
A Practical Key Exchange for the Internet using Lattice

Cryptography

Vikram Singh∗

Abstract

In [21], Peikert presents an efficient and provably secure set of lower level primitives
for practical post-quantum cryptography. These primitives also give the first lattice-based
scheme to provide perfect forward secrecy, and thus represent a major advancement in
providing the same sort of security guarantees that are now expected for modern internet
traffic protection. However, the presentation in [21] might prove a bit daunting for the
slightly less mathematical reader. Here we provide what we hope will be a clear and self-
contained exposition of how the algorithm can be implemented, along with sample code and
some initial analysis for potential parameter sizes.

We focus on the simpler case, as chosen by Bos et al in [1], of cyclotomic rings whose
degree is a power of two. We describe the necessary arithmetic setup and choices regard-
ing error sampling, and give a possibly cleaner mechanism for reconciliation of the shared
secrets. Then we present Peikert’s Diffie-Hellman-like key exchange algorithms along with
security, correctness and implementation analysis. We demonstrate parameter choices that
outperform [1] by a factor of up to 13 for equivalent security.

Keywords: Cryptography, Lattice, Ring-LWE, Ring Learning With Errors, Key Ex-
change, IKE, TLS

1 Introduction

Lattice-based cryptographic protocols, particularly those presented by Peikert in [21], have great
promise as components of Internet standards and other open protocols such as Internet Key
Exchange (IKE) and Transport Layer Security (TLS). This is due both to their efficiency and
practicality, and that they provide security guarantees against classical and quantum adver-
saries. Indeed, Peikert expressly defines his protocols as drop-in replacements for the classical
key exchange and key transport primitives of Diffie-Hellman and RSA as used in real-world
networks, and adhering as closely as possible to the abstract protocols underlying existing and
proposed standards, e.g. IETF RFCs like [11, 26, 10, 12, 13]. Adapting lattice-based mecha-
nisms to have the desired properties of these primitives had been a challenge, but Peikert was

∗vs77814@gmail.com. Principal Consultant, VS Communications.

1

able to demonstrate concrete ways in which existing protocols could be generalised so as to yield
secure lattice-based instantiations, without substantially affecting their overall form or security
analysis. Unlike earlier lattice-based constructions such as NTRUEncrypt, the Peikert scheme
fits neatly into the TLS protocols with proofs of security in each case ([21, 1]).

Each of the schemes proposed by Peikert is based on the learning with errors over rings (ring-
LWE) problem [19, 20]. In overview, the ring-LWE problem in a ring R may be defined by fixing
a certain error distribution χ over R that is concentrated on “small” elements, and randomly
picking a secret ring element s ∈ R from which to generate “random noisy ring equations”.
Each such equation is generated by letting ai ∈ R be a random ring element, and ei ∈ R be
drawn from χ as a random small perturbation, then publishing pairs (ai, bi = ai · s+ ei). The
decision version of ring-LWE is to distinguish independent “random noisy ring equations” from
truly uniform pairs. That is, given pairs (ai, bi) ∈ R×R either of the form (ai, bi = ai ·s+ei) or
uniform random in R×R, distinguish from which of the two distributions the pairs have been
drawn. There is also a search version of ring-LWE: given pairs of the form (ai, bi) ∈ R × R as
above, recover the secret s.

Ring-LWE enjoys strong provable hardness guarantees: it is hard on average so long as the Short
Vector Problem (SVP) is hard to approximate on so-called ideal lattices in the corresponding
ring in the worst case. These results provide good theoretical evidence that ring-LWE is a solid
foundation on which to design cryptosystems, and this evidence has been reinforced by concrete
cryptanalytic efforts.

In [21], Peikert presents a ring-LWE based Diffie-Hellman-like key exchange algorithm in which
two users each exchange a single ring-LWE “sample” or public key to arrive at approximate or
“noisy” agreement on a ring element. Let b = a · s0 + e0 be the public key of the first party,
and c = a · s1 + e1 be the public key of the second. Then the two parties can arrive at an
approximate shared secret s0 · c = s0 · a · s1 + s0 · e1 ≈ s0 · a · s1 + s1 · e0 = s1 · b, assuming
that s0, e0, s1, e1 are all “small” for a suitable definition of small. In order to (non-interactively)
reach exact agreement, the second party will derive the binary key stream from its version of the
shared secret value and also derive and send an additional bit-string referred to as the “masking
bits.” These masking bits provide the extra hint which can be then fed into the “reconciliation”
technique for the first party to arrive at exact agreement with the key stream derived by the
second.

Throughout this paper we aim to give a readable and self-contained description of the Peikert
algorithms and our implementation. We restrict to the case of cyclotomic rings whose degree is
a power of two, as do Bos et al in [1]. This case hides complexities of ring arithmetic which it is
clearer to do without at this stage, yet also provides a reasonable diversity of practical security
levels.

In Section 2 we establish the necessary setup, defining subgaussian random variables and how
we will use them to bound the accumulation of error terms. We state the ring-LWE problem
and define the cyclotomic rings we shall use, including the Chinese Remainder basis required

2

for efficient arithmetic. We define the error distribution we shall use to randomly draw small
ring elements. In Section 3 we sketch the key exchange, and describe how masking bits and the
reconciliation mechanism are used to generate key from the approximate shared secrets. The
reconciliation mechanism is a slight variation on Peikert’s, which is cleaner but has the same
effect.

In Section 4 we present Peikert’s basic key exchange algorithm in detail in the context of our
implementation choices. We then present Peikert’s development of provably actively secure
key exchanges in order to protect against an adversary that can choose ciphertexts, and his
development of provably secure authenticated key exchanges in order to assure each party that
the key is agreed only with the holder of the desired certified identity.

In Section 5 we describe our parameter choices along with a consideration of their security, an
analysis of correctness, and performance timings for the basic key exchange. We provide example
sage code in Appendix A, and higher performance C code at https://github.com/vscrypto/ringlwe.
We suggest that our parameters are both more efficient and more secure than any previous work.

2 Preliminaries and definitions

For any integer q, let Zq denote the quotient ring Z/qZ, i.e. the ring of integers modulo q. The
elements of this ring can be considered in terms of a distinguished set of representatives, e.g.
the set {0, 1, . . . q − 1}.

For any two subsets X,Y of an additive group, we define −X := {−x : x ∈ X} and X + Y :=
{x+ y : x ∈ X, y ∈ Y }. Similarly, we define x+ Y := {x+ y : y ∈ Y } for a fixed element x.

We define the infinity norm on a ring R with basis Y = {yj} to be ||r||∞ := maxj(rj) for
r =

∑
j rj · yj ∈ R. We will be interested in the growth of individual basis coefficients of

elements of R and will perform our analysis on this infinity norm || · ||∞ rather the Euclidean
norm || · ||2.

2.1 Gaussian and subgaussian distributions

Early exposition of ring-LWE ([19]) relied on Gaussian distributions for all error sampling.
For r > 0, the Gaussian distribution Dr over R with parameter r has probability distribution
function 1

re
(−πx2/r2). More recent works [20, 21] have updated these ideas to be based on the

notion of a subgaussian distribution. For any δ ≥ 0, we say that a random variable X (or
its distribution) over R is δ-subgaussian with parameter r > 0 if for all t ∈ R, the (scaled)
moment-generating function satisfies

E[exp(2πtX)] ≤ exp(δ) · exp(πr2t2).

3

Subgaussians are useful to simplify the analysis and have many nice features, such as the sum
of independent subgaussians is another subgaussian whose parameters can be calculated. Most
importantly, as noted in [21], any B-bounded centered random variable X (i.e., E[X] = 0 and
|X| ≤ B always) is 0-subgaussian with parameter B

√
2π. Thus simple bounded distributions,

such as uniform random from an interval, are subgaussian. We will utilise this fact to provide
significant efficiency gains and simplification to our key establishment.

2.2 Ring-LWE

We now recall the ring-LWE probability distribution and (decisional) problem as presented in
[21]; see [19] for a more general form.

Definition 1 (Ring-LWE Distribution). For an s ∈ R and a distribution χ over R, a sample
from the Ring-LWE Distribution As,χ over Rq ×Rq is generated by choosing a← Rq uniformly
at random, choosing e← χ, and outputting (a, b = a · s+ e).

