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Abstract. To be resistant against certain time-memory-data-tradeoff
(TMDTO) attacks, a common rule of thumb says that the internal state
size of a stream cipher should be at least twice the security parameter. As
memory gates are usually the most area and power consuming compo-
nents, this implies a sever limitation with respect to possible lightweight
implementations.
In this work, we revisit this rule. We argue that a simple shift in the
established design paradigm, namely to involve the fixed secret key not
only in the initialization process but in the keystream generation phase
as well, enables stream ciphers with smaller area size for two reasons.
First, it improves the resistance against the mentioned TMDTO attacks
which allows to choose smaller state sizes. Second, one can make use
of the fact that storing a fixed value (here: the key) requires less area
size than realizing a register of the same length. We demonstrate the
feasibility of this approach by describing and implementing a concrete
stream cipher Sprout which uses significantly less area than comparable
existing lightweight stream ciphers.
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1 Introduction

There is a strong and growing need for cryptographic primitives that can be
implemented on the devices which have very limited resources such as the area
size on the chip, memory, and power consumption. During the last years several
lightweight block ciphers, e.g., see [14,15], and stream ciphers [16,6,26,25,1,24]
have been proposed. Stream ciphers usually allow for a higher throughput but
require a larger area size compared to block ciphers. The latter is mainly caused
by time-memory-data trade-off (TMDTO) attacks which aim to recover the in-
ternal state of the stream cipher [22,5,12]. The attack effort is in O(2σ/2), where
σ denotes the size of the internal state of a stream cipher. This results into a
rule of thump that for achieving κ-bit security level, the size of internal state
should be at least σ = 2 · κ. It means that in order to implement such a cipher
at least 2 · κ memory gates are required which is usually the most area and
power-consuming resource.



Table 1. Area Size of the eStream Finalists, Lightweight block ciphers and
Sprout

Cipher Area size (GE) Throughput (Kb/s)* Logic process Source

Block ciphers

PRESENT 80 [14] 1570 200 0.18µm [14]

PRESENT 80 [14] 1000 11.4 0.35µm [34]

KATAN32 [15] 802 12.5 0.13µm [15]

KATAN48 [15] 927 18.8 0.13µm [15]

KATAN64 [15] 1054 25.1 0.13µm [15]

KTANTAN32 [15] 462 12.5 0.13µm [15]

KTANTAN48 [15] 588 18.8 0.13µm [15]

KTANTAN64 [15] 688 25.1 0.13µm [15]

Stream ciphers

Mickey [7] 3188 100 0.13µm [23]

Trivium [16] 2580 100 0.13µm [23]

Grain 80 [26] 1294 100 0.13µm [23]

Grain 80 [26] 1162 100 0.18µm This work

Sprout 813 100 0.18µm This work

*- The throughput is given for the clock frequency of 100KHz

Our Contribution In this work, we investigate an extension in the common
design for stream ciphers which allows to realize secure lightweight stream cipher
with an area size beyond the trade-off attack bound mentioned above. The core
idea is to split the set of internal states into 2κ equivalence classes such that a
TMDTO attack has to consider each of these classes at least once. To achieve
this goal, we suggest to involve the key into the update process of the internal
state.

Theoretically, the overall approach is still to have a sufficiently large internal
state which determines the keystream bits. The main difference though is that
part of this state is the secret key itself and not only a state that has been
derived from this key. If one considers the case that the key is fixed for the
device, one can make use of the fact that storing a fixed key is significantly less
area consuming than deploying a register of the same length. In fact, a similar
idea has been used in the design of KATAN/KTANTAN [15]. Moreover, the
approach may allow for designs where the overall state size is smaller than 2κ.

We demonstrate the feasability of this approach by describing and imple-
menting a concrete stream cipher named Sprout. It builds upon the Grain 128a
[1] cipher but uses shorter registers and aims for 80 bit security. We argue that
Sprout seems to inherit the strengths of Grain 128a. However, our implementa-
tion confirms that Sprout uses significantly less area size than the eStream final-
isits of the hardware portfolio and also compares favorably with many lightweight
block ciphers (see Table 1 for an overview).



Outline In section 2, we describe the used model for stream ciphers and recall
time-memory-data trade-off attacks. In section 3, we explain our general design
approach for strengthening stream ciphers against TMDTO attacks. In section
4, we propose a concrete construction following our design approach. Section 5
addresses the security of the proposal. Section 6 concludes the paper.

2 Preliminaries

2.1 Time-Memory-Data-Trade-Off Attacks

Cryptanalysis often boils down to the following question. Given a function F :
N → N and a value y within the image of F , find a preimage of y, i.e., determine
a value x ∈ N such that F (x) = y. To accomplish this goal, two extreme cases
are considerable. One approach would be to use brute force search, i.e., randomly
pick values x ∈ N until F (x) = y does hold. This process would be repeated
whenever the attacker aims to invert F . The other extreme approach would be
to precompute all possible values beforehand and store them in a large table,
i.e., to trade recurring computation effort by memory. This would result into the
situation that every subsequent attack is essentially a simple look-up.

