
Perfect Structure on the Edge of Chaos

Nir Bitansky∗ Omer Paneth† Daniel Wichs‡

February 17, 2015

Abstract

We construct trapdoor permutations based on (sub-exponential) indistinguishability obfuscation and one-
way functions, thereby providing the first candidate that is not based on the hardness of factoring.

Our construction shows that even highly structured primitives, such as trapdoor permutations, can
be potentially based on hardness assumptions with noisy structures such as those used in candidate
constructions of indistinguishability obfuscation. It also suggest a possible way to construct trapdoor
permutations that resist quantum attacks, and that their hardness may be based on problems outside the
complexity class SZK — indeed, while factoring-based candidates do not possess such security, future
constructions of indistinguishability obfuscation might.

As a corollary, we eliminate the need to assume trapdoor permutations and injective one-way function
in many recent constructions based on indistinguishability obfuscation.

1 Introduction

In the mid 70’s and early 80’s, powerful number-theoretic constructions related to factoring and discrete-
logs had kick-started modern cryptography. As these constructions gradually evolved into a comprehensive
theory, generic primitives, such as one-way functions, collision-resistent hash functions, and trapdoor per-
mutations, where defined with the aim of abstracting the properties needed in different applications. The
aforementioned number-theoretic problems provided instantiations for each of these primitives, but at the
same time appeared to offer a much richer algebraic structure. Whereas this structure is highly fruitful, it
also limits the hardness of the corresponding problems to low complexity classes such as statistical zero-
knowledge (SZK) [GK88] and makes them suspectable to quantum attacks [Sho97]. Therefore, a funda-
mental goal is to base cryptographic primitives on other less structured assumptions.

In some cases, such as one-way functions, it seems that we can avoid structured assumptions altogether.
Indeed, one-way functions can be constructed generically from essentially any cryptographic primitive and
have candidates from purely combinatorial assumptions [BFKL93, Gol11, JP00, AC08]. However, as we
consider primitives that intrinsically require some structure, candidates become more scarce. For example,
injective one-way functions are only known based on assumptions with some algebraic homomorphism,
albeit these may feature noisy structures, such as the ones arising from lattices [PW08]. In particular, such
assumptions can be placed in SZK, but are not known to be susceptible to quantum attacks. If we also require
the one-way function to be a permutation, candidates become even more scarce, and only known based on
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the the hardness of discrete-logs and factoring (or RSA) [RSA83, Rab79]. Further, trapdoor permutations
(TDPs) are known exclusively based on factoring (or RSA).

Obfuscation. A promising source for new constructions, replacing ones that so far depended exclusively
on specific algebraic assumptions, is program obfuscation — a method for shielding programs such that
their implementation becomes hidden. Indeed, an ideal notion of obfuscation would allow us to securely
express any required structure in the obfuscated programs. Understanding to what extent this intuition can
be fulfilled requires looking into concrete notions of secure obfuscation. The question is what is the “right”
notion to consider and under what kind of assumptions it can be achieved.

Of particular interest is the notion of indistinguishability obfuscation (iO), which have recently found
candidate constructions [GGH+13b]. The notion of iO requires that the obfuscations of any two programs of
the same size and functionality are indistinguishable. While this notion may not capture ideal obfuscation,
it turns out to be sufficient for many known cryptographic primitives, suggesting an alternative for previous
number theoretic constructions [SW14, BP14, CLTV14].

From an assumption perspective, the existing constructions of iO all fall into Gentry’s world of com-
puting on the edge of chaos — they all rely on noisy structures in an essential way [Gen14, GGH13a,
GGH+13b]. Beyond the existing candidates, understanding on which assumptions iO can be based (and
how structured they should be) is an open question; in particular, as far as we know iO might be based on
problems outside AM ∩ coAM and/or outside BQP.

1.1 This Work

Our main result is a construction of trapdoor permutations based on sub-exponential indistinguishability
obfuscation and one-way functions. As far as we know, this is the first construction of trapdoor permutation
since the introduction of the RSA and Rabin trapdoor permutations [RSA83, Rab79] (and their variants).
We also construct injective one-way functions based on standard iO and one-way functions. As a tool used
in our constructions and a result of potentially independent interest, we show how to convert any one-way
function into a sometimes-injective one-way function that is simultaneously injective and hard-to-invert on
some sub-domain of noticeable density.

Properties. Our permutations have the following additional features. First, they are doubly-enhanced.
Additionally, they can be generated so to have any prescribed cycle structure with the necessary property that
small cycles are rare enough. So far this property has only been achieved for pseudo-random permutations
[NR02]. Another feature is that inverting the permutation consists of simple symmetric-key operations
(unlike in existing candidates). Finally, like in the RSA permutation, given the trapdoor it is possible to
iterate the permutation (or its inverse) any number of times at the same cost as computing the function once.

One difference between the trapdoor permutations we construct and those typically defined in the litera-
ture [GR13] is that we only support sampling of pseudo-uniform elements in the domain rather than elements
that are statistically close to uniform. The sampled elements are pseudo-uniform in a strong sense, namely,
even given the trapdoor or more generally the coins used to sample the function. The double-enhancement
requirement is relaxed in a somewhat similar manner (see details below). As far as we know, these relax-
ation are sufficient in known applications. Additionally we note that our permutations are not certifiable,
meaning that we do not know of an efficient way to certify that a key is well-formed and describes a valid
permutation.

iO as a hub. Based on our results, several constructions previously based on iO and additional structured
assumptions, can now be based only on iO and one-way functions. Examples include: non-interactive
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commitments [Blu81],1 actively secure two-message oblivious transfer [SW14], non-interactive witness-
indistinguishable proofs [BP14],2 obfuscation for Turing machines [KLW14],3 hardness of the complexity
class PPAD [BPR14], and more.

1.2 Technical Overview

We now describe the main ideas behind constructing TDPs from iO. The construction consists of two main
components. We first show how to build TDPs from iO, but the proof of security relies on the existence
of injective one-way functions (even though they are not used in the construction). We then show how to
construct injective one-way functions based on iO and one-way functions.

1.2.1 TDPs from iO (Assuming Existence of Injective OWFs)

Trapdoor permutations from obfuscation? sounds easy. Thinking of obfuscation in ideal terms gives
rise to a natural attempt at constructing TDPs: simply obfuscate a pseudo-random permutation. Clearly,
with only black-box access to such a permutation, inversion is as impossible as inverting a random function.
However, ideal virtual black-box obfuscation [BGI+01] of pseudo-random permutations is unknown, and
is in fact subject to strong limitations [BCC+14]. Nevertheless, we show that some of this intuition can be
recovered also when relying on the (not so ideal) notion of iO.

The construction. Rather than considering a pseudo-random permutation, we consider a somewhat more
structured permutation where nodes are not completely pseudo-random, but still very unpredictable. Con-
cretely, the permutations can be thought of as a cycle over nodes

x1 → x2 → · · · → xT → x1 ,

where each node xi is a pair (i,PRFS(i)), PRFS : ZT → {0, 1}λ is sampled from a family of pseudo-
random functions, and T ∈ N is super-polynomial in the security parameter λ.

The public key describing the permutation consists of an obfuscated program F̃ that maps xi to xi+1

(where i + 1 is computed modulo T ) and outputs ⊥ on any other input pair outside the permutation’s
domain. The trapdoor is simply the key S of the pseudo-random function, which allows us to efficiently
invert the permutation. To complete the construction we need to augment the public key of the permutation
to allow public sampling of random domain elements.

Before describing how such sampling is done, we restrict attention to a simpler case, showing that the
current construction (without any domain sampler) is one-way. That is, given F̃ and xi for a random i ∈ ZT ,
it is hard to obtain xi−1 (in fact we prove this for every i ∈ ZT ). The argument follows closely the one
in [BPR14] (see a comparison below). For completeness, we include here the overview of the proof taken
almost verbatim from [BPR14].

Intuition. The path from xi all the way back to xi−1 on the cycle defined by F̃ should be thought of as an
authenticated chain where a signature σ corresponding to some pair (j, σ) cannot be obtained without first

1Non-interactive commitments can be based on any family of injective one-way functions that are injective even when the
randomness for the key-generation algorithm is chosen maliciously. While our injective one-way function do not have this property,
our trapdoor permutations do.

2The result of [BPR14] is stated based on a single (keyless) one-way permutation. We observe that it can also be obtained based
on any family of one-way permutations.