Definition 2 (Ring-LWE Decision). The decision version of the ring-LWE problem, denoted
R-DLWEq,χ,is to distinguish with non-negligible advantage between independent samples from
As,χ, where s ← χ is chosen once and for all, and the same number of uniformly random and
independent samples from Rq ×Rq.

The main theorem of [19] can be stated informally as follows:

Theorem 1. Suppose that it is hard for polynomial-time quantum algorithms to approximate
(the search version of) the shortest vector problem (SVP) in the worst case on ideal lattices
in R to within a fixed poly(n) factor. Then any poly(n) number of samples drawn from the
R-LWE distribution are pseudorandom to any polynomial-time (possibly quantum) attacker.

This tells us that distinguishing the Ring-LWE Distribution from random or recovering its secret
is hard, provided SVP is hard.

A main benefit of ring-LWE over traditional LWE and other lattice-based techniques is in
efficiency. Whereas LWE requires the use of Ω(n) samples (ai, bi) ∈ Znq × Zq, for ring-LWE,
typically only a very small number of samples (a, b) ∈ R × R are used.1 Essentially, ring-
LWE offers a compact representation for the lattice in question. The reason for this is that
each polynomial v ∈ R represents n vectors in the lattice, one for each multiple v · xi for
i ∈ {0, . . . , n − 1}.2 If a is fixed for all users, then the public key is just the element b ∈ R.
We see that this results in smaller public keys for ring-LWE because LWE would have Ω(n2)
modular values whereas ring-LWE can have only n.

1A careful statement of the above worst-case hardness result shows that it deteriorates with the number of
samples; fortunately, all our applications require only a small number of samples.

2In ring-LWE, each ring element actually represents a so-called ideal lattice - a lattice L is an ideal lattice if
for all v ∈ L, x · v is also in L. Thus one polynomial in R defines a space of n vectors in L.

4

2.3 Cyclotomic rings

Let R := Z[ζm] ∼= Z[x]/〈Φm(x)〉 be the mth cyclotomic ring, where Φ is defined by xm − 1 =∏
d|m Φd(x) and ζm is a primitive mth root of unity. The degree of R is the degree of Φ, which

is given by the Euler totient function n := φ(m). We shall mainly be interested in the quotient
ring Rq := R/qR ∼= Zq[ζm] where all of our operations can be defined.

There are a variety of simplifications and efficiencies that arise when considering the special
case of m = 2` a power of two. In this paper, we will focus on this special case in order to
invoke those results. In this case, n = φ(m) = m/2 and Φm(x) = 1 +xn. We shall utilise prime
q such that q ≡ 1 (mod m), as is required by the Security Proof stated in Theorem 2.7 of [19].
This also allows arithmetic speed-ups using the Chinese Remainder basis: the ideal < q >:= qR
factors as m/2 prime ideals which provide the orthogonal components required by the Chinese
Remainder Theorem. For the remainder of this paper, we consider m and q of this form unless
explicitly stated. We also drop the subscript m on ζm.

2.3.1 Bases for cyclotomic rings

In [20], multiple bases for the cyclotomic ring R are defined. As we choose to work with m = 2`,
the power, powerful, and decoding bases will all coincide, a nice simplification that stems from
choosing m of this form.3

The power basis for R or Rq is the natural basis of powers of ζ:

~p := (ζi)i=0,...,n−1

If we write a ∈ R in the power basis as a = ~p · a, then the canonical embedding4 defines the
Chinese Remainder Theorem matrix CRT as the square matrix

σ(a) = CRT · a =

1 ω ω2 · · · ωn−1

1 ω3 ω6 · · · ω3(n−1)

...
...

...
. . .

...

1 ωm−1 ω(m−1)2 · · · ω(m−1)(n−1)

 · a
where the rows are indexed by Z∗m and the columns by {0, 1, . . . , n−1} for n = m/2. Note that
multiplication by CRT can be done by fast Fourier transform methods in O(n log n) complexity.

In [20], the CRT matrix is defined as a general object over any commutative ring containing a
primitive mth root of unity ω. By fixing a specific primitive mth root of unity ζ in Zq, we can

3Simplifying equation 6.2 of [20] to the m = 2` case, we find that ~d = (2/m)~p for ~d the decoding basis of R∨.
Thus, performing the scaling described in Section 2.3.2 of [21] to move to the decoding basis of R simply recovers
the power basis of R.

4The canonical embedding σ : R→ H ⊂ Cn is given by v 7→ (v(ωim))
i∈Z×

m
for ωm := e2πi/m.

5

turn the CRT matrix into an important and powerful tool for working in Rq. As q was chosen
with q ≡ 1 (mod m), the cyclotomic polynomial xn + 1 will factor completely modulo q:

xn + 1 = (x− ζ)(x− ζ3)(x− ζ5) · · · (x− ζm−1)

for ζ a primitive mth root of unity in Zq. Thus, multiplication by CRT gives evaluation of the
polynomial at each of the mth roots of unity, that is, at the primitive root ζ and each of its
odd powers. Each polynomial in Rq has a unique representation from evaluating at the roots of
unity, so this form can be used as a basis, the Chinese Remainder basis. While addition can be
performed component-wise in all bases, the unique thing about the Chinese Remainder basis is
that multiplication is also component-wise: for any two polynomials z, z′ ∈ Rq and any c ∈ Zq,
z(c) · z′(c) = (z · z′)(c). Naively multiplication would require summing O(n2) cross-products of
all pairs of coefficients but use of the Chinese Remainder basis brings that to O(n)-complexity.

The Chinese Remainder basis ~c is defined for Rq by

~cT := ~pT · CRT−1q , where CRTq := CRT (mod q)

and thus admits O(n log n) fast Fourier transform method conversion between itself and the
power basis. We have shown we can convert between any of these bases and the Chinese
Remainder basis in O(n log n), hence can perform multiplication in O(n log n).

2.4 Error distributions

In order that each party has some secret information that can be combined in Diffie-Hellman
fashion to obtain a shared secret value accessible only to the two parties, it is necessary to
produce the short error elements that act as private keys. The aim is to produce errors that
are subgaussian with parameters as tight as possible, so that the security parameters of these
errors can be nicely controlled once they have been combined to form shared secret values.

As in [1], since this paper restricts to the case of m = 2` being a power of 2, sampling from a
discrete Gaussian can be performed by sampling each coefficient from a 1-dimensional discrete
Gaussian DZ,σwith parameter σ.5 The discrete Gaussian assigns to each x ∈ Z a probabil-

ity proportional to e−x
2/(2σ2), normalized by the factor S = 1 + 2

∑∞
k=1 e

−k2/(2σ2), given by

DZ,σ(x) = 1
S e
−x2/(2σ2). To sample from Rq according to a discretised Gaussian distribution, we

use the method in [1]: precompute a lookup table T of size 52 where T [0] := b2192/Sc and

T [i] :=
⌊
2192 ·

(1

S
+ 2

i∑
x=1

DZ,σ(x)
)⌋

5In [20], the short secret and error vectors are produced by sampling the conjugate symmetry space H ⊂ Cn
and then mapping into R by left-multiplying by the matrix CRT∗m. If m = 2`, the matrix CRT∗m · CRTm is
diagonal. Let us consider the covariance matrix Σ = E[(CRT∗m · v)(CRT∗m · v)∗] = E[CRT∗m · v · v∗ · CRTm] =
CRT∗m · E[vv∗] · CRTm since CRT∗m is a constant and so can be removed from the expectation. Since the
elements of v are independent, the covariance matrix E[vv∗] is diagonal, and so we can see that Σ is diagonal,
demonstrating that the entries of CRT∗m · v are independent and so can be sampled independently.

6

for i = 1, . . . , 50, and where T [51] := 2192. We sample each coefficient by generating a 192-bit
integer t at random, finding the index ind ∈ [0, 50] such that T [ind] ≤ t < T [ind+ 1], and then
generating an additional random bit for the sign sign ∈ {−1, 1}:

GaussSample

Input: standard deviation σ
Output: error vector e

for i = 1, . . . , n

t
$← (0, 2192)

indi = 0
repeat indi += 1 until
T [indi] ≤ t < T [indi + 1]

signi
$← {−1, 1}

ei = signi · indi
e← ~p · (e1, . . . , en)

To accord with [24, 18, 17, 1], we will set σ = 8/
√

2π ≈ 3.192 so that the discrete Gaussian
DZn,σ approximates the continuous Gaussian Dσ extremely well.

