
From Related-Key Distinguishers to Related-Key-Recovery
on Even-Mansour Constructions?

Pierre Karpman1,2??

1 Inria, France
2 Nanyang Technological University, Singapore

pierre.karpman@inria.fr

Abstract. We show that a distinguishing attack in the related key model on an Even-
Mansour block cipher can readily be converted into an extremely efficient key recovery attack.
Concerned ciphers include in particular all iterated Even-Mansour schemes with independent
keys. We apply this observation to the Caesar candidate Prøst-OTR and are able to
recover the whole key with a number of requests linear in its size. This improves on recent
forgery attacks in a similar setting.

Keywords: Even-Mansour, related-key attacks, Prøst-OTR.

1 Introduction

The Even-Mansour scheme is arguably the simplest way to construct a block cipher from
publicly available components. It defines the encryption E((k1, k0), p) of the plaintext p
under the (possibly equal) keys k0 and k1 as P(p⊕k0)⊕k1, where P is a public permutation.
Even and Mansour proved in 1991 that for a permutation of size n, the probability of
recovering the keys is upper-bounded by O(DT · 2−n) when the attacker considers the
permutation as a black box, where D is the data complexity and T is the time complexity
of the attack [EM91]. Although of considerable interest, this bound also shows at the same
time that the construction is not ideal, as one gets security only up to O(2

n
2) queries, which

is less than the O(2n) one would expect for an n-bit block cipher. For this reason, much
later work investigated the security of variants of the Even-Mansour cipher. A simple one is
the iterated Even-Mansour scheme with independent keys and independent permutations,
with its r-round version defined as IEMr((kr, kr−1, . . . , k0), p) := Pr−1(Pr−2(. . .P0(p ⊕
k0) ⊕ k1) . . .) ⊕ kr. It has been established that this construction is secure up to O(2

rn
r+1)

queries [CS14]. On the other hand, in a related-key model, the same construction lends
itself to trivial distinguishing attacks, and one must consider alternatives if security in this
model is necessary. Yet until the recent work of Cogliati and Seurin [CS15] and Farshim
and Procter [FP14], no variant of the Even-Mansour construction was known to be secure
in the related-key model. This is not the case anymore and it has now been proven that
one can reach a non-trivial level of related-key security for IEMr starting from r = 3 when
? This paper appears in the proceedings of ISC 2015 under the title From Related-Key Distinguishers to
Related-Key Key-Recovery on Even-Mansour Ciphers.

?? Partially supported by the Direction Générale de l’Armement and by the Singapore National Research
Foundation Fellowship 2012 (NRF-NRFF2012-06).

mailto:pierre.karpman@inria.fr

using keys linearly derived from a single master key (instead of using independent keys),
or even when r = 1 when this derivation is non-linear and meets some conditions. While
related-key analysis obviously gives much more power to the attacker than the single-key
setting, it is a widely accepted model that may provide useful results on primitives studied
in a general context, especially as related keys may naturally arise in some protocols.

Our contribution. We show that the distinguishing attacks on the Even-Mansour ciphers
in a related-key model can be extended to much more powerful key-recovery attacks by
considering modular additive differences instead of XOR differences. This applies both to
the trivial distinguishers on iterated Even-Mansour with independent keys and to the more
complex distinguisher of Cogliati and Seurin for 2-round Even-Mansour with a linear key-
schedule. While these observations are somewhat elementary, they lead to a key-recovery
attack on the authenticated-encryption scheme and Caesar candidate Prøst-OTR in
a related-key model. This improves on the recent work from FSE 2015 of Dobraunig,
Eichlseder and Mendel who use similar methods but only produce forgeries [DEM15].

2 Notation

We use || to denote string concatenation, αi with i an integer to denote the string made
of the concatenation of i copies of the character α, and α∗ to denote any string of the set
{αi, i ∈ N}, α0 denoting the empty string ε. For any string s, we use s[i] to denote its ith

element (starting from zero).
We also use ∆n

i to denote the string 0n−i−1||1||0i−1. The superscript n will always be
clear from the context and therefore omitted.

Finally, we identify strings of length n over the binary alphabet {0, 1} with elements of
the vector-space Fn2 and with the binary representation of elements of the group Z/2nZ.
The addition operation on these structures are respectively denoted by ⊕ (bitwise exclusive
or (XOR)) and + (modular addition).