In 1980 Hellman [27] suggested a time-memory-trade-off (TMTO) attack
which is probabilistic and falls somewhere in between a brute force attack and a
precomputation attack. This initiated a long line of research on different trade-off
attacks. A typical trade-off attack consists of two phases: the first is the precom-
putation phase, often called the offline phase, while the second is referred to as
the real-time, or on-line phase. In the offline phase, the attacker precomputes a
large table (or sets of tables) using the function F he is trying to invert, while
in the online phase the attacker captures a function output and checks if this
value is located in her tables. If this attack is successful the attacker can learn
the value x for which y = F (x). Usually, this type of attacks is evaluated by
looking at the following costs:

– |N | - the size of the search space N
– TP - the time effort of the precomputation phase
– T - the time effort of the online phase
– M - memory cost of the attack.
– D - number of usable data samples, i.e., outputs of F , during the online

phase.

Trade-off attacks usually differ in the relation between these values (often ex-
pressed by a trade-off curve) and conditions that need to be met. A further
distinctive feature is the concrete attack scenario. Here we are interested into
two specific scenarios that we term scenario A and B, respectively, and that we
explain below.

In scenario A, an attacker is given one image y ∈ N and tries to find a
preimage under F , that is a value x ∈ N such that F (x) = y. This scenario-
A-attacks represent the most general class of attacks. In table 2, we list the



Table 2. Overview of Trade-Off Attacks for Scenario A

Work
Trade-off
curve

Restrictions
Precomputation
time

Hellman [27] |N |2 = TM2 1 ≤ T ≤ |N | TP = |N |
Oeschslin et al. [33] |N |2 = 2TM2 1 ≤ T ≤ |N | TP = |N |
BG [5], [22] |N | = M T = 1 TP = |N |
BS [12] |N |2 = TM2 1 ≤ T ≤ |N | TP = |N |
BSW [13] |N |2 = TM2 1 ≤ T ≤ |N | TP = |N |
Barkan et al. [10] |N |2 + |N |M = 2TM2 1 ≤ T ≤ N TP = |N |
Dunkelman [20] |N |2 = TM2 1 ≤ T ≤ |N | TP = |N |

Table 3. Overview of Trade-Off Attacks for Scenario B

Work
Trade-off
curve

Restrictions
Precomputation
time

BG [5], [22] |N | = TM 1 ≤ T ≤ D TP = M

BS [12] |N |2 = TM2D2 D2 ≤ T ≤ |N | TP = |N |/D
BSW [13] |N |2 = TM2D2 (DR)2 ≤ T TP = |N |/D
Barkan et al. [10] |N |2 + |N |D2M = 2TM2 D2 ≤ T ≤ |N | TP = |N |/D

effort of existing trade-off attacks in scenario A. As one can see, all attacks
have in scenario A a precomputation effort which is equivalent to searching the
complete search space N . In short, the reason is that a trade-off attack can only
be successful if the given image y has been considered during the precomputation
phase.

This can be relaxed in scenario B. Here, an attacker is given D images
y1, . . . , yD of F and the goal is to find a preimage for any of these points, i.e., a
value xi ∈ N such that F (xi) = yi. The main difference is that for a successful
attack, it isn’t any longer necessary to cover the whole search space N during
the precomputation phase. Instead it is sufficient that at least one of the outputs
yi has been considered. An overview of time-memory-data-trade-off attacks for
scenario B is given in table 3. Note that the parameter R mentioned in the BSW
attack stands for the sampling resistance of a stream cipher. In a nutshell, it is
connected to the number of special states that can be efficiently enumerated. For
example, R can be defined as 2−` where ` is the maximum value for which the
direct enumeration of all the special states which generate ` zero bits is possible.
As the sampling resistance strongly depends on the concrete design, we will not
consider it in our general analysis of trade-off attacks.

2.2 Keystream Generators

Description. Stream ciphers are encryption schemes that are dedicatedly de-
signed to efficiently encrypt data streams of arbitrary length. The most common



approach for realizing a stream cipher is to design a keystream generator (KSG).
In a nutshell, a KSG is a finite state machine using an internal state, an update
function, and an output function. At the beginning, the internal state is ini-
tialized based on a secret key and, optionally, an initial value (IV). Given this,
the KSG regularly outputs keystream bits that are computed from the current
internal state and updates the internal state. The majority of existing KSGs are
covered by the following definition:1

Definition 1 (Keystream Generator). A keystream generator (KSG) com-
prises three sets, namely

– the key space K = GF(2)κ,
– the IV space IV = GF(2)ν ,
– the state space S = GF(2)σ,

and the following three functions

– an initialization function Init : IV × K → S
– a bijective2 update function Upd : S → S
– an output function Out : S → GF(2)

A KSG operates in two phases. In the initialization phase, the KSG takes as
input a secret key k and an IV iv and sets the internal state to an initial state
st0 := Init(iv, k) ∈ S. Afterwards, the keystream generation phase executes the
following operations repeatedly (for t ≥ 0):

1. Output the next keystream bit zt = Out(stt)
2. Update the internal state stt to stt+1 := Upd(stt)

In this work, we consider attackers who are given several (possibly many) keystream
bits and who aim for computing the remaining keystream. To this end, we as-
sume that the attacker has full control over the IV. This means that the IV is
not only known by the attacker but in fact she can choose it. Obviously tradeoff
attacks represent a possible threat in this context. We shortly address in the
following tradeoff attacks against keystream generators before we discuss our
proposed design in the next section.

Trade-Off Attacks Against Keystream Generators.