In instantiations of ring-LWE, sampling the error terms from Gaussian distributions is typically
by far the most expensive operation. As noted in Section 2.2 of [21], uniform sampling from
a B-bounded interval is subgaussian with parameter B

√
2π, and uniform sampling of each

coefficient is both simpler and significantly more efficient:

UniformSample

Input: bound B
Output: error vector e

for i = 1, . . . , n

ei
$← {−B, . . . , B}

e← ~p · (e1, . . . , en)

As the discrete uniform distribution is itself subgaussian and need not attempt to closely ap-
proximate a continuous distribution, we have more flexibility in setting the parameter B. In
order to provide a fair comparison between the two alternatives, we set B = 5 so that the
standard deviation of the two distributions is approximately equal. Thus we can use a uniform
random distribution choosing the coefficients from the set {−5, . . . , 5}.

7

3 Key generation and reconciliation mechanism

In [21], Peikert presents a ring-LWE based Diffie-Hellman-type key exchange algorithm in which
two users exchange ring-LWE public keys to arrive at approximate or “noisy” agreement on a
ring element. In order to (non-interactively) reach exact agreement, the second party sends
along an additional bit-string which can be fed into the “reconciliation” technique from [21]
which we will develop in this section.

3.1 Description of the exchange

We begin with an informal sketch of how the key exchange works. In the basic key exchange,
the first party creates a public key b = a · s1 + s0 and transmits that to the second party.
Upon receipt of the public key b, the second party creates his public key u = e0 · a + e1 and
his version of the approximate shared secret v = e0 · b + e2 = e0 · a · s1 + e0 · s0 + e2. Upon
receipt of the public key u and masking bits 〈v〉2, the first party forms her version of the shared
secret w = u · s1 = e0 · a · s1 + e1 · s1, and feeds w and the received masking bits 〈v〉2 into the
reconciliation function to recover the key stream. Since s0, s1, e0, e1, e2 are all small, w ≈ v and
the masking bits 〈v〉2 provide sufficient information for the two parties to exactly agree; however,
for adversaries, the masking bits do not give any help in determining what the underlying key
bit will be.

Party A Party B

pk = b = a · s1 + s0
b−−−−−−−−→

pk = u = e0 · a+ e1
SSV = v = e0 · b+ e2 =
e0 · a · s1 + e0 · s0 + e2

key = bve2
(u,〈v〉2)←−−−−−−−− mask = 〈v〉2

w = u · s1
key = rec(w, 〈v〉2)

Figure 1: Basic key exchange algorithm.

The key stream that the two users will agree upon will be generated by applying the modular
rounding function b·e2 to each coefficient of the shared secret to round to the closer of 0 or q

2 .
In order for the two parties to achieve exact agreement, the second party also sends over the
“masking bits” for his version of the approximate shared secret as generated by the function 〈·〉2
which labels which “quadrant” modulo q a coefficient falls into. If an equal number of elements
of Zq were in each quadrant, then key would be unbiased and the masking bits would give no
information about the key. However, q is odd so there is an imbalance. Randomization is used

8

to correct this.

q/4

q/2

3q/4

0

0

1

(a) The key stream as generated by
the function b·e2

q/4

q/2

3q/4

0

0

0

1

1

(b) The masking bits as generated by
the function 〈·〉2

Figure 2: The key stream and mask bits generating functions.

3.2 Randomized Rounding

We will now explain in detail each of the functions required to generate the key stream and
masking bits, as well as the reconciliation function.

In order to create the new reconciliation technique in [21], Peikert works with even q, and
generalises to the more common setting of odd q by introducing a step wherein all elements of
Zq are mapped into Z2q in a randomized way. However, there are two basic criteria that need to
be achieved, namely that the key stream be unbiased and that the masking bits achieve perfect
hiding, each of which can be realised without resorting to mapping up into an even modulus
by utilising a simple randomized rounding procedure common in engineering. By utilising the
randomized rounding procedure, no larger internal states need be generated and in fact nothing
at all needs to be done except in a pair of edge cases where the flip of a coin decides how to
modify the value. This randomized rounding is thus more efficient.

We begin by defining the intervals I0, I
′
1, I
′
0, I1 to partition the elements of v ∈ Zq according to

the four respective quadrants as in Figure 3 as:

I0 := Zq ∩ [0, q4)
I ′1 := Zq ∩ [q4 ,

q
2)

I ′0 := Zq ∩ [q2 ,
3q
4)

I1 := Zq ∩ [3q4 , q)

9

For odd q the number of elements in each set is:

(
#I1 #I0
#I ′0 #I ′1

)
=

(
q−1
4

q+3
4

q−1
4

q−1
4

)
for q ≡ 1 (mod 4)(

q−3
4

q+1
4

q+1
4

q+1
4

)
for q ≡ 3 (mod 4).

We will define key to be 0 if an element is in the top row I0∪I1 and 1 for the bottom row I ′0∪I ′1.
We will define the masking bit as 0 for the anti-diagonal I0 ∪ I ′0 and 1 for the lead-diagonal
I1 ∪ I ′1. We want the key to be unbiased, which will require that the top and bottom rows have
equal counts. Furthermore, the masking bit tells us the diagonal; conditional on this, we shall
require that no information is given about the key, i.e. both cells of the diagonal have equal
counts. In order to meet these two criteria on the count array, we can perform a preprocessing
stage which randomizes the value of elements in some edge cases. To minimise the amount of
randomization and the distance an element moves, a natural choice is to probabilistically nudge
the two edge elements out of the unique large cell for q ≡ 1 (mod 4), or into the unique small
cell for q ≡ 3 (mod 4).

q/4

q/2

3q/4

0

I0

I ′0

I1

I ′1

Figure 3: The values modulo q and their partition into I0, I
′
1, I
′
0, I1.

Thus we can define our randomized rounding procedure to affect this, for the two separate cases:

• q ≡ 1 (mod 4). We map out of I0. If v = 0, we will flip a coin or draw a uniform random
bit and map 0 to either itself or q − 1 depending on the random bit. This has the effect
of, with 50% probability, moving an element from I0 to I1. Independently, if v = q−1

4 , we

map q−1
4 to either itself or q+3

4 depending on a random bit, thus moving an element from
I0 to I ′1 with 50% probability. The count array representing the relative probability of

10

each set becomes (q+1
4

q−1
4

q−1
4

q+1
4

)
for q ≡ 1 (mod 4)

which satisfies the two criteria of equal row sums for unbiased key, and equal cells on the
lead-diagonal and anti-diagonal for perfect hiding of key by the mask. Note that the mask
bit is biased, but this does not impact security.

• q ≡ 3 (mod 4). We map into I1. If v = 0, we will flip a coin or draw a uniform random
bit and map 0 to either itself or q − 1 depending on the random bit. This has the effect
of, with 50% probability, moving an element from I0 to I1. Independently, if v = 3q−1

4 ,

we map 3q−1
4 to either itself or 3q+3

4 depending on a random bit, thus moving an element
from I ′0 to I1 with 50% probability. The count array representing the relative probability
of each set becomes (q+1

4
q−1
4

q−1
4

q+1
4

)
for q ≡ 3 (mod 4)

which satisfies the two criteria of equal row sums for unbiased key, and equal cells on the
lead-diagonal and anti-diagonal for perfect hiding of key by the mask. Note that the mask
bit is biased, but this does not impact security.

This randomized rounding procedure produces a similar effect to the dbl(·) procedure from [21],
without the additional computational burden of mapping all elements of Zq into Z2q. We will
denote the randomized rounding of v by v̄ and apply it before deriving mask and key bits.

3.3 Reconciliation mechanism

Given the above exposition, we can now define the modular rounding function b·e2 : Zq → Z2 as
bxe2 := b2q · xe (mod 2). We will use bv̄e2 to generate the key stream, which will not be biased
due to the use of randomized rounding.

As in [21], we define the cross rounding function 〈·〉2 : Zq → Z2 as

〈v〉2 :=
⌊4

q
· v
⌋

(mod 2).

