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Abstract. We show that the distinguishing attacks on Even-Mansour block ciphers in the related key
model can easily be converted into extremely efficient key recovery attacks. This includes in partic-
ular all iterated Even-Mansour constructions with independent keys. We apply this observation to
the CAESAR candidate PRØST-OTR and are able to recover the whole key with a number of requests
linear in its size. This improves on recent forgery attacks in a similar setting.
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1 Introduction

The Even-Mansour scheme is arguably the simplest way to construct a block cipher from pub-
licly available components. It defines the encryption E((k1,k0), p) of the plaintext p under the
(possibly equal) keys k0 and k1 as P(p ⊕ k0)⊕ k1, where P is a public permutation. Even and
Mansour proved in 1991 that for a permutation of size n, the probability of recovering the
keys is upper-bounded by O (DT ·2−n) when the attacker considers the permutation as a black
box, where D is the data complexity and T is the time complexity of the attack [EM91]. Al-
though of considerable interest, this bound also shows at the same time that the construction
is not ideal, as one gets security only up to O (2

n
2 ) queries, which is less than the O (2n) one

would expect for an n-bit block cipher. For this reason, many later works investigated the secu-
rity of variants of the Even-Mansour construction. A simple one is the iterated Even-Mansour
scheme with independent keys and independent permutations, with its r -round version de-
fined as IEMr ((kr−1,kr−2, . . . ,k0), p) = Pr−1(Pr−2(. . .P0(p ⊕k0)⊕k1) . . .)⊕kr−1. It has been estab-
lished that this construction is secure up to O (2

r n
r+1 ) queries [CS14]. On the other hand, in a

related-key model, the same construction lends itself to trivial distinguishing attacks, and one
must consider alternatives if security in such a model is necessary. Yet until the recent works
of Cogliati and Seurin & Farsim and Procter, no construction was known to be secure in the
related-key model. This is not the case anymore and it has now been proven that one can reach
a non-trivial level of related-key security for IEMr starting from r = 3 when using keys linearly
derived from a single master key (instead of using independent keys), or even when r = 1 when
this derivation is non-linear and meets some conditions [CS15,FP14]. While related-key anal-
ysis obviously gives much more power to the attacker than the single-key setting, it is a widely
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accepted model that may provide useful results on primitives studied in a general context, es-
pecially as related keys may naturally arise in some protocols.

Our contributions. We show that the distinguishing attacks on the Even-Mansour construc-
tions in a related-key model can be extended to much more powerful key-recovery attacks
by considering modular additive differences instead of XOR differences. This concerns both
the trivial distinguishers on iterated Even-Mansour with independent keys and the more com-
plex distinguisher of Cogliati and Seurin for 2-round Even-Mansour with a linear key-schedule.
While these observations are somewhat elementary, they lead to a key-recovery attack on the
authenticated-encryption scheme and CAESAR candidate PRØST-OTR in a related-key model.
This improves on the recent work from FSE 2015 of Dobraunig, Eichlseder and Mendel who use
similar methods but only produce forgeries [DEM15].

2 Notations

We use • to denote string concatenation, αi with i an integer to denote the string made of the
concatenation of i copies of the character α, and α∗ to denote any string of the set {αi , i ∈ N},
α0 denoting the empty string ε. For any string s, we use s[i ] to denote its i th element (starting
from zero).

We also use ∆n
i to denote the string 0n−i−1 •1•0i−1. The superscript n will always be clear

from the context and therefore omitted.
Finally, we identify strings of length n over the binary alphabet {0,1} with elements of the

vector-space Fn
2 and with the binary representation of elements of the group Z/2nZ. The addi-

tion operation on these structures are respectively denoted by ⊕ (XOR) and + (modular addi-
tion).

