
Lyra2: Password Hashing Scheme with improved
security against time-memory trade-offs

Marcos A. Simplicio Jr., Leonardo C. Almeida, Ewerton R. Andrade,
Paulo C. F. dos Santos, and Paulo S. L. M. Barreto

Escola Politécnica – Universidade de São Paulo (Poli-USP), São Paulo, Brazil.
{mjunior,lalmeida,eandrade,psantos,pbarreto}@larc.usp.br

Abstract. We present Lyra2, a password hashing scheme (PHS) based
on cryptographic sponges. Lyra2 was designed to be strictly sequential
(i.e., not easily parallelizable), providing strong security even against at-
tackers that uses multiple processing cores (e.g., custom hardware or a
powerful GPU). At the same time, it is very simple to implement in
software and allows legitimate users to fine tune its memory and proce-
ssing costs according to the desired level of security against brute force
password-guessing. Lyra2 is an improvement of the recently proposed
Lyra algorithm, providing an even higher security level against different
attack venues and overcoming some limitations of this and other existing
schemes.

Keywords: Password hashing, processing time, memory usage, crypto-
graphic sponges

Note 1. This paper corresponds to version 1 of Lyra2, originally submitted to
the Password Hashing Competition (https: // password-hashing. net/).

1 Introduction

User authentication is one of the most vital elements in modern computer se-
curity. Even though there are authentication mechanisms based on biometric
devices (“what the user is”) or physical devices such as smart cards (“what the
user has”), the most widespread strategy still is to rely on secret passwords
(“what the user knows”). This happens because password-based authentication
remains as the most cost effective and efficient method of maintaining a shared
secret between a user and a computer system [1,2]. For better or for worse, and
despite the existence of many proposals for their replacement [3], this prevalence
of passwords as one and commonly only factor for user authentication is unlikely
to change in the near future.

Password-based systems usually employ some cryptographic algorithm that
allows the generation of a pseudorandom string of bits from the password itself,
known as a password hashing scheme (PHS), or key derivation function (KDF)
[4]. Typically, the output of the PHS is employed in one of two manners [5]: it can

mailto:mjunior@larc.usp.br
mailto:lalmeida@larc.usp.br
mailto:eandrade@larc.usp.br
mailto:psantos@larc.usp.br
mailto:pbarreto@larc.usp.br
http://www.larc.usp.br
https://password-hashing.net/

2

be locally stored in the form of a “token” for future verifications of the password
or used as the secret key for encrypting and/or authenticating data. Whichever
the case, such solutions employ internally a one-way (e.g., hash) function, so that
recovering the password from the PHS’s output is computationally infeasible
[5,6].

Despite the popularity of password-based authentication, the fact that most
users choose quite short and simple strings as passwords leads to a serious issue:
they commonly have much less entropy than typically required by cryptographic
keys [7]. Indeed, a study from 2007 with 544,960 passwords from real users has
shown an average entropy of approximately 40.5 bits [8], against the 128 bits usu-
ally required by modern systems. Such weak passwords greatly facilitate many
kinds of “brute-force” attacks, such as dictionary attacks and exhaustive search
[1,9], allowing attackers to completely bypass the non-invertibility property of
the password hashing process. For example, an attacker could apply the PHS
over a list of common passwords until the result matches the locally stored to-
ken or the valid encryption/authentication key. The feasibility of such attacks
depends basically on the amount of resources available to the attacker, who
can speed up the process by performing many tests in parallel. Such attacks
commonly benefit from platforms equipped with many processing cores, such as
modern GPUs [10,11] or custom hardware [11,12].

A straightforward approach for addressing this problem is to force users to
choose complex passwords. This is unadvised, however, because such passwords
would be harder to memorize and, thus, more easily forgotten or stolen due to the
users’ need of writing them down, defeating the whole purpose of authentication
[1]. For this reason, modern password hashing solutions usually employ mecha-
nisms for increasing the cost of brute force attacks. Schemes such as PBKDF2 [6]
and bcrypt [13], for example, include a configurable parameter that controls the
number of iterations performed, allowing the user to adjust the time required by
the password hashing process. A more recent proposal, scrypt [5], allows users
to control both processing time and memory usage, raising the cost of password
recovery by increasing the silicon space required for running the PHS in cus-
tom hardware, or the amount of RAM required in a GPU. There is, however,
considerable interest in the research community in developing new (and better)
alternatives, which recently led to the creation of a competition with this specific
purpose [14].

Aiming to address this need for stronger alternatives, our studies led to the
proposal of Lyra [15], a mode of operation of cryptographic sponges [16,17] for
password hashing. In this article, we propose an improved version of Lyra, called
simply Lyra2. Lyra2 preserves the security, efficiency and flexibility of Lyra, in-
cluding: (1) the ability to configure the desired amount of memory, processing
time and parallelism to be used by the algorithm; (2) the capacity of provid-
ing a high memory usage with a processing time similar to that obtained with
scrypt; In addition, it brings important improvements when compared to its
predecessor: (1) it allows a higher security level against attack venues involving
time-memory trade-offs; (2) it allows legitimate users to benefit more effectively

3

from the parallelism capabilities of their own platforms; (3) it includes tweaks
for increasing the costs involved in the construction of dedicated hardware to
attack the algorithm.

The rest of this paper is organized as follows. Section 2 outlines the concept
of cryptographic sponges. Section 3 describes the main requirements of PHS
solutions and discusses the related work. Section 4 presents the Lyra2 algorithm
and its design rationale, while Section 5 analyses its security. Section 6 discusses
some possible extensions of Lyra2, all of which can be integrated into the basic
algorithm discussed in Section 4. Section 7 shows our preliminary benchmark
results. Finally, Section 8 presents our final remarks.

2 Cryptographic Sponges

The concept of cryptographic sponges was formally introduced by Bertoni et al.
in [16] and is described in detail in [17]. The elegant design of sponges has also
motivated the creation of more general structures, such as the Parazoa family
of functions [18]. Indeed, their flexibility is probably among the reasons that led
Keccak [19], one of the members of the sponge family, to be elected as the new
Secure Hash Algorithm (SHA-3).

In what follows and throughout this document, we use the following notation:
⊕ stands for the XOR operation; ‖ denotes concatenation; |x| represents the
bit-length of x, i.e., the minimum number of bits required for representing it;
similarly, len(x) represents the byte-length of x; truncL(x, y) and truncM(x, y)
denote, respectively, the truncation of x to its least and most significant y bits;
and Int(x, y) denotes the y-bit representation of number x. All operations are
made considering the little-endian convention.

2.1 Cryptographic Sponges: Basic Structure

In a nutshell, sponge functions provide an interesting way of building hash func-
tions with arbitrary input and output lengths. Such functions are based on the
so-called sponge construction, an iterated mode of operation that uses a fixed-
length permutation (or transformation) f and a padding rule pad. More specifi-
cally, and as depicted in Figure 1, sponge functions rely on an internal state of

Fig. 1. Overview of the sponge construction Z = [f, pad, b](M, `). Adapted from [17].

4

w = b+c bits, initially set to zero, and operate on an (padded) input M cut into
b-bit blocks. This is done by iteratively applying f to the sponge’s internal state,
operation interleaved with the entry of input bits (during the absorbing phase) or
the subsequent retrieval of output bits (during the squeezing phase). The process
stops when all input bits consumed in the absorbing phase are mapped into the
resulting `-bit output string. Typically, the f transformation is itself iterative,
being parameterized by a number of rounds (e.g., 24 for Keccak operating with
64-bit words [19]).

The sponge’s internal state is, thus, composed by two parts: the b-bit long
outer part, which interacts directly with the sponge’s input, and the c-bit long
inner part, which is only affected by the input by means of the f transformation.
The parameters w, b and c are called, respectively, the width, bitrate, and the
capacity of the sponge.

2.2 The duplex construction

A similar structure derived from the sponge concept is the Duplex construction
[17], depicted in Figure 2.

Fig. 2. Overview of the duplex construction. Adapted from [17].

Unlike regular sponges, which are stateless in between calls, a duplex function
is stateful: it takes a variable-length input string and provides a variable-length
output that depends on all inputs received so far. In other words, although the
internal state of a duplex function is filled with zeros upon initialization, it is
stored after each call to the duplex object rather than repeatedly reset. In this
case, the input string M must be short enough to fit in a single b-bit block after
padding, and the output length ` must satisfy ` 6 b.

3 Password Hashing Schemes (PHS)

As previously discussed, the basic requirement for a PHS is to be non-invertible,
so that recovering the password from its output is computationally infeasible.
Moreover, a good PHS’s output is expected to be indistinguishable from random
bit strings, preventing an attacker from discarding part of the password space

5

based on perceived patterns [20]. In principle, those requirements can be easily
accomplished simply by using a secure hash function, which by itself ensures that
the best attack venue against the derived key is through brute force (possibly
aided by a dictionary or “usual” password structures [7,21]).

What any modern PHS do, then, is to include techniques that raise the
cost of brute-force attacks. A first strategy for accomplishing this is to take as
input not only the user-memorizable password pwd itself, but also a sequence
of random bits known as salt. The presence of such random variable thwarts
several attacks based on pre-built tables of common passwords, i.e., the attacker
is forced to create a new table from scratch for every different salt [20,6]. The
salt can, thus, be seen as an index into a large set of possible keys derived from
pwd, and need not to be memorized or kept secret [6].

A second strategy is to purposely raise the cost of every password guess in
terms of computational resources, such as processing time and/or memory usage.
This certainly also raises the cost of authenticating a legitimate user entering
the correct password, meaning that the algorithm needs to be configured so that
the burden placed on the target platform is minimally noticeable by humans.
Therefore, the legitimate users and their platforms are ultimately what impose
an upper limit on how computationally expensive the PHS can be for themselves
and for attackers. For example, a human user running a single PHS instance is
unlikely to consider a nuisance that the password hashing process takes 1 s to
run and uses a small part of the machine’s free memory, e.g., 20 MB. On the
other hand, supposing that the password hashing process cannot be divided into
smaller parallelizable tasks, achieving a throughput of 1,000 passwords tested
per second requires 20 GB of memory and 1,000 processing units as powerful as
that of the legitimate user.

A third strategy, especially useful when the PHS involves both processing
time and memory usage, is to use a design with low parallelizability. The rea-
soning is as follows. For an attacker with access to p processing cores, there is
usually no difference between assigning one password guess to each core or par-
allelizing a single guess so it is processed p times faster: in both scenarios, the
total password guessing throughput is the same. However, a sequential design
that involves configurable memory usage imposes an interesting penalty to at-
tackers who do not have enough memory for running the p guesses in parallel.
For example, suppose that testing a guess involves m bytes of memory and the
execution of n instructions. Suppose also that the attacker’s device has 100m
bytes of memory and 1000 cores, and that each core executes n instructions per
second. In this scenario, up to 100 guesses can be tested per second against a
strictly sequential algorithm (one per core), the other 900 cores remaining idle
because they have no memory to run.

Aiming to provide a deeper understanding on the challenges faced by PHS
solutions, in what follows we discuss the main characteristics of platforms used
by attackers and then how existing solutions avoid those threats.

6

3.1 Attack platforms

The most dangerous threats faced by any PHS comes from platforms that benefit
from “economies of scale”, especially when cheap, massively parallel hardware
is available. The most prominent examples of such platforms are Graphics Pro-
cessing Units (GPUs) and custom hardware synthesized from FPGAs [11].

Graphics Processing Units (GPUs). Following the increasing demand for
high-definition real-time rendering, Graphics Processing Units (GPUs) have tra-
ditionally carried a large number of processing cores, boosting its parallelization
capability. Only more recently, however, GPUs evolved from specific platforms
into devices for universal computation and started to give support to standard-
ized languages that help harness their computational power, such as CUDA [22]
and OpenCL [23]). As a result, they became more intensively employed for more
general purposes, including password cracking [10,11].

As modern GPUs include a few thousands processing cores in a single piece
of equipment, the task of executing multiple threads in parallel becomes simple
and cheap. They are, thus, ideal when the goal is to test multiple passwords inde-
pendently or to parallelize a PHS’s internal instructions. For example, NVidia’s
Tesla K20X, one of the top GPUs available, has a total of 2,688 processing cores
operating at 732 MHz, as well as 6 GB of shared DRAM with a bandwidth of
250 GB per second [24]. Its computational power can also be further expanded
by using the host machine’s resources [22], although this is also likely to limit
the memory throughput. Supposing this GPU is used to attack a PHS whose
parametrization makes it run in 1 s and take less than 2.23 MB of memory, it
is easy to conceive an implementation that tests 2,688 passwords per second.
With a higher memory usage, however, this number is deemed to drop due to
the GPU’s memory limit of 6 GB. For example, if a sequential PHS requires 20
MB of DRAM, the maximum number of cores that could be used simultaneously
becomes 300, only 11% of the total available.

Field Programmable Gate Arrays (FPGAs). An FPGA is a collection
of configurable logic blocks wired together and with memory elements, forming
a programmable and high-performance integrated circuit. In addition, as such
devices are configured to perform a specific task, they can be highly optimized
for its purpose (e.g., using pipelining [25,26]). Hence, as long as enough resources
(i.e., logic gates and memory) are available in the underlying hardware, FPGAs
potentially yield a more cost-effective solution than what would be achieved
with a general-purpose CPU of similar cost [12]. When compared to GPUs,
FPGAs may also be advantageous due to the latter’s considerably lower energy
consumption [27,28], which can be further reduced if its circuit is synthesized in
the form of custom logic hardware (ASIC) [27].

A recent example of password cracking using FPGAs is presented in [11].
Using a RIVYERA S3-5000 cluster [29] with 128 FPGAs against PBKDF2-
SHA-512, the authors reported a throughput of 356,352 passwords tested per

7

second in an architecture having 5,376 password processed in parallel. It is in-
teresting to notice that one of the reasons that made these results possible is
the small memory usage of the PBKDF2 algorithm, as most of the underlying
SHA-2 processing is performed using the device’s memory cache (much faster
than DRAM) [11, Sec. 4.2]. Against a PHS requiring 20 MB to run, for example,
the resulting throughput would presumably be much lower, especially consider-
ing that the FPGAs employed can have up to 64 MB of DRAM [29] and, thus,
up to three passwords can be processed in parallel rather than 5,376.

Interestingly, a PHS that requires a similar memory usage would be trouble-
some even for state-of-the-art clusters, such as the newer RIVYERA V7-2000T
[30]. This powerful cluster carries up to four Xilinx Virtex-7 FPGAs and up to
128 GB of shared DRAM, in addition to the 20 GB available in each FPGA [30].
Despite being much more powerful, in principle it would still be unable to test
more than 2,600 passwords in parallel against a PHS that strictly requires 20
MB to run.

3.2 Scrypt

Arguably, the main password hashing solutions available in the literature are
[14]: PBKDF2 [6], bcrypt [13] and scrypt [5]. Since scrypt is only PHS among
them that explores both memory and processing costs and, thus, is directly
comparable to Lyra2, its main characteristics are described in what follows. For
the interested reader, a discussion on PBKDF2 and bcrypt is provided in the
appendices.

The design of scrypt [5] focus on coupling memory and time costs. For this,
scrypt employs the concept of “sequential memory-hard” functions: an algorithm
that asymptotically uses almost as much memory as it requires operations and
for which a parallel implementation cannot asymptotically obtain a significantly
lower cost. As a consequence, if the number of operations and the amount of
memory used in the regular operation of the algorithm are both O(R), the
complexity of a memory-free attack (i.e., an attack for which the memory usage
is reduced to O(1)) becomes Ω(R2), where R is a system parameter. We refer
the reader to [5] for a more formal definition.

The following steps compose scrypt’s operation (see Algorithm 1). First, it
initializes p b-long memory blocks Bi. This is done using the PBKDF2 algo-
rithm with HMAC-SHA-256 [31] as underlying hash function and a single itera-
tion. Then, each Bi is processed (incrementally or in parallel) by the sequential
memory-hard ROMix function. Basically, ROMix initializes an array M of R
b-long elements by iteratively hashing Bi. It then visits R positions of M at
random, updating the internal state variable X during this (strictly sequential)
process in order to ascertain that those positions are indeed available in memory.
The hash function employed by ROMix is called BlockMix , which emulates a
function having arbitrary (b-long) input and output lengths; this is done using
the Salsa20/8 [32] stream cipher, whose output length is h = 512. After the p
ROMix processes are over, the Bi blocks are used as salt in one final iteration
of the PBKDF2 algorithm, outputting key K.

8

Algorithm 1 Scrypt.