3 Generic related-key key-recovery attacks on Even-Mansour ciphers

Since the work of Bellare and Kohno [BK03], it is well known that no block cipher can
resist related-key attacks (RKA) when an attacker may request encryptions under related
keys using two relation classes. A simple example showing why this cannot be the case is
to consider the classes φ⊕(k) and φ+(k) of keys related to k by the XOR and the modular
addition of any constant chosen by the attacker respectively. If we have access to (related-
key) encryption oracles E(k, ·), E(φ⊕(k), ·) and E(φ+(k), ·) for the block cipher E with κ-bit
keys, we can easily learn the value of the bit k[i] of k by comparing the result of the queries
E(k +∆i, p) and E(k ⊕∆i, p). For i < κ− 1, the plaintext p is encrypted under the same
key if k[i] = 0, then resulting in the same ciphertext, and is encrypted under different keys
if k[i] = 1, then resulting in different ciphertexts with an overwhelming probability. Doing
this test for every bit of k thus allows to recover the whole key with a complexity linear
in κ, except its most significant bit. Indeed, the carry of an addition on this bit never

2

propagates and thus there will never be a difference between the related keys. This key bit
can of course easily be recovered at the cost of one additional query once all the others
have been determined.

In the same paper, Bellare and Kohno also show that no such trivial generic attack
exists when the attacker is restricted to using only one of the two classes φ⊕ or φ+, and
they prove that an ideal cipher is in this case resistant to RKA. Taken together, these
results mean in essence that a related-key attack on a block cipher E using both classes
φ⊕(k) and φ+(k) does not say much on E , as nearly all ciphers fall to an attack in the
same model. On the other hand, an attack using either of φ⊕ or φ+ is meaningful, because
an ideal cipher is secure in that case.

3.1 Key-recovery attacks on r-round IEM with independent keys

Going back to the Even-Mansour cipher, we explicit the trivial related-key distinguish-
ers mentioned in the introduction. These distinguishers exist for r-round iterated Even-
Mansour block ciphers with independent keys, for any value of r. As they only use keys
related with, say, the φ⊕ class, they are therefore meaningful when considering the related-
key security of IEM.

From the very definition of IEMr, it is obvious to see that the two values E((kr−1, kr−2,
. . . , k0), p) and E((kr−1, kr−2, . . . , k0⊕δ), p⊕δ) are equal for any difference δ when E = IEMr

and that this equality does not hold in general, thence allowing to distinguish IEMr from
an ideal cipher.

We now show how these distinguishers can be combined with the two-class attack of
Bellare and Kohno in order to extend it to a very efficient key-recovery attack. We give
a description in the case of one-round Even-Mansour, but it can easily be extended to an
arbitrary r. The attack is very simple and works as follows: consider again E((k1, k0), p) =
P(p ⊕ k0) ⊕ k1; one can learn the value of the bit k0[i] by querying E((k1, k0), p) and
E((k1, k0 + ∆i), p ⊕ ∆i) and by comparing their values. These differ with overwhelming
probability if k0[i] = 1 and are equal otherwise.

A similar attack works on the variant of the (iterated) Even-Mansour cipher that uses
modular addition instead of XOR for the combination of the key with the plaintext. This
variant was first analyzed by Dunkelman, Keller and Shamir and offers the same secu-
rity bounds as the original Even-Mansour cipher [DKS12]. An attack in that case works
similarly by querying e.g. E((k1, k0), ∆i) and E((k1, k0 ⊕∆i), 0

κ).
Both attacks use a single difference class for the related keys (either φ⊕ or φ+), and

they are therefore meaningful as related-key attacks. They simply emulate the attack that
uses both classes simultaneously by taking advantage of the fact that the usage of key
material is very simple in Even-Mansour ciphers. Finally, we can see that in the particular
case of a one-round construction, the attack still works if one chooses the keys k1 and k0
to be equal.