Equivalently, 〈v̄〉2 is the b ∈ {0, 1} such that v̄ ∈ Ib ∪ I ′b. We use 〈v̄〉2 to generate the masking
bit-string. If v is uniform random in Zq, then 〈v̄〉2 will be biased in Z2 despite the randomized
rounding. Regardless of this bias, however, 〈v̄〉2 hides bv̄e2 perfectly:

Claim 1. If v ∈ Zq is uniform random and randomized rounded as outlined above, then bve2
is uniform random given 〈v〉2.

Proof: For any b ∈ {0, 1}, if we condition on 〈v〉2 = b, then v is uniform over Ib ∪ I ′b. By the
definition of Ib, if v ∈ Ib then bve2 = 0, whereas if v ∈ I ′b then bve2 = 1, so bve2 is uniform
random given 〈v〉2. �

11

We can now see how reconciliation of the recipient’s derived shared secret w using the mask bit
〈v̄〉2 must work. The mask bit tells the recipient which diagonal quadrant v̄ is in. Provided the
difference between shared secrets |w − v̄| is no more than one-eighth q then the shared secrets
are sufficiently close that the recipient can infer which quadrant v̄ was in, hence infer the key
bit bv̄e2.

Let E := [−q/8, q/8) ∩ Z, and define the reconciliation function rec : Zq × Z2 → Z2 as

rec(w, b) :=

{
0 if w ∈ Ib + E (mod q)

1 otherwise.

Claim 2. If w = v + e (mod q) for some v ∈ Zq and e ∈ E, then rec(w, 〈v〉2) = bve2.

To see that the claim is true, we will consider what the reconciliation function does in greater
detail.

The variable w is a coefficient of the receiving party’s version of the shared secret and 〈v〉2 is
the received hint based on which quadrant that coefficient of the sending party’s version of the
shared secret fell into. Suppose that b = 〈v〉2 = 0. Then v ∈ I0 ∪ I ′0, and the region of interest,
I0 + E, can be pictorially represented as the shaded area in Figure 4.

I0 + E

I ′0

Figure 4: The region I0 + E.

Now suppose that we have a guaranteed bound on how far apart w and v can be, namely that
w = v+ e (mod q) for some v ∈ Zq and e ∈ E, that is |w− v| < q

8 . Then if w ∈ I0 +E, v must
be in I0 (recall v ∈ I0 ∪ I ′0) or else be farther than q

8 away from w. Then by the definition of I0,
we have that bve2 = 0 and rec(w, 0) = 0. Otherwise, if w /∈ I0 + E, v must be in I ′0 since those
are the only possible v values within q

8 of a w value that is not in I0 +E, and this would mean
that bve2 = 1.

Similarly, suppose that b = 〈v〉2 = 1. Then v ∈ I1 ∪ I ′1 and the region of interest I1 +E modulo
q is as in Figure 5.

12

I1 + E

I ′1

Figure 5: The region I1 + E.

If w ∈ I1 + E, then v must be in I1 to have |w − v| < q
8 , and so bve2 = 0 by the definition of

I1. If w /∈ I1 + E, then v must be in I ′1 and so bve2 = 1.

We can extend the rounding and reconciliation functions to any basis for the cyclotomic ring
R by simply applying the functions coordinate-wise to the Zq-coefficients of the inputs in the
chosen basis. Formally, if Y = {yi} ⊂ R is a basis for R and v =

∑
j vjyj ∈ Rq for coefficients

vj ∈ Zq, then bve2 :=
∑

jbvje2 · yj ∈ R2 and similarly for 〈v〉2. The reconciliation function
can be extended to rec : Rq × {0, 1}n → R2 by setting rec(w, b) :=

∑
j rec(wj , bj) · yj where

w =
∑

j wjyj and b = b0b1 . . . bn ∈ {0, 1}n.

4 Main algorithm and variants

In [21], Peikert presents a ring-LWE based Diffie-Hellman-type key exchange algorithm that is
provably passively secure, and then shows how to use this basic primitive to construct provably
actively secure key exchanges and provably secure authenticated key exchanges. We will present
each of these variants in detail for completeness.

4.1 Ring-LWE ephemeral Diffie-Hellman

In this section we present an efficient key encapsulation mechanism (KEM1) or key exchange
that is provably secure against passive attacks. The system is constructed using the reconcil-
iation technique from Section 3 to allow the two parties to derive an ephemeral key from a
pseudorandom value in Rq on which they approximately agree. Previous ring-LWE cryptosys-
tems needed to have a ciphertext consisting of a pair of ring elements, but the reconciliation
mechanism reduces this to a single ring element and a bit string of length n.

The parameters for KEM1 will be (m, q, a, χ) where

13

• m = 2`, and so n = φ(m) = m/2;

• q is an odd prime integer such that q ≡ 1 (mod m);

• a is a fixed element of the ring Rq := Z/qZ[ζm] ∼= Zq[x]/〈Φm(x)〉; and

• χ is an error distribution over Rq.

We will denote by Sample(χ) the function used to sample error terms from χ. For exam-
ple, this could be GaussSample(σ) for the discrete Gaussian with standard deviation σ, or
UniformSample(B) for the uniform distribution on the interval {−B, . . . , B}.

Key generation samples error terms from χ to produce a private key (s0, s1), and combines it
with the generator a to form the public key. Note that decapsulation only needs s1 so we can
discard s0.

KEM1.Generate

Input: Domain parameters (m, q, a, χ)
Output: Private key s1 and public key b

s0 ← Sample(χ)
s1 ← Sample(χ)
b← s1 · a+ s0 ∈ Rq

Encapsulation6 generates a public key for the second party and takes the received public key b
to produce a shared key µ and a ciphertext c. The shared keys will belong to K = {0, 1}n and
their corresponding encapsulations will belong to C = Rq × {0, 1}n. Here we identify R2 with
bit strings in {0, 1}n in the obvious way.

KEM1.Encapsulate

Input: Recipient’s public key b
Output: Shared key µ and encapsulation c

e0 ← Sample(χ)
e1 ← Sample(χ)
e2 ← Sample(χ)
u← e0 · a+ e1 ∈ Rq
v ← e0 · b+ e2 ∈ Rq
v̄ ← RandomizedRound(v)
µ← bv̄e2 ∈ {0, 1}n
c← (u, 〈v̄〉2) ∈ Rq × {0, 1}n

6The reader may notice that the encapsulation and decapsulation functions in [21] include a term g which
ours omit. In [20], g is defined as g :=

∏
p(1 − ζp) for all odd primes p dividing m. Thus in the special case of

m = 2`, g = 1 and can safely be omitted.

14

Decapsulation forms the approximate shared secret

w = u · s1 = e0 · a · s1 + e1 · s1 ≈ e0 · a · s1 + e0 · s0 + e2 = e0 · b+ e2 = v

and uses the reconciliation mechanism from Section 3 to derive the shared secret key µ.

KEM1.Decapsulate

Input: Recipient’s private key s1 and encapsulation c
Output: Shared key µ

(u, v′)← c
w ← u · s1 ∈ Rq
µ← Rec(w, v′)

Lemma 1 (Lemma 4.1 from [21]). The KEM1 is IND-CPA secure, assuming the hardness of
R-DLWEq,χ given two samples.

4.2 Actively secure Ring-LWE key exchange

In this section we present the transformation of KEM1 into an secure encryption scheme (PKC2)
which is secure under chosen-ciphertext attack (i.e., IND-CCA secure). In order to do so, we
will utilise the second Fujisaki-Okamoto transformation [7] which converts any passively secure
encryption scheme into one which is actively secure in the random-oracle model.7

To apply the Fujisaki-Okamoto transformation to KEM1 there are two main changes that we
need to make. Firstly, the transformation uses an encryption scheme where the key is an
explicit input while KEM1 derives the key as part of the encapsulation. However, as we shall
see it is straightforward to convert a key encapsulation mechanism into an encryption scheme,
by using the derived key to mask the plaintext. Secondly, we need the derived encryption
scheme to be deterministic. This means that the error terms must be reproducable and so
the sampling function needs to be modified to use the output of a deterministic pseudorandom
number generator PRG.