3 Generic related-key-recovery attacks on Even-Mansour constructions

Since the work of Bellare and Kohno [BK03], it is well known that no block cipher can resist
related-key attacks (RKA) when an attacker may request encryptions under related keys using
two difference classes. A simple example showing why this cannot be the case is to consider the
classes φ⊕(k) and φ+(k) of keys related to k by the XOR and the modular addition of any con-
stant chosen by the attacker respectively. If we have access to (related-key) encryption oracles
E(k, ·), E(φ⊕(k), ·) and E(φ+(k), ·) for the block cipher E with κ-bit keys, we can easily learn the
value of the bit k[i ] of k by querying E(k+∆i , p) and E(k⊕∆i , p) and by comparing their values.
For i < κ−1, the plaintext p is encrypted under the same key iff k[i ] = 0, then resulting in the
same ciphertext, and is encrypted under different keys if k[i ] = 1, then resulting in different
ciphertexts with an overwhelming probability. Doing this test for every bit of k thus allows to
recover the whole key with a complexity linear in κ.

In the same paper, Bellare and Kohno also show that no such trivial generic attack exists
when the attacker is restricted to using only one of the difference classes φ⊕ or φ+, and they
prove that an ideal cipher is in this case resistant to RKA. Taken together, these results mean
in essence that a related-key attack on a block cipher E using the two classes φ⊕(k) and φ+(k)
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does not say much on E, as nearly all ciphers fall to an attack in the same model. On the other
hand, an attack using either of φ⊕ or φ+ is meaningful, because an ideal cipher is secure in that
case.

3.1 Key-recovery attacks on r -round IEM with independent keys

Going back to the Even-Mansour construction, we explicit the trivial related-key distinguish-
ers mentioned in the introduction, that exists for r -round iterated Even-Mansour block ciphers
with independent keys. These distinguishers using only key related with, say, the φ⊕ class, they
are therefore meaningful when considering the related-key security of IEM. From the very defi-
nition of IEMr , it is obvious to see that the two values E((kr−1,kr−2, . . . ,k0), p) and E((kr−1,kr−2,
. . . ,k0 ⊕δ), p ⊕δ) are equal for any difference δ when E = IEMr and that this equality does not
hold in general, thence allowing to distinguish IEMr from an ideal cipher.

We now show how this distinguisher can be combined with the attack using two classes in
order to extend it to a very efficient key-recovery attack. We give a description in the case of one-
round Even-Mansour, but it can easily be extended to an arbitrary r . The attack is very simple
and works as follows: consider again E((k1,k0), p) = P(p ⊕k0)⊕k1; one can learn the value of
the bit k0[i ] by querying E((k1,k0), p) and E((k1,k0+∆i ), p ⊕∆i ) and by comparing their values.
These differ with overwhelming probability if k0[i ] = 1 and are equal otherwise.

A similar attack works on the variant of the (iterated) Even-Mansour construction that uses
modular addition instead of XOR for the combination of the key with the plaintext. This vari-
ant was first analyzed by Dunkelman, Keller and Shamir and offers the same security bounds
as the original Even-Mansour construction [DKS12]. An attack in that case works similarly by
querying e.g. E((k1,k0),∆i ) and E((k1,k0 ⊕∆i ),0κ).

In both cases, the attacks use a single difference class for the related keys (either φ⊕ or φ+),
and are therefore meaningful as related-key attacks. They simply emulate the attack that uses
both classes simultaneously by taking advantage of the fact that the usage of key material is
very simple in Even Mansour constructions. Finally, we can see that in the particular case of a
one-round construction, the attack still works if one chooses the keys k1 and k0 to be equal.