3

3.2 Extension to 2-round Even-Mansour with a linear key schedule

As has been shown by Cogliati and Seurin, it is also possible to very efficiently distinguish
the 2-round Even-Mansour with related keys, even when the keys are equal or derived
from a master key by a linear key schedule [CS15]. Similarly as for IEM, we can adapt
the distinguisher and transform it into a key-recovery attack. The idea remains the same:
one replaces the φ⊕ class of the original distinguisher with φ+, which makes its success
conditioned on the value of a few key bits, hence allowing their recovery. We give the
description of our modified distinguisher for E(k, p) := P(P(k ⊕ p)⊕ k)⊕ k:

1. Query y1 := E(k +∆1, x1)
2. Set x2 to x1 ⊕∆1 ⊕∆2 and query y2 := E(k +∆2, x2)
3. Set y3 to y1 ⊕∆1 ⊕∆3 and query x3 := E−1(k +∆3, y3)
4. Set y4 to y2 ⊕∆1 ⊕∆3 and query x4 := E−1(k + (∆1 ⊕∆2 ⊕∆3), y4)
5. Test if x4 = x3 ⊕∆1 ⊕∆2

If the test is successful, it means that with overwhelming probability the key bits at
the positions of the differences ∆1, ∆2, ∆3 are all zero, as in that case k+∆i = k⊕∆i and
the distinguisher works “as intended”, and as otherwise at least one uncontrolled difference
goes through P or P−1. It is possible to restrict oneself to using differences in only two
bits in the ∆is, and as soon as two such zero bits have been found (which happens after
an expected four trials for random keys), the rest of the key bits can be tested one by one.

We conclude this short section by showing why the test of line 5 is successful when
k + ∆i = k ⊕ ∆i, but refer to Cogliati and Seurin for a complete description of their
distinguisher, including the general case of distinct permutations and keys linearly derived
from a master key (this only requires slight modifications to our simplified formulation).

For the sake of clarity, we write k⊕∆i for k+∆i, as they are equal by hypothesis. By
definition, y1 = P(P(x1 ⊕ k ⊕∆1)⊕ k ⊕∆1)⊕ k ⊕∆1 and y3 = P(P(x1 ⊕ k ⊕∆1)⊕ k ⊕
∆1)⊕ k ⊕∆1 ⊕∆1 ⊕∆3 which simplifies to P(P(x1 ⊕ k ⊕∆1)⊕ k ⊕∆1)⊕ k ⊕∆3. This
yields the following expression for x3:

x3 = P−1(P−1(P(P(x1 ⊕ k ⊕∆1)⊕ k ⊕∆1)⊕ k ⊕∆3 ⊕ k ⊕∆3)⊕ k ⊕∆3)⊕ k ⊕∆3

= P−1(P−1(P(P(x1 ⊕ k ⊕∆1)⊕ k ⊕∆1))⊕ k ⊕∆3)⊕ k ⊕∆3

= P−1(P(x1 ⊕ k ⊕∆1)⊕ k ⊕∆1 ⊕ k ⊕∆3)⊕ k ⊕∆3

= P−1(P(x1 ⊕ k ⊕∆1)⊕∆1 ⊕∆3)⊕ k ⊕∆3

Similarly, y2 = P(P(x1 ⊕ k ⊕∆1)⊕ k ⊕∆2)⊕ k ⊕∆2 and y4 = P(P(x1 ⊕ k ⊕∆1)⊕ k ⊕
∆2)⊕ k ⊕∆2 ⊕∆1 ⊕∆3, which yields the following expression for x4:

x4 = P−1(P−1(P(P(x1 ⊕ k ⊕∆1)⊕ k ⊕∆2)⊕ k ⊕∆2 ⊕∆1 ⊕∆3 ⊕ k ⊕∆1 ⊕∆2 ⊕∆3)

⊕ k ⊕∆1 ⊕∆2 ⊕∆3)⊕ k ⊕∆1 ⊕∆2 ⊕∆3

= P−1(P−1(P(P(x1 ⊕ k ⊕∆1)⊕ k ⊕∆2))⊕ k ⊕∆1 ⊕∆2 ⊕∆3)⊕ k ⊕∆1 ⊕∆2 ⊕∆3

= P−1(P(x1 ⊕ k ⊕∆1)⊕ k ⊕∆2 ⊕ k ⊕∆1 ⊕∆2 ⊕∆3)⊕ k ⊕∆1 ⊕∆2 ⊕∆3

= P−1(P(x1 ⊕ k ⊕∆1)⊕∆1 ⊕∆3)⊕ k ⊕∆1 ⊕∆2 ⊕∆3

From the final expressions of x3 and x4, we see that their XOR difference is indeed ∆1⊕∆2.