Recovering the Key. In principle, two different approaches can be considered
for applying a trade-off attack, depending on what function the attacker aims
to invert. The most obvious approach is to invert the whole cipher. That is one
considers the process which takes as input a secret key k ∈ K = GF(2)κ and

1 As far as we know the only exception is the A2U2 stream cipher [18], which appears
to be insecure (see i.e. [2]).

2 In fact, our discussions can be easily extended to the case of non-invertible update
functions. However, assuming reversibility simplifies the explanations and is given
for most designs anyhow.



outputs the first κ keystream bits as a function FKSG : GF(2)κ → GF(2)κ. The
search space would be N = K = GF(2)κ in this case. As already explained,
trade-off attacks for scenario A would require a precomputation time which is
equivalent to exhaustive search in the key space. If we say that a security level
of κ expresses the requirement that a successful attack requires at least once a
time effort in O(2κ), then such attacks do not represent a specific threat.

Observe that although an attacker may have knowledge of significantly more
than κ bits, scenario B trade-off attacks are not applicable here (at least not in
general). To see why, let F tKSG : GF(2)κ → GF(2)κ be the function that takes as
input the secret key and outputs the keystream bits for clocks t, . . . , t + κ − 1.
That is it holds that F 0

KSG = FKSG from above. Then, the knowledge of D +
κ − 1 keystream bits translates to knowing images of F 0

KSG, . . . , F
D−1
KSG and in

fact, inverting one of these would be sufficient. However, these functions are all
different. In particular, any precomputation done for one of these, e.g., F iKSG,

cannot be used for inverting another one, e.g, F jKSG with i 6= j.

Recovering the Internal State. An alternative approach is to invert the
output function Out only, that is used in the keystream generation phase. More
precisely, let FOut : GF(2)σ → GF(2)σ be the function that takes the internal
state stt ∈ GF(2)σ at some clock t as input and outputs the σ keystream bits
zt, . . . , zt+σ−1. The search space would be N = S. A scenario-A trade-off attack
would again require a precomputation time equal to |N | = |S| which implies
that σ ≥ κ if one aims for a security level of κ.

We come now to the essential part. As each keystream segment zt, . . . , zt+σ−1
is an output of the same function FOut and as the knowledge of one internal state
stt allows to compute all succeeding keystreams bits zr for r ≥ t (and as Upd
is assumed to be reversible, the preceeding keystream bits as well), scenario B
attacks are suitable. As can be seen from table 3, each attack would require at
least once a time effort of about

√
|S| = 2σ/2. This implies the already mentioned

rule of selecting σ ≥ 2κ.

3 Our Basic Approach

3.1 Motivation

In this section, we discuss a conceptually simple adaptation of how keystream
generators are commonly designed (see definition 1). The goal is to make stream
ciphers more resistant against TMDTO attacks such that shorter internal states
can be used. To this end, let us take another look at trade-off attacks. An at-
tacker who is given a part of the keystream aims to find an internal state which
allows to compute the remaining keystream. Let F compl.

Out denote the function that
takes as input the initial state and outputs the complete keystream. Here, ”com-
plete” refers to the maximum number of keystream bits that are intended by the
designer. If no bound is given, then we simply assume that 2σ keystream bits
are produced as this refers to the maximum possible period. From an attacker’s



point of view, any internal state that allows for reconstructing the keystream is
equally good. This brings us to the notion of keystream-equivalent states:

Definition 2 (Keystream-equivalent States). Consider a KSG with a func-

tion F compl.
Out that outputs the complete keystream. Two states st, st′ ∈ S are said

to be keystream-equivalent (in short st ≡kse st
′) if there exists an integer r ≥ 0

such that F compl.
Out (Updr(st)) = F compl.

Out (st′). Here, Updr means the r-times appli-
cation of Upd.

Observe that keystream-equivalence is an equivalence relation.3 For any state
st ∈ S, we denote by [st] its equivalence class, that is

[st] = {st′ ∈ S|st ≡kse st
′} (1)

To see why this notion is important for analyzing the effectiveness of a TMDTO
attack, let us consider an arbitrary KSG with state space S. As any state is
member of exactly one equivalence class, the state space can be divided into `
distinct equivalence classes:

S =
[
st(1)

]
.
∪ . . .

.
∪
[
st(`)

]
(2)

Now assume a TMDTO attacker who is given some keystream (zt), based on
an unknown initial state st0. Recall that the strategy of a trade-off attack is
not to exploit any weaknesses in the concrete design but to efficiently cover a
sufficiently large fraction of the search space. In this case if none of the precom-
putations were done for values in [st0], the attack cannot be successful unless
the online phase searches all equivalence classes that have been ignored during
the precomputation phase. This leads to the following observation: a TMDTO
attack on the KSG will be a union of TMDTO attacks, one for each equiva-
lence class. That is we have ` TMDTO attacks with search spaces Ni =

[
st(i)

]
,

i = 1, . . . , `, respectively. As each of these attacks has a time effort of at least 1,
we get a lower bound of ` for the attack effort. Now, if one designs a cipher such
that ` ≥ 2κ, then one has achieved the required security level against trade-off
attacks. This is exactly the idea behind the design approach discussed next.