3.2 Extension to 2-round Even-Mansour with a linear key schedule

As has been shown by Cogliati and Seurin, it is also possible to very efficiently distinguish the
2-round Even-Mansour with related keys, even when the keys are not independent and are de-
rived from a master key by a linear key schedule [CS15]. It is then only fair to wonder if this
distinguisher can also be extended to a key-recovery attack; we answer positively to this ques-
tion and show the procedure in the case where all keys are equal:

1. Query y1 := E(k +∆1, x1)
2. Set x2 to x1 ⊕∆2 ⊕∆1 and query y2 := E(k +∆2, x2)
3. Set y3 to y1 ⊕∆1 ⊕∆3 and query x3 := E−1(k +∆3, y3)
4. Set ∆4 to ∆3 ⊕∆2 ⊕∆1

5. Set y4 to y2 ⊕∆2 ⊕∆4 and query x4 := E−1(k +∆4, y4)
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6. Test if x4 = x3 ⊕∆3 ⊕∆4

If the test is successful, it means that with overwhelming probability the key bits at the positions
of the differences∆1,∆2,∆3 are all zero. As soon as one has found two such bits (which happens
after an expected four trials for random keys), the rest of the key bits can be tested one by one.
The case where the keys are not equal but generated from a linear key schedule works exactly
in the same way, and only the XOR differences need to be adapted in consequence.

4 Application to PRØST-OTR

We apply the simple generic key-recovery attack to the CAESAR candidate PRØST-OTR, which
is an authenticated-encryption scheme member of the PRØST family [KLL+14]. This family is
based on the PRØST permutation and defines three schemes instantiating as many modes of
operation, namely COPA, OTR and APE. Only the latter can be readily instantiated with a per-
mutation, and both COPA and OTR rely on a keyed primitive. In the case of PRØST-OTR, this
is a block cipher defined as a one-round Even-Mansour construction using the PRØST permu-
tation with identical keys; PRØST-COPA similarly defines a tweakable block cipher based on
the same underlying Even-Mansour construction. Because our attack works regardless of the
actual permutation, we refer the interested reader to the submission document of PRØST for
the definition of its permutation. The same goes for the OTR mode [Min14], as we only need to
focus on a small part to describe the attack. We describe how the encryption of the first block
of plaintext is performed, which is the only thing necessary for our attack, but also show the
parallel Feistel approach of OTR in Figure 4.1.

OTR is a nonce-based mode of operation. It takes as input a key k, a message m, (possibly
empty) associated data a, and produces a ciphertext c corresponding to the encryption of the
message with k, and a tag t authenticating m and a together with the key k. It is important
for the security of the mode to ensure that one cannot encrypt twice using the same nonce.
However, there are no specific restriction as to their value, and we consider throughout that
one can freely choose them.

The encryption of the first block of ciphertext c1 by PRØST-OTR is defined as a function
F (k,n,m1,m2) of k, n, and the first two blocks of plaintext m1 and m2: let ` := E(k,n •10∗) be
the encryption of the padded nonce and `′ := π(`), with π a linear permutation (the multipli-
cation by 4 in a finite field), then c1 is simply equal to E(k,`′⊕m1)⊕m2. Let us now apply the
attack from Section 3.

A first attack that does not quite work. It is straightforward to see that one can recover the
value of the bit k[i ] by performing only two queries with related keys and different nonces and
messages. One just has to compare c1 = F (k,n,m1,m2) and ĉ1 = F (k +∆i ,n ⊕∆i ,m1 ⊕∆i ⊕
π(∆i ),m2). Indeed, if this bit is equal to 0, then the value ˆ̀ obtained in the computation of ĉ1 is
equal to `⊕∆i and ˆ̀′ = `′⊕π(∆i ), hence ĉ1 = c1 ⊕∆i . If this key bit is 1, the latter equality does
not hold with overwhelming probability.

Yet this does not work quite completely, because the nonce in PRØST-OTR is restricted to
a size half of the one of the block cipher E (or equivalently of the underlying PRØST permuta-
tion), i.e. κ2 . It is then possible to recover only half of the bits of k using this procedure, as one
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Fig. 4.1. The encryption of the first two blocks of message with OTR.

cannot introduce appropriate differences in the computation of ` for the other half. The tar-
geted security of the whole primitive being precisely κ

2 because of the generic single key attacks
on Even-Mansour, one does not make a significant gain by recovering only half of the key. It
should still be noted that this yields an attack with very little data requirements and with the
same time complexity as the best point on the tradeoff curve of generic attacks, which in that
case has a much higher data complexity of 2

κ
2 .