Param: h . BlockMix ’s internal hash function output length

Input: pwd . The password

Input: salt . A random salt

Input: k . The key length

Input: b . The block size, satisfying b = 2r · h
Input: R . Cost parameter (memory usage and processing time)

Input: p . Parallelism parameter

Output: K . The password-derived key

1: (B0...Bp−1)←PBKDF2HMAC−SHA−256(pwd, salt, 1, p · b)
2: for i← 0 to p− 1 do
3: Bi ←ROMix(Bi, R)
4: end for
5: K ←PBKDF2HMAC−SHA−256(pwd,B0 ‖B1 ‖ ... ‖Bp−1, 1, k)
6: return K . Outputs the k-long key

7: function ROMix(B,R) . Sequential memory-hard function

8: X ← B
9: for i← 0 to R− 1 do . Initializes memory array M

10: Vi ← X ; X ←BlockMix(X)
11: end for
12: for i← 0 to R− 1 do . Reads random positions of M

13: j ← Integerify(X) mod R
14: X ←BlockMix(X ⊕ Mj)
15: end for
16: return X
17: end function

18: function BlockMix(B) . b-long in/output hash function

19: Z ← B2r−1 . r = b/2h, where h = 512 for Salsa20/8

20: for i← 0 to 2r − 1 do
21: Z ← Hash(Z ⊕ Bi) ; Yi ← Z
22: end for
23: return (Y0, Y2, ..., Y2r−2, Y1, Y3, Y2r−1)
24: end function

Scrypt displays a very interesting design, being one of the few existing so-
lutions that allow the configuration of both processing and memory costs. One
of its main shortcomings is probably the fact that it strongly couples memory
and processing requirements for a legitimate user. Specifically, scrypt’s design
prevents users from raising the algorithm’s processing time while maintaining a
fixed amount of memory usage, unless they are willing to raise the p parameter
and allow further parallelism to be exploited by attackers. Another inconve-
nience with scrypt is the fact that it employs two different underlying hash
functions, HMAC-SHA-256 (for the PBKDF2 algorithm) and Salsa20/8 (as the
core of the BlockMix function), leading to increased implementation complexity.
Finally, even though Salsa20/8’s known vulnerabilities [33] are not expected to
put the security of scrypt in hazard [5], using a stronger alternative would be

9

at least advisable, especially considering that the scheme’s structure does not
impose serious restrictions on the internal hash algorithm used by BlockMix .
In this case, a sponge function could itself be an alternative. However, sponges’
intrinsic properties make some of scrypt’s operations unnecessary: since sponges
support inputs and outputs of any length, the whole BlockMix structure could
be replaced; in addition, sponges can operate in the stateful and sequential du-
plexing mode, meaning that the state variable X used by ROMix would become
redundant.

Inspired by scrypt’s design, Lyra2 builds on the properties of sponges to pro-
vide not only a simpler, but also more secure solution. Indeed, Lyra2 stays on
the “strong” side of the memory-hardness concept: the processing cost of attacks
involving less memory than specified by the algorithm grows much faster than
quadratically, surpassing the best achievable with scrypt and effectively preven-
ting any (useful) time-memory trade-off. This characteristic greatly discourages
attackers from trading memory usage for processing time, which is exactly the
goal of a PHS in which usage of both resources are configurable. In addition,
Lyra2 allows for a higher memory usage for a similar processing time, increasing
the cost of any possible attack venue beyond that of scrypt’s.

4 Lyra2

As any PHS, Lyra2 takes as input a salt and a password, creating a pseudoran-
dom output that can then be used as key material for cryptographic algorithms
or as an authentication string [4]. Internally, the scheme’s memory is organized
as a matrix that is expected to remain in memory during the whole password
hashing process: since its cells are iteratively read and written, discarding a cell
for saving memory leads to the need of recomputing it from scratch, until the
point it was last modified, whenever that cell is accessed once again. The con-
struction and visitation of the matrix is done using a stateful combination of the
absorbing, squeezing and duplexing operations of the underlying sponge (i.e., its
internal state is never reset to zeros), ensuring the sequential nature of the whole
process. Also, the number of times the matrix’s cells are revisited after initial-
ization is defined by the user, allowing Lyra2’s execution time to be fine-tuned
according to the target platform’s resources.

In this section, we describe the Lyra2 algorithm in detail and discuss its
design rationale and resulting properties.

4.1 Structure and rationale

Lyra2’s steps are shown in Algorithm 2. As highlighted in the pseudocode’s
comments, the PHS’s operation is composed by three sequential phases: Setup,
Wandering and Wrap-up.

The Setup phase The first part of the algorithm is the Setup Phase (lines 1
to 15). This phase comprises the construction of a R×C memory matrix whose

10

cells are b-long blocks, where R and C are user-defined parameters and b is the
underlying sponge’s bitrate (in bits).

Algorithm 2 The Lyra2 Algorithm.
Param: H . Sponge with block size b (in bits) and underlying permutation f

Param: ρ . Number of rounds of f during the Setup and Wandering phases

Param: W . The target machine’s word size (usually, 32 or 64)

Input: pwd . The password

Input: salt . A salt

Input: T . Time cost, in number of iterations

Input: R . Number of rows in the memory matrix

Input: C . Number of columns in the memory matrix (C > 2)

Input: k . The desired key length, in bits

Output: K . The password-derived k-long key

1: . Setup phase: Initializes a (R×C) memory matrix. The matrix’s cells have b bits each

2: . Byte representation of input parameters (others can be added)

3: basil← len(k) ‖ len(pwd) ‖ len(salt) ‖T ‖R ‖C
4: H.absorb(pad(pwd ‖ salt ‖ basil)) . Padding rule: 10∗1.

5: M [0] ‖M [1]← H.squeezeρ(2C · b) . Initializes the first and second rows

6: row∗ ← 0 ; prev ← 1 ; row ← 2 . The first and second rows will feed the sponge

7: do . Filling Loop: initializes remainder rows

8: for col← 0 to C − 1 do . Columns Loop: updates both M [row] and M [row∗]

9: rand← H.duplexingρ(M [prev][col] ⊕ M [row∗][col], b)
10: M [row][col]← rand
11: M [row∗][col]←M [row∗][col] ⊕ rotW (rand) . rotW (): left rotation

12: end for
13: if row∗ 6= 0 then row∗ ← row∗ − 1 else row∗ ← prev end if
14: prev ← row ; row ← row + 1 . The next row in sequence will be initialized

15: while (row 6 R− 1)

16: .Wandering phase: Iteratively overwrites cells of the memory matrix

17: dir ← −1 ; prev ← 0 ; row ← R− 1 . Start visiting rows in reverse order

18: for τ ← 1 to T do . Time Loop

19: do . Visitation Loop: rows read in reverse order from before

20: row∗ ← (truncL(rand,W) ⊕ prev) mod R . A random row will be visited

21: for col← 0 to C−1 do . Columns Loop: updates both M [row] and M [row∗]

22: rand← H.duplexingρ(M [prev][col] ⊕ M [row∗][col], b)
23: M [row][col]←M [row][col] ⊕ rand
24: M [row∗][col]←M [row∗][col] ⊕ rotW (rand)
25: end for
26: prev ← row ; row ← row+ dir . The next row in sequence will be visited

27: while (0 6 row 6 R− 1)
28: dir ← −dir ; prev ← R− row ; row ← row + dir
29: end for

30: .Wrap-up phase: key computation

31: H.absorb(M [row∗][0]) . Absorbs a final column with a full-round sponge

32: K ← H.squeeze(k) . Squeezes k bits with a full-round sponge

33: return K . Provides k-long bitstring as output

11

The Setup phase starts when the sponge absorbs the (properly padded) pass-
word and salt, together with an optional basil bitstring, initializing a salt- and
pwd-dependent internal state (line 4). The padding rule adopted by Lyra2 is the
multi-rate padding pad10∗1 described in [17], hereby denoted simply pad, which
appends a single bit 1 followed by as many bits 0 as necessary followed by a
single bit 1, so that at least 2 bits are appended. In this first absorb operation,
the goal of the basil bitstring is basically to avoid collisions with some trivial
combinations of salts an passwords: for example, for any (u, v | u + v = α), we
have a collision if pwd =0u, salt = 0v and basil is an empty string; however,
this should not occur if basil explicitly includes u and v. Therefore, basil can be
seen as an “extension” of the salt, which can include any length of additional
information such as: the list of parameters passed to the PHS (including the
salt, password, and output lengths); a user identification string; a domain name
toward which the user is authenticating him/herself (useful in remote authen-
tication scenarios), among others. Anyhow, using a non-empty basil is made
optional in the algorithm because in many real-world scenarios such collisions
are not considered a serious problem, since the salts used in any given system
are usually of fixed length and, even if they are not, they are long and random
enough to avoid collisions by themselves.

Once the internal state of the sponge is initialized, its reduced squeezing
operation H.squeezeρ is called for initializing the first two rows of the memory
matrix, M [0] and M [1], without any further input (line 5). Here, “reduced”
means that the duplexing may actually be done with a reduced-round version of
f , denoted fρ for indicating that ρ rounds are executed rather than the regular
number of rounds ρmax. This approach accelerates the duplexing operation and,
thus, allows more memory positions to be covered in the same amount of time
that with the application of a full-round f . Using reduced-round primitives in
the core of cryptographic constructions is not unheard in the literature, as it is
the main idea behind the Alred family of message authentication algorithms
[34,35,36,37]. As further discussed in Section 4.2, even though the requirements
in the context of password hashing are different, this strategy does not decrease
the security of the scheme as long as fρ is non-cyclic and highly non-linear, which
should be the case for the vast majority of secure hash functions.

After M [0] and M [1] are initialized, the sponge’s reduced duplexing ope-
ration H.duplexingρ is then repeatedly called over the XOR of two rows (line
9): M [prev], the one lastly initialized; and M [row∗], a row from the window
comprising every row initialized prior to M [prev], taken in the reverse order of
their initialization, the said window doubling in size whenever all of its rows
are visited (i.e., right after M [row∗] = M [0]). More formally, in any iteration
i > 2 of the Setup phase, the sponge’s input is M [prev] = M [i− 1] XORed with
M [row∗] = M [21+blg(i−1)c − i]. Therefore, these two rows must be available in
memory before the algorithm can proceed. A similar effect could be achieved if
the sponge’s input was the concatenation of M [prev] and M [row∗], but XORing
them instead is advantageous because then the duplexing operation involves a
single call to the underlying f rather than two. The side-effect of this approach

12

is that, if C = 1, the first b bits of the sponge’s state would be canceled with
the value of M [prev] fed to the sponge; this undesirable situation is avoided in
Lyra2, though, due to the C > 2 restriction.

The corresponding output of the reduced duplexing operation, rand, then
modifies two rows (lines 10 and 11): M [row], which has not been initialized
yet, receives the values of rand directly; meanwhile, the columns of the al-
ready initialized row M [row∗] have their values updated after being XORed
with rotW (rand), i.e., rand rotated to the left by 1 word (e.g., 64 bits). The
goal of this left rotation is to avoid the canceling of rand if M [row] and M [row∗]
are ever XORed together, which does not happen during the Setup phase but,
as will be seen in what follows, may occur during the Wandering phase. Notice
that any rotation would be similarly good for avoiding such situations, but a
rotation by one word to any direction can be done basically for free, simply by
rearranging words instead of actually executing shifts or rotations. More for-
mally, representing rand as an array of words rand[0] . . . rand[b/W −1] (i.e., the
first b bits of the outer state, from top to bottom as depicted in Figures 1 and
2), we have M [row][i] ← rand[i] and M [row∗][i] ← rand[(i − 1) mod (b/W)]
(0 6 i 6 b/W − 1).

The Setup phase ends when all R rows of the memory matrix are initialized,
which also means that some of them have been updated since their initialization.

The Wandering phase The most time-consuming of all phases, the Wandering
Phase (lines 18 to 29), takes place after the Setup phase is finished, without
resetting the sponge’s internal state. Similarly to the Setup, the core of the
Wandering phase comprises the reduced duplexing of M [prev] ⊕ M [row∗] for
computing a random-like output rand (line 22), which is then XORed with
M [row] (line 23) and with M [row∗] after being rotated (line 24).

One important difference, however, is that the index row∗ is not deterministic
anymore, but is computed as “(truncL(rand,W) ⊕ prev) mod R” (see line 20).
Therefore, row∗ depends on the most recently computed value of rand[0] (the
first word of the sponge’s outer state, from top to bottom according to Figures 1
and 2) and, thus, corresponds to a pseudorandom value ∈ [0, R− 1] that is only
learned after the conclusion of the previous duplexing operation. We note that
making “row∗ ← (truncL(rand,W) mod R)” in line 20 would lead to a similar
effect, but the additional “⊕ prev” avoids the situation in which row∗ ≡ prev,
at least in the case where R is a power of 2 (which is recommended because,
then, the mod operation can be implemented with a simple logical AND). This
is interesting because, when this happens, the algorithm ends up duplexing a
string of zeros in its line 22 instead of enforcing the availability of both M [row∗]
and M [prev] at that point of the execution. Although there is a low probability
of such occurrences even without this trick (on the order of 1/R), the additional
⊕ avoids this situation better and at a very low cost.

Another distinct aspect of the Wandering phase refers to how the row index
is handled: instead of going from 0 to R − 1 as in the Setup phase, the order is
the exact opposite when the Time Loop (lines 18–29) is executed for the first

13

time, and then is reversed once again for each iteration τ of this loop (as the
dir variable is updated in line 28). The prev index, on the other hand, still
corresponds to the previous value of row; the sole exception is during the first
iteration of the Visitation Loop (lines 19–27), in which prev = 0 (when τ is odd)
or prev = R− 1 (when τ is even).

The Wrap-up phase Finally, after (T ·R) rows are iteratively duplexed in the
Wandering phase, R rows per iteration of the Time Loop, the algorithm enters
the Wrap-up Phase. This phase consists of a full-round absorbing operation (line
31) of a single cell of the memory matrix, followed by a full-round squeezing
operation (line 32) for generating k bits, once again without resetting sponge’s
internal state to zeros. The goal of this final absorb operation is simply to ensure
that the squeezing of the key bitstring will only start after the application of
one full-round f to the sponge’s state — notice that, as shown in Figure 1, the
squeezing phase starts with b bits being output rather than passing by f , and
at this point in Lyra2 the state was only updated by the reduced-round f . As
a result, this last stage employs only the regular operations of the underlying
sponge, building on its security to ensure that the whole process is both non-
invertible and of sequential nature.

4.2 Strictly sequential design

Like with PBKDF2 and other existing PHS, Lyra2’s design is strictly sequen-
tial, as the sponge’s internal state is iteratively updated during its operation.
Specifically, and without loss of generality, assume that the sponge’s state be-
fore duplexing input ci = M [prev][col + i] ⊕ M [row∗][col + i] is si; then, after
ci is processed, the updated state becomes si+1 = fρ(si ⊕ ci) and the sponge
outputs randi, the first b bits of si+1. Now, suppose the attacker wants to pa-
rallelize the duplexing of multiple columns in lines 8–12 (Setup phase) or in
lines 21–25 (Wandering phase), obtaining {rand0, rand1, rand2} faster than se-
quentially computing rand0 = fρ(s0 ⊕ c0), rand1 = fρ(s1 ⊕ c1), and then
rand2 = fρ(s2 ⊕ c2).

If the sponge’s transformation f was affine, the above task would be quite
easy. For example, if fρ was the identity function, the attacker could use two
processing cores to compute rand0 = s0 ⊕ c0, x = c1 ⊕ c2 in parallel and then,
in a second step, make rand1 = rand0 ⊕ c1, rand2 = rand0 ⊕ x also in parallel.
With dedicated hardware and adequate wiring, this could be done even faster,
in a single step. However, for a highly non-linear transformation fρ, it should
be hard to decompose two iterative duplexing operations fρ(fρ(s0 ⊕ c0) ⊕ c1)
into an efficient parallelizable form, let alone several applications of fρ. It is
interesting to notice that, if fρ has some obvious cyclic behavior, always resetting
the sponge to a known state s after v cells are visited, then the attacker could
easily parallelize the visitation of ci and ci+v. Nonetheless, any reasonably secure
fρ is expected to prevent such cyclic behavior by design, since otherwise this
property could be easily explored for finding internal collisions against the full f

14

itself. In summary, even though an attacker may be able to parallelize internal
parts of fρ, the stateful nature of Lyra2 creates several “serial bottlenecks” that
prevent duplexing operations from being executed in parallel.

Assuming that the above-mentioned structural attacks are unfeasible, paral-
lelization can still be achieved in a “brute-force” manner. Namely, the attacker
could create two different sponge instances, I0 and I1, and try to initialize their
internal states to s0 and s1, respectively. If s0 is known, all the attacker needs
to do is compute s1 faster than actually duplexing c0 with I0. For example, the
attacker could rely on a large table mapping states and input blocks to the re-
sulting states, and then use the table entry (s0, c0) 7→ s1. For any reasonable
cryptographic sponge, however, the state and block sizes are expected to be quite
large (e.g., 512 or 1,024 bits), meaning that the amount of memory required for
building a complete map makes this approach unpractical.