3.2 The Design Approach

We are now ready to discuss our proposed design. The basic idea is to achieve
a splitting of the internal state space in sufficiently many equivalence classes.
To achieve this, we divide the internal state into two parts: a variable part
that may change over time and a fixed part. For practical reasons the fixed
part will be realized by simply re-using the secret key (more on this later). The
main difference to a KSG as given in definition 1, the update function Upd will
compute the next variable state from the current variable state and the fixed

3 This is due to the fact that for any state st ∈ S, the sequence (Updr(st))r≥0 is cyclic
and that Upd is reversible by assumption.



secret key. We call such a construction a KSG with keyed update function, to be
defined below. Observe that this definition is in fact covered by definition given
in [31].

Definition 3 (Keystream Generator With Keyed Update Function). A
keystream generator (KSG) with keyed update function comprises three sets,
namely

– the key space K = GF(2)κ,
– the IV space IV = GF(2)ν ,
– the variable state space S = GF(2)σ,

and the following three functions

– an initialization function Init : IV × K → S
– an update function Upd : K × S → S such that Updk : S → S, Updk(st) :=

Upd(k, st), is bijective for any k ∈ K, and
– an output function Out : S → GF(2).

The internal state ST is composed of a variable part st ∈ S and a fixed part
k ∈ K. Initialization and keystream generation work analogously to definition 1
with the only difference that the state update also depends on the fixed secret key.

Let us take a look at the minimum time effort for a TMDTO attack against
a KSG with keyed update function. We make in the following the assumption
that any two different states ST = (st, k) and ST ′ = (st′, k′) with k 6= k′ never

produce the same keystream, that is F compl.
Out (ST ) 6≡kse F

compl.
Out (ST ′). Hence, we

have at least 2κ different equivalence classes. As the effort grows linearly with
the number of equivalence classes, we assume in favor of the attacker that we
have exactly 2κ equivalence classes. This gives a minimum time effort of 2κ.

Observe that similar techniques are present in stream cipher modes for block
ciphers like OFM or CTR. However, as far as we know it has never been dis-
cussed for directly designing stream ciphers with increased resistance against
TMDTO-attacks. In this context, we think that this approach has two interesting
consequences with respect to saving area size in stream cipher implementations:

1. Apparently one can achieve a security level of κ independent of length σ of
the variable state. This allows to use a shorter internal state which directly
translates to saving area size.4

2. For technical reasons, storing a fixed value (here: the key) can be realized
with significantly less area size than is necessary for storing a variable value.
This effect has been used for example in the construction of the block cipher
KTANTAN ([15]). It allows for further savings compared to KSGs with an
register of length ≥ 2κ.

We use these in the following section for proposing a concrete cipher named
Sprout. Our implementations showed that Sprout needs significantly less area
size than existing ciphers with comparable security level.

4 Of course, σ shouldn’t be too small. Otherwise, the period of the KSG may become
too short and the cipher may also become vulnerable for other attacks like guess-
and-determine.



4 The Stream Cipher Sprout

Within this section, we describe and discuss a concrete keystream generator
which follows the design strategy presented in the previous section. We start with
an overview of the overall structure in section 4.1, give the full specification in
section 4.2, explain the design rationale in 4.3, and present the implementations
results in 4.4. The security of the scheme will be discussed in the next section,
i.e., in section 5.

4.1 Overall Structure.

The design of Sprout is an adaptation of the basic design used for the Grain
family of stream ciphers [25,1,26,24]. More precisely, we used Grain 128a as the
starting point as this is the newest member of the Grain family which overcomes
some weaknesses found for previous version. Each Grain cipher is composed
of a linear feedback shift register (LFSR), a non-linear feedback shift register
(NLFSR), and an output function. The LFSR and NLFSR states represent the
internal state which at the beginning are initialized with the key and the IV. The
output of the LFSR is fed into the NLFSR to ensure a minimum period with
respect to the internal states while the purpose of the NLFSR is to make certain
standard attacks like algebraic attacks infeasible. Moreover, several bits are taken
from both FSRs as input to the output function. During the initialization phase,
the outputs of the output function are fed back into the FSRs, while in the
keystream generation phase, they represent the keystream bits.

For Sprout, we adopted this design. That is Sprout likewise uses an LFSR,
an NLFSR, and an output function, and these components are connected in a
similar way (see figure 1). However, several changes have been taken as well. The
main differences are:

Round Key Bits: To involve the secret key into the update function, a round
key function has been added. In a nutshell, in each clock it cyclically selects
the next key bit and adds it to the state of the NLFSR if the sum of certain
LFSR and NLFSR bits is equal to 1. More precisely, it is added to the LFSR
output which in turn goes into the NLFSR.

Counter: Like in Grain (or any other stream cipher), we use a counter to de-
termine the number of rounds during the initialization phase. Part of the
counter is re-used in Sprout for selecting the current round key bit. In addi-
tion, we use one of the counter bits also in the update process. The reason
is to avoid situations where shifted keys result into shifted keystreams (and
hence violating our assumption that two states with different keys are not
keystream-equivalent).

Register Lengths: The sizes of the FSRs have been reduced to 40 bits each.
This sums up to 80 bits which is equal to the key length.



Fig. 1. The Structure of Sprout.

