Security Attack on CloudBI: Practical privacy-preserving outsourcing of biometric identification in the cloud

Jiawei Yuan, Embry-Riddle Aeronautical University

I. INTRODUCTION

In ESORICS 2015 [1], Wang et al. proposed a privacy-preserving outsourcing design for biometric identification using public cloud platforms, namely *CloudBI*. CloudBI introduces two designs: *CloudBI-I* and *CloudBI-II*. *CloudBI-II* is more efficient and *CloudBI-II* has stronger privacy protection. Based on the threat model of CloudBI, *CloudBI-II* is claimed to be secure even when the cloud service provider can act as a user to submit fingerprint information for identification. However, this security argument is not hold and *CloudBI-II* can be completely broken when the cloud service provider submit a small number of identification requests. In this technical report, we will review the design of *CloudBI-II* and introduce the security attack that can efficiently break it.

II. BRIEF REVIEW OF CloudBI-II

In the data encryption phase of *CloudBI-II*, each FingerCode $b_i = [b_{i1}, b_{i2}, \dots, b_{in}]$ are extended as B'_i

	$\begin{bmatrix} b_{i1} \\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ b_{i2} \end{array}$	 	0 0	0 0	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$
$B'_i =$	0 0 0	···· ····	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}$	b_{in} 0 0	$ \begin{array}{c} 0 \\ 0 \\ \cdots \\ -0.5 \sum_{j=1}^{n} b_{ij}^{2} \end{array} $	0 0 1

Each B'_i is encrypted as

$$C_i = M_1 Q_i B'_i M_2$$

where M_1 , M_2 are two random $(n+2) \times (n+2)$ invertible matrices, and Q_i is a random $(n+2) \times (n+2)$ lower triangular matrix with diagonal entries set as 1. All C_i will be outsourced to cloud servers.

$$Q_i = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ r_{21} & 1 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ r_{(n+1)1} & \cdots & r_{(n+1)n} & 1 & 0 \\ r_{(n+2)1} & \cdots & r_{(n+2)n} & r_{(n+2)(n+1)} & 1 \end{bmatrix}$$

When the user submit a candidate FingerCode $b_c = [b_{c1}, b_{c2}, \cdots, b_{cn}]$ for identification, the biometric database owner extends it as B'_c

	b_{c1}	0	• • •	0	0	0
$B_c' =$	0	b_{c2}	• • •	0	0	0
D'		• • •			• • •	
$B_c =$	0		0	b_{cn}	0	0 0
	0		0	0	1	
	0	• • •	0	0	0	r_c

where r_c is a random number generated for each identification request. The owner then encrypts B_c' as

$$C_F = M_2^{-1} B_c' Q_c M_1^{-1}$$

where M_1^{-1} and M_2^{-1} are inverse matrices of M_1 and M_2 respectively, Q_c is a random $(n+2) \times (n+2)$ lower triangular matrix with diagonal entries set as 1. C_F is finally submitted to cloud servers for identification.

III. SECURITY ATTACK ON CloudBI-II

We now show that the cloud server only needs to submit more than 3 identification requests to break the ciphertext C_i of any FingerCode b_i in the owner's database. For expression simplicity, we use n' to denote n + 2 in the rest part of this section.

After submitting an identification request, the cloud server has access to C_i of any FingerCode b_i and C_F of the submitted FingerCode b_c . Then, the cloud server can compute

$$P_i = C_i C_F = M_1 Q_i B'_i M_2 M_2^{-1} B'_c Q_c M_1^{-1} = M_1 Q_i B'_i B'_c Q_c M_1^{-1}$$

We now use P_1 of FingerCode b_1 as an example to show our attack, which can also be applied to any other FingerCode b_i in the same manner. In P_1 , there are n'^2 unknowns in M_1 , n'-1 unknowns in B'_1 , $\frac{n'^2-n'}{2}$ unknowns in Q_1 , $\frac{n'^2-n'}{2}$ unknowns in Q_c . As b_c is submitted by the cloud server, there is only one unknown r_c in B'_c . M_1^{-1} can be expressed with elements in M_1 since it is the inverse matrix of M_1 . Among these unknowns, M_1 , Q_1 , B'_1 are fixed for all identification requests, B'_c and Q_c are randomly generated for each identification request. Therefore, after the first identification request, each new identification request only introduces $\frac{n'^2-n'}{2} + 1$ unknowns to the computation of P_1 . However, as $M_1, Q_i, B'_i, B'_c, Q_c, M_1^{-1}$ are all $n' \times n'$ matrices, it is easy to see that the cloud server can construct n'^2 equations for P_1 from each new identification request. As shown in Table III, when the cloud server submits more than 3 identification requests, it can construct more equations than the number of unknowns in P_1 . Thus, all unknowns in P_1 decrypted by solving their corresponding equations. Once unknowns in B'_i are decrypted, the cloud can easily extract the actual FingerCode b_1 . To decrypt any other FingerCode b_i , the cloud server just needs to perform the same attack as that for b_1 .

To this end, we have demonstrated that *CloudBI-II* can be completely broken when the cloud server can submit more then 3 identification requests.