Alternatively, the attacker could simply initialize several I1 instances with
guessed values of s1, and use them to duplex c1 in parallel. Then, when I0
finishes running and the correct value of s1 is inevitably determined, the attacker
could compare it to the guessed values, keeping only the result obtained with
the correct instantiation. At first sight, it might seem that a reduced-round f
facilitates this task, since the consecutive states s0 and s1 may share some bits
or relationships between bits, thus reducing the number of possibilities that need
to be included among the guessed states. Even if that is the case, however, any
transformation f is expected to have a complex relationship between the input
and output of every single round and, to speed-up the duplexing operation, the
attacker needs to explore such relationship faster than actually processing ρ
rounds of f . Otherwise, the process of determining the target guessing space
will actually be slower than simply processing cells sequentially. Furthermore, to
guess the state that will be reached after v cells are visited, the attacker would
have to explore relationships between roughly v ·ρ rounds of f faster than merely
running v · ρ rounds of fρ. Hence, even in the (unlikely) case that guessing two
consecutive states can be made faster than running ρ of f , this strategy scales
poorly since any existing relationship between bits should be diluted as v · ρ
approaches ρmax.

An analogous reasoning applies to the Filling / Visitation Loop, as well as
to the Time Loop. The difference for the former is that, to parallelize the du-
plexing of two rows from consecutive iterations, ri and ri+1, the attacker needs
to determine the sponge’s internal state si+1 that will result from duplexing ri
without actually performing the C ·ρ rounds of f involved in this operation. For
the latter, the state to be determined would be that resulting from the duplexing
of several rows, which involves C ·R · ρ rounds of f .

Therefore, even if highly parallelizable hardware is available to attackers, it is
unlikely that they will be able to take full advantage of this parallelism potential
for speeding up the operation of any given instance of Lyra2.

15

4.3 Configuring memory usage and processing time

The total amount of memory occupied by Lyra2’s memory matrix is m = b ·R ·C
bits. The value of b corresponds to the underlying sponge function’s bitrate.
With this choice of b, there is no need to pad the incoming blocks as they are
processed by the duplex construction, which leads to a simpler and potentially
faster implementation. The R and C parameters, on the other hand, can be
defined by the user, thus allowing the configuration of the amount of memory
required during the algorithm’s operation.

Ignoring ancillary operations, the processing cost of Lyra2 is basically deter-
mined by the number of calls to the sponge’s underlying f function. Its appro-
ximate total cost is, thus: d(|pwd|+ |salt|+ |basil|)/be+ R · C · ρ/ρmax calls in
the Setup phase, plus T · R · C · ρ/ρmax in the Wandering phase, plus dk/be in
the Wrap-up phase, leading roughly to (T + 1) · R · C · ρ/ρmax calls to f for
small lengths of pwd, salt and k. Therefore, while the amount of memory used
by the algorithm imposes a lower bound on its total running time, the latter
can be linearly increased without affecting the former by choosing a suitable T
parameter. This allows users to explore the most abundant resource in a (legit-
imate) platform with unbalanced availability of memory and processing power.
This design also allows Lyra2 to use more memory than scrypt for a similar
processing time: while scrypt employs a full-round hash for processing each of
its elements, Lyra2 employs a reduced-round, faster operation for the same task.

4.4 On the underlying sponge

Even though Lyra2 is compatible with any hash functions from the sponge family,
the newly approved SHA-3, Keccak [19], does not seem to be the best alternative
for this purpose. This happens because Keccak excels in hardware rather than
in software performance [38]. Hence, for the specific application of password
hashing, it gives more advantage to attackers using custom hardware than to
legitimate users running a software implementation.

Our recommendation, thus, is toward using a secure software-oriented algo-
rithm with low parallelism as the sponge’s f transformation. One example is
Blake2b [39], a slightly tweaked version of Blake [40]. Blake itself displays a se-
curity level similar to that of Keccak [41], and its compression function has been
shown to be a good permutation [42,43] and to have a strong diffusion capability
[40], while Blake2b retains most of these security properties [44].

4.5 Practical considerations

Lyra2 displays a quite simple structure, building as much as possible on the in-
trinsic properties of sponge functions operating on a fully stateful mode. Indeed,
the whole algorithm is composed basically of loop controlling and variable ini-
tialization statements, while the data processing itself is done by the underlying
hash function H. Therefore, we expect the algorithm to be easily implementable
in software, especially if a sponge function is already available.

16

The adoption of sponges as underlying primitive also gives Lyra2 tremendous
flexibility. For example, since the user’s input (line 4 of Algorithm 1) is processed
by an absorb operation, the length and contents of such input can be easily
chosen by the user, as previously discussed. Likewise, the algorithm’s output
is computed using the sponge’s squeezing operation, allowing any number of
bits to be securely generated without the need of using another primitive (e.g.,
PBKDF2, as done in scrypt).

Another feature of Lyra2 is that its memory matrix was designed to allow
legitimate users to take advantage of memory hierarchy features, such as caching
and prefetching. As observed in [5], such mechanisms usually make access to
consecutive memory locations in real-world machines much faster than accesses
to random positions, even for memory chips classified as “random access”. As a
result, a memory matrix having a small R is likely to be visited faster than a
matrix having a small C, even for identical values of R·C. Therefore, by choosing
adequate R and C values, Lyra2 can be optimized for running faster in the target
(legitimate) platform while still imposing penalties to attackers under different
memory-accessing conditions. For example, by matching b · C to approximately
the size of the target platform’s cache lines, memory latency can be significantly
reduced, allowing T to be raised without impacting the algorithm’s performance
in that specific platform.

Besides performance, making C > ρmax is also recommended for security rea-
sons: as discussed in Section 4.2, this parametrization ensures that the sponge’s
internal state is scrambled with (at least) the full strength of the underlying
hash function after the execution of the Columns Loop (both in the Setup and
Wandering phases). The task of guessing the sponge’s state after the conclu-
sion of any iteration of a Columns Loop without actually executing it becomes,
thus, much harder. After all, assuming the underlying sponge can be modeled
as a random oracle, its internal state should be indistinguishable from a random
bitstring.

One final practical concern taken into account in the design of Lyra2 refers to
how long the original password provided by the user needs to remain in memory.
Specifically, the memory position storing pwd can be overwritten right after the
first absorb operation (line 4 of Algorithm 2). This avoids situations in which
a careless implementation ends up leaving pwd in the device’s volatile memory
or, worse, leading to its storage in non-volatile memory due to memory swaps
performed during the algorithm’s memory-expensive phases. Hence, it meets the
general guideline of purging private information from memory as soon as it is not
needed anymore, preventing that information’s recovery in case of unauthorized
access to the device [45,46].

5 Security analysis

Lyra2’s design is such that (1) the derived key is non-invertible, due to the ini-
tial and final full hashing of pwd and salt; (2) attackers are unable to parallelize
Algorithm 2 using multiple instances of the cryptographic sponge Hash, so they

17

cannot significantly speed up the process of testing a password by means of mul-
tiple processing cores; (3) once initialized, the memory matrix needs to remain
available during most of the password hashing process, meaning that the optimal
operation of Lyra2 requires enough (fast) memory to hold its contents.

For better performance, a legitimate user is likely to store the whole memory
matrix in volatile memory, facilitating its access in each of the several iterations
of the Wandering and Wrap-up phases. An attacker running multiple instances
of Lyra2, on the other hand, may decide not to do the same, but to keep a
smaller part of the matrix in fast memory aiming to reduce the memory costs
per password guess. Even though this alternative approach inevitably lowers the
throughput of each individual instance of Lyra2, the goal with this strategy is to
allow more guesses to be independently tested in parallel, thus raising the overall
throughput of the process. There are basically two methods for accomplishing
this. The first is to trade memory for processing time, i.e., storing only the
sponge’s internal state after each row is processed and discarding (parts of)
the matrix; then, the attacker can recompute the discarded information from
scratch, when (and only when) it becomes necessary; we call this a Low-Memory
attack. The second it to use low-cost (and, thus, slower) storage devices, such as
magnetic hard disks, which we call a Slow-Memory attack.

In what follows, we discuss both attack venues and evaluate their relative
costs, showing the drawbacks of such alternative approaches. Our goal with this
discussion is to demonstrate how Lyra2’s design discourages attackers from ma-
king such memory-processing trade-offs while testing many passwords in parallel.
In other words, we show that they are more likely to pay the memory costs as
configured by the legitimate user, which in turn limits the attackers’ ability
to take advantage of highly parallel platforms, such as GPUs and FPGAs, for
password cracking.

In addition the above attacks, we also discuss the so-called Cache-Timing
attacks [47], which employ a spy process collocated to the PHS and, by observing
the latter’s execution, could be able to recover the user’s password without the
need of engaging in an exhaustive search.

5.1 Low-Memory attacks

Before we discuss low-memory attacks against Lyra2, it is instructive to consider
how such attacks can be perpetrated against scrypt’s ROMix structure (see
Algorithm 1), since its sequential memory hard design is mainly intended to
provide protection against this particular attack venue. Specifically, as a direct
consequence of scrypt’s memory hard design, we can formulate Theorem 1 below:

Theorem 1. Whilst the memory and processing costs of scrypt are both O(R)
for a system parameter R, one can achieve a memory cost of O(1) (i.e., a
memory-free attack) by raising the processing cost to O(R2).

Proof. The attacker runs the loop for initializing the memory array M (lines 9
to 11), which we call ROMixini. Instead of storing the values of M [i], however,

18

the attacker keeps only the value of the internal variable X. Then, whenever an
element M [j] of M should be read (line 14 of Algorithm 1), the attacker simply
runs ROMixini for j iterations, determining the value of M [j] and updating X.
Ignoring ancillary operations, the average cost of such attack is R + (R · R)/2
iterative applications of BlockMix and the storage of a single b-long variable (X),
where R is scrypt’s cost parameter. ut

In comparison, an attacker trying to use a similar low-memory attack against
Lyra2 would run into additional challenges. First, during the Setup phase, it is
not enough to keep only one row in memory for computing the next one, as
each row requires a pair of previously computed rows for its computation. For
example, after using M [0] and M [1] for computing M [2], M [0] and M [1] will still
be used, respectively, in the computation of M [4] and M [3], meaning that they
should not be discarded or they will have to be recomputed. Even worse: since
M [0] is modified when initializing M [2], the value to be actually employed when
computing M [4] cannot be obtained directly from the password only. Instead,
recomputing the updated value of M [0] requires (a) running the Setup phase
until the point it was last modified (i.e., when M [2] was computed) or (b) using
the value of M [2] if it is already in memory, taking into account the value of
rand that modified M [0] can be obtained from M [2]. This creates a complex
net of dependencies that grow in size as the algorithm’s execution advances and
more rows are modified, leading to several recursive calls. This effect is even
more accentuate in the Wandering phase, due to an extra complicating factor:
each duplexing operation involves a random-like (password-dependent)row index
that cannot be determined before the end of the previous duplexing. Therefore,
the choice of which rows to keep in memory and which rows to discard is merely
speculative, and cannot be easily optimized for all password guesses.

Providing a tight bound on the complexity of such low-memory attacks
against Lyra2 is, thus, an involved task, especially considering its non-deterministic
nature. Nevertheless, aiming to give some insight on how an attacker could (but
is unlikely to want to) explore such time-memory trade-offs, in what follows we
consider some slightly simplified attack scenarios. We emphasize, however, that
these scenarios are not meant to be exhaustive, since the goal of analyzing them
is only to show the approximate (sometimes asymptotic) impact of possible me-
mory usage reductions over the algorithm’s processing cost. Formally proving
the resistance of Lyra2 against time-memory trade-offs (e.g., using the theory
of Pebble Games [48,49,50] as done in [47,51]) would be even better, but doing
so, possibly building on the discussion hereby presented, remains as a matter for
future work.

Preliminaries For conciseness, along the discussion we denote by CL the
Columns Loop of the Setup phase (lines 8–12 of Algorithm 2) and of the Wande-
ring phase (lines 21–25). In this manner, ignoring the cost of XORing, reads/writes
and other ancillary operations, the cost of CL corresponds approximately to
C · ρ/ρmax executions of f , denoted simply by σ.

19

Fig. 3. The Setup phase.

We also denote by s0i the state of the sponge during the i-th iteration of
the Filling Loop, during the Setup phase, before the corresponding rows are ef-
fectively processed (i.e., the state in line 7 of Algorithm 2). Similarly, for the
Wandering phase, we denote by sτi the state of the sponge during the i-th ite-
ration of the Visitation Loop and the τ -th iteration of the Time Loop, before
the corresponding rows are effectively processed (i.e., the state in line 19 of
Algorithm 2). Aiming to keep track of modifications made on those rows, we
recursively use the subscript notation M [XY−Z] to denote a row X modified
when paired with row Y and then again when paired with row Z. Finally, we
write V τ1 and V τ2 to denote, respectively, the first and the second half of the
Visitation Loop during the τ -th iteration of the Time Loop.

The Setup phase. We start our discussion analyzing only the Setup phase.
Aiming to give a more concrete view of its execution, along the discussion we
use as example the scenario with 16 rows depicted in Figure 3, which shows the
corresponding visitation order of such rows and also their modifications due to
these visitations.

Storing only what is needed. Suppose that the attacker does not want to store all
rows of the matrix during the algorithm’s execution. One interesting approach for
doing so is to store only what will be required in future iterations of the Filling
Loop, discarding rows that will not be used anymore. Since the algorithm is
purely deterministic, doing so is quite easy and, as long as the proper rows are
kept in memory, incurs no processing penalty. This approach is illustrated in
Figure 4 for our example scenario.

As shown in this figure, this simple strategy allows the execution of the Setup
phase with a memory usage of approximately R/2 + 1 rows, since each half of
the Setup phase requires all rows from the previous half and one extra row (the
last one computed) to proceed. More precisely, R/2 + 1 corresponds to the peak
memory utilization reached around the middle of the Setup phase, since (1) at
the beginning of the phase part of the memory matrix has not been initialized
yet and (2) rows computed near the end of the phase are only paired with the
next row and, thus, can be discarded right after that. Even with this reduced

20

Fig. 4. Attacking the Setup phase: storing 1/2 of all rows. The most recently computed
row in each iteration is marked as r.

memory usage, the processing cost of this phase remains at R · σ, just as if all
rows were kept in memory.

This attack can, thus, be summarized by the following lemma:

Lemma 1. Consider that Lyra2 operates with parameters T , R and C. Whilst
the regular algorithm’s memory and processing costs of its Setup phase are, re-
spectively, R ·C · b bits and R ·σ, it is possible to run this phase with a maximum
memory cost of (R · C · b)/2 bits while keeping its total processing cost to R · σ.

Proof. The costs involved in the regular operation of Lyra2 are discussed in
Section 4.3, while the mentioned memory-processing trade-off can be achieved
with the attack described above. ut

Storing less than what is needed. If the attacker consider that storing R/2 rows
is too much, he/she may decide to discard additional rows, recomputing them
from scratch only when they are needed. In that case, one appealing approach
is to discard the rows that will take longer to be used. The reason is that this
strategy allows the Setup phase to proceed smoothly for as long as possible and,
thus, the arising missing rows will end up being those nearer the start of the
matrix, which, in principle, are less expensive to compute.

The suggested approach is illustrated in Figure 5. As shown in this figure,
at any moment we keep in memory only R/4 + 1 rows of the memory matrix.
This allows the Setup phase to run without any recomputation until we need to
compute row M [D], at which moment M [35] is required. Since M [5] is available
in memory at this point, we only need to recompute M [3] from scratch and then
use the fact that M [35] = M [3] ⊕ rotW (M [5]) to obtain its value. However, if
we want to keep M [6] and M [7] in memory for using an analogous trick when
computing M [26] and M [13−7], we have to compute M [3] itself while maintaining
basically one single row in memory in addition to the four rows already kept by
the main processing thread (thus still respecting the R/4+1 memory usage). As
a result, computing M [3] takes a total of 7σ rather than only 4σ as expected if

21

Fig. 5. Attacking the Setup phase: storing 1/4 of all rows. The most recently computed
row in each iteration is marked as r.

M [3] could be computed with an unbound amount of memory, because M [0] and
M [1] have to be computed twice each. After that, as shown in bottom-right side
of Figure 5, M [2] and M [13] can both be obtained with the storage of five rows
if we (1) recompute M [1] from scratch, with a cost of 2σ, XORing it to the value
of M [3] already available in memory, and (2) continue with the recomputation
of M [2] by using the space originally occupied by row M [1], with an extra cost
of 2σ. All in all, the cost of the attack in this example scenario almost doubles
with this reduction of approximately half in memory usage.

Even though for the time being we are unable to provide a tight bound to
the cost of recursively reducing memory usage by half, our simulations seem to
indicate that the corresponding processing cost of such attacks approximately
doubles with each reduction. Indeed, as shown in Figure 6, when reducing the
memory cost to ≈ R/8 + 1, the need of recomputations appears at the end of
the first half of the memory matrix. The result is that the cost of computing
this first half will already be approximately R · σ, assuming that s04 is stored by
the attacker so it can be used when recomputing M [02−4] from M [02] and M [3].
After that, when computing the second half of the memory matrix, we are only
able to keep in memory R/8 out of the R/2 values of M [row∗] required, leading
to the need of recomputing the remaining 3R/8 from scratch, up to R/8 at a
time and using no more than R/8 per recomputation. The consequence is that
computing this second half of the memory matrix takes three times the cost of
computing the first half if two extra sponge states (s06 and s07) are stored, leading
to a total cost of approximately 4R · σ.