4.2 Specifications.

We give now the full specification of Sprout. We use the following notation:

– t - the clock-cycle number;
– Lt = (lt, lt+1, · · · , lt+39) - state of the LFSR during the clock-cycle t
– Nt = (nt, nt+1, · · · , nt+39) - state of the NLFSR during the clock-cycle t
– Ct = (c0t , c

1
t , · · · , c8t ) - state of the counter during the clock-cycle t

– k = (k0, k1, · · · , k79) - key.
– iv = (iv0, iv1, · · · , iv69) - initialization vector.
– k∗t .- the round key bit generated during the clock-cycle t
– zt - the keystream bit generated during the clock-cycle t.

Feedback shift registers. Both the LFSR and the NLFSR are 40-bits long.
The LFSR uses the following primitive feedback polynomial which guarantees a
period of 240 − 1 :

P (x) = x40 + x35 + x25 + x20 + x15 + x6 + 1 (3)

We denote the corresponding feedback function by f , that is lt+40 = f(Lt).
The NLFSR feedback function has almost the same form as the NLFSR

update function of Grain 128a but different indexes are used due to the fact that
the NLFSR is shorter. This function is XORed with the output of the LFSR,
with the round key bit k∗t and with the counter bit c4t . The full specification is

nt+40 = g(Nt) + k∗t + lt + c4t

= k∗t + lt + c4t + nt + nt+13 + nt+19 + nt+35 + nt+39

+ nt+2nt+25 + nt+3nt+5 + nt+7nt+8 + nt+14nt+21 + nt+16nt+18

+ nt+22nt+24 + nt+26nt+32 + nt+33nt+36nt+37nt+38

+ nt+10nt+11nt+12 + nt+27nt+30nt+31

(4)



Counter. The 9-bit counter is composed of 2 parts. The first seven bits (c0t · · · c6t )
(with c0t ) indicating the LSB) are used to compute the index of the key bit
which is selected during the current round. Hence, these bits count from 0 to 79
before being set to zero again. The remaining two bits are only used within the
initialization phase to count until 4× 80 = 320.
Round key function. The round key function is responsible for making the
update function key dependent. At each clock t, the round key function computes
one round key bit k∗t as follows:

k∗t = kt, 0 ≤ t ≤ 79;

k∗t = (kt mod 80) · (l4 + l21 + l37 + n9 + n20 + n29), t ≥ 80;
(5)

That is in the first 80 clocks, each key bit is involved exactly once in the update
function. Afterwards, the round key function cyclically selects the next key bit
and adds it if l4 + l21 + l37 +n9 +n20 +n29 = 1. Otherwise the key bit is skipped
in this round.
Output function. The output of the cipher is a nonlinear function which takes
several LFSR and NLFSR bits as its input. The nonlinear part of the output
function has the form h(x) = x0x1+x2x3+x4x5+x6x7+x0x4x8 where x0, · · · , x8
corresponds to the state variables: nt+4, lt+6, lt+8, lt+10, lt+32, lt+17, lt+19, lt+23,
nt+38, respectively. The keystream bit of the cipher is computed as

zt = h(x) + lt+30 +
∑
j∈B

nt+j (6)

where B = {1, 6, 15, 17, 23, 28, 34}.
Initialization phase. In the initialization phase the 40 NLFSR stages are
loaded with the first 40 IV bits, i.e., ni = ivi for i = 0 ≤ i ≤ 39, and the
first 30 LFSR stages are loaded with the remaining IV bits, i.e., li−40 = ivi for
40 ≤ i ≤ 69. To avoid the all-zero state, the last 10 bits of the LFSR are filled
with constant values ’0’ and ’1’ as follows: l30 = . . . = l38 = 1 and l39 = 0. Then,
the cipher is clocked 320 times without producing any keystream. Instead the
output function is fed back and XORed with the input, both to the LFSR and
to the NFSR, i.e., lt+40 = zt + f(L) and nt+40 = zt + k∗t + lt + c4t + g(Nt).

Keystream generation phase. After 320 clock-cycles the initialization phase
is over and the cipher starts operating in accordance with equations (3, 4, 5, 6)
generating the keystream.

4.3 Design rationale

Choice of General Design. As already mentioned, our design adopts the
generic idea behind the Grain family. This has been done for several reasons.
First of all, our primary goal was to show the feasibility of the approach discussed
in section 3. Therefore, we decided against designing a new cipher from scratch
(which may have eventually turned out to be vulnerable against other attacks)



but rather to build upon an existing established design. To this end, our focus
was to pick a stream cipher that is already lightweight, is scalable (at least to
some extent), and has undergone already some cryptanalysis.

State Size. Our goal was to show that is possible to develop a secure stream
cipher that uses a register of size σ significantly below 2κ. A further goal was
however to keep the process of including the key into the update procedure
rather simple. While more involved mechanisms are possible in principle, this
would come at the cost of an increased area size. However, using a simple key
inclusion procedure could make a cipher subject to guess-and-determine attacks,
i.e., attacks where the adversary guesses the internal state and tries to derive
the key from the keystreams. Therefore, we decided for a conservative choice of
σ = κ. This implies that guessing the complete register has the same effort as
guessing the key. We leave it as open problem to come up with designs that use
a significantly smaller register.

LFSR Update Function. The main reason for involving an LFSR in the Grain
family is to ensure a minimum period. Consequently, the feedback polynomial of
the LFSR used in Sprout is primitive to guarantee a maximum period of 240−1.
A further design criteria was to choose a polynomial with not too few terms in
order to increase the resistance of the cipher against correlation attacks.