# of Requests	# of Unknowns in P_1	# of Equations from P_1		
1	$2n^{\prime 2}$	n'^2		
2	$\frac{5n'^2}{2} - \frac{n'}{2} + 1$	$2n'^{2}$		
3	$3n'^2 - n' + 2$	$3n'^{2}$		
4	$\frac{7n'^2}{2} - \frac{3n'}{2} + 3$	$4n'^{2}$		

TABLE I UNKNOWNS VS EQUATIONS

IV. EXAMPLE OF SECURITY ATTACK ON CLOUDBI-II In this example, we set n=2 and n'=n+2=4. For $b_1 = [2, 2]$, the owner extends it as

$$B_1' = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & -4 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The owner randomly generates M_1, M_2, Q_1 as

$$M_1 = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 2 & 2 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} M_2 = \begin{bmatrix} 3 & 4 & 1 & 1 \\ 1 & 3 & 3 & 0 \\ 1 & 4 & 2 & 2 \\ 2 & 2 & 0 & 1 \end{bmatrix} Q_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ 4 & 1 & 0 & 1 \end{bmatrix}$$

 B'_1 is encrypted as $C_1 = M_1 Q_i B'_1 M_2$ and outsourced to cloud servers. Now the cloud server selects $b_c = (1,3)$ for identification and submits it 3 times. We denote the extended B'_c for 3 identification requests as B'_{c1} , B'_{c2} , B'_{c3} respectively.

$$B'_{c1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix} B'_{c2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} B'_{c3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 6 \end{bmatrix}$$

The owner encrypts B'_{c1} , B'_{c2} and B'_{c3} as $C_{F1} = M_2^{-1}B'_{c1}Q_{c1}M_1^{-1}$, $C_{F2} = M_2^{-1}B'_{c2}Q_{c2}M_1^{-1}$ and $C_{F3} = M_2^{-1}B'_{c3}Q_{c3}M_1^{-1}$ respectively, where Q_{c1} , Q_{c2} and Q_{c3} are randomly generated as

$$Q_{c1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 5 & 3 & 1 & 0 \\ 8 & 11 & 2 & 1 \end{bmatrix} Q_{c2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 5 & 12 & 1 & 0 \\ 2 & 8 & 3 & 1 \end{bmatrix} Q_{c3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 12 & 1 & 0 & 0 \\ 10 & 0 & 1 & 0 \\ 3 & 2 & 1 & 1 \end{bmatrix}$$

After C_{F1} , C_{F2} and C_{F3} are sent to the cloud, the cloud compute

$$P_{11}M_1 = C_1 C_{F1}M_1 = M_1 Q_1 B_1' B_{c1}' Q_{c1} M_1^{-1} M_1 = M_1 Q_1 B_1' B_{c1}' Q_{c1}$$
(1)

$$P_{12}M_1 = C_1 C_{F2}M_1 = M_1 Q_1 B_1' B_{c2}' Q_{c2} M_1^{-1} M_1 = M_1 Q_1 B_1' B_{c2}' Q_{c2}$$
⁽²⁾

$$P_{13}M_1 = C_1 C_{F3}M_1 = M_1 Q_1 B_1' B_{c3}' Q_{c3} M_1^{-1} M_1 = M_1 Q_1 B_1' B_{c3}' Q_{c3}$$
(3)

Based on Eq. 1-3, the cloud can construct the following equations to solve all unknowns in M_1 , Q_1 , B'_1 , B'_{c1} , B'_{c2} , B'_{c2} , Q_{c1} , Q_{c2} and Q_{c3} .

$$P_{11}M_{1} = \begin{bmatrix} \frac{124}{3} & -24 & \frac{-68}{3} & \frac{68}{3} \\ \frac{32}{32} & -18 & -16 & 16 \\ \frac{19}{94} & -37 & -46 & \frac{51}{33} \\ \frac{190}{3} & -19 & \frac{-80}{3} & \frac{95}{33} \end{bmatrix} \times \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} \\ x_{5} & x_{6} & x_{7} & x_{8} \\ x_{9} & x_{10} & x_{11} & x_{12} \\ x_{13} & x_{14} & x_{15} & x_{16} \end{bmatrix} = \begin{bmatrix} \frac{124}{3}x_{1} - 24x_{5} - \frac{68}{3}x_{9} + \frac{68}{3}x_{13} & \cdots & \frac{124}{3}x_{4} - 24x_{8} - \frac{68}{3}x_{12} + \frac{68}{3}x_{16} \\ \frac{32x_{1} - 18x_{5} - 16x_{9} + 16x_{13} & \cdots & \cdots & \frac{32x_{4} - 18x_{8} - 16x_{12} + 16x_{16} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \frac{190}{3}x_{1} - 19x_{5} - \frac{80}{3}x_{9} + \frac{95}{3}x_{13} & \cdots & \cdots & \frac{124}{3}x_{4} - 19x_{8} - \frac{80}{3}x_{12} + \frac{95}{3}x_{16} \end{bmatrix}$$