The domain parameters for PKC2 will be (m, q, a, χ,N, `) where

• m = 2`, and so n = φ(m) = m/2;

• q is an odd prime integer such that q ≡ 1 (mod m);

• a is a fixed element of the ring Rq := Z/qZ[ζm] ∼= Zq[x]/〈Φm(x)〉;

• χ is an error distribution over Rq;

7The FO transform requires the use of the random oracle model. However, the basic unauthenticated KEM
is proved secure in the standard model, and can be combined into other protocols in the standard model; see [1]
for a proof of security in the standard model incorporating Peikert’s scheme into TLS.

15

• N ≥ 0 is the bit length of the plaintext; and

• ` is the length of the seed for the pseudorandom generator PRG.

We will denote by Sample(χ; PRG) the sampling function modified to use output from PRG
and by PRG.Seed(seed) the seeding function for PRG.

Key generation for the actively secure protocol PKC2 does not require deterministic sampling
so is identical to key generation for KEM1.

PKC2.Generate

Input: Domain parameters (m, q, a, χ)
Output: Private key s1 and public key b

s0 ← Sample(χ)
s1 ← Sample(χ)
b← s1 · a+ s0 ∈ Rq

The encryption function PKC2 chooses a random value σ, and uses this to both mask the
message and seed the pseudorandom generator. The seed σ is then masked by the key derived
from the deterministic KEM1. This requires a pair of hash functions G : {0, 1}n → {0, 1}N and
H : {0, 1}n+N → {0, 1}`.

PKC2.Encrypt

Input: Recipient’s public key b and plaintext m
Output: Ciphertext (c1, c2)

σ
$← {0, 1}n

c1 ← KEM1.Encrypt(b, σ,H(σ||m))
c2 ← G(σ)⊕m ∈ {0, 1}N

As mentioned above, PKC2 requires a deterministic public key encryption routine. Thus we
will modify KEM1 to create a deterministic encryption function which will be used to wrap the
seed value σ ∈ {0, 1}n using the“coins” r = H(σ||m).

16

KEM1.Encrypt

Input: Recipient’s public key b, plaintext σ ∈ {0, 1}n, and
seed r ∈ {0, 1}`
Output: Ciphertext c1
PRG.Seed(r)
e0 ← Sample(χ; PRG)
e1 ← Sample(χ; PRG)
e2 ← Sample(χ; PRG)
u← e0 · a+ e1 ∈ Rq
v ← e0 · b+ e2 ∈ Rq
v̄ ← RandomizedRound(v)
c1 ← (u, 〈v̄〉2, bv̄e2 ⊕ σ) ∈ Rq × {0, 1}n × {0, 1}n

Decryption uses the reconciliation mechanism from Section 3 to recover the seed and unmask
the message. However, to provide protection against chosen ciphertext attacks it is necessary
to check that c1 was validly generated from the seed value σ.

PKC2.Decrypt

Input: Recipient’s private key s1, and ciphertext (c1, c2)
Output: Plaintext m or ⊥
(u, v′, σ′)← c1
w ← u · s1 ∈ Rq
σ̂ ← σ′ ⊕Rec(w, v′) ∈ {0, 1}n
m← G(σ̂)⊕ c2
ĉ1 ← KEM1.Encrypt(b, σ̂,H(σ̂||m))
if ĉ1 = c1

return m
else

return ⊥

Theorem 2 (Theorem 5.1 from [21]). PKC2 is IND-CCA secure, assuming that PKC is pas-
sively one-way secure, PRG is a secure pseudorandom generator, and G and H are modelled as
random oracles.

4.3 Ring-LWE authenticated key exchange

Key exchange protocols, such as Diffie-Hellman [6], are secure against passive adversaries, but
are susceptible to man-in-the-middle attacks where an active adversary can modify, insert or
delete messages. An authenticated key exchange (AKE) protocol provides mutual authentication
of the two parties’ identities and protects the integrity of the enitre message flow. In this
section, we give a protocol for authenticated key exchange derived from the passively secure

17

KEM1 together with a signature; we will use the signature construction from [23] as it seems
to fit best with KEM1.

4.3.1 Signature

We begin by briefly presenting the signature from [23]. The signature scheme is parametrized
by (m, q, a, χ, χ′, κ) where

• m = 2` so that n = φ(m) = m/2;

• q is an odd prime integer such that q ≡ 1 (mod m);

• a is a fixed element of the ring Rq := Z/qZ[ζm] ∼= Zq[x]/〈Φm(x)〉;

• χ and χ′ are error distributions over Rq; and

• κ is a bound on the size of the ring elements in the signature.

Key generation uses the first distribution χ to produce the static signing key in essentially the
same way as for KEM1 and PKC2, except that both s0 and s1 will be needed to sign a message.

SIG.Generate

Input: Domain parameters (m, q, a, χ)
Output: Private key (s0, s1) and public key t

s0 ← Sample(χ)
s1 ← Sample(χ)
t← s1 · a+ s0 ∈ Rq

Signing generates an ephemeral key from the second distribution χ′ and uses this to construct
two “small” elements of the ring that are related by the signing key and the hash of the message.
This means that we will need a hash function H : {0, 1}∗ → Rq that maps onto “small” elements
of Rq, say as drawn from a third distribution χ′′ over Rq. Further, to avoid leaking information
via the signatures we will need a rejection sampling algorithm Reject : R4

q → (0, 1) which gives
the probability with which the putative signature will be rejected; see Section 4 of [23].

18

SIG.Sign

Input: Private key (s0, s1) and message µ
Output: Signature σ

y0 ← Sample(χ′)
y1 ← Sample(χ′)
c← H(a · y1 + y0||µ)
z0 ← s0 · c+ y0
z1 ← s1 · c+ y1
if Reject(z0, z1, s0 · c, s1 · c)

start again
else

return σ ← (z0, z1, c)

Verification consists of checking that the elements z0 and z1 are small enough and satisfy the
relation

a · z1 + z0 − t · c = a · y1 + y0.

Note that since a · y1 + y0 is not part of the signature we instead need to use c to check that

H(a · y1 + y0||µ) = H(a · z1 + z0 − t · c||µ).

SIG.Verify

Input: Public key t, signature σ and message µ
Output: True or false

(z0, z1, c)← σ
if ||z0|| ≤ κ, ||z1|| ≤ κ and c = H(a · z1 + z0 − t · c||µ)

return true
else

return false

4.3.2 Sign-and-MAC protocol

The signature-based authentication mode in Internet Key Exchange (IKE) is designed around
the “SIGn-and-MAc” (SIGMA) family of protocols specified by Krawczyk in [16]. The Krawczyk
paper gives an excellent in-depth, yet still quite readable, explanation of the design considera-
tions for AKE protocols and other associated issues.

In [21], Peikert presents a protocol Σ′0 which is a slight generalisation of the Σ0 protocol from
[2], which itself uses the SIGMA design [16] underlying the IKE protocol. The difference comes
from using ring-LWE’s “noisy” Diffie-Hellman-like key-agreement, which is, however, readily
incorporated into the initiator and responder roles. As such, an existing Diffie-Hellman-based
implementation can be modified to use the new protocol with relative ease and with few, if any,

19

structural changes. Thus, an implementation of the new protocol can work alongside alternative
existing protocols facilitating backwards compatibility and user choice.

The parameters of the Σ′0 protocol are

• A digital signature scheme SIG;

• A key exchange or key encapsulation KEM with key space K;

• A pseudorandom function F : K × {0, 1} → K′; and

• A message authentication code MAC with key space K′ and message space {0, 1}∗.

A successful execution of the protocol outputs a secret key in K′.

Initiator Responder
(pkI , skI)← KEM.Gen()

(sid,pkI)−−−−−−−−−−−−→
(c, k)← KEM.Encaps(pkI)
k0 ← Fk(0), k1 ← Fk(1)
σR ← SIG.SignR(1||sid||pkI ||c)
τR ←MAC.Tagk1(1||sid||IDR)

(sid,c,IDR,σR,τR)←−−−−−−−−−−−−−−−
k ← KEM.Decaps(c, skI)
k0 ← Fk(0), k1 ← Fk(1)
σI ← SIG.SignI(0||sid||pkI ||c)
τI ←MAC.Tagk1(0||sid||IDI)

(sid,IDI ,σI ,τI)−−−−−−−−−−−−−−→
SIG.VerifyI(σI , 0||sid||pkI ||c)
MAC.Verifyk1(τI , 0||sid||IDI)

Figure 6: Sign-and-MAC protocol.