REMARK. This procedure does not either recover the most significant bit of the key, as an addi-
tion on this bit never generates a carry. This bit can of course easily be recovered at the cost of
one additional query once all the others have been determined.

A recursive procedure to recover the rest of the key. Although we just saw that the generic
attack in its most simple form does not allow to recover the full key of PRØST-OTR, we can use
the fact that the padding of the nonce is done on the least significant bits to our advantage, and
by slightly adapting the procedure we can iteratively recover the value of the least significant
half of the key with no more effort than for the most significant half.

Let us first show how we can recover the most significant bit of the least significant half
of the key k[κ/2−1] (i.e. the first bit for which we cannot use the generic procedure) after a
single encryption by E. For the sake of simplicity, we assume for now that the two keys of E
are independent, and we omit to write the second (outer) key. We note kMSB the (known) most
significant half of the (inner) key. Then one queries E(k+∆κ/2−1−kMSB, p⊕∆κ/2) and compares
it to E(k −∆κ/2−1 −kMSB, p). We can see that in this case the two inputs to the permutation of
E are equal iff k[κ/2−1] = 1. Indeed, the carry in the addition k +∆κ/2−1 propagates by exactly
one position and is “cancelled” by the difference in p, and there is no carry propagation in
k −∆κ/2−1. If on the other hand k[κ/2−1] = 0, the latter carry propagates all the way to the
most significant bit, whereas only two differences are introduced in the first query. Now that
the value of k[κ/2−1] has been learned, one can iterate the process to recover the remaining
bits. The only subtlety is that we want to ensure that if there is a carry propagation in k+∆κ/2−1−i

(resp. k −∆κ/2−1−i ), it propagates up to kκ/2−1+1, the position where we cancel it with an XOR
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difference (resp. up to the most significant bit). This can be easily achieved by adding two terms
to both keys: if we call γi the value of the key k only on positions κ/2−1. . .κ/2− i , completed
with zeros left and right, and γ̃i its binary complement on the same positions, we simply have
to query E(k+∆κ/2−1−kMSB+γ̃i , p⊕∆κ/2) and E(k−∆κ/2−1−kMSB−γi , p). We finally remark that
in the event of the bit k[κ/2−1− i ] being one, the (identical) results of the queries are equal to
encrypting p under k with all its bits of position higher than κ/2−1− i set to zero. This shows
why even when the outer key is chosen equal to the inner key, we can deduce the difference
(modular as well as XOR) between the two results, and thence are still able to recover the value
of this particular key bit; this difference is in fact independent of i and equal to ∆κ/2.

We conclude by showing how to apply this procedure to PRØST-OTR. For the sake of read-
ability, let us denote by ∆+

i and ∆−
i the complete modular differences used to recover one less

significant bit k[i ]. We then simply perform the two queries F (k +∆+
i ,n ⊕∆κ/2,m1 ⊕∆κ/2,m2)

and F (k +∆−
i ,n,m1 ⊕π(∆κ/2),m2), which differ by ∆κ/2 iff ki is one, with overwhelming prob-

ability.
All in all, one can retrieve the whole key of size κ using only 2κ related-key, related-nonce

encryption requests, ignoring everything in the output (including the tag) apart from the value
of the first block of ciphertext. We give the entire procedure to do so in Algorithm 4.1. Note
that it makes use of a procedure REFRESH which picks fresh values for two message words and
(most importantly) for the nonce. Because the attack is entirely practical, it could easily be
implemented. We give an example of such a program for an 8-bit toy cipher in the Appendix A.