3Formally, [KLW14] rely on injective PRGs, but these can be replaced with injective one-way functions using an observation of
[BCP14], as explained in Section 4.2.
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obtaining all previous signatures on the path. It is not difficult to show that any efficient algorithm that only
invokes F̃ as a black box cannot find the signature PRFS(i−1). We prove that the same hardness holds even
given full access to the obfuscated circuit F̃.

To prove that finding the signature PRFS(i−1) is hard, we show that the obfuscated F̃ is computationally
indistinguishable from a circuit that on input xi−1 returns ⊥, rather than xi as F̃ would. This implies that an
efficient algorithm would not be able to obtain xi−1 from either one of the circuits, or it could distinguish
the two. We next go in more detail into how indistinguishability of these two circuits is shown.

For every α, β ∈ ZT we consider the circuit F̃α,β that is identical to F̃, except that for every j in the
range from α to β (wrapping around T in case that α > β) F̃α,β on the input xj outputs ⊥. The argument
proceeds in two steps. First, we show that for a random u ∈ [T ], the obfuscation F̃u,u is computationally
indistinguishable from F̃. Intuitively this “splits” the authenticated chain into two parts: from xi to xu and
from xu+1 to xi−1. While given F̃u,u and xi it is possible to compute additional signatures in the first part
of the chain, we show that is it hard to find a signature for any j in the second part of the chain. More
concretely, in the second step, we prove that the obfuscated circuits F̃u,u and F̃u,i−1 are computationally
indistinguishable by a sequence of hybrids. For every j in the range between u and i− 2, we show that the
obfuscations F̃u,j and F̃u,j+1 are computationally indistinguishable. In total, we have at most T hybrids;
relying on injective one-way functions and iO with super-polynomial hardness (related to T ), we show that
each two obfuscations are T−Θ(1)-indistinguishable. Overall we deduce that the obfuscations F̃ and F̃u,i−1

are also computationally indistinguishable as required.

To summarize, the hardness proof follows two steps:

1. Split the chain into two parts: For a random u ∈ ZT , prove that F̃ and F̃u,i−1 are indistinguishable.

2. Erase second part: For every j in the range between u and i − 2 prove that F̃u,j and F̃u,j+1 are
T−Θ(1)-indistinguishable.

We next explain how the two steps described above are proven. For simplicity, we shall assume the existence
of a length-doubling pseudo-random generator PRG : ZT → ZT 2 that is injective; in the body, we relax this
assumption and rely only on injective one-way functions. The two steps rely the ideas of hidden triggers
and punctured programs introduced by Sahai and Waters [SW14].

First step. To prove that F̃ is indistinguishable from F̃u,u, we first note that F̃ is indistinguishable from an
obfuscation F̃v(j, σ) of a circuit that has an extra “if statement”:

1. if σ = PRFS(j) and PRG(j) = v, return ⊥.

2. Otherwise return xj+1 (as F̃ would);

here v is chosen at random from the range ZT 2 of PRG. Observe that, with overwhelming probability 1− 1
T ,

v is not in the image of PRG, the condition in (1) is never met, and the alternative behavior is never triggered.
Thus, F̃ and F̃v compute the same function and their obfuscations are indistinguishable. Next, relying on
the pseudo-randomness guarantee of PRG, we can indistinguishably replace the uniformly random v with
a pseudo-random value PRG(u). It is left to note that, because PRG is injective, F̃v, with v = PRG(u),
computes the exact same function as F̃u,u. Indeed, both compute the same function as F̃ except on xu,
where an alternative behavior is triggered and ⊥ is returned.

Second step. To prove that F̃u,j and F̃u,j+1 are indistinguishable, we require that PRFS is puncturable.
This means that for every input k ∈ ZT , we can sample a punctured PRFS{k} that agrees with PRFS on
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all inputs ` 6= k, but computationally hides any information on the value PRFS(k); namely PRFS(k) is
pseudo-random, even given the program PRFS{k}. Such puncturable pseudo-random functions are known
to exist based on any one-way function [BW13, KPTZ13, BGI14].

Now, note that F̃u,j and F̃u,j+1 differ only on input xj+1: while the first returns xj+2, the second returns
⊥. In particular, the two circuits must hide xj+1 to guarantee indistinguishability. What enables hiding the
value xj+1 is that both circuits never output PRFS(j + 1), but rather, on input xj both return ⊥. The value
PRFS(j + 1) is only used to test if an input (j + 1, σ) satisfies σ = PRFS(j + 1). Relying on puncturing,
this comparison can be performed in “encrypted form” while hiding PRFS(j + 1).

Concretely, we first move from F̃u,j to F̃
(1)
u,j that has a punctured PRFS{j+1}. The circuit has σj+1 =

PRFS(j+1) hardwired, and given (j+1, σ) it directly compares σ to σj+1. The circuit computes the same
function, and indistinguishability holds by iO. Then, relying on pseudo-randomness at the punctured point
j + 1, we move to F̃

(2)
u,j where σj+1 is replaced with a truly random value in {0, 1}λ. Next, we move to F̃

(3)
u,j

where the comparison of σj+1 and σ is not done in the clear, but rather under an injective (length-doubling)
pseudo-random generator PRG : {0, 1}λ → {0, 1}2λ; in particular, σj+1 is not stored in the clear, but rather
PRG(σj+1) is stored. This does not change functionality and thus indistinguishability is again preserved.
Now, using pseudo-randomness of PRG, we move to yet another circuit F̃(4)

u,j , where PRG(σj+1) is replaced
by a truly random string v ∈ {0, 1}2λ. Finally, note that as in the proof of the first step, v is not in the
image of PRG with overwhelming probability 1 − 2−λ. Thus we can indistinguishably change the circuit
to return ⊥ when given the input xj+1. We can then reverse the above steps and go back to computing
σj+1 = PRFS(j + 1), using the non-punctured PRFS .

To guarantee the required indistinguishability gap between the different hybrids, we should take care
in choosing the parameters T , the output length λ of PRFS , and the hardness of each of the cryptographic
primitives. Choosing these parameters yields different hardness tradeoffs (further discussed in Section 4.4).

How to publicly sample from the domain? To allow sampling of elements in the domain we cannot
simply provide a circuit that would compute PRFS on any i ∈ ZT , as this would result in an obvious attack
— given xi = (i,PRFS(i)), one just has to compute PRFS(i − 1). The idea, which is inspired by the
public-key encryption of Sahai and Waters [SW14], is to provide instead an obfuscation X̃ of a sampler XS
that only computes PRFS on a very sparse, but still pseudo-random, subset of the domain. Concretely, XS
takes as input a seed s for a length doubling pseudo-random generator PRG : Z√T → ZT , and outputs
xi = (i,PRFS(i)) for i = PRG(s).

First, note that, by pseudo-randomness inverting xi = (i,PRFS(i)) where i = PRG(s) is pseudorandom
is as hard as inverting xi when i is chosen truly at random, which is in turn as hard as inverting xi+1 when
i is random (or pseudo-random). Thus, to prove that one-wayness still holds even in the presence of the
obfuscated sampler X̃, it suffices to focus on showing that inversion of xi is impossible for a truly random i.

For such a random i, we consider the interval [i− 4
√
T , i] and note that is randomly located in ZT and is

not too large (it has negligible density T−3/4 in ZT ). Since PRG has a sparse image, the latter implies that
the interval does not contain any PRG images with overwhelming probability 1 − T−1/4. Noting also that
the interval is still of super-polynomial size, we can invoke a similar argument to one in the simplified case
considered above (without the presence of the sampler X̃), only restricted to the interval [i − 4

√
T , i]. The

fact that the interval has no clear of PRG images, allows arguing that the presence of the obfuscated sampler
X̃ does not interfere with the proof.

Enhancements. In certain applications of TDPs, it is required that the TDPs are enhanced or even doubly
enhanced [GR13]. We briefly recall these properties and explain how they are obtained. In enhanced TDPs,
we essentially ask that it is possible to obliviously sample domain elements, without knowing their pre-
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images. Translating to our setting, we require that (PRG(s),PRFS(PRG(s))) ← XS is hard to invert, even
given the coins s used to sample it. In the construction above, this may not be true. Indeed, given the seed
s for the pseudo-random generator, we can no longer argue that inversion is as hard as for a truly uniform
element. In fact, the PRG may be such that given s, it is easy to find s′ such that PRG(s′) = PRG(s) − 1
and thus easily invert. We observe that this can be circumvented if we make sure that PRG has a discrete
image where a random image PRG(s) is likely to be isolated away from any other image. We show how to
construct appropriate PRGs from plain PRGs and pairwise-independent permutations.