From the above observations, supposing that one can recursively use this
strategy for reducing the algorithm’s memory usage near to 1 row, the resulting

22

Fig. 6. Attacking the Setup phase: storing 1/8 of all rows. The most recently computed
row in each iteration is marked as r.

processing cost of the Setup phase is expected to become approximately (R2/2) ·
σ, leading to the formulation of the following conjecture:

Conjecture 1. Consider that Lyra2 operates with parameters T , R and C. Whilst
the regular memory and processing costs of its Setup phase’s are, respectively,
R · C · b bits and R · σ, one may be able to achieve a memory cost of O(1) bits
by raising the processing cost to approximately (R2/2) · σ.

Adding the Wandering phase with T = 1. For analyzing the Wandering
phase, it is useful to consider an “average”, deterministic scenario, such as the
execution of a single Time Loop depicted in Figure 7. This is a slightly simpli-
fied scenario, in which we ignore the fact that some rows are actually modified
during the Setup phase. This simplification facilitates the analysis and, albeit
unrealistic, it would actually benefit the attacker: whenever a row M [i] needs to
be recomputed from scratch, the processing cost for doing so can be as low as

Fig. 7. An example of the Wandering phase’s execution.

23

i · σ, while recomputing a modified row M [ij] would in principle have a cost of
at least j · σ, since we always have (j > i) during the Setup phase. Therefore, a
real attack is expected to be at least as expensive as the attacks performed in
this simplified scenario.

In addition to the above simplification, we consider that all rows are modified
only once during the first half of the Visitation Loop, i.e., during V 1

1 every row
from M [F] to M [8] is paired with a row from M [7] to M [0] when receiving
the sponge’s output. We argue that this is once again beneficial for the attacker,
since any row required during this process can be obtained simply by running the
Setup phase once again, instead of involving recomputations of the Wandering
phase itself. We then apply the same principle to V 1

2 , modifying each row only
once more in a different (arbitrary) pseudorandom order.

The first half of the Visitation Loop with low memory usage. Figure 8 depicts
in more detail the execution of V 1

1 in our example scenario, showing that any
of its iterations involves three row indices: prev, row∗ and row. Rows M [prev]
and M [row∗] are needed for feeding the sponge (line 22 of Algorithm 2) and,
thus, must be in memory for updating its internal state. In comparison, M [row]
corresponds to a row that only receives the sponge’s output (line 23) and,
thus, is not strictly necessary for updating the sponge’s state. However, since
M [row] will certainly be used as input in the very next iteration (namely, as the
new M [prev]), it makes more sense to have it in memory too for receiving the
sponge’s output. On the other hand, the other row receiving the sponge’s out-
put, M [row∗], will only be useful in the next iteration if picked once again as the
new M [row∗] or M [row], which happens with probability 2/R. In the scenario
depicted in Figure 7, for example, M [row∗] = M [7E] obtained as output of the
Visitation Loop’s iteration 0 is indeed not useful in the next iteration, which
takes M [R − 2] = M [E] (deterministically picked) and M [7] (randomly picked)
instead.

From the above observations, its is reasonable to consider that the attacker
always has M [prev] in memory at the beginning of any iteration of the Visi-
tation Loop, since he/she can simply keep the output of the previous iteration

Fig. 8. Wandering phase’s execution in detail: first half of Visitation Loop.

24

— or, for the very first iteration of this loop, have either M [0] (when τ is odd)
or M [R − 1] (when τ is even) in memory. M [row] and M [row∗], nevertheless,
may have been discarded in previous iterations for keeping the algorithm’s me-
mory usage at a low level. In that case, those rows can be recomputed from
scratch by running max(row∗, row) iterations of the Setup phase once again
while storing M [min(row∗, row)] even after this row is not needed by the Setup
phase itself. Going back to iteration 1 of the Visitation Loop in our example
scenario, M [row] = M [E] and M [row∗] = M [7] can both be recomputed by
running max(row∗, row) = E iterations the Setup phase while not discarding
M [min(row∗, row)] = M [7] in the process.

Denoting the processing cost of j iterations of the Setup phase by λs(j) and
its memory cost by µs(j), the total cost for step i of V 1

1 (0 6 i < R/2) whenever
both M [row] and M [row∗] need to be recomputed is approximately λs(R − i)
executions of CL and the storage of Sm(R − i) + 1 rows. If the Setup phase
is run with a very low amount of memory, we have λs(R − i) ≈ (R − i)2/2
for Sm(R − i) ≈ 1. Therefore, since V 1

1 involves R/2 duplexing operations, its
approximate total cost is (R/2) ·λs(R−R/4) = (3R/4)3/3 executions of CL and
the storage of up to two extra rows.

The first half of the Visitation Loop with the “store ahead” strategy. The proce-
ssing costs of V 1

1 can be slightly reduced using the fact that M [R−i−1] is known
to be required during iteration i. Therefore, when running the Setup phase for
iteration i, the attacker can very well keep in memory not only M [R− i− 1] but
also M [R− i− 2], which will certainly be used in iteration (i+ 1).

Using this “store-ahead” strategy, the memory cost of recomputing the Setup
phase does not raise significantly, since M [R−i−2] is still in memory right before
M [R − i − 1] is computed and, at this point, most of the other rows may have
already been discarded without impacting the Setup phase’s processing cost. On
the other hand, since there is no way to determine which M [row∗] that will be
used together with M [R− i− 2] before the end of iteration i, the corresponding
M [row∗] is likely to be discarded and will have to be recomputed during iteration
(i+1). For example, in the scenario depicted in Figure 7, the attacker could keep
not only M [F] and M [5] but also M [E] during the first iteration of the Visitation
Loop. M [E] could then be used in the second iteration, during which only M [7]
would have to be recomputed.

As a result of applying this store-ahead strategy for every pair of iterations i
and i+1, the processing cost of iteration i remains basically the same, while the
average cost of iteration i+1 becomes λs(R/2)σ for recomputing any M [row∗] ∈
[0, R− 1]. Hence, using the same low-memory approach as before, the total
cost of V 1

1 becomes approximately (R/4)(R − R/4)2σ/2 + (R/4)(R/2)2σ/2 ≈
(3R/4)3σ/4 in total, which is only slightly faster than the (3R/4)3σ/3 obtained
without this strategy.

In addition, this store-ahead approach does not scale well for storing many
rows. For example, in the extreme case of storing all rows known to be required
during V 1

1 , the attacker would have to store rows M [R/2] to M [R − 1]. Even
with this high storage of R/2 rows, 50% of the time the randomly picked rows

25

Fig. 9. Wandering phase’s execution in detail: second half of Visitation Loop.

M [row∗] would belong to the unavailable interval M [0] to M [R/2−1]. Therefore,
in V 1

1 the attacker would still have to recompute from scratch R/4 rows, with an
average processing cost of (R/4) · λs(R/4)σ in total. If such rows are once again
recomputed by running the Setup phase with a very low amount of memory, the
total processing cost would become (R/4)(R/4)2σ/2 = (R/4)3σ/2, or 1/18 of
the cost of an attack not using this strategy.

The second half of the Visitation Loop. For V 1
2 , the situation is different from

what happens in V 1
1 : since the rows required for any iteration of V 1

2 have been
modified during the execution of V 1

1 , it does not suffice to run the Setup phase
once again to get their values. For example, in the scenario depicted in Fig-
ure 7, the rows required for iteration i = 8 of the Visitation Loop besides
M [prev] = M [83] are M [7E] and M [A2] (see Figure 9 for details). If those
latter rows have not been kept in memory, their recomputation from scratch
requires on average (see Figure 8): four rows whose values can be obtained by
running the Setup phase (in our example, M [7] and M [E], M [A] and M [2]);
and two rows whose values can only be learned by running V 1

1 (values assumed
by the M [prev] variable), together with the corresponding sponge states (in our
example, M [F5] and M [B0], as well as s11 and s15).

Obviously, given the probabilistic nature of the algorithm, the number of
rows and states may actually be lower. For example, iteration i = 9 of the
Visitation Loop requires M [C6] and M [6C], and both can be recomputed from
scratch using two rows from the Setup phase (M [C] and M [6]), as well as a single
row from V 1

1 and sponge state (M [prev] = M [D4] and s13). In addition, during
iteration i = 0, if the randomly row picked to be XORed with M [prev] = M [0]
is M [row∗] = M [0] itself, the attacker does not need to recompute anything,
but can simply feed the sponge with a string of zeros. Since both situations
only happen with probability 1/R, though, we ignore such outliers along the
discussion.

Whichever the iteration, the four rows required from the Setup phase can
be computed by running (part of) it while storing those rows even after they
are not necessary for the Setup phase itself, following the previously discussed

26

“store-ahead” strategy. For example, rows M [E], M [7], M [A] and M [2] can all
be obtained with an approximate cost of λs(R)σ = (R)2σ/2 and the storage of
four rows in addition to the few rows required in any extremely low-memory
execution of the Setup phase. This processing cost can be reduced further by
aborting the computation after M [E] is computed.

The previously modified rows M [prev] and sponge states, on the other hand,
can only be computed if parts of the Wandering phase are executed once again.
Namely, suppose that s10 and M [0] ⊕ M [5] are both known, either because they
were kept in memory after the end of the Setup phase or because they were
recomputed by running the whole Setup phase once again. Then, computing
state s1i from s10 takes i iterations of the Visitation Loop, and this process already
provides the corresponding M [prev] to feed the sponge in this state. In addition,
any pair of states (s1i , s

1
j) can be recomputed from s10 and corresponding input

(M [0] ⊕ M [5] in our example) with max(i, j) iterations of the Visitation Loop.
For V 1

1 , in which (i, j ∈ [0, R/2− 1]), we have then an average of 3/4 iterations,
comprising a total of 3(R/2)/4 = 3R/8 executions of CL for duplexing roughly
3R/4 rows (i.e., 3R/8 pairs used as input) whose values can be obtained directly
from the Setup phase.

Combining the above observations, we can go back to our example for com-
puting M [7E] ⊕ M [A2] as required at the start of V 1

2 (namely, during iteration
R/2 = 8). Specifically, the attacker can do so by: (1) running the Setup phase
once, while keeping in memory all rows required between the start of the Wan-
dering phase and the computation of M [A2] (namely M [0], M [5], M [F], M [7],
M [E], M [4], M [D], M [6], M [C], M [B], M [2] and M [A]); and then (2) making
6 sequential executions of CL, the first using state s10 and the last using state
s15. Alternatively, if the attacker wants to reduce the extra memory cost of this
process in approximately half, he/she may execute the Setup phase twice: in the
first run, only the set {M [0], M [5], M [F], M [7], M [E], M [4], M [D]} is com-
puted and the states s10 to s12 are employed in three sequential iterations of V 1

1 ;
in the second, the attacker computes {M [6], M [C], M [0], M [B], M [2], M [A]}
and uses states s13 to s15 in three additional iterations of V 1

1 . This approach can
be extended until the number of additional rows stored in each run of the Setup
phase is reduced to approximately two rather than 3R/4, but then we would
have to run roughly 3/4 of the Setup for 3R/8 times, once for each pair of rows
employed during V 1

1 . Whichever the case, the R/2-th iteration finishes with a
final execution of the Columns Loop using the most current state s18.

We are now in position to estimate the total cost of V 1
2 , i.e., for iterations

(R/2) to (R−1) of the Visitation Loop. Using the above strategies and assuming
that s10 and the input to be fed to the sponge in this state is known, the average
cost of any single iteration i becomes approximately: from one (approximately
full) execution of the Setup phase, with a processing cost of λs(R)σ and the
storage of µs(R) + 3R/4) rows, to 3R/8 partial executions of the Setup, each
of which requiring λs(3R/4)σ and the storage of approximately two rows; plus
3R/8 ·σ for computing from s10 (assumed to remain in memory during the whole
process) the two rows and corresponding states required during iteration i; plus

27

1σ using state s1i . Therefore, for all R/2 iterations of this second half of the
Visitation Loop, the total processing cost of an almost memory-free execution
becomes (R/2)(3R/8) · λs(3R/4)σ + R · σ/2, or approximately (3R2/16)((R −
R/4)2/2)σ = (3R/4)4σ/6.

Notice that this cost can be reduced by extending the “storage-ahead” strat-
egy also to the second half of the Visitation Loop. For example, during iteration
i = 9, the attacker knows that M [6C] will be required, since it is deterministi-
cally picked. Therefore, it is just natural to keep M [6C] in memory when M [C6]
is recomputed during iteration i = 8, even if the recomputation is done using
an almost memory-free (more computationally intensive) strategy. Nonetheless,
since iteration i = 9 takes a random row as input (in the example, M [C6]) just
like any other iteration, in principle that row cannot be stored ahead because it
is unknown to be needed. Hence, as in the case of the first half of the Visitation
Loop, the acceleration brought by this approach is not expected to affect the
asymptotic cost of the attack.

Adding the Wandering phase with T > 1. Given Lyra2’s sequential struc-
ture, in any iteration τ of the Time Loop attackers can use the previous iteration
τ−1 approximately like the first iteration of the Time Loop used the Setup phase.
After all, right after the sponge’s state becomes sτ0 at the beginning of the Time
Loop’s iteration τ , proceeding with the algorithm’s computation requires a ran-
dom row M [row∗] together with the rows at indices 0 and F (which alternate
as M [prev] and M [row], depending on whether τ is even or odd), just like what
happens when the sponge reaches the state s10. The remainder of the τ -th ex-
ecution of the Time Loop proceeds similarly, visiting rows in the reverse order
in which they were computed during iteration τ − 1, and combining them with
random rows.

Therefore, as Lyra2’s execution progresses, it creates an inverted tree-like
dependence graph like the one depicted in Figure 10, level ` = 0 corresponding
to the Setup phase and each half of the Visitation Loop raising the tree’s depth
by one. Each level ` > 0 of this tree corresponds, thus, to R/2 iterations of the

Fig. 10. Tree representing the dependences among rows in Lyra2.

28

Visitation Loop, each iteration requiring one (partial) execution of the previous
level (`− 1) for recomputing up to two rows thereby modified but discarded. If,
as discussed in Section 5.1, the attacker saves memory by storing only the sponge
state at the start of that level and the first input fed to the sponge at that point,
the iterations at level ` requires 3/4 iterations of level (` − 1). The latter can
then be run (1) with a single (approximately full) execution of level (` − 2) for
recovering at once all ≈ 3R/8 pairs of rows involved in this partial execution,
taking advantage of the fact that the rows’ indices are already known; or (2)
with the less memory-consuming approach of also executing only 3/4 iterations
of level (` − 2) for recovering a single pair of rows at a time, leading to a total
of 3R/8 executions of level (`− 2).

From the above discussion, we can estimate the cost of an extremely low-
memory attack against any level ` > 2 of the tree to be approximately λ` =
(R/2)(3R/8) · λ`−2, with λ0 ≈ (3R/4)2/2. Hence, for last iteration of the Wan-
dering phase, the second half of the Visitation Loop alone (i.e., for ` = 2T) is
expected to cost approximately (3R2/8)T · (3R/4)2/2 = (3R/4)2T+2/(2 · 3T),
dominating Lyra2’s running time. The total storage cost in this highly memory-
constrained attack would then be roughly equivalent to 2T rows and sponge
states (i.e., 2T (w + C · b) bits). This can be summarized in the following Con-
jecture:

Conjecture 2. Consider that Lyra2 operates with parameters T , R and C. Whilst
its regular memory and processing costs of are, respectively, R · C · b bits and
R · (T + 1) · σ, one can achieve a memory cost of 2T (w + C · b) bits by raising
the processing cost to approximately (3R/4)2T+2/(2 · 3T) · σ.

A remark on the row visitation order: reverse vs. bit-reversal During
Lyra2’s Setup phase, rows that have already been initialized (M [row∗]) are fed
to the sponge and then updated with the latter’s output, rand, forcing attackers
to recompute those rows if they were previously discarded. A similar behavior
is also observed in the algorithm’s Wandering phase, during which the deter-
ministically picked rows M [row] are taken in the reverse order of the previous
iteration of the Time Loop. This raises the natural question of “why reverse?”.
The main reasons for adopting this strategy is that (1) it allows rows with small
indices to be XORed with rows with much higher indices, raising the cost of their
recomputation during attacks, while (2) it is still quite simple to implement.

Nonetheless, it is reasonable to discuss why we do not adopt an approach
based on a bit-reversal permutation, similarly to what is done in the Catena PHS
[47]. After all, this is indeed a promising approach, especially considering the
existence of tight proofs related the time-memory trade-offs of pebbling directed
acyclic graphs (DAGs) built with this strategy [52]. However, our preliminary
analysis shows that, besides being simpler, revisiting rows in a reverse order in
the context of Lyra2 is not less effective than using bit-reversal with respect to
resistance against low-memory attacks, as discussed in what follows.