4

4 Application to Prøst-OTR

We apply the simple generic key-recovery attack to the Caesar candidate Prøst-OTR,
which is an authenticated-encryption scheme member of the Prøst family [KLL+14].
This family is based on the Prøst permutation and defines three schemes instantiating as
many modes of operation, namely COPA, OTR and APE. Only the latter can be readily
instantiated with a permutation, and both COPA and OTR rely on a keyed primitive. For
that purpose they use a block cipher defined as a one-round Even-Mansour cipher with
identical keys E(k, p) := P(p⊕ k)⊕ k with the Prøst permutation as P. We will denote
this cipher as Prøst/SEM.

Although the attack of Section 3 could be readily applied to the bare Prøst/SEM,
this cipher is only meant to be embedded into a specific instantiation of a mode such as
OTR, and attacking it out of context may not be relevant to its intended use. Hence we
must be able to mount an attack on Prøst-COPA or Prøst-OTR as a whole for it to
be really significant, which is precisely what we describe now for Prøst-OTR.

Because our attack solely relies on the Even-Mansour structure of the cipher, we refer
the interested reader to the submission document of Prøst for the definition of its per-
mutation. The same goes for the OTR mode [Min14], as we only need to focus on a small
part to describe the attack. Consequently, we just describe how the encryption of the first
block of plaintext is performed in Prøst-OTR.

OTR is a nonce-based mode of operation. It takes as input a key k, a message m,
(possibly empty) associated data a, and produces a ciphertext c corresponding to the
encryption of the message with k, and a tag t authenticating m and a together with the
key k. It is important for the security of the mode to ensure that one cannot encrypt twice
using the same nonce. However, there are no specific restriction as to their value, and we
consider throughout that one can freely choose them.

The encryption of the first block of ciphertext c1 by Prøst-OTR is defined as a
function F(k, n,m1,m2) of k, n, and the first two blocks of plaintext m1 and m2: let
` := E(k, n||10∗) be the encryption of the padded nonce and `′ := π(`), with π a linear
permutation (the multiplication by 4 in a finite field), then c1 is simply equal to E(k, `′ ⊕
m1) ⊕m2. We show this schematically along with the encryption of the second block in
Figure 4.1. Let us now apply the attack from Section 3.

Step 1: Recovering the most significant half of the key. It is straightforward to see
that one can recover the value of the bit k[i] by performing only two queries with related
keys and different nonces and messages. One just has to compare c1 = F(k, n,m1,m2) and
ĉ1 = F(k+∆i, n⊕∆i,m1⊕∆i⊕π(∆i),m2). Indeed, if k[i] = 0, then the value ˆ̀obtained
in the computation of ĉ1 is equal to ` ⊕ ∆i and ˆ̀′ = `′ ⊕ π(∆i), hence ĉ1 = c1 ⊕ ∆i. If
k[i] = 1, the latter equality does not hold with overwhelming probability.

Yet this does not allow to recover the whole key because the nonce in Prøst-OTR
is restricted to a length half of the width of the block cipher E (or equivalently of the
underlying Prøst permutation), i.e. κ2 . It is then possible to recover only half of the bits of
k using this procedure, as one cannot introduce appropriate differences in the computation

5

EK

m1

⊕

`′
m2

⊕

EK⊕

`′

`

⊕

c1 c2

Fig. 4.1. The encryption of the first two blocks of message in Prøst-OTR.

of ` for the other half. The targeted security of the whole primitive being precisely κ
2 because

of the generic single key attacks on Even-Mansour, one does not make a significant gain
by recovering only half of the key. Even though, it should still be noted that this yields an
attack with very little data requirements and with the same time complexity as the best
point on the tradeoff curve of generic attacks, which in that case has a much higher data
complexity of 2

κ
2 .

Step 2: Recovering the least significant half of the key. Even though the generic
attack in its most simple form does not allow to recover the full key of Prøst-OTR, we
can use the fact that the padding of the nonce is done on the least significant bits to our
advantage, and by slightly adapting the procedure we can iteratively recover the value of
the least significant half of the key with no more effort than for the most significant half.