In doubly enhanced TDPs, it is typically required that it is possible to sample an image-preimage pair
(x, y) together with random coins used to sample the preimage y by the usual sampler. In our concrete
setting, we would like to sample an image y = (PRG(s),PRFS(PRG(s)))← XS together with randomness
s and preimage x = (PRG(s)−1,PRFS(PRG(s)−1)). We only achieve a relaxed form of this requirement,
where s is pseudo-random rather than truly random, even given the trapdoor, or the coins used to sample the
function. The idea is to slightly change the pseudo-random generator PRG in the previous constructions in
a way that exploits the specific structure of our TDP. We only change PRG on a sparse set of seeds that has
negligible density, and thus previous properties are preserved (see more details in Section 4.3).

Comparison with [BPR14]. The authenticated-chain construction and its analysis described above were
suggested in [BPR14] in order to demonstrate a hard problem in the complexity class PPAD. To obtain
trapdoor permutations, we show how to extend their construction to also allow sampling of (pseudo) random
domain elements, as well as the other sampling algorithms required for doubly enhanced permutations. We
also relax their assumption of injective one-way functions to plain one-way functions as described below.

1.2.2 Injective One-Way Functions from iO

We now describe the the main ideas behind constructing injective one-way function from iO and plain
one-way functions. We rely on two-message statistically-binding commitment schemes [Nao91] and punc-
turable PRFs (both known from any one-way function). In the constructed family, every function OWFM1,S

is associated with a first message M1 for the commitment scheme and a pseudo-random function PRFS .
The public description of the function contains an obfuscated circuit C̃ that on input x outputs a commit-
ment COMM1(x;PRFS(x)) with respect to the first commitment message M1, plaintext x and randomness
PRFS(x). The fact that the function is injective (with overwhelming probability over M1) follows directly
from the statistical binding of the commitment. We focus on arguing one-wayness.

Our goal is to show that it is hard to recover a random x given C̃ and C̃(x). We start by considering a
hybrid circuit defined similarly to C̃ except that it contains the punctured key S {x} and given input x, it
outputs a hardcoded commitment; since we did not change the functionality of the circuit indistinguishability
follows by iO. Using pseudo-randomness at the punctured point x and the hiding of the commitment we
can now argue that the hardcoded commitment hides x, replacing it with a commitment to some arbitrary
plaintext, using true randomness. The problem is that now, even if we unpuncture S {x}, x itself still
needs to appear in the clear as part of the code of the circuit in order to trigger the output of the hardcoded
commitment.

Nevertheless, we may try to apply a similar strategy to the one previously used for our TDPs. Concretely,
we note that x is only used to test if an input x′ satisfies x′ = x, and this comparison can be performed in an
“encrypted form” — instead of hardcoding x in the clear we can hardcode g(x) for some one-way function
g and compare images instead of preimages. Unfortunately, to argue that this does not change functionality
the function g must itself be injective which seems to bring us back to square one.

The key observation is that we may gain by using a function g that is only sometimes injective; namely,
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it is enough that g is simultaneously injective and hard to invert only on some noticeable subset of its
domain. We show that such functions can be constructed from any one-way function. Now, leveraging the
iO requirement only on the corresponding injective sub-domain, we can show that the above construction
results in a weak one-way function that is fully injective; indeed, we only invoke sometimes-injective of g
in the proof of one-wayness. Then, to obtain a (strong) injective one-way function, we can apply standard
direct-product amplification [Yao82].

Constructing sometimes injective one-way functions. We outline the main idea behind constructing a
sometimes-injective one-way function g, as above, based on any one way function f . First, consider for
simplicity the case that the function f is r-regular. Roughly, the idea is extract the log(r) bits of ran-
domness that remain in x conditioned on f(x) and append them to the function output as in [HILL99].
However, due to their inherent entropy loss, standard randomness extractors cannot extract enough random
bits to guarantee any meaningful injectiveness. Nevertheless, for our purpose, the extracted bits need not
be statistically-close to uniform, they only need to preserve one-wayness. Accordingly, we use the unpre-
dictability extractors of [DPW14], which allow extracting more bits so to guarantee injectiveness, while still
preserving meaningful one-wayness.

To deal with f that is not regular, we may set r to be the most frequent regularity of f . This only shrinks
the portion of the domain where f is both injective and hard to invert by some polynomial factor. A uniform
construction is obtained by choosing r at random.

2 Preliminaries

The cryptographic definitions in the paper follow the convention of modeling security against non-uniform
adversaries. An efficient adversary A is modeled as a sequence of circuits A = {Aλ}λ∈N, such that each
circuitAλ is of polynomial size λO(1) with λO(1) input and output bits; we shall also consider adversaries of
some super polynomial size t(λ) = λω(1). We often omit the subscript λ when it is clear from the context.
The resulting hardness will accordingly be against non-uniform algorithms. The result can be cast into the
uniform setting, with some adjustments to the analysis.

2.1 Indistinguishability Obfuscation

We define indistinguishability obfuscation (iO) with respect to a give class of circuits. The definition is
formulated as in [BGI+01].

Definition 2.1 (Indistinguishability obfuscation [BGI+01]). A PPT algorithm iO is said to be an indistin-
guishability obfuscator for a class of circuits C, if it satisfies:

1. Functionality: for any C ∈ C,

Pr
iO

[∀x : iO(C)(x) = C(x)] = 1 .

2. Indistinguishability: for any polysize distinguisher D there exists a negligible function µ(·), such
that for any two circuits C0, C1 ∈ C that compute the same function and are of the same size λ:

|Pr[D(iO(C0)) = 1]− Pr[D(iO(C1)) = 1]| ≤ µ(λ) ,

where the probability is over the coins of D and iO.

We further say that iO is (t, δ)-secure, for some function t(·) and concrete negligible function δ(·), if
for all t(λ)O(1) distinguishers the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).
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2.2 Puncturable Pseudorandom Functions

We consider a simple case of the puncturable pseudo-random functions (PRFs) where any PRF may be
punctured at a single point. The definition is formulated as in [SW14], and is satisfied by the GGM [GGM86]
PRF [BW13, KPTZ13, BGI14],

Definition 2.2 (Puncturable PRFs). Let n, k be polynomially bounded length functions. An efficiently com-
putable family of functions

PRF =
{
PRFS : {0, 1}n(λ) → {0, 1}λ : S ∈ {0, 1}k(λ), λ ∈ N

}
,

associated with an efficient (probabilistic) key sampler KPRF , is a puncturable PRF if there exists a poly-
time puncturing algorithm Punc that takes as input a key S, and a point x∗, and outputs a punctured key
S{x∗}, so that the following conditions are satisfied:

1. Functionality is preserved under puncturing: For every x∗ ∈ {0, 1}n(λ),

Pr
S←KPRF (1λ)

[
∀x 6= x∗ : PRFS(x) = PRFS{x∗}(x) : S{x∗} = Punc(S, x∗)

]
= 1 .

2. Indistinguishability at punctured points: for any polysize distinguisher D there exists a negligible
function µ(·), such that for all λ ∈ N, and any x∗ ∈ {0, 1}n(λ),

|Pr[D(x∗, S{x∗},PRFS(x∗)) = 1]− Pr[D(x∗, S{x∗}, u) = 1]| ≤ µ(λ) ,

where S ← KPRF (1λ), S{x∗} = Punc(S, x∗), and u← {0, 1}λ.

We further say that PRF is (t, δ)-secure, for some function t(·) and concrete negligible function δ(·),
if for all t(λ)O(1) distinguishers the above indistinguishability gap µ(λ) is smaller than δ(λ)Ω(1).

2.3 Injective One-Way Functions

We shall also rely on (possibly keyed) injective one-way functions.

Definition 2.3 (Injective OWF). Let k be polynomially bounded length function. An efficiently computable
family of functions

OWF =
{
OWFK : {0, 1}λ → {0, 1}∗ : K ∈ {0, 1}k(λ), λ ∈ N

}
,

associated with an efficient (probabilistic) key sampler KOWF , is an injective OWF if it satisfies

1. Injectiveness: With overwhelming probability over the choice of K ← KOWF (1λ), the function
OWFK is injective.

2. One-wayness: For any polysize inverter A there exists a negligible function µ(·), such that for all
λ ∈ N,

Pr

[
A(K,OWFK(x)) = x :

K ← KOWF (1λ)
x← {0, 1}λ

]
≤ µ(λ) .

We further say that OWF is (t, δ)-secure, for some function t(·) and concrete negligible function
δ(·), if for all t(λ)O(1) inverters the above inversion probability µ(λ) is smaller than δ(λ)Ω(1).
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3 Injective One-Way Functions from iO

In this section, we construct injective one-way functions from iO and plain injective one-way functions. We
start by defining and constructing sometimes injective one-way functions.