During the Setup phase, the reverse visitation is not the only factor in play:
there is also the fact that revisited rows are updated, making them depend on

29

Fig. 11. The Setup phase with bit-reversal.

rows with higher indices and, thus, the cost of recomputing them raises as the
Setup phase evolves. This is the main reason why, as discussed in Section 5.1,
the processing cost of this phase approximately doubles when the amount of
memory used for its execution goes from R/2 to R/4, and then again when
it goes to R/8. In comparison, if we adopt a bit-reversal instead of a reverse
visitation order in this phase (see Figure 11), the effect does not seem to be
much better. Indeed, as shown in Figure 12, the additional processing cost of
an attack with memory usage of R/4 in this bit-reversal experiment was only
slightly higher than what is observed with Lyra2’s reverse strategy, going from
the 11σ originally obtained (see Figure 5) to 13σ. Conversely, for a total storage
of R/8 as shown in Figure 13, the cost of the bit-reversal approach dropped to
34σ, a considerable reduction when compared with the 47σ obtained with the
simple reverse visitation depicted in Figure 6.

Fig. 12. Attacking the Setup phase with bit-reversal: storing 1/4 of all rows. The most
recently computed row in each iteration is marked as r.

30

Fig. 13. Attacking the Setup phase with bit-reversal: storing 1/8 of all rows. The most
recently computed row in each iteration is marked as r.

In the Wandering phase, we do not expect the effect to be much different,
since the rows picked in a pseudorandom manner are more likely to be a burden
to attackers than those picked in a deterministic manner.

These observations are by no means enough to allow any conclusion on which
strategy is better, bit-reversal or simple reverse. Nevertheless, they indicate that,
even though further analysis is required, the latter strategy is somewhat com-
parable to the former. Therefore, following Occam’s Razor principle [53], we
decided to adopt the simpler, reverse solution in the design of Lyra2.

5.2 Slow-Memory attacks

When compared to low-memory attacks, providing protection against slow-memory
attacks is a more involved task. This happens because the attacker acts approxi-
mately as a legitimate user during the algorithm’s operation, keeping in memory
all information required. The main difference resides on the bandwidth and la-
tency provided by the memory device employed, which ultimately impacts the
time required for testing each password guess.

31

Lyra2, similarly to scrypt, explores the properties of low-cost memory devices
by visiting memory positions following a pseudorandom pattern. In particular,
this strategy increases the latency of intrinsically sequential memory devices,
such as hard disks, especially if the attack involves multiple instances simultane-
ously accessing different memory sections. Furthermore, as discussed in Section
4.5, this pseudorandom pattern combined with a small C parameter may also
diminish speedups obtained from mechanisms such as caching and pre-fetching,
even when the attacker employs (low-cost) random-access memory chips. We
notice that this strategy is particularly harmful against existing GPUs, whose
internal structure is usually optimized toward deterministic memory accesses to
small portions of memory.

When compared with scrypt, a slight improvement introduced by Lyra2
against such attacks is that the memory positions are not only repeatedly read,
but also written. As a result, Lyra2 requires data to be repeatedly moved up
and down the memory hierarchy. The overall impact of this feature on the per-
formance of a slow-memory attack depends, however, on the exact system ar-
chitecture. For example, it is likely to increase traffic on a shared memory bus,
while caching mechanisms may require a more complex circuitry/scheduling to
cope with the continuous flow of information from/to a slower memory level.

Another appealing aspect about Lyra2’s design is the fact that the sponge’s
output is always XORed with the value of existing rows, preventing the me-
mory positions corresponding to those rows from becoming quickly replaceable.
This property is, thus, likely to hinder the attacker’s capability of reusing those
memory regions in a parallel thread.

Obviously, all features displayed by Lyra2 for providing protection against
slow-memory attacks may also impact the algorithm’s performance for legiti-
mate user. After all, they also interfere with the legitimate platform’s capability
of taking advantage of its own caching and pre-fetching features. Therefore, it is
of utmost importance that the algorithm’s configuration is optimized to the plat-
form’s characteristics, considering aspects such as the amount of RAM available,
cache line size, number of processing cores (see Section 6.1), etc. This should al-
low Lyra2’s execution to run more smoothly in the legitimate user’s machine
while imposing more serious penalties to attackers employing platforms with
different characteristics.

5.3 Cache-timing attacks

A cache-timing attack is a type of side-channel attack in which the attacker is
able to observe a machine’s timing behavior by monitoring its access to cache
memory (e.g., the occurrence of cache-misses) [54,47]. This class of attacks has
been shown to be effective, for example, against certain implementations of the
Advanced Encryption Standard (AES) [55] and RSA [56], allowing the recovery
of the secret key employed by the algorithms [54,57].

In the context of password hashing, cache-timing attacks may be a threat
against memory-hard solutions that involve operations for which the memory
visitation order depends on the password. The reason is that, at least in theory,

32

a spy process that observes the cache behavior of the correct password may be
able to filter passwords that do not match that pattern after only a few iterations,
rather than after the whole algorithm is run [47]. Nevertheless, cache-timing at-
tacks are unlikely to be a matter of great concern in scenarios where the PHS
runs in a single-user scenario, such as in local authentication or in remote au-
thentications performed in a dedicated server: after all, if attackers are able to
insert such spy process into these environments, they are more likely to insert
a much more powerful spyware (e.g., a keylogger or a memory scanner) to get
the password more directly. On the other hand, cache-timing attacks may be
interesting in scenarios where the physical hardware running the PHS is shared
by processes of different users, such as virtual servers hosted in a public cloud
[58]. The reason is that such environments potentially create the required con-
ditions for making cache-timing measurements [58], but are expected to prevent
the installation of a malware powerful enough to circumvent the hypervisor’s
isolation capability for accessing data from different virtual machines.

In this context, the approach adopted in Lyra2 is to provide resistance against
cache-timing attacks only during the Setup phase, in which the indices of the
rows read and written are not password-dependent, while the Wandering and
Wrap-up phases are susceptible to such attacks. As a result, even though Lyra2
is not completely immune to cache-timing attacks, the algorithm ensures that at-
tackers will have to run the whole Setup phase and at least a portion of the Wan-
dering phase before they can use cache-timing information for filtering guesses.
Therefore, such attacks will still involve a memory usage of at least R/2 rows or
some of the polynomial time-memory trade-offs discussed along Section 5.1.

The reason for this design decision providing partial resistance to cache-
timing attacks is threefold. First, as discussed in Section 5.2, making password-
dependent memory visitations is one of the main defenses of Lyra2 against slow-
memory attacks, since it hinders caching and pre-fetching mechanisms that could
accelerate such attacks. Therefore, resistance against low-memory attacks and
protection against cache-timing attacks are somewhat conflicting requirements.
Since low- and slow-memory attacks are applicable to a wide range of scenarios,
from local to remote authentication, it seems more important to protect against
them than completely prevent cache-timing attacks.

Second, for practical reasons (namely, scalability) it may be interesting to
offload the password hashing process to users, distributing the underlying costs
among client devices rather than concentrating them on the server, even in
the case of remote authentication. This is the main idea behind the server-
relief protocol described in [47], according to which the server sends only the
salt to the client (preferably using a secure channel), who responds with x =
PHS(pwd, salt), so the server only computes locally y = H(x) and compares it
to the value stored in its own database. The result of the approach is that the
server-side computations during authentication are reduced to the computation
of the hash, while the memory- and processing-intensive operations involved in
the password hashing process are performed by the client, in an environment in
which cache-timing is probably a less serious concern.

33

Third, as discussed in [59], recent advances in software and hardware tech-
nology are themselves likely to hinder the feasibility of cache-timing and related
attacks due to the amount of “noise” conveyed by their underlying complexity.
This technological constraint is also reinforced by the fact that security-aware
cloud providers are expected to provide countermeasures against such attacks for
protecting their users, such as (see [58] for a more detailed discussion): ensuring
that processes run by different users do not influence each other’s cache usage
(or, at least, that this influence is not completely predictable); or making it more
difficult for an attacker to place a spy process in the same physical machine as
security-sensitive processes, in especial processes related to user authentication.
Therefore, even if these countermeasures are not enough to completely prevent
such attacks from happening, the added complexity brought by them may be
enough to force the attacker to run a large portion of the Wandering phase, pay-
ing the corresponding costs, before a password guess can be reliably discarded.

6 Some possible extensions of Lyra2

In this section, we discuss some possible extensions of the Lyra2 algorithm de-
scribed in Section 4, which could be integrated into its basic design for exploring
different aspects, namely: taking advantage of parallelism capabilities potentially
available on the legitimate user’s platform; improving the algorithm’s usage of
the cache in the legitimate platforms for incresing the cost of slow-memory at-
tacks; providing higher resistance against attacks low- and slow-memory attacks
at the cost of more frequently cache misses; providing further protection against
attacks based on hardware implementations; and allowing finer-grained control
over the algorithm’s processing time. We consider these modifications “exten-
sions” mainly because they were not yet fully tested and throughly assessed as
Lyra2’s core, so the value added by them is still under evaluation, as well as
their exact details.

Along the discussion, we explain how these changes can be independently in-
tegrated into the basic algorithm described in Section 4.1 rather than altogether.
The reason for this approach is twofold: convenience for the reader, since each
different extension can be plugged into Lyra2 either independently or altogether;
and conciseness, given that the proposed extensions, although simple, result in a
few additional lines of pseudo-code each. Nonetheless, for the interested reader,
we provide in Appendix D. a pseudo-code integrating the first three proposed
extensions into Lyra2’s core.

6.1 Allowing parallelism on legitimate platforms: Lyra2p

Even though a strictly sequential PHS is interesting for thwarting attacks, this
may not be the best choice if the legitimate platform itself has multiple processing
units available, such as a GPU, a multicore CPU or even multiple CPUs. In such
scenarios, users may want to take advantage of this parallelism for (1) raising
the PHS’s usage of memory, abundant in a desktop or GPU running a single

34

PHS instance, while (2) keeping the PHS’s total processing time within humanly
acceptable limits, possibly using a larger value of T for improving its resistance
against time-memory trade-offs.

Against an attacker making several guesses in parallel, this strategy instantly
raises the memory costs proportionally to the number of cores used by the legiti-
mate user. For example, if the key is computed from a sequential PHS configured
to use 10 MB of memory and to take 1 second to run in a single core, an attacker
who has access to 1,000 processing cores and 10 GB of memory could make 1,000
password guesses per second (one per core). If the key is now computed from
the output of two instances of the same PHS parametrization, testing a guess
would take 20 MB and 1 second, meaning that the attacker would need 20 GB
of memory to obtain the same throughput as before.

Therefore, aiming to allow legitimate users to explore their own parallelism
capabilities, we propose a slightly tweaked version of Lyra2. We call this variant
Lyra2p, where the p > 1 parameter is the desired degree of parallelism, with
the restriction that p|(R/2). Before we go into details on Lyra2p’s operation,
though, it is useful to briefly mention its rationale. Namely, the idea is to have p
parallel threads working on the same memory matrix in such a manner that (1)
the different threads do not cause much interference on each other’s operation,
but (2) everyone of the p slices of the shared memory matrix depends on rows
generated from many threads. The first property leads to a smaller need of
synchronism between threads, facilitating the algorithm’s processing by highly
parallel platforms, while the second makes it harder to run each thread separately
with a reduced memory usage.

Structure and rationale First, during the Setup phase, p sponge copies are
generated. This is done similarly to Lyra2, the difference being that each sponge
Si (0 6 i 6 p − 1), right after being bootstrapped in line 4 of Algorithm 2,
must perform one additional full-round and stateful absorb operation on a b-
long block containing the b/2-bit representation of p concatenated with the b/2-
bit representation of i, i.e., the block (Int(p, b/2) ‖ Int(i, b/2)). For example, for
p = 2, S0 absorbs the bit-sequence 0b/2−210 ‖ 0b/2−10, while S1 does the same
for 0b/2−210 ‖ 0b/2−11. As another example, for p = 4, the blocks absorbed by
sponges S0 to S3 would have the same 0b/2−3100 prefix, but their suffixes would
be 0b/2−200 to 0b/2−211, respectively. This approach ensures that each of the
p sponges is initialized with distinct internal states, even though they absorb
identical values of salt and pwd. In addition, the fact that the value of the block
absorbed by each sponge depends on p ensures that computations made with
p′ 6= p cannot be reused in an attack against Lyra2p, an interesting property for
scenarios in which the attacker does not know the correct value of p.

The p sponges are evenly distributed over the memory matrix, becoming
responsible for p contiguous slices of R/p rows each, hereby denoted Mi (0 6
i 6 p − 1). More formally, slice Mi corresponds to the interval M [i · R/p] to
M [(i+1)·R/p−1] of the complete memory matrix, so that Mi[x] = M [i·R/p+x].

35

The Setup phase of each sponge Si then proceeds as in the algorithm’s non-
parallelizable version, the only difference being that they remain limited to their
own slices instead of sweeping the whole memory matrix. As a result, all sponges
need to be synchronized only when they finish running their own Setup phases,
but otherwise they can run in a completely independent manner (their compu-
tation is embarrassingly parallel).

After the whole memory matrix is initialized, the Wandering phase proceeds
using a strategy very similar to Lyra2’s: in each iteration of Time Loop, the
order in which rows are visited is reversed, the visitation comprising the du-
plexing and updating of rows deterministically and pseudorandomly picked.
There are, however, two small differences. First, for all Si, the rows picked
in a pseudorandom fashion during the first (resp. second) half of the Visita-
tion Loop are limited to the first (resp. second) half of their own slices Mi.
More formally, when the Visitation Loop control variable of Si is row, the
pseudorandom index row∗ picked in that iteration is computed in line 20 as
“offset + truncL(rand,W) ⊕ prev) mod R/2p”, with offset = 0 when row <
R/2p and offset = R/2p otherwise.

Second, Si’s duplexing operation (line 22) is applied toMi[prev]⊕Mi[row
∗]⊕

Mj [row
∗
p], where Mj [row

∗
p] corresponds to a pseudorandom row from a pseudo-

random slice j 6= i. More precisely, we have Mj [row
∗
p] = Mj [(row

∗+R/2p) mod
R/p], meaning that row∗p refers to an index in Mj that is at the same posi-
tion as row∗ in Mi, except for an offset of R/2p. This ensures that Si reads
only in the half of slice Mj that is currently not being processed by Sj . There-
fore, as long as all sponges are synchronized every half of their own Visitation
Loops, there is no interference between, allowing their processes to run inde-
pendently. The slice index j, on the other hand, is computed by Si as follows:
set the value of j to the most significant word of rand modulo p (i.e., make
j = (truncM(rand,W) mod p)); if the value of j computed in this manner is
such that j = i, make it j = i+dir instead. As a result, Si reads from other slices
are expected to follow an approximately uniform distribution, with a small bias
toward the slices that are Mi’s immediate neighbors. Hence, after p − 1 itera-
tions of the Visitation Loop, every sponge is expected to have read from roughly
all other slices, obliging an attacker to have all slices in memory and duly up-
dated, or to recompute them on demand and pay the corresponding memory
and processing prices. Actually, these pseudorandom reads from other slices do
not even have to be as frequent as once per iteration of the Visitation Loop, but
the frequency itself could be configurable for reducing the number of reads on
far-away regions of the memory by any sponge, accelerating the whole process.
For example, if the frequency in which the Si reads from slice Mj 6=i is set to once
every R/p2 iterations of the Visitation Loop, each sponge is already expected to
read from approximately all other sponges after one single iteration of the Time
Loop.

Finally, the Wrap-up phase of Lyra2p is analogous to the one used in the
algorithm’s non-parallelizable version: each sponge Si absorbs a single cell from
its own slice Mi and squeezes k bits. When all sponges finish processing, the p

36

sub-keys generated in this manner are then XORed together, yielding Lyra2p’s
output K.

Preliminary security analysis The main advantage of Lyra2p when compared
to plain Lyra2 is that the former allows the memory matrix to be processed,
in theory, p times faster than the latter. In practice, this performance gain is
unlikely to be as high as p due to the larger number of pseudorandom reads
(and consequent cache misses) performed by the algorithm and need of eventual
synchronization among threads. However, for the sake of the argument, consider
that p is indeed the acceleration obtained. In what follows, we discuss some ways
by which legitimate users may take advantage of this faster operation for raising
the algorithm’s resistance against attacks. Along the discussion, we use the p
subscript to denote Lyra2p parametrization, while the omission of the subscript
indicates the corresponding parameters used in Lyra2 (and, thus, in the security
analysis carried out in Section 5).

On one extreme, legitimate users may then decide to use this fact to raise
the password hashing memory usage p times while keeping its total processing
time unchanged, using as parametrization Rp = R · p and Tp = T . Therefore,
if the attacker wants to keep only R in memory, the resulting recomputation
costs would be analogous to those of an attack against Lyra2 involving only R/p
rows. For p = 2, for example, the attacker could store M0, the half of the memory
matrix that is known to be needed in any iteration of the Visitation Loop, and
recompute rows from M1 on the fly and with a reduced memory usage.

Unfortunately for the attacker, however, this approach is deemed to involve
recomputations of rows from M1 with a cost of O((3R/4)2T+2/(3T)) in last
iteration of the Time Loop. If, on the other hand, each thread keeps R/2 rows,
the attacker could take advantage of the fact that each half of the Visitation Loop
in Lyra2p only involves half of a slice: hence, it may appear that storing only
the required half would allow the threads to run more smoothly. This strategy
would fail, however, because if both S0 and S1 do so, each Visitation Loop
iteration will require the recomputation of M1[row∗p] (resp. M0[row∗p]) for the
used of S0 (resp. S1). Alternative memory distributions (e.g., one that explores
the “storage-ahead” strategy described in Section 5.1) would result in similar
needs for recomputations, leading to similar asymptotic attack costs.