NLFSR Update Function. The update function of the NLFSR g(N) is XORed
with the LFSR output lt, the round key bit k∗t , and the counter bit c4t . Each of
these parts has different purpose and we will discuss them separately.

g(N) is the nonlinear function which has the same form as in Grain 128a,
where it was carefully selected in order to resist against different types of attacks
[1]. As the used NLFSR is shorter than the one of Grain 128a, different indexes
had to be chosen. Nonetheless, the relevant cryptographic properties remained:
It is balanced, has a nonlinearity of 267403264, a resiliency of 4, and the set of the
best linear approximations is of size 214. Each of the functions from this set has
a bias of 63 ·2−15 [1]. In fact, because of the involvement of the round key bits we
suspect that not all of these properties are still required in Sprout. For example
the attacks based on the linear approximations should not work anymore (see
section 5). Nonetheless, this function hasn’t revealed any unexpected weaknesses
over the time why we decided to stick to it.

The LFSR output is XORed with the NLFSR update function the same way
as it is done in Grain family so that each of the NLFSR state bits is balanced.

The main goal of using the round key bit is to improve the resistance against
TMDTO attacks as explained in section 3.2.

As explained, we aimed for a key involvement procedure that is as simple
as possible to save area size. The probably most simple one is to select the key
bits cyclically what we consider here (see also the discussion below). However,
this would result into the situation that two keys where one is only a shifted
version of the other also produce the same keystream (but only shifted). This
would clearly violate the basic requirement, namely that two states with different
keys are not keystream-equivalent. To avoid this situation, the counter bit c4t is



included as well. By doing so, even if one key is just a shifted copy of the other,
due to the different counter bits it should not result into the same keystream.

Output Function. The output function has the same form as the one used in
Grain 128a. This function has nonlinearity of 61440. The best linear approxi-
mation of the nonlinear part h has a bias of 25, and there are 28 such linear
approximations [1].

Round Key Function. The design criteria for the round key function were that
over the time, each key bit has been involved into the update function, and that
the mechanism is lightweight, i.e. does not consume a lot of area and power. A
straightforward approach would be to involve all key bits simultaneously. How-
ever, this would require a prohibitively large number of logic gates. Therefore,
we decided to involve the key bit by bit, that is at each clock exactly one key bit
is involved. In order to make sure that the initial state of both registers depends
on all of the key bits after reasonable number of clocks, at first we XOR each
of the key bits with the NLFSR update function with the first 80 clocks. Only
afterwards the more involved round key function is used.

To avoid situations where some key bits are not (or rarely) selected, we
decided that the function goes cyclically through the key bits and always chooses
the next key bit. However, to thwart possible guess-then-determine attacks, the
key involvement needs to be coupled with the register states somehow (in a
preferably simple way). As mentioned above the states of both registers are
almost balanced. The idea is that at each clock, a number of register bits are
taken and XORed. The currently selected key bit is inserted if and only if the
sum of the register bits is equal to 1. In other words, the register bits do not
influence which key bit is selected but decide if it is inserted. The advantage
is that this requires only a counter and multiplexers. As a counter is required
anyway for the initialization phase, one can further save area by simply reusing
the counter (what we do). In the concrete realization, we use three bits from the
LFSR and NLFSR, each. The three NLFSR bits have been selected in such a
way that none of these bits is involved in any other function used in this cipher.

Initialization Phase. The initilaization phase is in principle the same as for
Grain 128a. For example, fixing some of the LFSR bits is done to avoid that an
attacker can simply set the internal state to the all zero state by choosing an
appropriate IV. The initialization phase runs 320 clock cycles, which is the same
number as in Grain 128a (where 256 clock-cycles are used in the initialization
phase and 64 clock-cycles are required for the authentication process). Observe
that we use smaller registers though, hence probably even increasing the level
of diffusion. That is the number of clock cycles used for the initialization phase
is 4 times the state length. This is a stronger ratio than for Grain 80 and Grain
128 where the number of clock cycles is equivalent to the state size.

Naming. The name Sprout has been inspired by two facts. First, it builds upon
the Grain cipher which already suggested to choose a plant-related name. Second,
the main difference is that we ”plant” during the update process key round bits
into the middle of the cipher. In some sense, this can be seen as a kind of



additional key-related seed that (hopefully) quickly sprouts and expands over
the whole state.

4.4 Implementation Results

In order to demonstrate the feasibility of our design, we implemented Sprout
and compared the area size with the eStream finalists of portfolio 2 (hardware
oriented stream ciphers), being Grain 80 [26], Mickey 2.0 [6], and Trivium [16].
All of them use 80-bits keys.

For the implementation, we used the Cadence RTL Compiler 5 and the tech-
nology library UMCL18G212T3 (UMC 0.18µm process) for synthesis and sim-
ulation and aimed for an implementation operating on the clock-frequency of
100 KHz. We stress that in our implementation, we do not consider any area for
storing the fixed key. The reason is twofold here. First, storing a fixed value does
not require any volatile memory such as flip-flops and can be simply realized by
burning it into the device using for example fuses (see [4] for more discussions).
Second, other lightweight stream ciphers would, if used on restricted devices
such as RFID, likewise require to store the key in non-volatile memory so that
when the device is restarted the cipher has to be initialized with the original
key. When implementations of stream ciphers are presented, the area required
for storing the key is likewise ignored. Observe that the design of KTANTAN
[15] likewise is based on the fact that storing fixed keys is less area consuming.