3.1 Sometimes Injective One-Way Functions

For a function f : {0, 1}λ → {0, 1}∗ and any input x ∈ {0, 1}λ, we denote by

Hf (x) := log
∣∣{x′ : f(x′) = f(x)

}∣∣ = H∞
(
x′ ← f−1(f(x))

)
,

Inj(f) := {x : Hf (x) = 0}

the min-entropy of a random preimage of f(x), and the subset of inputs on which f is injective, respectively.

We next define sometimes-injective OWFs (SIOWFs). Roughly speaking, such functions are injective and
hard to invert over a noticeable fraction of their domain.

Definition 3.1 (Sometimes-Injective OWF). Let k be polynomially bounded length function. An efficiently
computable family of functions

SIOWF =
{
SIOWFK : {0, 1}λ → {0, 1}∗ : K ∈ {0, 1}k(λ), λ ∈ N

}
,

associated with an efficient (probabilistic) key sampler KSIOWF , is a sometimes injective OWF if for every
keyK ∈ {0, 1}k(λ) there exists an injective subset IK ⊆ Inj(SIOWFK), satisfying the following conditions:

1. Sometimes injectiveness: There exists a polynomial p(·) such that for any λ ∈ N:

Pr

[
x ∈ IK :

K ← KSIOWF (1λ)
x← {0, 1}λ

]
≥ 1/p(λ) .

2. One-wayness over injective subdomain: for any polysize inverter A there is a negligible function
µ(·) such that for any λ ∈ N:

Pr

[
A(K,SIOWFK(x)) = x :

K ← KSIOWF (1λ)
x← IK

]
≤ µ(λ) .

We further say that SIOWF is t-secure, for some super-polynomial function t(·), if the one-wayness
requirement holds for all t(λ)O(1) inverters.

The construction. Let f : {0, 1}∗ → {0, 1}∗ be any one-way function. We construct an SIOWF

SIOWF =
{
SIOWFK : {0, 1}λ → {0, 1}∗ : K ∈ {0, 1}k(λ), λ ∈ N

}
,

with a corresponding key sampler KOWF as follows:

• A random key K := (S, e)← KSIOWF (1λ) consists of a random e← [λ] and a random seed S for a
hash function hS : {0, 1}λ → {0, 1}e+1 drawn from a q-wise independent family, where we set q = λ
to be the security parameter.

• For x ∈ {0, 1}λ, the function is defined by SIOWFK(x) := (f(x), hS(x)).

9



Proposition 3.1. SIOWF is a sometimes injective one-way function.

Proof. Throughout, we denote by Ee ⊆ {0, 1}λ the subset of values x such that Hf (x) ∈ [e − 1, e). For
K = (S, e), we define IS,e = Ee ∩ Inj(SIOWFS,e) ⊆ Inj(SIOWFS,e). We start by proving the following
preliminary claim saying that the function is injective with high-probability over the set Ee.

Claim 3.1. For any λ ∈ N, e ∈ [λ], x ∈ Ee

Pr
S
[x ∈ Inj(SIOWFS,e)] ≥

1

2
.

Proof of Claim 3.1. Fix any λ ∈ N, e ∈ [λ], x ∈ Ee, and let y = f(x). Since the output of SIOWFS,e(x)
includes y, it suffices to show that x does not collide with any other x′ ∈ f−1(y). By q-wise independence
(in fact, pairwise is sufficient here), for any such x′,

Pr
S

[
hS(x) = hS(x

′)
]
≤ 2−e−1 .

Thus, the expected number of such x′ that collide with x is:

2−e−1(
∣∣f−1(y)

∣∣− 1) ≤ 2−e−1 · 2Hf (x) ≤ 1/2 ,

and the claim now follows by Markov’s inequality.

Sometimes injectiveness follows directly:

Pr

[
x ∈ IS,e :

(S, e)← KSIOWF (1λ)
x← {0, 1}λ

]
≥

Pr
e,x

[x ∈ Ee] · min
e,x∈Ee

Pr
S
[x ∈ Inj(SIOWFS,e)] ≥

1

2λ
.

where Pre,x [x ∈ Ee] = 1/λ since for any fixed x there is a unique e ∈ [λ] such that x ∈ Ee, and
mine,x∈Ee PrS [x ∈ Inj(SIOWFS,e)] ≥ 1/2 by the previous claim.

Next, we prove one-wayness over the injective subdomain. Fix any polysize inverter A and security
parameter λ. Firstly, we notice that

Pr
S,e

x←IS,e

[A(S, e, f(x), hS(x)) = x]

≤ Pr
S,e

x←Ee

[A(S, e, f(x), hS(x)) = x]/ Pr
S,e

x←Ee

[x ∈ IS,e] (1)

≤ 2 Pr
S,e

x←Ee

[A(S, e, f(x), hS(x)) = x] ,

where we can bound the denominator in equation (1) by at least 1
2 by Claim 3.1. Therefore, it remains

to show that Pr S,e
x←Ee

[A(S, e, f(x), hS(x)) = x] is negligible. To prove this, we rely on a theorem from

[DPW14] showing that any q-wise independent family essentially preserves uninvertability.

Theorem 3.1 ([DPW14, Theorem 4.1] (restated)). Let
{
hS : {0, 1}n → {0, 1}m : S ∈ {0, 1}d

}
be a q-

wise independent hashing family. For any D : {0, 1}m × {0, 1}d → {0, 1} and any random variable
X ∈ {0, 1}n with min-entropy H∞(X) ≥ k, if Pr[D(U, S) = 1] = δ, then Pr[D(hS(X), S) = 1] ≤
O(q2m−k)max{δ, 2−q}.
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Using the above theorem, we have:

Pr
S,e

x←Ee

[A(S, e, f(x), hS(x)) = x]

≤ Pr
S,e

x←Ee

[
A(S, e, f(x), hS(x)) ∈ f−1(f(x))

]
= Pr

S,e,x←Ee
x′←f−1(f(x))

[
A(S, e, f(x), hS(x′)) ∈ f−1(f(x))

]
(2)

= E
e,x←Ee

Pr
S

x′←f−1(f(x))

[
A(S, e, f(x), hS(x′)) ∈ f−1(f(x))

]
≤ E

e,x←Ee
O(λ)max

{
Pr
S

[
A(S, e, f(x), U) ∈ f−1(f(x))

]
, 2−λ

}
(3)

≤ E
e,x←Ee

O(λ)

(
Pr
S

[
A(S, e, f(x), U) ∈ f−1(f(x))

]
+ 2−λ

)
≤ O(λ)2−λ +O(λ) Pr

S,e
x←Ee

[
A(S, e, f(x), U) ∈ f−1(f(x))

]
≤ O(λ)2−λ +O(λ)

PrS,e,x
[
A(S, e, f(x), U) ∈ f−1(f(x))

]
Pre,x[x ∈ Ee]

≤ µ(λ) . (4)

Equation (2) follows since we can think of sampling the pair x, f(x) as equivalent to sampling x′, f(x)
where x ← Ee, x

′ ← f−1(f(x)). Equation (3) follows by applying Theorem 3.1 with the variable
x′ ← f−1(f(x)) having entropy k = Hf (x) ≥ e − 1 and with hash output-length m = e + 1 and in-
dependence q = λ. To apply the theorem, we think of a distinguisher DA,e,f(x) that given (z, S) tests
whether A(S, e, f(x), z) inverts f(x). In the equation, the random variable U is uniformly random e + 1
bit string. In equation (4) we can bound the numerator PrS,e,x

[
A(S, e, f(x), U) ∈ f−1(f(x))

]
by some

negligible by the one-wayness of f and we can bound the denominator Pre,x[x ∈ Ee] ≥ 1/λ by the same
argument we used previously. Therefore µ(λ) is negligible as we wanted to show.

Remark 3.1 (super-polynomial security). In the above construction, starting from a one-way function f that
is t-secure directly yields t-security of SIOWF .

3.2 Injective OWFs from iO and SIOWFs

We now construct a family of injective one-way functions based on iO and one-way functions. We first
construct a weak but (fully) injective one-way function, and then use standard direct product amplification.

Ingridients. Let iO be an indistinguishability obfuscator for P/poly, and let PRF be a family of punc-
turable pseudo-random functions, where for S ← KPRF (1λ), PRFS maps {0, 1}λ → {0, 1}λ. Let
(COM1,COM2) be a two message statistically-binding commitment scheme, where COM1(1

λ) samples a
first message M1, and COM2(x,M1; r) computes a commitment M2 to plaintext x ∈ {0, 1}λ, with respect
to the first message M1 and random coins r ∈ {0, 1}λ.