$$= \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} \\ x_{5} & x_{6} & x_{7} & x_{8} \\ x_{9} & x_{10} & x_{11} & x_{12} \\ x_{13} & x_{14} & x_{15} & x_{16} \end{bmatrix} \times \begin{bmatrix} x_{1} & 0 & 0 & 0 \\ 0 & x_{22} & 1 \end{bmatrix} \times \begin{bmatrix} x_{23} & 0 & 0 & 0 \\ 0 & x_{24} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} x_{1} & 0 & 0 & 0 \\ x_{27} & 1 & 0 & 0 \\ x_{20} & x_{21} & x_{22} & 1 \end{bmatrix}$$

$$P_{12}M_{1} = \begin{bmatrix} \frac{4}{3} & -12 & -\frac{8}{3} & \frac{8}{3} \\ \frac{17}{7} & -21 & -\frac{7}{7} & \frac{16}{3} \\ \frac{17}{7} & 9 & 1 & \frac{2}{3} \end{bmatrix} \times \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} \\ x_{5} & x_{6} & x_{7} & x_{8} \\ x_{9} & x_{10} & x_{11} & x_{12} \\ x_{13} & x_{14} & x_{15} & x_{16} \end{bmatrix} = \begin{bmatrix} \frac{4}{3}x_{1} - 12x_{5} - \frac{8}{3}x_{9} + \frac{8}{3}x_{13} & \cdots & \cdots & \frac{4}{3}x_{4} - 12x_{8} - \frac{8}{3}x_{12} + \frac{8}{3}x_{16} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ x_{1} + 9x_{5} + x_{9} + 2x_{13} & \cdots & \cdots & \frac{4}{3}x_{4} - 12x_{8} - \frac{8}{3}x_{12} + \frac{8}{3}x_{16} \\ -\frac{17}{7} & 9 & 1 & \frac{2}{3} \end{bmatrix} \times \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} \\ x_{5} & x_{6} & x_{7} & x_{8} \\ x_{9} & x_{10} & x_{11} & x_{12} \\ x_{13} & x_{14} & x_{15} & x_{16} \end{bmatrix} = \begin{bmatrix} \frac{4}{3}x_{1} - 12x_{5} - \frac{8}{3}x_{9} + \frac{8}{3}x_{13} & \cdots & \cdots & \frac{4}{3}x_{4} - 12x_{8} - \frac{8}{3}x_{12} + \frac{8}{3}x_{16} \\ -\frac{1}{7} & -21 & -\frac{7}{7} & \frac{16}{16} \end{bmatrix} \times \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} \\ x_{5} & x_{6} & x_{7} & x_{8} \\ x_{9} & x_{10} & x_{11} & x_{12} \\ x_{13} & x_{14} & x_{15} & x_{16} \end{bmatrix} = \begin{bmatrix} x_{1} & x_{2} &$$

$$\begin{bmatrix} 1^{M1} - \begin{bmatrix} \frac{1792}{2} & -410 & \frac{-872}{218} & \frac{89}{216} \\ 218 & -156 & -106 & 112 \end{bmatrix}^{\wedge} \begin{bmatrix} x_9 & x_{10} & x_{11} & x_{12} \\ x_{13} & x_{14} & x_{15} & x_{16} \end{bmatrix}^{-} \begin{bmatrix} \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 218x_1 - 156x_5 - 106x_9 + 112x_{13} & \dots & \dots & 218x_4 - 156x_8 - 106x_{12} + 112x_{16} \end{bmatrix}$$

$$= \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ x_5 & x_6 & x_7 & x_8 \\ x_9 & x_{10} & x_{11} & x_{12} \\ x_{13} & x_{14} & x_{15} & x_{16} \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 & 0 \\ x_{17} & 1 & 0 & 0 \\ x_{18} & x_{19} & 1 & 0 \\ x_{20} & x_{21} & x_{22} & 1 \end{bmatrix} \times \begin{bmatrix} x_{23} & 0 & 0 & 0 \\ 0 & x_{24} & 0 & 0 \\ 0 & 0 & x_{25} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 & 0 \\ x_{41} & 1 & 0 & 0 \\ x_{42} & x_{43} & 1 & 0 \\ x_{44} & x_{45} & x_{46} & 1 \end{bmatrix}$$

Based on above matrix multiplications, it is clear that the cloud server can construct 16 equations for $P_{11}M_1$, 16 equations for $P_{12}M_1$, and 16 equations for $P_{12}M_1$. Meanwhile, there are 46 total unknowns in $P_{11}M_1$, $P_{21}M_1$ and $P_{31}M_1$. Thus, when the cloud server submit 3 identification requests, it will have sufficient information to solve all unknowns in M_1 , Q_1 , B'_1 , B'_{c1} , B'_{c2} , B'_{c3} , Q_{c1} , Q_{c2} and Q_{c3} . Once the cloud server gets B'_1 , it can easily recover $b_1 = [2, 2]$.

REFERENCES

[1] Qian Wang, Shengshan Hu, Kui Ren, Meiqi He, Minxin Du, and Zhibo Wang. Cloudbi: Practical privacy-preserving outsourcing of biometric identification in the cloud. In *ESORICS 2015*, volume 9327, pages 186–205. Springer International Publishing, 2015.