On the other extreme, legitimate users may use the multiple processing cores
to raise Lyra2p’s resistance against time-memory trade-offs, by making Rp = R
and Tp = T ·p. In a first analysis, assuming that the security properties of Lyra2
can be directly applied to any single sponge of Lyra2p operating on R/p rows
(as discussed above), the cost of approximately memory-free attacks against any
given sponge would become O((3R/4p)2Tp+2/(3T)) = O((3R/4p)2T ·p+2/(3T)).
Hence, with a high enough value of R/p, the cost of low-memory attacks can be
easily brought to unfeasible levels.

37

6.2 Higher resistance against slow-memory attacks

Another envisioned extension of Lyra2 refers to how the Columns Loop uses
the cache lines of the legitimate user’s machine. Specifically, while Lyra2’s core
makes a single deterministic pass over all columns of the Memory matrix in each
iteration of Filling/Visitation Loop, performing reads and writes on each column,
one could make χ > 0 pseudorandom reads to those columns right after all of
them are modified by the Columns Loop, further updating the sponge’s internal
state. As a result, a legitimate user who is able to fit in cache the three rows
involved in the Columns Loop (M [prev], M [row] and M [row∗]) could perform
those read operations quite fast, while an adversary using a device with lower
cache size or slower memory would pay a penalty in terms of performance. This is
analogous to introducing a “cache-oriented” scrypt to the Filling and Visitation
Loop: several memory positions are read in a pseudorandom pattern after being
modified, but those memory positions are all concentrated on a small area (the
cache) for better performance on a legitimate user’s platform.

In other to achieve this goal, all that is needed is a loop with χ iterations in
which (1) a random column is picked as “col∗ ← truncL(rand,W) mod C”, and (2)
an additional reduced-round duplexing operation “rand← H.duplexingρ(M [prev][col∗]⊕
M [row∗][col∗] ⊕ M [row][col∗], b)” is performed. Such loop can then be integrated
into Lyra2’s basic design described in Algorithm 2 right after the end of each
Columns Loop, both in the Setup phase (i.e., after line 12) and in the Wandering
phase (i.e., after line 25).

6.3 Higher resistance against time-memory trade-offs

One possible adaptation of the algorithm consists in raising the number of rows
involved in each iteration of the Visitation Loop. This can be accomplished with
the introduction of the following modifications into Algorithm 2:

1. Line 20: we obtain δ pseudorandom indices row∗d (with 1 6 δ 6 b/W − 1
and 0 6 d 6 δ − 1), each of which is computed from different portions
of rand. A simple but effective way achieving this is to make “row∗

d ←
(truncL(rotW d(rand),W) ⊕ prev) mod R”, where the operation rotW d cor-
responds to the iterative application of rotW , d times.

2. Line 22: instead of feeding the sponge with the result of XORing the pre-
vious row (M [prev]) with a single pseudorandomly chosen row (M [row∗]),
the sponge’s input is computed by XORing together M [prev] and δ pseudo-
random rows M [row∗d].

3. Line 24: every pseudorandom row row∗d involved in the duplexing operation is
XORed with a different rotation of rand. Specifically, we make “M [row∗

d][col]←
M [row∗

d][col] ⊕ rotW d+1(rand)”.

This tweak is quite simple but it is also powerful, the main advantage being
that it ends up increasing the security of the algorithm against low-memory
attacks. The logic is as follows. First, the additional write operations accelerate

38

the modification of the memory matrix, raising the depth of the dependence
tree discussed in Section 5.1. Moreover, the additional read operations raise the
diffusion capability of the algorithm because each row of the memory matrix
depends on a larger number of other rows, leading to a dependence tree with
a higher branching factor. We can then use a reasoning analogous to that of
Section 5.1 for computing the resulting cost of an almost memory-free attack
against Lyra2 with this extra parameter: ignoring the fact that only a part of
each layer ` needs to be processed during recomputations, we conjecture that
this attack would involve O((R/2)(δ+1)·T+2) executions of CLand the storage of
approximately (δ + 1) · T rows and sponge states during the last 1/δ-th part of
the Wandering phase, which should dominate Lyra2’s running time.

The main disadvantage of this approach is that the the higher number of
randomly picked rows potentially increases the number of cache misses observed
during the algorithm’s execution, raising the total processing time of Lyra2 for
a same parametrization. This may oblige legitimate users to reduce the value
of T to keep Lyra2’s running time below a certain limit, which in turn would
be beneficial to attack platforms able to mask the latency resulting from cache
misses (e.g., using the idle cores that are waiting for input to run different pass-
word guesses). According to our tests, we observed slow downs from more than
100% to approximately 50% with each increment of δ. Therefore, the interest of
such tweak depends on actual tests made on the target platform.

All things considered, it is important to emphasize that a moderately large
value of T already leads to highly expensive low-memory attacks, which should
be enough to avert them even without this tweak. Nonetheless, this extension
might be interesting in many different contexts, such as: platforms that can
only afford a very small value of T (e.g., T = 1); legitimate platforms that
can afford cache misses better than potential attackers; scenarios in which the
attacker model includes platforms with a large number of powerful processing
cores, but in which memory is scarce; or a combination of such scenarios. In
some extreme cases, it may even be appealing to have δ > b/W , which can be
easily accomplished if the computation of row∗d (line 20) actually involves less
than one full word of rand. After all, only |R| are actually needed to ensure that
each row∗i is computed from a different set of bits. If |R| < W/2, for example,
we could make “row∗

d ← (truncL(rotHd(rand),W/2) mod R)”, where rotH denotes
the bitwise left rotation by one half word, and then update each of those rows by
making “M [row∗

d][col]←M [row∗
d][col]⊕ rotHd+1(rand)” In this case, the algorithm

would support 1 6 δ 6 2b/W − 1.

6.4 Raising the cost of dedicated hardware

One final tweak that may be of interest when the goal is to achieve higher pro-
tection against dedicated hardware is to employ a different w-bit permutation
f for each (group of) sponge operations executed during Lyra2’s execution. Ob-
viously, this would increase the code size in software, but this is unlikely to be
a serious burden for a legitimate user in any modern machine, while the same

39

should not apply to hardware implementations. The reason is that, with this ap-
proach, implementing Lyra2 in hardware would require either a circuit with all
minimum operations of each permutation or the separate construction of every
permutation. Supposing that the permutations have few operations in common,
the first approach would lead to a circuit that is approximately as effective as
a software implementation on a generic processor The second approach, on the
other hand, raises the area occupied by the algorithm in comparison with the
scenario in which a single permutation is employed, thus increasing the hardware
construction costs. To compensate for this inefficiency in terms of area, one possi-
ble strategy is to evaluate more than one password guess at a time with the same
hardware, using pipelining strategies for scheduling each guess to different parts
of the circuitry. However, if the order in which those permutations are employed
by the algorithm is itself pseudorandom and password-dependent, building such
pipelines and corresponding scheduling algorithms with a reduced area becomes
a very difficult task. In addition, even if such optimized construction is possible,
the large amount of memory that must be assigned to each guess for its effi-
cient processing should limit the attacker’s ability to use the same hardware for
testing a large number of guesses simultaneously.

One simple way of implementing this tweak for selecting the order in which
the permutations fi will be applied, with 0 6 i 6 ϕ−1, is to make a (multi)bitwise
evaluation of the ϕ least significant bits of rand. For example, we could consider
that every bit position i of rand is associated to an instance fi, so that, while
evaluating those bits in an ascending order, all permutations whose correspon-
ding bit is 1 are applied before the instances associated with a bit 0. Then, for
ϕ = 4, if the four least significant bits of rand are 0101, this means that f0, f2,
f1, f3 should be applied, in this order, in the next ϕ (group of) sponge operations.
If rand ends with 0100, then the order would be f2, f0, f1, f3. Notice that this
single-bit approach does not lead to a uniform distribution for the order in which
the permutations are applied: not only f0 has a higher probability than fϕ−1
of being picked first, but it also cannot provide more than 2ϕ combinations out
of ϕ! possibilities. Nonetheless, the pseudorandomness achieved may be already
enough to prevent the construction of efficient pipelines or optimized scheduling
algorithms, at least for small values of ϕ, while being very simple to implement
(basically, it requires ϕ bitwise shifts and ANDs). If desired, however, one can
obtain a more uniform distribution by associating each permutation with mul-
tiple bits of rand, so that permutations associated with higher values would be
applied before those with lower values. The extreme case is to use at least |ϕ|-bit
associations, which should lead to a uniform distribution at the cost of executing
an algorithm for sorting the permutations from the largest to the smallest value
associated to them.

Any of the strategies above can be integrated into Lyra2’s code right after
line 9 of Algorithm 2, when rand is first initialized. More precisely, Algorithm 2
runs normally until line 9, employing only f0 for absorbing the password and salt,
for initializing rows M [0] and M [1], and for computing rand for the very first
time. Right after that, rand is used to define the pseudorandom order in which

40

each fi will be used, as explained above, so the next ϕ iterations of the Setup’s
Columns Loop use the ϕ different sponges. During the last of those ϕ iterations,
the value of rand thereby obtained is employed once again to obtain a (probably
different) order in which the permutations will be used in the next ϕ iterations of
the Columns Loop. If the cost of this ancillary “permutation selection” process
is deemed too high, one could allow the same fi picked in this manner to be
used in the whole Columns Loop, employing the next permutation only in the
subsequent iteration of the Filling Loop. Whichever the case, this process is
iteratively repeated, covering not only the Setup but also the Wandering and
Wrap-up phases of the algorithm.

It is important to notice that, even in cases where the different permutations
display distinct processing times, the strategies described still provide a reason-
ably good resistance against timing attacks by ensuring that all permutations
are employed once before any single permutation is executed once again. In ad-
dition, this characteristic also helps to keep synchronism between threads if this
tweak is combined with the Lyra2p variant described in Section 6.1. As a last
remark, notice that this extension of Lyra2 displays as an additional security
the fact that it prevents attackers from determining, a priori, which is the ac-
tual permutation employed in the generation of key K during the final squeeze
operation performed in line 33 of Algorithm 2.

6.5 Finer-grained processing time

With a simple modification of Algorithm 2, one can merge the Time and Visi-
tation Loops using a single loop-controlling variable γ rather than two, T and
R. As a result, the total number of duplexing operations does not have to be an
integer multiple of R, but can be configured in a more fine-grained manner.

We notice that this approach would only slightly affect the algorithm’s se-
curity against low-memory attacks, which happens because some rows of the
memory matrix end up not being as required as others. For example, if γ = R/2,
only the first half of the Visitation Loop would be executed, meaning that the
entire second half of the memory matrix would certainly be visited and modified,
while rows from its first half would be required with a probability of 50%. All
in all, most of the analysis concerning the algorithm’s resistance against attacks
would still apply to this extension: it still carries the same features that thwart
slow-memory and cache-timing attacks, while the cost of low-memory attacks
against it would be at least as high as those associated with the plain version of
Lyra2 for T = bγ/(R/2)c.

7 Performance for some recommended parameters

In our assessment of Lyra2’s performance, we used a reference implementation
of Blake2b’s compression function [39] as the underlying sponge’s f function
of Algorithm 2 (i.e., without any of the extensions described in section 6). The

41

implementations employed, as well as test vectors, are available at www.lyra-kdf.
net.

One important note about this implementation is that, even though sponges
typically have their internal state initialized with zeros, in this case we initialize
the state’s least significant 512 bits to zeros, but the remainder 512 bits are set
to to Blake2b’s Initialization Vector. The reason is that Blake2b does not use the
constants originally employed in Blake2 inside its G function [39], relying on the
IV for avoiding possible fixed points. Indeed, if the internal state is filled with
zeros, any block filled with zeros absorbed by the sponge will not change this
state value. This should not be a critical issue for Lyra unless both the password
and the salt are both strings of zeros and long enough to fill whole blocks, since
otherwise the pad10∗1 padding would already avoid the fixed point even if the
input itself is filled with zeros. However, the adopted approach is both more
cautious and more compliant with Blake2b’s specification (which is not designed
as a sponge).

The results obtained with an implementation having no SSE2 optimizations
are illustrated in Figure 14. The results depicted correspond to the average
execution time of Lyra2 configured with C = 128, ρ = 1, b = 768 bits (i.e., the
inner state has 256 bits), and different T and R settings, giving an overall idea of
possible combinations of parameters and the corresponding usage of resources.
As shown in this figure, Lyra2 is expected to be able to execute in: less than 1 s
while using up to 400 MB (with R = 215 and T = 5) or up to 1 GB of memory
(with R ≈ 8.3 · 104 and T = 1); or in less than 5 s with 1.6 GB (with R = 217

and T = 6). All tests were performed on an Intel Core i5-2500 (3.30 GHz Dual
Core, 64 bits) equipped with 8 GB of DRAM, running Ubuntu 13.04 64 bits.
The source code was compiled using gcc 4.6.4 with -O3 optimization.

Fig. 14. Performance of our non-SSE Lyra2 implementation, for C = 128, ρ = 1, and
different T and R settings, compared with non-SSE scrypt.

www.lyra-kdf.net
www.lyra-kdf.net

42

Fig. 15. Performance of our SSE-enabled Lyra2 implementation, for C = 128, ρ = 1,
and different T and R settings, , compared with SSE-enabled scrypt.

Figure 14 also compares Lyra2 with the scrypt “optimized non-SSE2” im-
plementation publicly available at www.tarsnap.com/scrypt.html, using the pa-
rameters suggested by scrypt’s author in [5] (namely, b = 8192 and p = 1). The
“non-SSE2” version of scrypt was chosen aiming at a fair comparison, since the
particular Lyra2 implementation used in these tests do not explore SSE2 in-
structions either. The results obtained show that, in order to achieve a memory
usage and processing time similar to that of scrypt, Lyra2 could be configured
with T ≈ 7.

We also used the same testbed for evaluating a very simple SSE2-enabled im-
plementation of Lyra2, aiming to assess the potential of the algorithm in taking
advantage of resources available in modern processors. Specifically, this version
uses only quite obvious instructions for optimizing Lyra2, while the underlying
SSE-enabled Blake2b code corresponds to the implementation by Samuel Neves
available at [39]. Figure 15 compares this simple implementation of Lyra2 with
the SSE2-enabled version of scrypt (also available at www.tarsnap.com/scrypt.
html). As shown in this figure, those simple optimizations were enough to obtain
a gain of 10% in Lyra2’s execution time, allowing the algorithm to process 1.6 GB
in less than 1.5 s (with R = 217 and T = 1). On the other hand, with the SSE-
enabled scrypt code employed (which counts with a better SSE-oriented coding)
the efficiency gain was considerably superior, reaching ≈ 25% and approaching
the SSE-enabled Lyra2’s performance for T = 5. Developing and evaluating a
similarly optimized SSE-oriented implementation of Lyra2 remains, however, as
a matter of future work.

www.tarsnap.com/scrypt.html
www.tarsnap.com/scrypt.html
www.tarsnap.com/scrypt.html

43

7.1 Expected attack costs

Considering that the cost of DDR3 SO-DIMM memory chips is currently around
U$10.00/GB [60], Table 1 shows the cost added by Lyra2 with T = 5 when an
attacker tries to crack a password in 1 year using the above reference hardware,
for different password strengths — we refer the reader to [7, Appendix A] for
a discussion on how to compute the approximate entropy of passwords. These
costs are obtained considering the total number of instances that need to run in
parallel to test the whole password space in 365 days and supposing that testing
a password takes the same amount of time as in our testbed. Notice that, in a
real scenario, attackers would also have to consider costs related to wiring and
energy consumption of memory chips, besides the cost of the processing cores
themselves.

We notice that if the attacker uses a faster platform (e.g., an FPGA or a
more powerful computer), these costs should drop proportionally, since a smaller
number of instances (and, thus, memory chips) would be required for this task.
Similarly, if the attacker employs memory devices faster than regular DRAM
(e.g., SRAM or registers), the processing time is also likely to drop, reducing
the number of instances required to run in parallel. Nonetheless, in this case
the resulting memory-related costs may actually be significantly bigger due to
the higher cost per GB of such memory devices. Anyhow, the numbers provided
in Table 1 are not intended as absolute values, but rather a reference on how
much extra protection one could expect from using Lyra2, since this additional
memory-related cost is the main advantage of any PHS that explores memory
usage when compared with those that do not.

Finally, when compared with existing solutions that do explore memory us-
age, Lyra2 is advantageous due to the elevated processing costs of attack venues
involving time-memory trade-offs, effectively discouraging such approaches.