Algorithm 4.1: Related-key key recovery for PRØST-OTR

Input: Oracle access to F (k, ·, ·, ·) and F (φ+(k), ·, ·, ·) for a fixed (unknown) key k of even length κ
Output: Two candidates for the key k

1 k ′ := 0κ

2 for i := κ−2 to κ/2 do
3 REFRESH(n, m1, m2)
4 x := F (k,n,m1,m2)
5 y := F (k +∆i ,n ⊕∆i ,m1 ⊕∆i ⊕π(∆i ),m2)
6 if x = y ⊕∆i then
7 k ′[i ] := 0

8 else
9 k ′[i ] := 1

10 for i := κ/2−1 to 0 do
11 REFRESH(n, m1, m2)
12 x := F (k +∆+

i ,n ⊕∆κ/2,m1 ⊕∆κ/2,m2)

13 y := F (k +∆−
i ,n,m1 ⊕π(∆κ/2),m2)

14 if x = y ⊕∆κ/2 then
15 k ′[i ] := 1

16 else
17 k ′[i ] := 0

18 k ′′ := k ′
19 k ′′[κ−1] := 1
20 return (k ′,k ′′)
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REMARK. If the padding of the nonce were done on the most significant bits, no similar attack
could recover these key bits: the modular addition is a triangular function (meaning that the
result of a +b on a bit i only depends on the value of bits of position less than i in a and b),
and therefore no XOR in the nonce in the less significant bits could control differences intro-
duced in the padding. An attack in that case would thus most likely be applicable for general
ciphers when using only the φ+ class, and it is proven that no such attack is efficient. However,
one could always imagine using a related class using an addition operation reading the bits in
reverse. While admittedly unorthodox, this would not result in a stronger model than usingφ+.

Discussion. One should be aware that the designers of PRØST do not make any claim for the
resistance of PRØST-OTR to related-key attack, and therefore we do not consider ours to be an
attack on PRØST per se, and we do not pretend to break the security of this primitive.

In a recent independent work, Dobraunig, Eichlseder and Mendel use similar methods to
produce forgeries for PRØST-OTR by considering related keys with XOR differences [DEM15].
On the one hand, one could argue that the class φ⊕ is more natural than φ+ and more likely
to arise in actual protocols, which may make their attack more applicable than ours. On the
other hand, an ideal cipher is expected to give a similar security against RKA using either class,
which means that our model is not theoretically stronger than the one of Dobraunig et al., while
resulting in a much more powerful key recovery attack.

5 Conclusion

We made a simple observation that allows to convert related-key distinguishing attacks on
some Even-Mansour constructions into much more powerful key-recovery attacks, and we
used this observation to derive an extremely efficient key-recovery attack on the PRØST-OTR
CAESAR candidate.

Primitives based on an Even-Mansour construction are quite common, and it is natural
to wonder if we could mount similar attacks on other ciphers. A natural first target would
be PRØST-COPA, which uses an Even-Mansour construction similar to PRØST-OTR. However,
in this mode, encryption and tag generation depend on the encryption of a fixed plaintext
` = E(k,0) which is different for different keys with overwhelming probability and makes our
attack fail. The forgery attacks of Dobraunig et al. seem to fail in that case for the same reason.
Keeping with CAESAR candidates, another good target would be Minalpher [STA+14], which
also uses a one-round Even-Mansour block cipher as one of its components. The attack also
fails in this case, though, because the masking key used in the Even-Mansour construction is
derived from the master key in a highly non-linear way. In fact, the construction used in Mi-
nalpher may actually benefit from the security proof of Cogliati and Seurin1. Finally, leaving
aside authentication and going back to traditional block ciphers, we could consider designs
such as LED [GPPR11]. The attack also fails in that case, however, because the cipher uses an
iterated construction with at least 8 rounds and only one (or two) keys.