The function family. For M1 ← COM1(1
λ), S ← KPRF (1λ), consider the circuit CM1,S : {0, 1}λ →

{0, 1}∗ defined by

CM1,S(x) := COM2(x,M1;PRFS(x)) ,
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padded to some polynomial size `(λ) to be determined later in the analysis.

The constructed family of one-way functions OWF consists of all obfuscations of such circuits:

1. A random key OWFK ← KOWF (1λ) consists of an obfuscation C̃ ← iO(CM1,S), for a first com-
mitment message M1 ← COM1(1

λ) and PRF seed S ← KPRF (1λ).

2. The function is given by OWFK(x) = C̃(x).

The fact that the construction gives an injective family follows directly from the statistical binding of
the commitment. We next show that it is also weakly one-way.

Proposition 3.2. Assume there exists a family SIOWF of sometimes-injective one-way functions. Then
the above construction is a weak one-way function.

Proof sketch. Let IK and p(·) be as in Definition 3.1 such that SIOWF has an injective sub-domain IK
of density 1/p(λ). We show that any poly-size adversary A fails to invert the constructed OWF with
probability at least 1

p(λ) − µ(λ) for some negligible µ(·). For this purpose we consider a sequence of
hybrids.

Hyb1: The real experiment. Here A is given as input C̃, C̃(x) for a random input x← {0, 1}λ and random
key C̃ ← KOWF (1λ) and tries to obtain x.

Hyb2: Here C̃ is an obfuscation of an augmented circuit. In the new circuit, the PRF seed S is replaced with
S {x}, which is punctured at x. In addition, M2 = COM2(x,M1;PRFS(x)) is hardwired as the output on
input x (the input x itself is also hardwired). This circuit computes the same function as the previous CM1,S ,
thus by the iO guarantee, A inverts the function with the same probability up to a negligible difference.

Hyb3: Here M2 = COM2(x,M1; r) is generated with truly uniform randomness r, rather than PRFS(x).
(This includes both the hardwired M2 as well as the output of the function C̃(x) = M2 given to A.) By
pseudorandomness at punctured points, the inversion probability is again maintained up to a negligible
difference.

Hyb4: Here M2 = COM2(0
λ,M1; r) is a commitment to 0λ, rather than to x. By the computational hiding

of the commitment, the inversion probability is again maintained up to a negligible difference.

Hyb5: Here we unpuncture S. The point x itself is still hardwired into the circuit in the clear. This does not
change functionality, and thus the inversion probability is maintained, up to a negligible difference, by iO.

Hyb6: In this hybrid, we also sample a random key K ← KSIOWF (1λ) for a sometimes-injective OWF,
and instead of sampling x ← {0, 1}λ uniformly at random, we sample it from the injective sub-domain
x← IK . Since the density of IK is at least 1/p(λ),

Pr [A fails to obtain x in Hyb5] ≥
1

p
· Pr [A fails to obtain x in Hyb6]

Hyb7: In this hybrid, instead of storing x in the clear and comparing it to the input (in order to decide
whether to return M2), we store its image SIOWFK(x). Comparison of x with an input x′ is now done by
first computing SIOWF(x′) and then comparing the images. Since x ∈ IK ⊆ Inj(SIOWFK) this does not
change functionality and the inversion probability is preserved by iO.

Finally, we note that in Hyb7 the view of A can be efficiently simulated from K,SIOWFK(x). Thus, from
one-wayness SIOWF over IK , it follows thatA fails to obtain x in this hybrid with except with negligible
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probability. Therefore, overall, we deduce thatA fails to obtain x in the original experiment with probability
at least 1

p(λ) − µ(λ), for some negligible µ(λ), as required.

The padding parameter. `(λ) is chosen to be the maximum size among all circuits we went through in the
analysis, so that iO can always be applied.

4 Trapdoor Permutations from iO

In this section we define Trapdoor Permutations (TDPs) and their enhancements, and construct them from
sub-exponentially-secure iO. At large the definitions follow [GR13], with some exceptions discussed below.

4.1 Standard TDPs

We start by defining standard (non-enhanced) TDPs.

Definition 4.1 (TDP). Let k be polynomially bounded length function. An efficiently computable family of
functions

T DP =
{
TDPPK : DPK → DPK : PK ∈ {0, 1}k(λ), λ ∈ N

}
,

associated with efficient (probabilistic) key and domain samplers (K,S), is a (standard) TDP if it satisfies

1. Trapdoor invertibility: For any (PK,SK) in the support of K(1λ), the function TDPPK is a per-
mutation of a corresponding domain DPK . The inverse TDP−1

PK(y) can be efficiently computed for
any y ∈ DPK , using the trapdoor SK.

2. Domain sampling: S(PK) samples a pseudo-uniform element in the domain DPK; that is, for any
polysize distinguisher D, there exists a negligible µ(·) such that for all λ ∈ N,∣∣∣∣∣∣Pr
D(rK, x) = 1 :

rK ← {0, 1}poly(λ)

(PK,SK)← K(1λ; rK)
x← S(PK)

− Pr

D(rK, x) = 1 :
rK ← {0, 1}poly(λ)

(PK,SK)← K(1λ; rK)
x← DPK

∣∣∣∣∣∣ ≤ µ(λ) .
3. One-wayness: For any polysize inverter A there exists a negligible function µ(·), such that for all
λ ∈ N,

Pr

[
A(PK,TDPPK(x)) = x :

(PK,SK)← K(1λ)
x← S(PK)

]
≤ µ(λ) .

The above definition is similar to the one in [GR13] with the exception that S(PK) in [GR13] is required
to sample a domain element that is statistically close to a uniform domain element, whereas we only require
computational indistinguishability. Importantly, we require that computational-indistinguishability holds
even given the random coins used to generate (PK,SK). This property is required in applications (e.g., the
EGL oblivious transfer protocol) and follows automatically (and thus not required explicitly) in the case of
statistical-indistinguishability.

Also, we note that like in trapdoor permutations with statistical (rather than computational) domain
sampling, the one-wayness requirement can be restated in any of the following equivalent forms:
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3.a. The pre-image x is sampled uniformly from the domain:

Pr

[
A(PK,TDPPK(x)) = x :

(PK,SK)← K(1λ)
x← DPK

]
≤ µ(λ) .

3.b. The adversary inverts a random domain element x:

Pr

[
A(PK, x) = TDP−1

PK(x) :
(PK,SK)← K(1λ)

x← DPK

]
≤ µ(λ) .

3.c. The adversary inverts a domain element sampled by S(PK):

Pr

[
A(PK, x) = TDP−1

PK(x) :
(PK,SK)← K(1λ)

x← S(PK)

]
≤ µ(λ) .

4.1.1 The construction.

We now proceed to describe the construction of a TDP. The construction relies on super-polynomial hard-
ness assumptions; for a convenient setting of parameters we assume that the underlying cryptographic prim-
itives are sub-exponentially hard. In Section 4.4, we discuss relaxations to more mild (but still super-
polynomial) hardness.

Ingredients. Fix any constant ε < 1, and let T = T (λ) = 2λ
ε/2

. We require the following primitives:

• iO is a (λ, 2−λ
ε
)-secure indistinguishability obfuscator for P/poly.

• PRF is a (λ, 2−λ
ε
)-secure family of puncturable pseudo-random functions, which for λ ∈ N maps

ZT to {0, 1}λ.

• OWF is a (2λ
ε
, 2−λ

ε
)-secure family of injective one-way functions, which for λ ∈ N maps {0, 1}λ

to {0, 1}∗. (Will only come up in the analysis, and not in the construction itself.)

• PRG is a (polynomially-secure) length-doubling pseudo-random generator.

The function family. The core of the construction will be obfuscations of circuits (FS ,XS) for computing
the function forward and sampling domain elements, respectively. These obfuscations will be embedded in
the function key PK and their corresponding secret S will be the trapdoor. The circuits are defined next.
For S ← KPRF (1λ):

1. FS(i, σ): takes as input i ∈ ZT and σ ∈ {0, 1}λ and checks whether σ = PRFS(i). If so it returns
i+ 1,PRFS(i+ 1), where i+ 1 is computed modulo T . Otherwise it returns ⊥.

2. XS(s): takes as input a seed s ∈ {0, 1}log
√
T and outputs (i, σ) = (PRG(s),PRFS(PRG(s))), where

i is interpreted as a residue in ZT .