Let us first show how we can recover the most significant bit of the least significant half
of the key k[κ/2− 1] (i.e. the first bit for which we cannot use the procedure of Step 1)
after a single encryption by E .

We note kMSB the (known) most significant half of the key k. To mount the attack,
one queries E(k − kMSB + ∆κ/2−1, p ⊕ ∆κ/2) and E(k − kMSB − ∆κ/2−1, p). We can see
that the inputs to P in these two cases are equal iff k[κ/2− 1] = 1. Indeed, in that case,
the carry in the addition (k − kMSB) +∆κ/2−1 propagates by exactly one position and is
“cancelled” by the difference in p, and there is no carry propagation in (k−kMSB)−∆κ/2−1.
The result of the two queries are therefore equal to C ⊕ (k − kMSB +∆κ/2−1) = C ⊕ (k ⊕
kMSB ⊕ ∆κ/2−1 ⊕ ∆κ/2) and C ⊕ (k − kMSB − ∆κ/2−1) = C ⊕ (k ⊕ kMSB ⊕ ∆κ/2−1) with
C = P(p ⊕ (k − kMSB − ∆κ/2−1)). Consequently, the XOR difference between the two
results is known and equal to ∆κ/2. If on the other hand k[κ/2− 1] = 0, the carry in
(k− kMSB)−∆κ/2−1) propagates all the way to the most significant bit of k, whereas only
two differences are introduced in the input to P in the first query. This allows to distinguish
between the two cases and thus to recover the value of this key bit.

6

Once the value of k[κ/2− 1] has been learned, one can iterate the process to recover
the remaining bits of k. The only subtlety is that we want to ensure that if there is a carry
propagation in (k − kMSB) +∆κ/2−1−i (resp. (k − kMSB)−∆κ/2−1−i), it should propagate
up to kκ/2, the position where we cancel it with an XOR difference (resp. up to the most
significant bit); this can easily be achieved by adding two terms to both keys. Let us define
γi as the value of the key k only on positions κ/2− 1 . . . κ/2− i, completed with zeros left
and right; that is γi[j] = k[j] if κ/2− 1 ≥ j ≥ κ/2 − i, and γi[j] = 0 otherwise. Let us
also define γ̃i as the binary complement of γi on its non-zero support; that is γ̃i[j] = k̃[j]
if κ/2− 1 ≥ j ≥ κ/2 − i, and γ̃i[j] = 0 otherwise. The modified queries then become
E(k − kMSB +∆κ/2−1−i + γ̃i, p⊕∆κ/2) and E(k − kMSB −∆κ/2−1−i − γi, p), for which the
propagation of the carries is ensured. Note that the difference between the results of these
two queries when k[κ/2− 1− i] = 1 is independent of i and always equal to ∆κ/2.

We conclude by showing how to apply this procedure to Prøst-OTR. For the sake
of readability, let us denote by ∆+

i and ∆−i the complete modular differences used to
recover one less significant bit k[i]. We then simply perform the two queries F(k+∆+

i , n⊕
∆κ/2,m1 ⊕∆κ/2,m2) and F(k +∆−i , n,m1 ⊕ π(∆κ/2),m2), which differ by ∆κ/2 iff ki is
one, with overwhelming probability.

All in all, one can retrieve the whole key of size κ using only 2κ related-key, related-
nonce encryption requests, ignoring everything in the output (including the tag) apart
from the value of the first block of ciphertext. We give the entire procedure to do so in
Algorithm 4.1. Note that it makes use of a procedure Refresh which picks fresh values for
two message words and (most importantly) for the nonce. Because the attack is entirely
practical, it can easily be tested. We give an implementation of the attack for a 64-bit toy
cipher in the Appendix A1.

Remark. If the padding of the nonce in Prøst-OTR were done on the most significant
bits, no attack similar to Step 2 could recover the corresponding key bits: the modular
addition is a triangular function (meaning that the result of a+ b on a bit i only depends
on the value of bits of position less than i in a and b), and therefore no XOR in the nonce
in the less significant bits could control modular differences introduced in the padding
in the more significant bits. An attack in that case would thus most likely be applicable
to general ciphers when using only the φ+ class, and it is proven that no such attack is
efficient. However, one could always imagine using a related-key class using an addition
operation reading the bits in reverse. While admittedly unorthodox, this would not result
in a stronger model than using φ+, strictly speaking.

