] ; z [0]=(smal l) t&M; c=t>>B;
t=c+(l a r g e)x [1] * y [0]+(l a r g e)x [0] * y [1] ; z [1]=(smal l) t&M; c=t>>B;
t=c+(l a r g e)x [2] * y [0]+(l a r g e)x [1] * y [1]+(l a r g e)x [0] * y [2] ; z [2]=(smal l) t&M; c=t>>B;
t=c+(l a r g e)x [3] * y [0]+(l a r g e)x [2] * y [1]+(l a r g e)x [1] * y [2]+(l a r g e)x [0] * y [3] ;

z [3]=(smal l) t&M; c=t>>B;
t=c+(l a r g e)x [4] * y [0]+(l a r g e)x [3] * y [1]+(l a r g e)x [2] * y [2]+(l a r g e)x [1] * y [3]

+(l a r g e)x [0] * y [4] ; z [4]=(smal l) t&M; c=t>>B;

t=c+(l a r g e)x [4] * y [1]+(l a r g e)x [3] * y [2]+(l a r g e)x [2] * y [3]+(l a r g e)x [1] * y [4] ;
z [5]=(smal l) t&M; c=t>>B;

t=c+(l a r g e)x [4] * y [2]+(l a r g e)x [3] * y [3]+(l a r g e)x [2] * y [4] ; z [6]=(smal l) t&M; c=t>>B;
t=c+(l a r g e)x [4] * y [3]+(l a r g e)x [3] * y [4] ; z [7]=(smal l) t&M; c=t>>B;
t=c+(l a r g e)x [4] * y [4] ; z [8]=(smal l) t&M; c=t>>B;
z [9]=(smal l) c ;

}

void adkmul5 (smal l *x , smal l *y , smal l *z)
{
l a r g e t , s , c , d [5] ;
d [0]=(l a r g e)x [0] * y [0] ;
d [1]=(l a r g e)x [1] * y [1] ;
d [2]=(l a r g e)x [2] * y [2] ;
d [3]=(l a r g e)x [3] * y [3] ;
d [4]=(l a r g e)x [4] * y [4] ;

s=d [0] ; t=s ; z [0]=(smal l) t&M; c=t>>B;
s+=d [1] ; t=c+s+(l a r g e) (x [1]−x [0]) * (y [0]−y [1]) ; z [1]=(smal l) t&M; c=t>>B;
s+=d [2] ; t=c+s+(l a r g e) (x [2]−x [0]) * (y [0]−y [2]) ; z [2]=(smal l) t&M; c=t>>B;
s+=d [3] ; t=c+s+(l a r g e) (x [3]−x [0]) * (y [0]−y [3])+(l a r g e) (x [2]−x [1]) * (y [1]−y [2]) ;

z [3]=(smal l) t&M; c=t>>B;
s+=d [4] ; t=c+s+(l a r g e) (x [4]−x [0]) * (y [0]−y [4])+(l a r g e) (x [3]−x [1]) * (y [1]−y [3]) ;

z [4]=(smal l) t&M; c=t>>B;

s−=d [0] ; t=c+s+(l a r g e) (x [4]−x [1]) * (y [1]−y [4])+(l a r g e) (x [3]−x [2]) * (y [2]−y [3]) ;
z [5]=(smal l) t&M; c=t>>B;

s−=d [1] ; t=c+s+(l a r g e) (x [4]−x [2]) * (y [2]−y [4]) ; z [6]=(smal l) t&M; c=t>>B;
s−=d [2] ; t=c+s+(l a r g e) (x [4]−x [3]) * (y [3]−y [4]) ; z [7]=(smal l) t&M; c=t>>B;
s−=d [3] ; t=c+s ; z [8]=(smal l) t&M; c=t>>B;
z [9]=(smal l) c ;

}

11

Application to Montgomery's REDC function

This well known method carries out reduction modulo m where �eld elements
are �rst converted to n-residue form by multiplying them by b−n mod m, where
bn is co-prime to m. Assume that a product of a pair of n-residues is to be
reduced modulo m, and that the value of w = −1/m mod b is precalculated.
The following ADK-based method carries out the reduction. This function may
be tightly combined with that of algorithm (1) to provide an integrated modular
multiplication/squaring function z = xy mod m for n-residues, where each zi is
processed as soon as it is calculated.

Algorithm 2 ADK algorithm for the REDC function

Input: Modulus m of degree n, radix b = 2t, precalculated w = −1/m mod b
Input: z = [z0, . . . , z2n−2, 0], where zi ∈ [0, b2 − 1]
Output: r = [r0, . . . , zn−1], where ri ∈ [0, b− 1] and r = zb−n mod m

1: function ADKredc(z)
2: t ← z0
3: v0 ← tw mod b
4: t ← t+ v0m0

5: c ← z1 + c/b
6: s ← 0
7: for k ← 1 to n− 1 do

8: t ← c+ s+ v0mk

9: for i← 1 + ⌊k/2⌋ to k − 1 do

10: t ← t+ (vi − vk−i)(mk−i −mi)
11: end for

12: vk ← tw mod b
13: t ← t+ vkm0

14: c ← zk+1 + c/b
15: dk ← vkmk

16: s ← s+ dk
17: end for

18: for k ← n to 2n− 2 do

19: t ← c+ s
20: for i← 1 + ⌊k/2⌋ to n− 1 do

21: t ← t+ (vi − vk−i)(mk−i −mi)
22: end for

23: rk−n ← t mod b
24: c ← zk+1 + c/b
25: s ← s− dk−n+1

26: end for

27: rn−1 ← c mod b
28: return r
29: end function

12

This implementation includes full carry propogation. Observe that divisions
and remainders modulo b are carried out using simple shift and masking oper-
ations as b is a power of 2. As is well known the output of this algorithm may
require one extra subtraction of the modulus m to get a fully reduced result.
However in many contexts �eld elements will not need to be immediately fully
reduced. The number of muls and adds compared with a straight-forward SB-
based implementation is given in Table (7) In some cases the constant w may
be equal to 1, which allows some saving.

muls adds

SB n(n+ 1) 2n2 + 4n− 2
ADK (n2 + 5n− 2)/2 2n2 + 10n− 8

Table 7. REDC Complexity

13