Indeed, considering the final Wandering phase alone and T = 5, the addi-
tional processing cost of a memory-free attack against Lyra2 is approximately
((3 · 215/4)12)/(2 · 35) ≈ 2166 · σ if the algorithm operates with 400 MB, or
((3 · 217/4)12)/(2 · 35) ≈ 2190 · σ for a memory usage of 1.6 GB. For the same

Password Memory usage (MB) for T = 1 Memory usage (MB) for T = 5

entropy (bits) 200 400 800 1,600 200 400 800 1,600

35 380.5 1.5k 6.1k 24.1k 985.4 4.0k 15.8k 63.6k

40 12.2k 48.7k 194.0k 770.0k 31.5k 127.1k 507.2k 2.1M

45 389.7k 1.6M 6.2M 24.6M 1.0M 4.1M 16.2M 65.1M

50 12.5M 49.9M 198.6M 788.4M 32.3M 130.1M 519.3M 2.1B

55 399.0M 1.6B 6.4B 25.2B 1.0B 4.2B 16.6B 66.6B

Table 1. Memory-related cost (in U$) added by the SSE-enable version of Lyra2 with
T = 1 and T = 5, for attackers trying to break passwords in a 1-year period using an
Intel Core i5-2500 or equivalent processor.

44

memory usage settings, the total cost of a similar memory-free attack against
scrypt would be approximately (215)2/2 = 229 and (217)2/2 = 233 calls to Block-
Mix , whose processing time is approximately 2σ for the parameters used in our
experiments. As expected, such elevated processing costs are prone to discourage
attack venues that try to avoid the memory costs of Lyra2 by means of extra
processing.

7.2 Preliminary GPU performance tests

Aiming to have a preliminary evaluation of Lyra2 in a GPU, we prepared a simple
implementation of the algorithm in CUDA, which was built to run in a single
thread and not use the device’s shared memory. This is far from being a perfectly
GPU-oriented setting, but at least it gives some insight on the performance
of Lyra2 in a scenario involving multiple password guesses being performed in
parallel with a limited amount of dedicated memory for each of them.

Basically, the code obtained is a direct port of the CPU code, with some small
adaptations for ensuring compatibility and good performance (considering the
hardware and the virtual machine instruction sets) with an NVIDIA GeForce
GTX470 (Fermi architecture) [61]. This GPU board has 448 CUDA cores (14
Multiprocessors with 32 CUDA Cores each) operating at 1.22 GHz, and a total
amount of memory of 1280 MB, operating at 1.67 GHz. We used the CUDA 5.0
driver and configured the architecture to 2.0 (the higher value allowed by the
board).

Fig. 16. Performance of a preliminary GPU-oriented Lyra2 implementation, for C =
128, ρ = 1, and different T and R settings, on NVIDIA GeForce GTX470.

45

The preliminary results obtained for an average of six executions of Lyra2
with C = 128 and different T and R settings are shown in Figure 16. From the
numbers obtained, we can see that the performance of the GPU was very low,
especially with higher values of T . This performance penalty is most likely due to
the latency caused by the pseudorandom access pattern adopted in Lyra2, since
GPUs are usually optimized to memory accesses in a certain interval or following
a certain pattern. This latency could, in principle, be masked by the GPU if it
was running several threads in parallel. However, if Lyra2 is configured to use a
high enough amount of memory, the number of parallel threads are deemed to
be low and, thus, GPUs are unlike to efficiently hide this latency for providing a
considerable performance gain when compared with the results hereby obtained.
Moreover, even in this case the pseudorandom pattern would still be a problem
for the GPU, since it would oblige the board to frequently transfer memory from
the global memory to the shared memory and vice-versa. This happens because
the shared memory of the GPU used as testbed has only 48KiB, much less than
what would be necessary to fit a considerable number of rows (each of which
occupies 12KiB for C = 128), let alone the whole memory matrix. For a large
enough memory matrix, this issue is likely to be similarly observed even in more
powerful GPUs.

8 Conclusions

We presented Lyra2, a password hashing scheme (PHS) that allows legitimate
users to fine tune memory and processing costs according to the desired level of
security and resources available in the target platform. For achieving this goal,
Lyra2 builds on the properties of sponge functions operating in a stateful mode,
creating a strictly sequential process. Indeed, the whole memory matrix of the
algorithm can be seen as a huge state, which changes together with the sponge’s
internal state.

The ability to control Lyra2’s memory usage allows legitimate users to thwart
attacks using parallel platforms. This can be accomplished by raising the total
memory required by the several cores beyond the amount available in the at-
tacker’s device. In summary, the combination of a strictly sequential design,
the high costs of exploring time-memory trade-offs, and the ability to raise the
memory usage beyond what is attainable with similar-purpose solutions (e.g.,
scrypt) for a similar security level and processing time make Lyra2 an appealing
PHS solution.

Finally, with the proposed (and possibly other) extensions, Lyra2 can be fur-
ther personalized for different scenarios, including parallel legitimate platforms
(with the p parameter). Assessing the interest of such tweaks and their potential
integration into Lyra2’s core remains, however, as a matter of future work.

46

Acknowledgements

This work was supported by the Brazilian National Counsel of Technological
and Scientific Development (CNPq) under grants 482342/2011-0, 473916/2013-
4, under productivity research grants 305350/2013-7 and 306935/2012-0, as well
as by the São Paulo Research Foundation (FAPESP) under grant 2011/21592-8.

References

1. Chakrabarti, S., Singbal, M.: Password-based authentication: Preventing dictio-
nary attacks. Computer 40(6) (june 2007) 68–74

2. Conklin, A., Dietrich, G., Walz, D.: Password-based authentication: A system
perspective. In: Proc. of the 37th Annual Hawaii International Conference on
System Sciences (HICSS’04). Volume 7 of HICSS’04., Washington, DC, USA, IEEE
Computer Society (2004) 170–179

3. Bonneau, J., Herley, C., van Oorschot, P.C., Stajano, F.: The Quest to Re-
place Passwords: A Framework for Comparative Evaluation of Web Authentication
Schemes. In: IEEE Symposium on Security and Privacy. (2012) 553–567

4. NIST: Special Publication 800-18 – Recommendation for Key Derivation Us-
ing Pseudorandom Functions. National Institute of Standards and Technol-
ogy, U.S. Department of Commerce. (October 2009) http://csrc.nist.gov/

publications/nistpubs/800-108/sp800-108.pdf.
5. Percival, C.: Stronger key derivation via sequential memory-hard functions. In:

BSDCan 2009 – The Technical BSD Conference. (2009)
6. Kaliski, B.: PKCS#5: Password-Based Cryptography Specification version 2.0

(RFC 2898). (2000)
7. NIST: Special Publication 800-63-1 – Electronic Authentication Guide-

line. National Institute of Standards and Technology, U.S. Department of
Commerce. (December 2011) http://csrc.nist.gov/publications/nistpubs/

800-63-1/SP-800-63-1.pdf.
8. Florencio, D., Herley, C.: A Large Scale Study of Web Password Habits. In: Proc.

of the 16th International Conference on World Wide Web, Alberta, Canada (2007)
657–666

9. Herley, C., van Oorschot, P., Patrick, A.: Passwords: If We’re So Smart, Why Are
We Still Using Them? In: Financial Cryptography and Data Security. Volume 5628
of LNCS., Springer Berlin / Heidelberg (2009) 230–237

10. Sprengers, M.: GPU-based Password Cracking: On the Security of Password Hash-
ing Schemes regarding Advances in Graphics Processing Units. Master’s thesis,
Radboud University Nijmegen (2011)

11. Dürmuth, M., Güneysu, T., Kasper, M.: Evaluation of Standardized Password-
Based Key Derivation against Parallel Processing Platforms. In: Computer Security
– ESORICS 2012. Volume 7459 of LNCS. Springer Berlin Heidelberg (2012) 716–
733

12. Marechal, M.: Advances in password cracking. Journal in Computer Virology 4(1)
(2008) 73–81

13. Provos, N., Mazières, D.: A future-adaptable password scheme. In: Proc. of the
FREENIX track: 1999 USENIX annual technical conference. (1999)

14. PHC: Password Hashing Competition. https://password-hashing.net/ (2013)

http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf
http://csrc.nist.gov/publications/nistpubs/800-63-1/SP-800-63-1.pdf
http://csrc.nist.gov/publications/nistpubs/800-63-1/SP-800-63-1.pdf
https://password-hashing.net/

47

15. Almeida, L., Andrade, E., Barreto, P., Simplicio, M.: Lyra: Password-Based Key
Derivation with Tunable Memory and Processing Costs. Journal of Cryptographic
Engineering 4(2) (2014) 75–89 See also eprint.iacr.org/2014/030.

16. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Sponge functions. (ECRYPT
Hash Function Workshop 2007) (2007) Also available at http://csrc.nist.gov/

pki/HashWorkshop/Public_Comments/2007_May.html.

17. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic sponge func-
tions - version 0.1. http://keccak.noekeon.org/ (2011)

18. Andreeva, E., Mennink, B., Preneel, B.: The Parazoa family: Generalizing the
Sponge hash functions. IACR Cryptology ePrint Archive 2011 (2011) 28

19. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak SHA-3 submission.
Submission to NIST (Round 3) (2011)

20. Kelsey, J., Schneier, B., Hall, C., Wagner, D.: Secure Applications of Low-Entropy
Keys. In: Proc. of the 1st International Workshop on Information Security. ISW
’97, London, UK, UK, Springer-Verlag (1998) 121–134

21. Weir, M., Aggarwal, S., Medeiros, B.d., Glodek, B.: Password Cracking Using
Probabilistic Context-Free Grammars. In: Proc. of the 30th IEEE Symposium
on Security and Privacy. SP’09, Washington, DC, USA, IEEE Computer Society
(2009) 391–405

22. Nvidia: CUDA C programming guide. http://docs.nvidia.com/cuda/

cuda-c-programming-guide/ (2012)

23. Khronos Group: The OpenCL Specification – Version 1.2. (2012)

24. Nvidia: Tesla Kepler family product overview. http://www.nvidia.com/content/
tesla/pdf/Tesla-KSeries-Overview-LR.pdf (2012)

25. Dandass, Y.S.: Using FPGAs to Parallelize Dictionary Attacks for Password Crack-
ing. In: Proc. of the 41st Annual Hawaii International Conference on System Sci-
ences (HICSS 2008), IEEE (2008) 485–485

26. Kakarountas, A.P., Michail, H., Milidonis, A., Goutis, C.E., Theodoridis, G.: High-
Speed FPGA Implementation of Secure Hash Algorithm for IPSec and VPN Ap-
plications. The Journal of Supercomputing 37(2) (2006) 179–195

27. Chung, E.S., Milder, P.A., Hoe, J.C., Mai, K.: Single-Chip Heterogeneous Com-
puting: Does the Future Include Custom Logic, FPGAs, and GPGPUs? In: Proc.
of the 43rd Annual IEEE/ACM International Symposium on Microarchitecture.
MICRO’43, Washington, DC, USA, IEEE Computer Society (2010) 225–236

28. Fowers, J., Brown, G., Cooke, P., Stitt, G.: A performance and energy comparison
of FPGAs, GPUs, and multicores for sliding-window applications. In: Proc. of
the ACM/SIGDA Internbational Symposium on Field Programmable Gate Arrays
(FPGA’12), New York, NY, USA, ACM (2012) 47–56

29. SciEngines: Rivyera s3-5000. http://sciengines.com/products/

computers-and-clusters/rivyera-s3-5000.html

30. SciEngines: Rivyera v7-2000t. http://sciengines.com/products/

computers-and-clusters/v72000t.html

31. NIST: Federal Information Processing Standard (FIPS PUB 198) – The Keyed-
Hash Message Authentication Code. National Institute of Standards and Tech-
nology, U.S. Department of Commerce. (March 2002) http://csrc.nist.gov/

publications/fips/fips198/fips-198a.pdf.

32. Bernstein, D.: The Salsa20 family of stream ciphers. In Robshaw, M., Billet,
O., eds.: New Stream Cipher Designs. Springer-Verlag, Berlin, Heidelberg (2008)
84–97

eprint.iacr.org/2014/030
http://csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
http://csrc.nist.gov/pki/HashWorkshop/Public_Comments/2007_May.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://www.nvidia.com/content/tesla/pdf/Tesla-KSeries-Overview-LR.pdf
http://www.nvidia.com/content/tesla/pdf/Tesla-KSeries-Overview-LR.pdf
http://sciengines.com/products/computers-and-clusters/rivyera-s3-5000.html
http://sciengines.com/products/computers-and-clusters/rivyera-s3-5000.html
http://sciengines.com/products/computers-and-clusters/v72000t.html
http://sciengines.com/products/computers-and-clusters/v72000t.html
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf
http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf

48

33. Aumasson, J.P., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New fea-
tures of latin dances: Analysis of Salsa, ChaCha, and Rumba. In: Fast Software
Encryption. Volume 5084., Berlin, Heidelberg, Springer-Verlag (2008) 470–488

34. Daemen, J., Rijmen, V.: A new MAC construction alred and a specific instance
alpha-mac. In: Fast Software Encryption – FSE’05. (2005) 1–17

35. Daemen, J., Rijmen, V.: Refinements of the alred construction and MAC security
claims. Information Security, IET 4(3) (2010) 149–157

36. Simplicio, M.A., Barbuda, P., Barreto, P., Carvalho, T., Margi, C.: The Marvin
Message Authentication Code and the LetterSoup Authenticated Encryption
Scheme. Security and Communication Networks 2 (2009) 165–180

37. Simplicio, M.A., Barreto, P.: Revisiting the Security of the Alred Design and
Two of Its Variants: Marvin and LetterSoup. IEEE Transactions on Information
Theory 58(9) (2012) 6223–6238

38. Gaj, K., Homsirikamol, E., Rogawski, M., Shahid, R., Sharif, M.U.: Comprehen-
sive Evaluation of High-Speed and Medium-Speed Implementations of Five SHA-3
Finalists Using Xilinx and Altera FPGAs. Cryptology ePrint Archive, Report
2012/368 (2012) http://eprint.iacr.org/2012/368.

39. Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: simpler,
smaller, fast as MD5. https://blake2.net/ (2013)

40. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.: SHA-3 proposal BLAKE (version
1.3). https://131002.net/blake/blake.pdf (2010)

41. Chang, S., Perlner, R., Burr, W.E., Turan, M.S., Kelsey, J.M., Paul, S., Bassham,
L.E.: Third-Round Report of the SHA-3 Cryptographic Hash Algorithm Compe-
tition. US Department of Commerce, National Institute of Standards and Tech-
nology (2012)

42. Aumasson, J.P., Guo, J., Knellwolf, S., Matusiewicz, K., Meier, W.: Differential
and Invertibility Properties of BLAKE. In Hong, S., Iwata, T., eds.: Fast Software
Encryption. Volume 6147 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2010) 318–332 See also http://eprint.iacr.org/2010/043.

43. Ming, M., Qiang, H., Zeng, S.: Security analysis of BLAKE-32 based on differential
properties. In: 2010 International Conference on Computational and Information
Sciences (ICCIS), IEEE (2010) 783–786

44. Guo, J., Karpman, P., Nikoli, I., Wang, L., Wu, S.: Analysis of BLAKE2. In: Topics
in Cryptology (CT-RSA 2014). Volume 8366 of LNCS., Springer International
Publishing (2014) 402–423 see also https://eprint.iacr.org/2013/467.

45. Halderman, J., Schoen, S., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.,
Feldman, A., Appelbaum, J., Felten, E.: Lest we remember: cold-boot attacks on
encryption keys. Commun. ACM 52(5) (May 2009) 91–98

46. Yuill, J., Denning, D., Feer, F.: Using deception to hide things from hackers:
Processes, principles, and techniques. Journal of Information Warfare 5(3) (2006)
26–40

47. Forler, C., Lucks, S., Wenzel, J.: Catena: A Memory-Consuming Password Scram-
bler. Cryptology ePrint Archive, Report 2013/525 (2013) http://eprint.iacr.

org/2013/525.