1 Their proof requires two distinct non-linear permutations, whereas Minalpher uses the same non-linear function
to derive both keys. We did not investigate the impact of these differences, but it is reasonable to expect a good
security for this construction.
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This lack of other results is not very surprising, as we only improve existing distinguishing
attacks, and this improvement cannot be used without a distinguisher as its basis. Therefore,
any primitive for which resistance to related-key attacks is important should already be resis-
tant to the distinguishing attacks and thus to ours. Yet it would be reasonable and perfectly
valid to allow the presence of a simple related-key distinguisher when designing a primitive, as
this a very weak type of attack type. What we have shown is that one must be extremely careful
when contemplating such a decision for Even-Mansour constructions, as in that case it may
actually be equivalent to allowing key-recovery, the most powerful of all attacks.
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A Example program for an 8-bit permutation

We give the source of a C program that recovers an 8-bit key from a design similar to PRØST-
OTR where the permutation has been replaced by the AES S-box, for compactness. For the sake
of simplicity, we do not ensure that the nonce does not repeat in the queries. Amusingly, for this
size of permutation, the attack is not better than the targeted security level of 2

8
2 = 16.

#include <stdio.h>
#include <stdint.h>

static uint8_t key = 0xD2;
static uint8_t nonce = 0;
static uint8_t aes_s [256] =
{

0x63 , 0x7C , 0x77 , 0x7B , 0xF2 , 0x6B , 0x6F , 0xC5 , 0x30 , 0x01 , 0x67 , 0x2B ,
0xFE , 0xD7 , 0xAB , 0x76 , 0xCA , 0x82 , 0xC9 , 0x7D , 0xFA , 0x59 , 0x47 , 0xF0 ,
0xAD , 0xD4 , 0xA2 , 0xAF , 0x9C , 0xA4 , 0x72 , 0xC0 , 0xB7 , 0xFD , 0x93 , 0x26 ,
0x36 , 0x3F , 0xF7 , 0xCC , 0x34 , 0xA5 , 0xE5 , 0xF1 , 0x71 , 0xD8 , 0x31 , 0x15 ,
0x04 , 0xC7 , 0x23 , 0xC3 , 0x18 , 0x96 , 0x05 , 0x9A , 0x07 , 0x12 , 0x80 , 0xE2 ,
0xEB , 0x27 , 0xB2 , 0x75 , 0x09 , 0x83 , 0x2C , 0x1A , 0x1B , 0x6E , 0x5A , 0xA0 ,
0x52 , 0x3B , 0xD6 , 0xB3 , 0x29 , 0xE3 , 0x2F , 0x84 , 0x53 , 0xD1 , 0x00 , 0xED ,
0x20 , 0xFC , 0xB1 , 0x5B , 0x6A , 0xCB , 0xBE , 0x39 , 0x4A , 0x4C , 0x58 , 0xCF ,
0xD0 , 0xEF , 0xAA , 0xFB , 0x43 , 0x4D , 0x33 , 0x85 , 0x45 , 0xF9 , 0x02 , 0x7F ,
0x50 , 0x3C , 0x9F , 0xA8 , 0x51 , 0xA3 , 0x40 , 0x8F , 0x92 , 0x9D , 0x38 , 0xF5 ,
0xBC , 0xB6 , 0xDA , 0x21 , 0x10 , 0xFF , 0xF3 , 0xD2 , 0xCD , 0x0C , 0x13 , 0xEC ,
0x5F , 0x97 , 0x44 , 0x17 , 0xC4 , 0xA7 , 0x7E , 0x3D , 0x64 , 0x5D , 0x19 , 0x73 ,
0x60 , 0x81 , 0x4F , 0xDC , 0x22 , 0x2A , 0x90 , 0x88 , 0x46 , 0xEE , 0xB8 , 0x14 ,
0xDE , 0x5E , 0x0B , 0xDB , 0xE0 , 0x32 , 0x3A , 0x0A , 0x49 , 0x06 , 0x24 , 0x5C ,
0xC2 , 0xD3 , 0xAC , 0x62 , 0x91 , 0x95 , 0xE4 , 0x79 , 0xE7 , 0xC8 , 0x37 , 0x6D ,
0x8D , 0xD5 , 0x4E , 0xA9 , 0x6C , 0x56 , 0xF4 , 0xEA , 0x65 , 0x7A , 0xAE , 0x08 ,
0xBA , 0x78 , 0x25 , 0x2E , 0x1C , 0xA6 , 0xB4 , 0xC6 , 0xE8 , 0xDD , 0x74 , 0x1F ,
0x4B , 0xBD , 0x8B , 0x8A , 0x70 , 0x3E , 0xB5 , 0x66 , 0x48 , 0x03 , 0xF6 , 0x0E ,
0x61 , 0x35 , 0x57 , 0xB9 , 0x86 , 0xC1 , 0x1D , 0x9E , 0xE1 , 0xF8 , 0x98 , 0x11 ,
0x69 , 0xD9 , 0x8E , 0x94 , 0x9B , 0x1E , 0x87 , 0xE9 , 0xCE , 0x55 , 0x28 , 0xDF ,
0x8C , 0xA1 , 0x89 , 0x0D , 0xBF , 0xE6 , 0x42 , 0x68 , 0x41 , 0x99 , 0x2D , 0x0F ,
0xB0 , 0x54 , 0xBB , 0x16