Our implementation of Sprout requires an area size of 813 GEs. In compar-
ison, [23] states implementations of the eStream finalists using 0.13µm CMOS
and the standard cell library. These require for Grain 80 an area size of 1294
GE, for Trivium 2580 GE, and for Mickey v.2 3188 GE. We note that there exist
an implementation of Trivium [32] using dynamic logic which requires only 749
GEs. However the lower bound on the clock frequency of this implementation is
1 MHz, which is not achievable in restricted devices [4].

As the choice of the library impacts the area size, for the sake of a fair
comparison we made our own implementation of Grain 80 (as it is the most
lightweight cipher among the finalists with respect to the area size) using the
same technology as has been applied for the Sprout implementation. This gave
an implementation of Grain 80 that requires 1162 GE, i.e., being slightly less
than the implementation stated in [23] but still being 349 GE larger compared
to Sprout.

In general, realizing one register bit requires about 6 GE. Keeping in mind
that Grain 80 uses registers of a total length of 160, that Trivium uses a 288
bit state, and that the internal state of Mickey v.2 is 200 bits gives a strong
indication that none of these ciphers can be implemented with less than 960
GE.

As explained above, the comparisons are made under the assumption that
storing fixed keys can be realized with negligible costs, following [15]. If the key
is stored in registers instead, the size would increase to 1170 GE. As expected

5 See http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx
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there would be no gain in such cases. But even then, we think that the discussed
approach has new value as it may allow for new designs with a reduced internal
state size (including the key).

5 Security Discussion

In this section we discuss the security of Sprout with respect to key recovery
attacks. Due to the relatively short period, coming from the fact that we aim for
short internal states, Sprout is subject to distinguishing attacks. Thus, we do not
consider these any further and argue that the common use case for a lightweight
cipher is not to encrypt extremely large chunks of data. Moreover, as the key is
assumed to be fixed, related-key attacks are out of scope as well.

We consider an attack only to be successful if the effort is clearly less than
for a brute force attack, i.e. if it is less than 2κ. Recall that we allow an attacker
to freely choose the IV.
Algebraic Attacks. Algebraic attacks against LFSR-based keystream gener-
ators were introduced in [17] and became a powerful tool in cryptanalysis of
stream ciphers. The goal of such attacks is to construct systems of algebraic
equations which describe the operations used in the stream cipher, and to solve
these systems for the unknown state variables. The classical algebraic attacks
require that the degree of such equations is constant and therefore they usually
do not work against the NLFSR-based constructions, where the algebraic degree
of describing equations continuously grows. This holds in particular for Sprout.

In [3] an algebraic attack was combined with guess and determine technique
in the cryptanalysis of Grain family of stream ciphers. The authors claimed that
for Grain 80 and Grain 128 it is possible to construct a system of algebraic
equations and to solve it for approximately half of the state-bits, when the other
half is guessed. As in total 160 bits are involved in the update process (the
registers of total length of 80 bits and the fixed secret key of 80 bits as well),
guessing half the bits would result into an effort of at least 280 = 2κ.
Guess and Determine Attacks. Another potential attack could be a guess
and determine attack. Here, an attacker guesses parts of the internal state and/or
the key and aims to recover the remaining bits more efficiently. In the following
we list some arguments why we do not see an immediate application of such
attacks here.

We begin our analysis of the complexity of such attack by assuming that
the whole internal state is already known to the attacker who also has access
to the output bits. The newly inserted key bit is not used for the output until
it propagates to the position nt+38. There it will become part of the monomial
nt+4nt+38lt+32 of the output function. Even if the attacker knows the other val-
ues of the output function, she can only recover this key bit when nt+4 and lt+32

are both equal to 1. Hence in average only one bit out of four can be recovered
in this straightforward way. Observe in addition that before this particular key
bit is involved in the output function for the first time, it has been used as linear
terms in the NLFSR update function when it was at the position n39. Thus, the



key bit influences the state of the NLFSR before it could be recovered (which
is the case with probability 1/4 only). Guessing the key bits that cannot be
recovered would hence induce an additional effort of O(23κ/4) = O(260).

Moreover, we do not see any straightforward approach for reconstructing the
whole internal state with an effort better than guessing. Observe that all but
8 bits of the NLFSR are used in either the update function or the round key
function. Therefore, at least these need to be known if an attacker wants to know
the next NLFSR state. Moreover, the NLFSR state depends on the LFSR output
so that all LFSR bits need to be known as well on the long run. Of course, not
all of these bits need to be known exactly. For example a few state bits can be
computed directly from the output function (2 bits can be computed before the
key bit propagated to the position nt+38 and some other register bits can be
computed when the round key bits are equal to zero). However, the number of
the state bits which can be recovered is relatively small and there are definitely
more than 20 state bits which need to be guessed together with in average 60
key bits.

Linear Approximations. In [30] it is explained how to find a time-invariant
biased linear relation between the LFSR bits and the keystream bits for Grain
family of stream ciphers. This bias depends on the nonlinearity and the resiliency
of the NLFSR update and of the output functions.

In the case of Sprout, such a relation would have to include the round key
bits as well. However, in this case the mentioned relation will also contain the
round key bits which are included non-linearly (if considered as a function of
key bits and state bits). Moreover, we use in Sprout functions with the same
cryptographic properties as the ones deployed in Grain 128a. These have been
selected such that the bias is sufficiently small in order to make these attacks
less efficient than exhaustive key search. Therefore we do not expect that they
will work against Sprout.