48. Cook, S.A.: An Observation on Time-storage Trade off. In: Proc. of the 5th
Annual ACM Symposium on Theory of Computing (STOC’73), New York, NY,
USA, ACM (1973) 29–33

49. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Transactions on
Information Theory 26(4) (1980) 401–406

http://eprint.iacr.org/2012/368
https://blake2.net/
https://131002.net/blake/blake.pdf
http://eprint.iacr.org/2010/043
https://eprint.iacr.org/2013/467
http://eprint.iacr.org/2013/525
http://eprint.iacr.org/2013/525

49

50. Dwork, C., Naor, M., Wee, H.: Pebbling and Proofs of Work. In: Advances in
Cryptology – CRYPTO 2005. Volume 3621 of Lecture Notes in Computer Science.,
Springer Berlin Heidelberg (2005) 37–54

51. Dziembowski, S., Kazana, T., Wichs, D.: Key-Evolution Schemes Resilient to
Space-Bounded Leakage. In: Advances in Cryptology – CRYPTO 2011. Volume
6841 of Lecture Notes in Computer Science., Springer Berlin Heidelberg (2011)
335–353

52. Lengauer, T., Tarjan, R.E.: Asymptotically tight bounds on time-space trade-offs
in a pebble game. J. ACM 29(4) (oct 1982) 1087–1130

53. Ariew, R.: Ockham’s Razor: A Historical and Philosophical Analysis of Ockham’s
Principle of Parsimony. University of Illinois press, Champaign-Urbana (1976)

54. Bernstein, D.J.: Cache-timing attacks on AES. Technical report, University of
Illinois (2005) http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

55. NIST: Federal Information Processing Standard (FIPS 197) – Advanced Encryp-
tion Standard (AES). National Institute of Standards and Technology. (November
2001) http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

56. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2) (Feb 1978) 120–126

57. Percival, C.: Cache missing for fun and profit. In: Proc. of BSDCan 2005. (2005)
58. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, You, Get off of My

Cloud: Exploring Information Leakage in Third-party Compute Clouds. In: Proc.s
of the 16th ACM Conference on Computer and Communications Security. CCS
’09, New York, NY, USA, ACM (2009) 199–212

59. Mowery, K., Keelveedhi, S., Shacham, H.: Are AES x86 Cache Timing Attacks Still
Feasible? In: Proc.s of the 2012 ACM Workshop on Cloud Computing Security
Workshop (CCSW’12), New York, NY, USA, ACM (2012) 19–24

60. TrendForce: DRAM contract price (jan.22 2014).
http://www.trendforce.com/price (visited on Mar.29, 2014) (2014)

61. GeForce: GeForce GTX 470: Specifications. http://www.geforce.com/

hardware/desktop-gpus/geforce-gtx-470/specifications (visited on Mar.29,
2014) (2014)

62. TrueCrypt: TrueCrypt: Free open-source on-the-fly encryption – documentation.
http://www.truecrypt.org/docs/ (2012)

63. Apple: iOS security. Technical report, Apple Inc. (2012) http://images.apple.

com/ipad/business/docs/iOS_Security_May12.pdf.
64. Yao, F.F., Yin, Y.L.: Design and Analysis of Password-Based Key Derivation

Functions. IEEE Transactions on Information Theory 51(9) (2005) 3292–3297
65. Bellare, M., Ristenpart, T., Tessaro, S.: Multi-instance security and its application

to password-based cryptography. In: Advances in Cryptology (CRYPTO 2012).
Volume 7417 of LNCS., Springer Berlin Heidelberg (2012) 312–329

66. Schneier, B.: Description of a new variable-length key, 64-bit block cipher (Blow-
fish). In: Fast Software Encryption, Cambridge Security Workshop, London, UK,
Springer-Verlag (1994) 191–204

67. Crew, B.: New carnivorous harp sponge discovered in deep
sea. Nature (2012) Available online: http://www.nature.com/news/

new-carnivorous-harp-sponge-discovered-in-deep-sea-1.11789.

Appendix A. PBKDF2

The Password-Based Key Derivation Function version 2 (PBKDF2) algorithm
[6] was originally proposed in 2000 as part of RSA Laboratories’ PKCS#5. It is

http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-470/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-470/specifications
http://www.truecrypt.org/docs/
http://images.apple.com/ipad/business/docs/iOS_Security_May12.pdf
http://images.apple.com/ipad/business/docs/iOS_Security_May12.pdf
http://www.nature.com/news/new-carnivorous-harp-sponge-discovered-in-deep-sea-1.11789
http://www.nature.com/news/new-carnivorous-harp-sponge-discovered-in-deep-sea-1.11789

50

nowadays present in several security tools, such as TrueCrypt [62] and Apple’s
iOS for encrypting user passwords [63], and has been formally analyzed in several
circumstances [64,65].

Basically, PBKDF2 (see Algorithm 3) iteratively applies the underlying pseu-
dorandom function Hash to the concatenation of pwd and a variable Ui, i.e.,
it makes Ui = Hash(pwd, Ui−1) for each iteration 1 6 i 6 T . The initial value
U0 corresponds to the concatenation of the user-provided salt and a variable l,
where l corresponds to the number of required output blocks. The l-th block of
the k-long key is then computed as Kl = U1 ⊕ U2 ⊕ . . . ⊕ UT , where k is the
desired key length.

PBKDF2 allows users to control its total running time by configuring the T
parameter. Since the password hahsing process is strictly sequential (one cannot
compute Ui without first obtaining Ui−1), its internal structure is not paralleliza-
ble. However, as the amount of memory used by PBKDF2 is quite small, the cost
of implementing brute force attacks against it by means of multiple processing
units remains reasonably low.

Algorithm 3 PBKDF2.

Input: pwd . The password

Input: salt . The salt

Input: T . The user-defined parameter

Output: K . The password-derived key

1: if k > (232 − 1) · h then
2: return Derived key too long.
3: end if
4: l← dk/he ; r ← k − (l − 1) · h
5: for i← 1 to l do
6: U [1]← PRF (pwd, salt ‖ INT (i)) . INT(i): 32-bit encoding of i

7: T [i]← U [1]
8: for j ← 2 to T do
9: U [j]← PRF (pwd, U [j − 1]) ; T [i]← T [i] ⊕ U [j]

10: end for
11: if i = 1 then K ← T [1] else K ← K ‖ T [i] end if
12: end for
13: return K

Appendix B. Bcrypt

Another solution that allows users to configure the password hashing processing
time is bcrypt [13]. The scheme is based on a customized version of the 64-
bit cipher algorithm Blowfish [66], called EksBlowflish (“expensive key schedule
blowfish”).

Both algorithms use the same encryption process, differing only on how they
compute their subkeys and S-boxes. Bcrypt consists in initializing EksBlowfish’s
subkeys and S-Boxes with the salt and password, using the so-called EksBlowfish-
Setup function, and then using EksBlowfish for iteratively encrypting a constant
string, 64 times.

51

Algorithm 4 Bcrypt.

Input: pwd . The password

Input: salt . The salt

Input: T . The user-defined cost parameter]
Output: K . The password-derived key

1: s← InitState() . Copies the digits of π into the sub-keys and S-boxes Si
2: s←ExpandKey(s, salt, pwd)
3: for i← 1 to 2T do
4: s←ExpandKey(s, 0, salt)
5: s←ExpandKey(s, 0, pwd)
6: end for
7: ctext← ”OrpheanBeholderScryDoubt”
8: for i← 1 to 64 do
9: ctext← BlowfishEncrypt(s, ctext)

10: end for
11: return T ‖ salt ‖ ctext
12: function ExpandKey(s, salt, pwd)
13: for i← 1 to 32 do
14: Pi ← Pi ⊕ pwd[32(i− 1) . . . 32i− 1]
15: end for
16: for i← 1 to 9 do
17: temp← BlowfishEncrypt(s, salt[64(i− 1) . . . 64i− 1])
18: P0+2(i−1) ← temp[0 . . . 31]
19: P1+2(i−1) ← temp[32 . . . 64]
20: end for
21: for i← 1 to 4 do
22: for j ← 1 to 128 do
23: temp← BlowfishEncrypt(s, salt[64(j − 1) . . . 64j − 1])
24: Si[2(j − 1)]← temp[0 . . . 31]
25: Si[1 + 2(j − 1)]← temp[32 . . . 63]
26: end for
27: end for
28: return s
29: end function

EksBlowfishSetup starts by copying the first digits of the number π into
the subkeys and S-boxes Si (see Algorithm 4). Then, it updates the subkeys
and S-boxes by invoking ExpandKey(salt, pwd), for a 128-bit salt value. Ba-
sically, this function (1) cyclically XORs the password with the current sub-
keys, and then (2) iteratively blowfish-encrypts one of the halves of the salt,
the resulting ciphertext being XORed with the salt’s other half and also replac-
ing the next two subkeys (or S-Boxes, after all subkeys are replaced). After all
subkeys and S-Boxes are updated, bcrypt alternately calls ExpandKey(0, salt)
and then ExpandKey(0, pwd), for 2T iterations. The user-defined parameter T
determines, thus, the time spent on this subkey and S-Box updating process,
effectively controlling the algorithm’s total processing time.

Like PBKDF2, bcrypt allows users to parameterize only its total running
time. In addition to this shortcoming, some of its characteristics can be consid-

52

ered (small) disadvantages when compared with PBKDF2. First, bcrypt employs
a dedicated structure (EksBlowfish) rather than a conventional hash function,
leading to the need of implementing a whole new cryptographic primitive and,
thus, raising the algorithm’s code size. Second, EksBlowfishSetup’s internal loop
grows exponentially with the T parameter, making it harder to fine-tune bcrypt’s
total execution time without a linearly growing external loop. Finally, bcrypt dis-
plays the unusual (albeit minor) restriction of being unable to handle passwords
having more than 56 bytes.

Appendix C. Lyra

Lyra’s steps as described in [15] are detailed in Algorithm 5.

Algorithm 5 The Lyra Algorithm.

Param: Hash . Sponge with block size b (in bits) and underlying permutation f

Param: ρ . Number of rounds of f in the Setup and Wandering phases

Input: pwd . The password

Input: salt . A random salt

Input: T . Time cost, in number of iterations

Input: R . Number of rows in the memory matrix

Input: C . Number of columns in the memory matrix

Input: k . The desired key length, in bits

Output: K . The password-derived k-long key

1: . Setup: Initializes a (R× C) memory matrix whose cells have b bits each

2: Hash.absorb(pad(salt ‖ pwd)) . Padding rule: 10∗1

3: M [0]← Hash.squeezeρ(C · b)
4: for row ← 1 to R− 1 do
5: for col← 0 to C − 1 do
6: M [row][col]← Hash.duplexingρ(M [row − 1][col], b)
7: end for
8: end for

9: .Wandering: Iteratively overwrites blocks of the memory matrix

10: row ← 0
11: for i← 0 to T − 1 do . Time Loop

12: for j ← 0 to R− 1 do . Rows Loop: randomly visits R rows

13: for col← 0 to C − 1 do . Columns Loop: visits blocks in row

14: M [row][col]←M [row][col] ⊕ Hash.duplexingρ(M [row][col], b)
15: end for
16: col←M [row][C − 1] mod C
17: row ← Hash.duplexing(M [row][col], |R|) mod R
18: end for
19: end for

20: .Wrap-up: key computation

21: Hash.absorb(pad(salt)) . Uses the sponge’s current state

22: K ← Hash.squeeze(k)

23: return K . Outputs the k-long key

53

Like in Lyra2, Lyra also employs (reduced-round) operations of a crypto-
graphic sponge for building a memory matrix, visiting its rows in a pseudo-
random fashion, and providing the desired number of bits as output. One first
difference between the two algorithms is that Lyra’s Setup is quite simple, each
iteration of its loop (lines 8 to 4) duplexing only the row that was computed
in the previous iteration. As a result, the Setup can be executed with a cost of
R ·σ while keeping in memory a single row of the memory matrix instead of half
of them as in Lyra2. The second and probably main difference is that Lyra’s
duplexing operations performed during the Wandering phase only involve one
pseudorandomly-picked row, which is read and written upon, while two rows
are modified per duplexing in Lyra2’s basic algorithm. This is the reason why
the processing time of an approximately memory-free attack against Lyra grows
with a RT+1 factor. In comparison, as discussed in Section 5.1, in Lyra2’s basic
algorithm the cost of such attacks involves a R2T+2 factor, or R(δ+1)T+2 if the
δ parameter is also employed.

Appendix D. The Extended Lyra2 algorithm

Algorithm 6 describes Lyra2 when integrated with a basic version of the exten-
sions described in Sections 6.1, 6.2 and 6.3.

Appendix E. On the algorithm’s name

The name “Lyra” comes from Chondrocladia lyra, a recently discovered type
of sponge [67]. While most sponges are harmless, this harp-like sponge is car-
nivorous, using its branches to ensnare its prey, which is then enveloped in a
membrane and completely digested. The “two” suffix is a reference to its pre-
decessor, Lyra [15], which displays many of Lyra2’s properties hereby presented
but has a lower resistance to attacks involving time-memory trade-offs.

Lyra2’s memory matrix displays some similarity with this species’ external
aspect, and we expect it to be at least as much aggressive against adversaries
trying to attack it. ,

54

Algorithm 6 The Lyra2 Algorithm, with p, δ and χ parameters.
Param: H . Sponge with block size b (in bits) and underlying permutation f
Param: ρ . Number of rounds of f during the Setup and Wandering phases
Param: W . The target machine’s word size (usually, 32 or 64)
Param: δ . Number of pseudorandom rows involved in the duplexing operations
Param: p . Degree of parallelism (p > 1 and p|(R/2))
Param: χ . Number of iterations in which rows in cache are repeatedly read after modification
Input: pwd . The password
Input: salt . A salt
Input: T . Time cost, in number of iterations
Input: R . Number of rows in the memory matrix
Input: C . Number of columns in the memory matrix (C > 2)
Input: k . The desired key length, in bits
Output: K . The password-derived k-long key

1: for each i in [0, p[do . Operation performed in parallel, by each thread
2: . Setup phase: Initializes one out of p slices of the (R× C) memory matrix
3: basil← len(k)||len(pwd)||len(salt)||T ||R||C . Multi-byte representation of inputs
4: H.absorb(pad(pwd ‖ salt ‖ basil)) . Padding rule: 10∗1.
5: if p > 1 then Hi.absorb(Int(p, b/2) ‖ Int(i, b/2)) end if . Absorbs extra block
6: Mi[0] ‖Mi[1]← Hi.squeezeρ(2C · b)
7: row∗ ← 0 ; prev ← 1 ; row ← 2 . The first and second rows will feed the sponge
8: do . Filling Loop: initializes remainder rows
9: for col← 0 to C − 1 do . Columns Loop: updates both Mi[row] and Mi[row

∗]
10: rand← Hi.duplexingρ(Mi[prev][col] ⊕ Mi[row

∗][col], b)
11: Mi[row][col]← rand
12: Mi[row

∗][col]←Mi[row
∗][col] ⊕ rotW (rand) . rotW (): right rotation of 1 word

13: end for
14: for z ← 1 to χ do . Cache Loop: reads rows already in cache
15: col∗ ← truncL(rand,W) mod C . Picks a pseudorandom column
16: rand← H.duplexingρ(Mi[prev][col

∗] ⊕ Mi[row
∗][col∗] ⊕ Mi[row][col∗], b)

17: end for
18: if row∗ 6= 0 then row∗ ← row∗ − 1 else row∗ ← prev end if
19: prev ← row ; row ← row + 1 . The next row in sequence will be initialized
20: while (row 6 R/p− 1)

21: .Wandering phase: Iteratively overwrites cells of the memory matrix
22: dir ← −1 ; prev ← 0 ; row ← R/p− 1 . Start visiting rows in reverse order
23: for τ ← 1 to T do . Time Loop
24: do . Visitation Loop: reverses the row visitation order
25: if p > 1 then . Prepares the rows to be visited, including Mj [row

∗
p]

26: if row < R/2p then offset← 0 else offset← R/2p end if
27: for d← 0 to δ − 1 do . δ random rows will be visited
28: row∗

d ← offset + ((truncL(rotWd(rand),W) ⊕ prev) mod (R/2p))
29: end for
30: row∗

p ← (row∗
d=0 + offset) mod (R/p)

31: j ← (truncM(rand,W) mod p)
32: if j = i then j ← i+ dir end if
33: else . No parallelism: no need to consider different slices
34: for d← 0 to δ − 1 do . δ random rows will be visited
35: row∗

d ← (truncL(rotWd(rand),W) ⊕ prev) mod R
36: end for
37: end if . The pseudorandom indices are picked

38: for col← 0 to C − 1 do . Columns Loop: updates Mi[row] and Mi[row
∗
i]

39: food←Mi[prev][col] ⊕ Mi[row
∗
d=0][col] ⊕ . . . ⊕ Mi[row

∗
d=δ−1][col]

40: if p > 1 then food← food ⊕ Mj [row
∗
p][col] end if

41: rand← Hi.duplexingρ(food, b)
42: Mi[row][col]←Mi[row][col] ⊕ rand
43: for d← 0 to δ − 1 do
44: Mi[row

∗
d][col]←Mi[row

∗
d][col] ⊕ rotWd+1(rand)

45: end for
46: end for
47: for z ← 1 to χ do . Cache Loop: reads rows already in cache
48: col∗ ← truncL(rand,W) mod C . Picks a pseudorandom column
49: food←Mi[prev][col

∗] ⊕ Mi[row
∗
d=0][col

∗] ⊕ . . . ⊕ Mi[row
∗
d=δ−1][col

∗]

50: if p > 1 then food← food ⊕ Mj [row
∗
p][col

∗] end if

51: rand← Hi.duplexingρ(food, b)
52: end for
53: prev ← row ; row ← row + dir . The next row in sequence will be visited
54: while (0 6 row 6 R− 1)
55: dir ← −dir ; prev ← R− row ; row ← row+dir . Inverses the visitation order
56: end for

57: .Wrap-up phase: key computation
58: Hi.absorb(Mi[row

∗
0][0]) . Absorbs a final column with the full-round sponge

59: Ki ← Hi.squeeze(k) . Squeezes k bits with a full-round sponge
60: end for . All threads finished

61: return K0 ⊕ . . . ⊕ Kp . Provides k-long bitstring as output

	Lyra2: Password Hashing Scheme with improved security against time-memory trade-offs