Discussion. In a recent independent work, Dobraunig, Eichlseder and Mendel use similar
methods to produce forgeries for Prøst-OTR by considering related keys with XOR
differences [DEM15]. On the one hand, one could argue that the class φ⊕ is more natural
than φ+ and more likely to arise in actual protocols, which would make their attack more
applicable than ours. On the other hand, an ideal cipher is expected to give a similar
security against RKA using either class, which means that our model is not theoretically
1 The code is also available at: https://github.com/P1K/EMRKA.

7

https://github.com/P1K/EMRKA

Algorithm 4.1: Related-key key recovery for Prøst-OTR
Input: Oracle access to F(k, ·, ·, ·) and F(φ+(k), ·, ·, ·) for a fixed (unknown) key k of even length κ
Output: Two candidates for the key k

1 k′ := 0κ

2 for i := κ− 2 to κ/2 do
3 Refresh(n, m1, m2)
4 x := F(k, n,m1,m2)
5 y := F(k +∆i, n⊕∆i,m1 ⊕∆i ⊕ π(∆i),m2)
6 if x = y ⊕∆i then
7 k′[i] := 0

8 else
9 k′[i] := 1

10 for i := κ/2− 1 to 0 do
11 Refresh(n, m1, m2)
12 x := F(k +∆+

i , n⊕∆κ/2,m1 ⊕∆κ/2,m2)

13 y := F(k +∆−i , n,m1 ⊕ π(∆κ/2),m2)
14 if x = y ⊕∆κ/2 then
15 k′[i] := 1

16 else
17 k′[i] := 0

18 k′′ := k′

19 k′′[κ− 1] := 1
20 return (k′, k′′)

stronger than the one of Dobraunig et al., while resulting in a much more powerful key
recovery attack.

5 Conclusion

We made a simple observation that allows to convert related-key distinguishing attacks on
some Even-Mansour ciphers into much more powerful key-recovery attacks, and we used
this observation to derive an extremely efficient key-recovery attack on the Prøst-OTR
Caesar candidate.

Primitives based on the Even-Mansour construction are quite common, and it is natural
to wonder if we could mount similar attacks on other ciphers. A natural first target would
be Prøst-COPA which is also based on the Prøst/SEM cipher. However, in this mode,
encryption and tag generation depend on the encryption of a fixed plaintext ` = E(k, 0)
which is different for different keys with overwhelming probability and makes our attack
fail. The forgery attacks of Dobraunig et al. seem to fail in that case for the same reason.
Keeping with Caesar candidates, another good target would be Minalpher [STA+14],
which also uses a one-round Even-Mansour block cipher as one of its components. The
attack also fails in this case, though, because the masking key used in the Even-Mansour
cipher is derived from the master key in a highly non-linear way. In fact, Mennink recently
proved that both ciphers are resistant to related-key attacks [Men15]. Finally, leaving aside

8

authentication and going back to traditional block ciphers, we could consider designs such
as LED [GPPR11]. The attack also fails in that case, however, because the cipher uses an
iterated construction with at least 8 rounds and only one (or two) keys.

This lack of other results is not very surprising, as we only improve existing distin-
guishing attacks, and this improvement cannot be used without a distinguisher as its basis.
Therefore, any primitive for which resistance to related-key attacks is important should
already be resistant to the distinguishing attacks and thus to ours. Yet it would be reason-
able and perfectly valid to allow the presence of a simple related-key distinguisher when
designing a primitive, as this a very weak type of attack (in fact, this is for instance the
approach taken by PRINCE, among others [BCG+12]). What we have shown is that one
must be extremely careful when contemplating such a decision for Even-Mansour ciphers,
as in that case it may actually be equivalent to allowing key-recovery, the most powerful
of all attacks.

Acknowledgements. I am grateful to Jérémy Jean, Brice Minaud and the anonymous
reviewers for their comments on this work.