Both circuits are padded so that their total size is `(λ), for a fixed polynomial `(·) specified later.
The constructed family T DP is now defined as follows.

1. A random key PK consists of obfuscations F̃ ← iO(FS) and X̃ ← iO(XS), for S ← KPRF (1λ).
The corresponding trapdoor SK is S.
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2. The domain DPK is {(i, σ) : i ∈ ZT , σ = PRFS(i)}.

3. To compute TDPPK(i, σ), return F̃(i, σ).

4. To compute TDP−1
PK(i, σ) given SK, return (i− 1,PRFS(i− 1)), where i− 1 is computed modulo

T .

5. The domain sampler S(PK; s) takes as input PK and randomness s ∈ {0, 1}log
√
T and outputs X̃(s).

Proposition 4.1. The above construction of T DP is a trapdoor permutation.

Proof. The fact that TDP is trapdoor-invertible follows readily from the construction. The fact that the
domain sampler S(PK) samples domain elements that are computationally-indistinguishable from uniform
domain elements, even given the coins of K used to generate (PK,SK), follows directly from the pseudo-
randomness guarantee of PRG.

From hereon, we focus on showing one-wayness. It would be simplest to work with the formulation
(3.b) of the one-wayness requirement. Concretely, fix any polysizeA, we show that there exists a negligible
µ(·) such that for every λ ∈ N,

Pr

PRFS(i− 1)← A(F̃, X̃, i,PRFS(i)) :

S ← KPRF (1λ)
F̃← iO(FS)
X̃← iO(XS)

i← ZT

 ≤ µ(λ) .
We show that except with sub-exponentially-small probability A(F̃, X̃, i,PRFS(i)) cannot output σ∗

such that F̃(i − 1, σ∗) 6= ⊥, which is equivalent to showing that σ∗ 6= PRFS(i − 1). We prove this via a
sequence of indistinguishable hybrid experiments where the obfuscated F̃ is gradually augmented to return
⊥ on an increasing interval, until it eventually returns ⊥ on some interval [i − u, i − 1] (for every possible
signature), meaning in particular that A(F̃, X̃, i,PRFS(i)) cannot find an accepting signature σ∗ for i − 1.
Throughout the hybrids we change the obfuscated circuits and assume that they are always padded so that
their total size is `(λ), for a fixed polynomial `(·) specified later.

Hyb1: The original experiment.

Hyb2: Here F̃ is an obfuscation of a circuit F(2)
i,v,S,K′ . The circuit has hardwired a key K ′ ← KOWF (1λ

′
)

for and injective OWF defined on inputs of length λ′ = log 4
√
T , and a random image v = OWFK′(u), for

u ← {0, 1}λ′ ∼= Z 4√T . The circuit behaves like F, with the exception that given any input (k, σ) such that
k ∈ [i− 4

√
T , i− 1] and OWFK′(i− k) = v, the circuit returns ⊥.

Hyb3,j , j ∈ [0, 4
√
T − 1]: Here F̃ is an obfuscation of a circuit F(3,j)

i,u,S . The circuit has a random index
u ← Z 4√T . On any input (k, σ), it returns ⊥ if k ∈ [i − u, i − u + j], where we truncate j so that
j = min {j, u− 1}. On any other input it behaves just like FS .

Hyb4,j , j ∈ [0, 4
√
T − 1]: Here F̃ is an obfuscation of a circuit F(4,j)

i,u,S{i−u+j},σi−u+j . The circuit is the same

as F(3,j)
i,u,S , only that it has a punctured PRF key S{i − u + j}, and the value σi−u+j = PRFS(i − u + j) is

hardwired. In addition, X̃ is an obfuscation of a circuit X(4,j)
S{i−u+j}. The circuit is the same as XS , only that

it has the punctured S{i−u+ j}, and whenever PRFS(i−u+ j) is required the circuit returns⊥ (no value
is hardwired instead).
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Hyb5,j , j ∈ [0, 4
√
T − 1]: Here F̃ is an obfuscation of a circuit F(5,j)

i,u,S{i−u+j},σi−u+j . The circuit is the same

as F(4,j)
i,u,S{i−u+j},σi−u+j , only that the hardwired σi−u+j is not set to PRFS(i−u+j), but sampled uniformly

at random from {0, 1}λ.

Hyb6,j , j ∈ [0, 4
√
T − 1]: Here F̃ is an obfuscation of a circuit F(6,j)

i,u,S,v,K . The circuit is the same as

F
(5,j)
i,u,S{i−u+j},σi−u+j , only that instead of storing σi−u+j in the clear v = OWFK(σi−u+j) is stored, and

comparison of σ and σi−u+j is done by comparing OWFK(σ) and OWFK(σi−u+j). HereK ← KOWF (1λ)
is a key for an injective OWF from the family OWF . Also, the PRF seed S is no longer punctured. In ad-
dition, X̃ is again an obfuscation of XS (where S is no longer punctured).

We prove the following:

Claim 4.1. For any polysize distinguisher D, all λ ∈ N, and all j ∈ [0, 4
√
T (λ)− 1]:

1. |Pr[D(Hyb1) = 1]− Pr[D(Hyb2) = 1]| ≤ 2−Ω(λε
2
),

2.
∣∣Pr[D(Hyb2) = 1]− Pr[D(Hyb3,0) = 1]

∣∣ ≤ 2−Ω(λε),

3.
∣∣Pr[D(Hyb3,j) = 1]− Pr[D(Hyb4,j) = 1]

∣∣ ≤ T−1/2 + 2−Ω(λε),

4.
∣∣Pr[D(Hyb4,j) = 1]− Pr[D(Hyb5,j) = 1]

∣∣ ≤ 2−Ω(λε),

5.
∣∣Pr[D(Hyb5,j) = 1]− Pr[D(Hyb6,j) = 1]

∣∣ ≤ T−1/2 + 2−Ω(λε),

6.
∣∣Pr[D(Hyb6,j) = 1]− Pr[D(Hyb3,j+1) = 1]

∣∣ ≤ 2−Ω(λε),

where the view of D in each hybrid consists of the corresponding obfuscated F̃, X̃ and (i,PRFS(i)).

Proving the above claim will conclude the proof of Proposition 4.1 since it implies that

Pr

 σ ← A(F̃, X̃, i,PRFS(i))
F(i− 1, σ) 6= ⊥ :

S ← KPRF (1λ)
F̃← iO(FS)
X̃← iO(XS)

i← ZT

 ≤

Pr

 σ ← A(F̃, X̃, i,PRFS(i))
F(i− 1, σ) 6= ⊥ :

S ← KPRF (1λ)

F̃← iO(F(3, 4
√
T )

i,S,u )

X̃← iO(XS)
i← ZT

+ λ−ω(1) + 2−Ω(λε
2
) +

4
√
T · (T−1/2 + 2−Ω(λε)) =

0 + λ−ω(1) + 2−Ω(λε
2
) + 2λ

ε
2 /4 · (2−λ

ε
2 /2 + 2−Ω(λε)) =

λ−ω(1) ,

where the first to last equality follows from the fact that F(3, 4
√
T )

S,u (i− 1, σ) = ⊥ for any σ.

Proof of Claim 4.1. We prove each of the items in the claim. The proof is at most part similar to the one in
[BPR14], with several exceptions.

Proof of 1 and 6. Recall that here we need to show that
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1. |Pr[D(Hyb1) = 1]− Pr[D(Hyb2) = 1]| ≤ 2−Ω(λε
2
),

6.
∣∣Pr[D(Hyb6,j) = 1]− Pr[D(Hyb3,j+1) = 1]

∣∣ ≤ 2−Ω(λε).

In both cases, one obfuscated program differs from the other on exactly a single point, which is the unique
(random) preimage of the corresponding image v (in the first case v = OWFK′(u), and in the second
v = OWFK(σi−u+j)).

To prove the claim, we rely on a lemma proven in [BCP14] that roughly shows that, for circuits that
only differ on a single input, iO implies what is known as differing input obfuscation [BGI+01], where it is
possible to efficiently extract from any iO distinguisher an input on which the underlying circuits differ.

Lemma 4.1 (special case of [BCP14]). Let iO be a (t, δ)-secure indistinguishability obfuscator for P/poly.
There exists a PPT oracle-aided extractor E , such that for any tO(1)-size distinguisher D, and two equal
size circuits C0, C1 differing on exactly one input x∗, the following holds. Let C ′0, C

′
1 be padded versions of

C0, C1 of size s ≥ 3 · |C0|.