We assume that the initiator and responder have static signing keys whose corresponding public
verifications are bound to their identities IDI and IDR in, for example, certificates issued by a
trusted certificate authority. The protocol Σ′0 proceeds as follows:

1. Start message (I → R) : (sid, pkI).

The initiator generates an ephemeral keypair and sends the public key pkI and session
identifier sid to the responder. The session identifier must be distinct from all previous
sessions initiated by IDI .

20

2. Response message (R→ I) : (sid, c, IDR,SIG.SignR(1, sid, pkI , c),MAC.Tagk1(1, sid, IDR)).

The recipient uses the KEM to generate a master key k, and derives a session key k0 and
a MAC key k1 from it. The recipient then signs the initiator’s public key along with the
encapsulated master key, and authenticates their own identity using the MAC.

3. Finish message (I → R) : (sid, IDI ,SIG.SignI(0, sid, pkI , c),MAC.Tagk1(0, sid, IDI)).

The initiator decapsulates to recover the session key k0 and MAC key k1, and verifies the
signature and authenticated identity. If either verification fails, the session is aborted.
Otherwise, the initiator signs their own public key and the encapsulated master key, and
authenticates their identity.

4. Responder completion:

The recipient verifies the signature and authenticated identity. If either verification fails,
the session is aborted.

Theorem 3. The Σ′0 protocol is SK-secure in the post-specified peer model of [2], assuming
that SIG and MAC are existentially unforgeable under chosen-message attack, that KEM is
IND-CPA secure, and that F is a secure pseudorandom function.

Proof: See Theorem 6.1 from [21], which in turn references the proof from [2]. �

5 Analysis

5.1 Instantiating the parameters

We wish to choose concrete parameters for testing as practical candidates. Our aim shall be to
reduce the public key length while maintaining security and correctness. In order to do so, we
refer to the guidance in Section 4.4 of [21]. To begin we consider how to set the lattice dimension
n = φ(m) and the modulus q. For the special case of m = 2`, the only practical choices for n
are 512 and 1024, and so we will consider each along with a toy of dimension 256. The security
analysis in [21] gives a practical bound on the size of q of q ≈ n(3/2) (see Section 4.4 of [21]).
Thus in order to satisfy both this practical bound and the proof of security for ring-LWE, we
begin with q ≥ n(3/2) and search for q a prime which is congruent to 1 modulo m and as close
to n(3/2) as failure rates will allow in order to provide the best practical security.

Security n q public key size

toy 256 15361 3584 bits

regular 512 25601 7680 bits

high 1024 40961 16384 bits

Figure 7: Our choices of parameters. Public key size computed as n · dlog2 qe bits.

21

The authors of [1] mention that their choice of q is conservative in that it provides a very large
margin for correctness and can be reduced. If we compare our parameters from Table 7 to
those of [1], we can see that by decreasing q, our parameter choices offer increased security with
smaller bandwidth, a feature that is unthinkable in traditional public key systems but can be
enjoyed in lattice-based schemes.8

We have chosen to keep q prime of the form q ≡ 1 (mod m) to maintain consistency with the
proof of security for ring-LWE. By following the analysis in [4, 17] we feel confident in saying that
our regular security parameters will provide at least 128-bits of security and our high security
parameters will provide over 256-bits of security.9 We also note that the maximum length of
the data field of a packet sent over Ethernet is 1500 bytes. If public keys are too large, they
will not fit into a single packet, increasing the possibility of key establishment failures based
on transmission problems. Our 128-bit secure parameters will fit into a single Ethernet packet,
unlike the 128-bit secure parameters proposed by [1] which would require three maximum sized
Ethernet packets. Moreover, even our 256-bit secure parameters fit in two Ethernet packets,
thus providing greater security with less data overhead than the choice in [1]. Many important
applications, including Domain Name Server (DNS) and much voice and video traffic, use User
Datagram Protocol (UDP) instead of Transmission Control Protocol (TCP). Unlike TCP, UDP
has no concept of acknowledgement, retransmission, or timeout, and thus the more Ethernet
packets required to transmit a public key, the greater the potential for key exchange difficulties.

In the next section, we show that this choice of parameters still offers an extremely low failure
rate, leading to what we believe is an extremely attractive and practical parameter option.

5.2 Correctness of the scheme

For each of the three systems described in Section 4, we need each coefficient of the error term
to be bounded by q

8 , that is, we must have that ||s0e0 + e2 − s1e1||∞ < b q8c in order to be
guaranteed correctness of the algorithms. This comes from Claim 2 of Section 3, being the
maximum difference between shared secret values such that the reconciliation function still
produces the correct key. To conduct a direct analysis of the growth of the coefficients of the
error term, we will begin by considering what multiplication of elements looks like.

For m = 2`, multiplication is achieved by negacyclic convolution. We recall that R := Z[ζ] =
Z[x]/〈Φm(x)〉 = Z[x]/〈xn + 1〉 for ζ a primitive mth root of unity and n = φ(m) = m/2. If we

8As the modulus of reduction q is reduced, errors become larger relative to the size of the problem, thus
making the lattice problem harder.

9Lepoint and Naehrig [17] improve on the distinguishing attacks considered in [18, 27] by embedding the Ring-
LWE problem in an LWE problem and allowing the number of samples to vary. Using the BKZ 2.0 simulator
from [3], and the estimated cost of pruned enumeration from [17], we determine the number of samples and block
size which minimise the cost of the attack. We found that in order to achieve a distinguishing advantage greater
than ε = 2−128 with the n = 512 parameters, enumeration would need to visit at least 2128 nodes. Similarly, for
a distinguishing advantage greater than ε = 2−256 with the n = 1024 parameters, enumeration would need to
visit substantially more than 2256 nodes.

22

multiply ζi · ζj then we just need to reduce modulo the equation Φm(x) = 1 + xn, so xn = −1.
Let a ∈ Rq be written as

∑n−1
i=0 aiζ

i, and similarly let b =
∑n−1

j=0 bjζ
j ∈ Rq. The product of any

two elements a, b ∈ Rq is given by

n−1∑
i=0

aiζ
i ·

n−1∑
j=0

bjζ
j =

2n−2∑
k=0

(∑
i+j=k

aibj
)
ζk

=

n−1∑
k=0

(∑
i+j=k

aibj
)
ζk −

2n−2∑
k=n

(∑
i+j=k

aibj
)
ζ(k−n)

=

n−1∑
k=0

(k∑
i=0

aibk−i −
n−1∑
i=k+1

aibn+k−i
)
ζk

Thus we see that each coefficient of a product of two elements consists of a sum of n terms,
each term being the product of two independent random variables.

If error terms are generated by sampling a Gaussian distribution, then each of the independent
random variables ai, bj comes from a discretised Gaussian distribution centered at 0 and with
variance σ2. By invoking (a generalisation of) the Central Limit Theorem10, we can say that
each of these coefficients is well approximated by a Gaussian distribution centered at 0 with
variance nσ4, and to approximate the coefficients of s0e0 +e2−s1e1 we can consider a Gaussian
distribution centered at 0 with variance 2nσ4 + σ2. As the reconciliation function will only
fail if the absolute value of one or more of these coefficients exceeds q/8, we will estimate the
probability of that occurring for each of our parameter sets. Fixing σ = 8/

√
(2π), if we use the

parameters n = 512, q = 25601, we find a probability of a coefficient of the error term exceeding
the q/8 bound is less than 2−71. For n = 1024 and q = 40961, the probability is less than 2−91.