References

BCG+12. Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic, Lars R.
Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian Rechberger, Peter Rom-
bouts, Søren S. Thomsen, and Tolga Yalçin. PRINCE - A Low-Latency Block Cipher for
Pervasive Computing Applications - Extended Abstract. In Xiaoyun Wang and Kazue Sako,
editors, Advances in Cryptology — ASIACRYPT 2012 - 18th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing, China, December 2-6,
2012. Proceedings, volume 7658 of Lecture Notes in Computer Science, pages 208–225. Springer,
2012.

BK03. Mihir Bellare and Tadayoshi Kohno. A Theoretical Treatment of Related-Key Attacks: RKA-
PRPs, RKA-PRFs, and Applications. In Eli Biham, editor, Advances in Cryptology — EU-
ROCRYPT 2003, International Conference on the Theory and Applications of Cryptographic
Techniques, Warsaw, Poland, May 4-8, 2003, Proceedings, volume 2656 of Lecture Notes in
Computer Science, pages 491–506. Springer, 2003.

CS14. Shan Chen and John P. Steinberger. Tight Security Bounds for Key-Alternating Ciphers. In
Nguyen and Oswald [NO14], pages 327–350.

CS15. Benoit Cogliati and Yannick Seurin. On the Provable Security of the Iterated Even-Mansour
Cipher Against Related-Key and Chosen-Key Attacks. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology — EUROCRYPT 2015 - 34th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part I, volume 9056 of Lecture Notes in Computer Science, pages 584–613. Springer,
2015.

DEM15. Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Related-Key Forgeries for Prøst-
OTR. IACR Cryptology ePrint Archive, 2015:91, 2015. To appear in the proceedings of FSE 2015.

DKS12. Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in Cryptography: The Even-
Mansour Scheme Revisited. In David Pointcheval and Thomas Johansson, editors, Advances
in Cryptology — EUROCRYPT 2012 - 31st Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,
volume 7237 of Lecture Notes in Computer Science, pages 336–354. Springer, 2012.

EM91. Shimon Even and Yishay Mansour. A Construction of a Cioher From a Single Pseudorandom
Permutation. In Hideki Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors, Advances

9

in Cryptology — ASIACRYPT ’91, International Conference on the Theory and Applications
of Cryptology, Fujiyoshida, Japan, November 11-14, 1991, Proceedings, volume 739 of Lecture
Notes in Computer Science, pages 210–224. Springer, 1991.

FP14. Pooya Farshim and Gordon Procter. The Related-Key Security of Iterated Even–Mansour
Ciphers. IACR Cryptology ePrint Archive, 2014:953, 2014. To appear in the proceedings of
FSE 2015.

GPPR11. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The LED Block
Cipher. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded
Systems — CHES 2011 - 13th International Workshop, Nara, Japan, September 28 - October 1,
2011. Proceedings, volume 6917 of Lecture Notes in Computer Science, pages 326–341. Springer,
2011.

KLL+14. Elif Bilge Kavun, Martin M. Lauridsen, Gregor Leander, Christian Rechberger, Peter Schwabe,
and Tolga Yalçın. Prøst. CAESAR Proposal, 2014. http://proest.compute.dtu.dk.

Men15. Bart Mennink. XPX: Generalized Tweakable Even-Mansour with Improved Security Guarantees.
IACR Cryptology ePrint Archive, 2015:476, 2015.

Min14. Kazuhiko Minematsu. Parallelizable Rate-1 Authenticated Encryption from Pseudorandom
Functions. In Nguyen and Oswald [NO14], pages 275–292.

NO14. Phong Q. Nguyen and Elisabeth Oswald, editors. Advances in Cryptology — EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes
in Computer Science. Springer, 2014.

STA+14. Yu Sasaki, Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi Sugawara, Yumiko Mu-
rakami, Mitsuru Matsui, and Shoichi Hirose. Minalpher. CAESAR Proposal, 2014. http:
//competitions.cr.yp.to/round1/minalpherv1.pdf.

10

http://proest.compute.dtu.dk
http://competitions.cr.yp.to/round1/minalpherv1.pdf
http://competitions.cr.yp.to/round1/minalpherv1.pdf

A Example program for a 64-bit permutation

We give the source of a C program that recovers a 64-bit key from a design similar to
Prøst-OTR where the permutation has been replaced by a small ARX, for compactness.
For the sake of simplicity, we do not ensure that the nonce does not repeat in the queries.
This code is also available at: https://github.com/P1K/EMRKA.