};

#define P(x) aes_s[(x)]
#define TIMES2(x) ((x & 0x80) ? ((x) << 1) ^ 0x1b : (x << 1))
#define TIMES4(x) TIMES2(TIMES2 ((x)))
#define REFRESH(x) ((x) + 1)
#define DELTA(x) (1 << (x))
#define MSB(x) ((x) & 0xF0)
#define LSB(x) ((x) & 0x0F)

uint8_t em8(uint8_t k, uint8_t p)
{

return P(k ^ p) ^ k;
}

uint8_t potr_1(uint8_t k, uint8_t n, uint8_t m1, uint8_t m2)
{

uint8_t l, c;

l = TIMES4(em8(k, n));
c = em8(k, l ^ m1) ^ m2;

return c;
}
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uint8_t recover_hi(void)
{

uint8_t kk = 0;

for (int i = 6; i >= 4; i--)
{

uint8_t m1 , m2 , c11 , c12 , n;

m1 = 17; m2 = 19;
n = (nonce << 4) ^ 0x8;
c11 = potr_1(key , n, m1 , m2);
c12 = potr_1(key + DELTA(i), n ^ DELTA(i), m1 ^ DELTA(i) ^

TIMES4(DELTA(i)), m2);

if (c11 != (c12 ^ DELTA(i)))
kk |= DELTA(i);

nonce = REFRESH(nonce);
}

return kk;
}

uint8_t recover_lo(uint8_t hi_key)
{

uint8_t kk = hi_key;

for (int i = 3; i >= 0; i--)
{

uint8_t m1 , m2 , c11 , c12 , n;
uint8_t delta_p , delta_m;

m1 = 17; m2 = 19;
n = (nonce << 4) ^ 0x8;
delta_p = DELTA(i) - MSB(kk) + ((( LSB(~kk)) >> (i + 1)) << (i +

1));
delta_m = DELTA(i) + MSB(kk) + LSB(kk);
c11 = potr_1(key + delta_p , n ^ DELTA (4), m1 ^ DELTA (4), m2);
c12 = potr_1(key - delta_m , n, m1 ^ TIMES4(DELTA (4)), m2);

if (c11 == (c12 ^ DELTA (4)))
kk |= DELTA(i);

nonce = REFRESH(nonce);
}

return kk;
}

int main()
{

uint8_t keycand = recover_lo(recover_hi ());
printf("The key candidates are %02X and %02X\n", keycand , keycand ^ 0x80

);
return 0;

}
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