If |Pr[D(iO(C ′0) = 1]− Pr[D(iO(C ′1) = 1]| = η ≥ δ(s)o(1) ,

then Pr
[
x∗ ← ED(·)(11/η, C0, C1)

]
≥ 1− 2−Ω(s) .

Using the lemma, we show that if either item 2 or 7 do not hold, we can invoke the distinguisher D to
invert the underlying one-way function. The argument is similar in both cases up to different parameters;
for concreteness, we focus on the first.

Assume that for infinitely many λ ∈ N, D distinguishes Hyb0 from Hyb1 with gap η(λ) = 2−o(λ
ε2 ).

Then, by averaging, with probability η(λ)/2 over the choice of (u,K ′),D distinguishes the two distributions
conditioned on these choices with gap η(λ)/2. Thus, we can invoke the extractor E given by Lemma 4.1 to

invert the one-way function family OWF with probability η(λ)
2 · (1 − 2−Ω(λ)) ≥ 2−o(λ

ε2 ) in time tE(λ) ·
tD(λ) ≤ η(λ)−O(1) ·λO(1) = 2O(λε

2
). Note that, indeed, given the image and the one-way function key, the

inverter can construct the corresponding circuits efficiently. Recall that OWF′K is defined on inputs of size
λ′ = log 4

√
T = λε/2/4, and is (2−λ

′ε
, 2λ

′ε
)-secure. Thus we get a contradiction to its one-wayness.

Proof of 2. Recall that here we need to show that

2.
∣∣Pr[D(Hyb2) = 1]− Pr[D(Hyb3,0) = 1]

∣∣ ≤ 2−Ω(λε).

Here the obfuscated F̃ compute the exact same function in both hybrids. Specifically, for any input (k, σ), a
comparison in the clear of i−k and u is replaced by comparison of their corresponding values OWFK′(i−k)
and OWFK′(u) under an injective one-way function. Thus, the required indistinguishability follows from
the (λ, 2−λ

ε
)-security of iO.

Proof of 3. Recall that here we need to show that

3.
∣∣Pr[D(Hyb3,j) = 1]− Pr[D(Hyb4,j) = 1]

∣∣ ≤ T−1/2 + 2−Ω(λε).

Here also, the obfuscated F̃ computes the exact same function in both hybrids. Specifically, rather than
computing σi−u+j = PRFS(i − u + j) using the PRF key S, the value σi−u+j is hardwired and directly
compared to σ. For any other index, the punctured key S {i− u+ j} is used.

We now claim that the obfuscated X̃ also computes the same function in both hybrids with overwhelming
probability 1−T−1/2. Indeed, since XS only computes PRFS on values in the image of PRG, the probability
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that XS and X
(4,j)
S{i−u+j} do not compute the same function can be bounded by the probability that i−u+ j is

not in the image of PRG. Recall that i is sampled uniformly from ZT ; thus, i−u+j is also uniformly random
in ZT , and we can bound the probability that it is in the image of PRG : Z√T → ZT by

√
T ·T−1 = T−1/2.

The required indistinguishability now follows from iO security.

Proof of 4. Recall that here we need to show that

4.
∣∣Pr[D(Hyb4,j) = 1]− Pr[D(Hyb5,j) = 1]

∣∣ ≤ 2−Ω(λε).

The only difference between the two obfuscated circuit distributions is that in the first the hardwired value
σi−u+j in F̃ is PRFS(i − u + j), whereas in the second it is sampled independently uniformly at random.
Indistinguishability follows from the (2λ

ε
, 2−λ

ε
)-pseudo-randomness at the punctured point guarantee. Note

that, indeed, given punctured key S {i− u+ j} and σi−u+j , a distinguisher can construct the corresponding
circuits F̃, X̃ efficiently.

Proof of 5. Recall that here we need to show that

5.
∣∣Pr[D(Hyb5,j) = 1]− Pr[D(Hyb6,j) = 1]

∣∣ ≤ T−1/2 + 2−Ω(λε).

Here also, the two obfuscated F̃ in both hybrids compute the exact same function. First, the comparison of
σ and σi−u+j is replaced by comparison of their corresponding values under an injective one-way function.
In addition, the punctured key S {i− u+ j} is replaced with a non-punctured key S. This does not affect
functionality as the two keys compute the same function on all points except i−u+ j, and the circuit in the
two hybrids treats any input i− u+ j, σ, independently of the PRF key.

Also, X̃ now obfuscates the unpunctured version XS instead of X
(4,j)
S{i−u+j}. As before this does not

change functionality with overwhelming probability 1− T−1/2.
Overall, the required indistinguishability follows from iO.

This concludes the proof of the Claim 4.1 and Proposition 4.1.

The padding parameter `(λ). We choose `(λ) so that each of the circuits F̃······ considered above can be
implemented by a circuit of size at most `(λ)/3. (The extra 1/3 slack is taken to satisfy Lemma 4.1 in the
analysis below.)

4.2 Enhanced TDPs

We next define enhanced TDPs. These are basically (standard) TDPs where it is possible to obliviously
sample hard-to-invert images; concretely, given x ← S(PK; rS), it is hard to find TDP−1

PK(x), even given
the coins rS of S.

Definition 4.2 (Enhanced TDP). A TDP family T DP is said to be enhanced if for any polysize inverter A
there exists a negligible function µ(·), such that for all λ ∈ N,

Pr

A(PK, rS) = TDP−1
PK(x) :

(PK,SK)← K(1λ)
rS ← {0, 1}poly(λ)

x← S(PK; rS)

 ≤ µ(λ) .

18



4.2.1 Enhancing the previous construction.

We now describe how to enhance the construction presented in the previous section.

Is the previous TDP already enhanced? We start by noting that the family T DP constructed in the previ-
ous section may not be enhanced. Specifically, recall that the randomness rS used by S in the construction
is a seed s for PRG which is extended to an index i, and the corresponding domain element is (i,PRFS(i)).
Note that it may very well be that given the seed s such that i = PRG(s), it is not hard to find another seed
s′ such that PRG(s′) = i− 1. In this case, the inverter may invoke the sampler S with this randomness and
invert (i,PRFS(i)).

Looking more closely into the analysis, in the previous section, we could replace i with a truly random
index, which with high-probability had no images of PRG in its close surrounding, due to the sparseness of
PRG’s image. This no longer works, as given the seed s used to generate i, we can no longer replace it with
a truly random index.

Discrete-image PRGs. To circumvent the above, we rely on a pseudo-random generator with discrete im-
age, meaning that with overwhelming probability over the choice of the seed s, the corresponding image
PRG(s) has no other image PRG(s′) in its close surrounding. We show how to construct such pseudo-
random generators from plain pseudo-random generators. More accurately, we construct a family of pseudo-
random generators indexed by some public seed h, where the discrete image requirement holds with over-
whelming probability for a random seed h.

Definition 4.3 (Discrete-image PRG). Let k and ` be polynomially bounded length functions. An efficiently
computable family of functions

PRG =
{
PRGh : {0, 1}λ → {0, 1}`(λ) : h ∈ {0, 1}k(λ), λ ∈ N

}
,

associated with an efficient (probabilistic) key sampler KPRG , is a discrete-image PRG if it satisfies:

1. Pseudo-randomness: For any polysize distinguisher D there is a negligible µ such that for any
λ ∈ N:∣∣∣∣Pr [D(h,PRGh(s)) = 1 :

h← KPRG(1λ)
s← {0, 1}λ

]
− Pr

[
D(h, u) = 1 :

h← KPRG(1λ)
u← {0, 1}`(λ)

]∣∣∣∣ ≤ µ(λ) .
2. Discrete image: for any λ ∈ N and any t ∈ Z2`(λ) \ {0}:

Pr

[
∃s′ 6= s : PRGh(s)− PRGh(s

′) = t mod 2`(λ) :
h← KPRG(1λ)
s← {0, 1}λ

]
≤ 2−`(λ)+λ .

A construction of discrete-image PRGs. Let PRG : {0, 1}λ → {0, 1}`(λ) be a (plain) pseudo-random
generator, and letHλ =

{
h : {0, 1}`(λ) → {0, 1}`(λ) : λ ∈ N

}
be a family of pair-wise independent permu-

tations. We construct a discrete-image family PRG =
{
PRGh : {0, 1}λ → {0, 1}`(λ)

}
, as follows.

• The public seed h is a random hash in the familyHλ.

• The generator is given by
PRGh(s) := h(PRG(s)) .

Claim 4.2. PRG is a discrete-image pseudo-random generator.
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Proof. The pseudo-randomness property follows directly from the fact that PRG is a pseudo-random gener-
ator and h is an efficiently computable permutation.