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>

#define ROL32(x,r) (((x) << (r)) ^ ((x) >> (32 - (r))))
#define MIX(hi ,lo,r) { (hi) += (lo); (lo) = ROL32 ((lo),(r)) ; (lo) ^= (hi); }

#define TIMES2(x) ((x & 0x8000000000000000ULL) ? ((x) << 1ULL) ^
0x000000000000001BULL : (x << 1ULL))

#define TIMES4(x) TIMES2(TIMES2 ((x)))

#define DELTA(x) (1ULL << (x))
#define MSB(x) ((x) & 0xFFFFFFFF00000000ULL)
#define LSB(x) ((x) & 0x00000000FFFFFFFFULL)

/* Replace arc4random () by your favourite PRNG */

/* 64-bit permutation using Skein ’s MIX */
uint64_t p64(uint64_t x)
{

uint32_t hi = x >> 32;
uint32_t lo = LSB(x);
unsigned rcon [8] = {1, 29, 4, 8, 17, 12, 3, 14};

for (int i = 0; i < 32; i++)
{

MIX(hi, lo, rcon[i % 8]);
lo += i;

}

return ((((uint64_t)hi) << 32) ^ lo);
}

uint64_t em64(uint64_t k, uint64_t p)
{

return p64(k ^ p) ^ k;
}

uint64_t potr_1(uint64_t k, uint64_t n, uint64_t m1, uint64_t m2)
{

uint64_t l, c;

l = TIMES4(em64(k, n));
c = em64(k, l ^ m1) ^ m2;

return c;
}

uint64_t recover_hi(uint64_t secret_key)
{

uint64_t kk = 0;

for (int i = 62; i >= 32; i--)

11

https://github.com/P1K/EMRKA

{
uint64_t m1 , m2 , c11 , c12 , n;

m1 = (((uint64_t)arc4random ()) << 32) ^ arc4random ();
m2 = (((uint64_t)arc4random ()) << 32) ^ arc4random ();
n = (((uint64_t)arc4random ()) << 32) ^ 0x80000000ULL;
c11 = potr_1(secret_key , n, m1, m2);
c12 = potr_1(secret_key + DELTA(i), n ^ DELTA(i), m1 ^ DELTA(i)

^ TIMES4(DELTA(i)), m2);

if (c11 != (c12 ^ DELTA(i)))
kk |= DELTA(i);

}

return kk;
}

uint64_t recover_lo(uint64_t secret_key , uint64_t hi_key)
{

uint64_t kk = hi_key;

for (int i = 31; i >= 0; i--)
{

uint64_t m1 , m2 , c11 , c12 , n;
uint64_t delta_p , delta_m;

m1 = (((uint64_t)arc4random ()) << 32) ^ arc4random ();
m2 = (((uint64_t)arc4random ()) << 32) ^ arc4random ();
n = (((uint64_t)arc4random ()) << 32) ^ 0x80000000ULL;

delta_p = DELTA(i) - MSB(kk) + (((LSB(~kk)) >> (i + 1)) << (i +
1));

delta_m = DELTA(i) + MSB(kk) + LSB(kk);
c11 = potr_1(secret_key + delta_p , n ^ DELTA (32), m1 ^ DELTA (32)

, m2);
c12 = potr_1(secret_key - delta_m , n, m1 ^ TIMES4(DELTA (32)), m2

);

if (c11 == (c12 ^ DELTA (32)))
kk |= DELTA(i);

}

return kk;
}

int main()
{

uint64_t secret_key = (((uint64_t)arc4random ()) << 32) ^ arc4random ();
uint64_t kk1 = recover_lo(secret_key , recover_hi(secret_key));
uint64_t kk2 = kk1 ^ 0x8000000000000000ULL;

printf("The real key is %016llx , the key candidates are %016llx , %016 llx
", secret_key , kk1 , kk2);

if ((kk1 == secret_key) || (kk2 == secret_key))
printf("SUCCESS !\n");

else
printf("FAILURE !\n");

return 0;
}

12

	From Related-Key Distinguishers to Related-Key-Recovery on Even-Mansour Constructions