If we create the private keys and error vectors by drawing coefficients of the power basis uni-
formly at random from {−B, . . . , 0, . . . , B}, then it is fairly simple to directly analyse the
correctness of the system and compute specific probabilities of failure. In this case, each
of the ai and bj are independent random variables following a uniform distribution over the
set {−B, . . . , 0, . . . , B}. The product of two such random variables is itself a random vari-
able over {−B2, . . . , 0, . . . , B2} and the sum of sum variables yields a convolution of their
distributions.10 Thus the coefficients of a product a · b are random variables with support
{−nB2, . . . , 0, . . . , nB2}. We can calculate the probability that ||s0e0 + e2 − s1e1||∞ < b q8c
by considering the correct convolution of probability distributions. For the parameter set
n = 512, q = 25601, we find a probability of a coefficient of the error term exceeding the
q/8 bound is 2−75.72. For n = 1024 and q = 40961, the probability is 2−96.11. If we wish
to consider the probability of failure of the key exchange, we must recognise that there are n
coefficients, each of which could exceed the q/8 bound. However, the q/8 bound is only tight

10Each of the ai and bj is independent; however, when summing up the products of such terms, a given ai or
bj will appear on average in two such products, creating a weak dependence between the summands.

23

for coefficients falling at the boundary of a quadrant: {0,±bq/4e, bq/2e}. Most coefficients will
not lie on or near these boundaries, which will lead to a higher permissible bound. We calculate
the probability that a failure of the key exchange will occur to be less than 2−74.37 for n = 512
and to be less than 2−94.11 for n = 1024. Thus we can see that these parameters provide more
than sufficient soundness for practical applications.

5.3 Timings

We have implemented the Ring-LWE ephemeral Diffie-Hellman key encapsulation mechanism
of Section 4.1 in the lower level language C in order to assess its performance. This code is
available on the GitHub repository at https://github.com/vscrypto/ringlwe along with its
benchmarking routines. We are grateful to the authors of [1] for the code accompanying their
paper, from which we borrow the overall structure as well as the functions for performance
timing, random number generation, and Gaussian sampling. Timings of each operation are
presented in Tables 8 and 9, made using a 1.9GHz Intel Core i5 4300U11 with code compiled
using gcc version 4.9.2 with the -O3 optimisation flag.

Sampling Gaussian Uniform

n 256 512 1024 256 512 1024

Sample 169400 333500 663400 12300 21600 41800
FFT Forward 19900 43700 95300 20800 45000 95300
FFT Backward 20700 45400 98800 21300 45900 98800
FFT Multiply 63100 138300 300500 63200 138300 300900
Round b.e2 and Cross-Round 〈.〉2 5300 7900 12900 5300 7700 12900
Reconcile Rec(., .) 1100 2100 4200 1000 2100 4200

KEM1.Generate 377100 757200 1527400 66300 135200 280600
KEM1.Encapsulate 577900 1156800 2331300 111800 222100 457600
KEM1.Decapsulate 24400 52900 113800 24500 52800 113900

Total runtime 979400 1967000 3972500 202700 410200 852200

Figure 8: Average cycle count of operations

11Processor has two cores which can each run two threads at 1.9GHz using Hyper Threading. The clock rate
on a single thread can be increased to 2.9GHz using Turbo Boost, in the absence of competition from another
thread on that core. Performance tests were run as a single thread so Turbo Boost could be taken advantage of.

24

Sampling Gaussian Uniform

n 256 512 1024 256 512 1024

Sample 67 133 265 4 8 16
FFT Forward 8 18 38 8 18 38
FFT Backward 8 18 39 8 18 39
FFT Multiply 25 55 120 25 55 120
Round b.e2 and Cross-Round 〈.〉2 2 3 5 2 3 5
Reconcile Rec(., .) 0.4 0.8 1 0.4 0.8 1

KEM1.Generate 151 303 612 26 54 112
KEM1.Encapsulate 231 463 934 44 89 183
KEM1.Decapsulate 9 21 45 9 21 45

Total runtime 391 787 1591 79 164 340

Figure 9: Average operation time in micro seconds (1 µs = 10−6 s)

In comparison, the code of [1], which uses Gaussian sampling with n = 1024, q = 232 − 1 to
achieve the 128-bit security level, has an equivalent total runtime of 2180 µs (5444000 clock
cycles) on our machine under the same compilation conditions. Our 256-bit secure n = 1024
parameter set with Gaussian sampling outperforms this with a total runtime of 1591 µs. If we
compare to our 128-bit secure n = 512 parameter set, with Gaussian sampling we outperform
[1] by a factor of nearly three with a total runtime of 787 µs while with uniform sampling, this
outperforms [1] by a factor of 13 with a total runtime of 164 µs. Given that [1] integrates their
key exchange into OpenSSL and finds that the performance is acceptable for TLS, we are also
able to make this claim for any of our parameter sets.

The dominant operations of the key exchange are sampling and multiplication of ring elements.
We found that the Gaussian sampling function took over 16 times longer than the uniform
sampling. Since a total of 5 samples are required for the key exchange, this makes Gaussian
sampling responsible for about 83% of the total runtime compared to about 24% for uniform
sampling. While we readily acknowledge that significant work has been done to speed up the
computation of discrete Gaussian distributions, we think it unlikely that any amount of optimi-
sation will ever make Gaussian sampling in line with the speed of uniform sampling. Moreover,
many of the fastest Gaussian sampling routines require a significant amount of memory and
utilise a large number of random bits as input. Thus we believe that uniform sampling will
provide the best combination of practical security and efficiency in real world settings.

We optimise arithmetic on ring elements using the fast fourier transform as described in Sec-
tion 2.3.1, and keeping elements in the Fourier domain where possible, because both multiplica-
tion and addition are pointwise. Thus we transmit the recipient’s public key b and the sender’s
public key u in the Fourier domain, and store the sender’s private key s1 and recipient’s pri-
vate key e0 in the Fourier domain. This way we never perform the FFT Multiply operation
directly, which is the sequence of two FFT Forward operations, a pointwise modular multiply,

25

and an FFT Backward operation. For our implementation of the fast fourier transform we
perform a Discrete Weighted Fourier Transform using the decimation-in-frequency algorithm of
Gentleman-Sande [8] in the forward direction, and the decimation-in-time algorithm of Cooley-
Tukey [5] in the reverse.

6 Conclusions

The ring learning with errors problem is a promising cryptographic primitive that is believed
to be resistant to attacks by quantum computers. The decision ring-LWE problem naturally
leads to a passively secure Diffie-Hellman-like unauthenticated key exchange protocol, which
can readily be extended to an actively secure version and an authenticated version. We have
examined these key exchange mechanisms, and provided both practical analysis and more prac-
tical parameter choices than were previously available. We provided example implementations
in sage in Appendix A and in C at https://github.com/vscrypto/ringlwe. Using the C

implementation, we have demonstrated that our parameter choices outperform [1] by as much
as a factor of 13 for equivalent security and can thus claim, like [1], that this is acceptable
runtime for TLS. Furthermore, our 128-bit secure public keys fit into a single Ethernet packet,
and our 256-bit secure public keys require two, thus providing greater reliability of transmission
over the Internet and less data overhead.

We plan to continue and expand upon this work. In [20] and [21], the authors develop the theory
in the most general setting for the form of m. We would like to make a careful examination of
other specialised forms of m, starting with the prime form, to see if any practical benefit can be
derived from selecting an m that is not a power of two. We also plan to explore ring-LWE-based
signature schemes.

7 Acknowledgments

We are grateful to our associate Arjun Chopra for support and advice on the paper and imple-
mentation.

References

[1] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key exchange for the TLS
protocol from the ring learning with errors problem. http://eprint.iacr.org/2014/599.

[2] R. Canetti and H. Krawczyk. Security analysis of IKE’s signature-based key-
exchange protocol. In CRYPTO’02, pages 143-161. 2002. Full version at
http://eprint.iacr.org/2002/120.

26

[3] Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Dong Hoon Lee
and Xiaoyun Wang, editors, ASIACRYPT, volume 7073 of LNCS, pages 1-20. Springer,
2011.

[4] Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. 2013. Full version.
Available at http://www.di.ens.fr/ ychen/research/Full BKZ.pdf.

[5] J. Cooley and J. Tukey. An algorithm for the machine calculation of complex Fourier series.
Math. Comp., 19:297-301, 1965.

[6] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, IT-22(6):644-654, 1976.

[7] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption
schemes. In CRYPTO’99, pages 537-554. 1999.

[8] W. Gentleman and G. Sande. Fast Fourier transforms - for fun and profit. In Proceedings
of the AFIPS, volume 29, pages 563-578, 1966.