To prove discrete-image, it suffices to show that for any fixed s ∈ {0, 1}λ and any t ∈ Z2`(λ) \ {0},

Pr
[
∃s′ 6= s : PRGh(s)− PRGh(s

′) = t mod 2`(λ) : h← KPRG(1λ)
]
≤ 2−`(λ)+λ .

Indeed, by pairwise-independence, conditioning on the value of PRGh(s) = h(PRG(s)), for every s′ ∈
{0, 1}λ such that PRG(s′) 6= PRG(s), the value h(PRG(s′)) is uniformly random in Z2`(λ) and thus
h(PRG(s′)) = h(PRG(s)) + t mod 2`(λ) with probability at most 2−`(λ). Taking union-bound over all
s′ ∈ {0, 1}λ, the claim follows.

The augmented construction. The construction of enhanced TDPs is now identical to the one in Sec-
tion 4.1, except that we augment the obfuscated domain sampling circuit XS to a circuit XS,h that also has
hardwired a random public seed h for a discrete-image PRG. The new sampling circuit is now defined
as the previous ones, except that instead of using a plain PRG : Z√T → ZT we use the discrete image
PRGh : Z√T → ZT .

Proposition 4.2. The augmented construction is an enhanced trapdoor permutation.

Proof sketch. The proof is identical to that of Proposition 4.1 with two exceptions to the proof of one-
wayness. Whereas in Proposition 4.1, we consider, in Hyb1 an adversary that tries to invert (i,PRFS(i)) for
a truly uniform i ← ZT . Now, i ← PRGh(s) ∈ ZT is a pseudo-random element, and the adversary also
obtains the seed s, which are the coins of the sampler S(PK).

The second difference is when switching between XS,h and XS{i−u+j},h (in the proofs of items 3 and
5). In Proposition 4.1, we relied on the fact that i is uniformly random and thus i− u+ j mod T is not in
the image of PRG with probability T−1/2, implying that puncturing does not affect functionality and letting
us invoke the iO guarantee. Now i is no longer random, but the same holds based on the discrete image
property of PRGh (when choosing t = u− j mod T ).

4.3 Doubly Enhanced TDPs

We now define doubly-enhanced TDPs. These are enhanced TDPs where given the key PK, it is possible
to sample coins rS together with a preimage x of y = S(PK, rS). In [GR13], it is required that rS is
distributed as uniformly random coins for S. We relax this requiring that rS is only pseudo-random even
given the randomness used to sample (PK,SK). Indeed, this relaxation suffices for applications of doubly-
enhanced TDPs such as non-interactive zero-knowledge.

Definition 4.4 (Doubly-enhanced TDP). An enhanced TDP family T DP is said to be doubly-enhanced
there exists a samplerR satisfying the following two requirements.

1. Correlated preimage sampling. For any PK in the support of K(1λ):

(x, rS)← R(PK) such that TDPPK(x) = S(PK, rS) .

2. Pseudorandomness. For any polysize distinguisherD there is a negligible µ such that for any λ ∈ N:∣∣∣∣∣∣∣∣Pr
[
D(x, rS , rK) = 1 :

PK ← K(1λ, rK)
(x, rS)← R(PK)

]
− Pr

D(x, rS , rK) = 1 :

PK ← K(1λ; rK)
rS ← {0, 1}poly(λ)

y ← S(PK, rS)
x← TDP−1

PK(y)


∣∣∣∣∣∣∣∣ ≤ µ(λ) .
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4.3.1 Doubly enhancing the previous construction.

To make the previous construction doubly enhanced we show how to slightly augment the discrete-image
PRG used in the construction on some sparse subset of seeds (thus not hurting previous properties), while
taking advantage of the particular structure of our TDP.

Concretely, we augment the code of PRGh to compute a new PRG∗h as follows. Let PRG′ : Z 4√T → Z√T
be a length doubling pseudorandom generator that expands small seeds s′ ∈ Z 4√T to longer seeds s ∈ Z√T
for PRGh. PRG∗h acts as follows:

Given a (private) seed s ∈ Z√T as input, parse it as (s′, r′) ∈ Z 4√T × Z 4√T .

1. If r′ = 0, compute PRG′(s′), and output PRG∗h(s
′, r′) := PRGh(PRG

′(s′))− 1 mod T .

2. Otherwise, output as before PRG∗h(s
′, r′) = PRGh(s

′, r′).

The augmented construction. The construction of doubly-enhanced TDPs is now identical to the one of
enhanced TDPs, except that we instantiate the pseudo-random generator with the new PRG∗ = {PRG∗h}.

Proposition 4.3. The augmented construction is a doubly-enhanced trapdoor permutation.

Proof sketch. First notice that we did not harm the pseudo-randomness and discrete-image properties of
the original family PRG. Indeed, the augmented PRG∗h only behaves differently from PRGh on the set
{s = (s′, r′) : r′ = 0}, which has negligible density T−1/4. The pseudo-randomness and discrete-image
properties, however, are defined for a uniformly random (s′, r′) ∈ Z 4√T ×Z 4√T , and thus remain unaffected.

We can now define the samplerR(PK):

1. Pick a random (short) seed s′ ← Z 4√T .

2. Compute rS = PRG′(s′) ∈ Z 4√T × Z 4√T and rxS = (s′, 0) ∈ Z 4√T × Z 4√T .

3. Return (x, rS) where x = S(PK; rxS).

The pseudorandomness of rS , conditioned on (rK, x), follows directly from the pseudo-randomness guar-
antee of PRG′. We now note that x is the preimage of y = S(PK, rS). We shall assume for simplicity that
PRG′(s′) never outputs s = (s′′; r′′) such that r′′ = 0 (PRG′ can always be augmented to satisfy this prop-
erty). Then, by construction x = (i− 1,PRFS(i− 1)) where i = PRGh(PRG

′(s′)) and y = (i,PRFS(i)).
This completes the proof.

4.4 Relaxing Subexponential Security

In all constructions above, we assumed all cryptographic primitives are sub-exponentially hard. We now
explain how this can be relaxed, and what are the tradeoffs between the hardness of the different primi-
tives. Let f(·), g(·), h(·) be sub-linear functions and assume that OWF is (2f(λ), 2−f(λ))-secure, PRF is
(λ, 2−g(λ))-secure, and iO is (λ, 2−h(λ))-secure. We can restate Claim 4.1 as follows.

Claim 4.3 (Claim 4.1 generalized). For any polysize distinguisher D, all λ ∈ N, and all j ∈ [0, 4
√
T ]:

1. |Pr[D(Hyb1) = 1]− Pr[D(Hyb2) = 1]| ≤ 2−Ω(f(log 4√T )) + 2−Ω(h(λ)),

2.
∣∣Pr[D(Hyb2) = 1]− Pr[D(Hyb3,0) = 1]

∣∣ ≤ 2−Ω(h(λ)),
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3.
∣∣Pr[D(Hyb3,j) = 1]− Pr[D(Hyb4,j) = 1]

∣∣ ≤ T−1/2 + 2−Ω(h(λ)),

4.
∣∣Pr[D(Hyb4,j) = 1]− Pr[D(Hyb5,j) = 1]

∣∣ ≤ 2−Ω(g(λ)),

5.
∣∣Pr[D(Hyb5,j) = 1]− Pr[D(Hyb6,j) = 1]

∣∣ ≤ T−1/2 + 2−Ω(h(λ)),

6.
∣∣Pr[D(Hyb6,j) = 1]− Pr[D(Hyb3,j+1) = 1]

∣∣ ≤ 2−Ω(f(λ)) + 2−Ω(h(λ)).

The overall inversion probability can be bounded by

2−Ω(f(log 4√T )) +
4
√
T · (T−1/2 + 2−Ω(f(λ)) + 2−Ω(g(λ)) + 2−Ω(h(λ))) .

In particular, letting m(λ) = min {f(λ), g(λ), h(λ)}, we can guarantee hardness of the resulting TDP
as long as

1. T (λ) = λ−ω(1).

2. m(λ) = ω(log(T )).

3. f(log 4
√
T ) = ω(log λ).

For instance, for any constant ε < 1, we can set

• T = 2(log λ)2/ε ,

• f(λ) = λε (OWF is still sub-exponential),

• g(λ) = h(λ) = (log λ)2+2/ε (PRF and iO are quasi-polynomial).

Alternatively, we can set

• T = 22(log λ)
ε

,

• f(λ) = g(λ) = h(λ) = 2(log λ)
1+ε
2 (all primitives are only 2λ

o(1)
-secure).
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