Chosen IV Attacks. In [35] a distinguishing attack on the whole 256 round
version of Grain 128 was presented. This indicates that the number of rounds
during initialization and/or the nonlinearity of the functions used in Grain 128
are not high enough.

However, the update function of the NLFSR of Grain 128a (and hence of
Sprout) was improved with respect to this attack. Moreover, the ratio of the
number of rounds during the initialization phase to the state size is also consid-
erably larger in case of Sprout compared to Grain family.

Dynamic Cube Attacks. A dynamic cube attack is (besides of fault attacks)
the best publicly known attack against Grain 128 (see [19]). So far, no mecha-
nisms are known to show the resistance against such attacks, especially as these
rely on finding ”good” cubes by chance. Hence, we cannot exclude that cube
attacks may be possible. However, no cube attacks are known so far against
Grain 128a and Sprout uses similar functions. Moreover, the initialization phase
is longer which should further strengthen the security of the full cipher.

Time Data Memory Trade-off Attacks. The main conceptual change com-
pared to Grain 128a, namely the involvement of the key bits into the update



function, was to increase the security against time data memory trade-off at-
tacks, following the thoughts from section 3.2. To this end, it is important that
two different keys always yield states that are not keystream equivalent. Due
to the fact that we use the key bit by bit, different keys should influence the
keystream generation differently on the long run. However, two keys which are
just shifted may result into shifted keystreams. To avoid this we include the
counter bit as well. Even if the key is just shifted, due to the different counter
values there will be situations where different counter bits are used in the up-
date. The hope is that in the long run, this will ensure that different keys always
produce different keystreams. However, as we have no formal proof that this is
achieved for Sprout, further analysis needs to be made.

Weak Key-IV pairs. Recently [36] a distinguishing attack against different
versions of Grain was proposed, that exploits the existence of weak Key-IV pairs.
These result into the situation that after the initialization phase is over, the
LFSR is in the all-zero state. In their attack the number of required keystream
bits depends on the best linear approximation for the NFSR update function
g. For Grain-128 this results into the case that 286 bits are required to build a
distinguisher. In case of Grain 128a (and hence of Sprout as well) the nonlinearity
of the NLFSR update function is even higher meaning that even more keystream
bits will be required to detect a weak pair. Furthermore, we are aiming for
considerably shorter periods of the keystream. As it was mentioned we cannot
guarantee that the period is higher than the 240 and therefore do not recommend
to produce longer keystreams under the same IV .

Fault attacks. The systematic study of fault attacks against stream ciphers was
done in [28]. Usually, it is assumed that the attacker can flip one random FSR bit
(without knowing its position), produce the required number of keystream bits
from this faulted internal state, and then compare it with the keystream, which
was produced without any faults in internal state. This process of resetting the
device and introducing one fault can be done as many times as it is required for
the attacker.

All members of the Grain family have been broken using this type of at-
tack [11,8,9]. However, all these attacks aim to recover the internal state. As
elaborated above, knowing the content of the register bits of Sprout does not
automatically allow for efficiently recovering the secret key. Moreover, the in-
volvement of the round key bits should make this type of attacks harder.

Side-Channel Attacks. The security of the cryptographic primitives with re-
spect to side-channel attacks depends on the actual implementation. Hence,
nothing can be said about the general vulnerability. However, a secure imple-
mentation against power-analysis attacks usually leads to a high overhead in the
area and power consumption [21] which commonly depends on the number of
flip-flops used [29].

Therefore, the resources required for a secure implementation even increase
the necessity of developing a stream cipher solutions which require as few flip-
flops as possible. Moreover, when less area and power are used to implement



the scheme itself, there is more space left in order to implement the necessary
countermeasures and still stay feasible in the context of restricted devices.

6 Conclusion

In this work, we discussed a different approach for realizing keystream generators.
The core idea is to design a cipher where the set of internal states is split into a
large number of equivalence classes such that any trade-off attack has to consider
every class at least once. As a concrete approach for realizing this property, we
suggest to involve the secret key not only in the initialization process but in the
update procedure as well. Although the change is conceptually simple, it may
allow to avoid the rule of thumb that the internal state size needs to be at least
twice the key length.

Exploiting the fact that storing fixed values is less area consuming than using
registers, we were able to present a new stream cipher named Sprout which has
a significantly smaller area size. Sprout is considered as a proof of concept to
demonstrate the feasibility of this approach. To this end, it exhibits a rather
conservative design where the choice of some parameters like the register lengths
has been possibly overcautious. We see it as an interesting open question if and
to what extend the area size can be further reduced for stream ciphers. At the
moment, we do not see any reason why stream ciphers with comparatively short
registers shouldn’t be possible. Consequently we see this work as a a first step
towards alternative design approaches that hopefully initiates further research
on this question.

Another interesting direction is the following. To thwart TMDTO attacks, it
is not necessary to achieve 2κ equivalence classes. Even if a cipher achieves less
than these, it may still be sufficient if the effort for identifying these classes is
sufficiently high. In other words, if the effort for finding all equivalence classes
times the effort for executing a TMDTO attack is above the effort for exhaustive
key search, we are on the safe side.
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