[9] T. Güneysu, V. Lyubashevsky, and T. Pöppelmann. Practical Lattice-Based Cryptography:
A Signature Scheme for Embedded Systems. In E.Prouff and P. Schaumont, editors, CHES
2012, LNCS 7428, pages 530-547. Springer, 2012.

[10] D. Harkins and D. Carrel. The Internet Key Exchange (IKE). RFC 2409 (Proposed stan-
dard), November 1998. Obsoleted by RFC 4306, updated by RFC 4109.

[11] R. Housley. Use of the RSAES-OAEP Key Transport Algorithm in Cryptographic Message
Syntax (CMS). RFC 3560 (Proposed Stadard), July 2003.

[12] C. Kaufman. Internet Key Exchange (IKEv2) Protocol. RFC 4306 (Proposed Standard),
December 2005. Obsoleted by RFC 5996, updated by RFC 5282.

[13] C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen. Internet Key Exchange Protocol Version 2
(IKEv2). RFC 5996 (proposed Standard), September 2010. Updated by RFCs 5998, 6989.

[14] S. Kent and R. Atkinson. Security Architecture for the Internet Protocol. RFC 2401 (Pro-
posed Standard), November 1998. Obsoleted by RFC 4301, updated by RFC 3168.

[15] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC 4301 (Proposed
Standard), December 2005. Updated by RFC 6040.

[16] H. Krawczyk. SIGMA: The ’SIGn-and-MAc’ approach to authenticated Diffie-Hellman
and its use in the IKE-protocols. In CRYPTO’03, pages 400-425. 2003. Full version at
http://webee.technion.ac.il/ hugo/sigma.html.

[17] T. Lepoint and M. Naehrig. A comparison of the homomorphic encryption schemes FV and
YASHE. In David Pointcheval and Damien Vergaud, editors, AFRICACRYPT, volume
8469 of Lecture Notes in Computer Science, pages 318-335. Springer, 2014.

27

[18] R. Linder and C. Peikert. Better key sizes (and attacks) for LWE-based encryption. In
CT-RSA’11, pages 319-339, 2011.

[19] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors
over rings. Journal of the AMC, 60(6):43:1-43:35, November, 2013. Preliminary version in
EUROCRYPT, pages 1-23, 2010.

[20] V. Lyubashevsky, C. Peikert, and O. Regev. A Toolkit for Ring-LWE Cryptography. In
EUROCRYPT’13, pages 35-54. 2013.

[21] C. Peikert. Lattice Cryptography for the Internet. In Michele Mosca, editor, Proc. 6th Inter-
national Conference on Post-Quantum Cryptography (PQCrypto) 2014, LNCS 8772, pages
197-219. Springer, 2014. Full version available at http://eprint.iacr.org/2014/070

[22] V. Lyubashevsky. Fiat-Shamir With Aborts: Applications to Lattice and Factoring-Based
Signatures. In M. Matsui, editor, Asiacrypt 2009, volume 5912 of LNCS,pages 598-616.
Springer, Dec. 2009.

[23] V. Lyubashevsky. Lattice Signatures Without Trapdoors. In EUROCRYPT’12, pages 738-
755, 2012. http://eprint.iacr.org/2011/537

[24] D. Micciancio and O. Regev. Lattice-based cryptography. In Daniel J. Bernstein, Jo-
hannes Buchmann, and Erik Dahmaen, editors, Post-Quantum Cryptography, pages 147-
191. Springer Berlin Heidelberg, 2009.

[25] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM, 21(2):120-126, 1978.

[26] J. Randall, B. Kaliski, J. Brainard, and S. Turner. Use of the RSA-KEM Key Transport
Algorithm in the Cryptographic Message Syntax (CMS). RFC 5990 (Proposed Standard),
September 2010.

[27] J. van de Pol and N. P. Smart. Estimating key sizes for high dimensional lattice-based
systems. In IMA Int. Conf., pages 290-303, 2013.

28

A Code

"""

An implementation of the Peikert scheme in sage.

"""

m = 2048; q = 40961; n = 1024;

m = 1024; q = 25601; n = 512;

Phi = cyclotomic_polynomial(m) # Phi is the mth cyclotomic polynomial

Pq = PolynomialRing(Integers(q),’xx’); xx = Pq.gen()

Rq = -Pq.quotient(Phi ,’zz’); zz = Rq.gen() # The ring R_q used in R-LWE

B = 5 # parameter used for the width of uniform sampling

sigma = 8/sqrt (2*pi) # parameter for the width of the Gaussian sampling

#################################

Sampling Functions

#################################

T = [] # Precompute table for Gaussian width sigma

T.append (2^189)

for i in range (1 ,52):

sum = 0

for j in range(1,i+1):

sum += 1/8* exp(-j^2/(2* sigma ^2))

T.append(floor (2^192*(1/8+2* sum)))

T.append (2^192)

def Gauss_sample_Rq(sigma): # discretised Gaussian sampling on Rq

tmp = []

for i in range(n):

t = randrange (2^189 ,2^192)

j = 0

while t < T[j]:

j +=1

j -= 1

sign = randrange (2)

if sign == 0:

sign = -1

tmp.append(sign*j)

return tmp

def uniform_sample_Rq(B): # create element of Rq sampled uniformly from {-B..B}

tmp = []

for i in range(n+1):

tmp.append(randrange(-B,B+1))

return tmp

#################################

Rounding functions

#################################

a = Rq.random_element ()

29

def randomized_round(a): # input an element of Rq

""" Randomized rounding for creating the bitstring to send inside the protocol

(simplification eliminating the need to map into 2q) """

coeff=Rq(a).list (); round_coeff = [];

for i in range(n):

if coeff[i] == 0 :

tmp=randrange (0,2)

if tmp == 0 :

round_coeff.append (1)

else:

round_coeff.append(q-1)

elif coeff[i] == (q -1)/4 :

tmp=randrange (0,2)

if tmp == 0 :

round_coeff.append(coeff[i])

else:

round_coeff.append(coeff[i]+1)

else:

round_coeff.append(coeff[i])

return round_coeff

def modular_round(a):

""" Input randomized rounded a in Rq as a vector of coefficients. """

round_coeff = []

for i in range(n):

round_coeff.append(round (2*(a[i].lift()-round(q/4))/q) % 2);

return round_coeff

def cross_round(a):

""" Input randomized rounded a in Rq as a vector of coefficients. """

round_coeff = []

for i in range(n):

round_coeff.append(floor (4*a[i].lift ()/q) % 2)

return round_coeff

def rec(a,b): #Input an element of Rq and a bitstring

coeff=Rq(a).list (); key = [];

for i in range(n):

if b[i] == 0 :

if coeff[i] in range(0,floor(q/4+q/8)+1) or coeff[i] in range(q-1-floor(q/8),q):

key.append (0)

else: key.append (1)

if b[i] == 1 :

if coeff[i] in range(floor(q/4-q/8),(q -1)/2+ floor(q/8)+1):

key.append (0)

else: key.append (1)

return key

#################################

Key agreement with Uniform sampling

#################################

#Gen:

s0 = uniform_sample_Rq(B)

s1 = uniform_sample_Rq(B)

b = Rq(a)*Rq(s1) + Rq(s0)

30

#Encaps

e0 = uniform_sample_Rq(B)

e1 = uniform_sample_Rq(B)

e2 = uniform_sample_Rq(B)

u = Rq(a)*Rq(e0) + Rq(e1)

v = Rq(b)*Rq(e0) + Rq(e2)

vr = randomized_round(v)

vp = cross_round(vr)

mu = modular_round(vr)

#Decaps

w = u*Rq(s1)

mup = rec(w,vp)

assert mu == mup

#################################

Key agreement with Gaussian sampling

#################################

#Gen:

s0 = Gauss_sample_Rq(sigma)

s1 = Gauss_sample_Rq(sigma)

b = Rq(a)*Rq(s1) + Rq(s0)

#Encaps

e0 = Gauss_sample_Rq(sigma)

e1 = Gauss_sample_Rq(sigma)

e2 = Gauss_sample_Rq(sigma)

u = Rq(a)*Rq(e0) + Rq(e1)

v = Rq(b)*Rq(e0) + Rq(e2)

vr = randomized_round(v)

vp = cross_round(vr)

mu = modular_round(vr)

#Decaps

w = u*Rq(s1)

mup = rec(w,vp)

assert mu == mup

31

