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Abstract. While some recent publications have shown some strong rela-
tions between impossible differential and zero-correlation distinguishers
as well as between zero-correlation and integral distinguishers, we analyze
in this paper some relation between the underlying key-recovery attacks
against Type-II Feistel networks. The results of this paper are build on the
relation presented at ACNS 2013. In particular, using a matrix representa-
tion of the round function, we show that we can not only find impossible,
integral and multidimensional zero-correlation distinguishers but also
find the key-words involved in the underlined key-recovery attacks. Based
on this representation, for matrix-method-derived strongly-related zero-
correlation and impossible distinguishers, we show that the key-words
involved in the zero-correlation attack is a subset of the key-words in-
volved in the impossible differential attack. Other relations between the
key-words involved in zero-correlation, impossible and integral attacks
are also extracted. Also we show that in this context the data complexity
of the multidimensional zero-correlation attack is larger than that of the
other two attacks.
Keywords: block ciphers, Feistel like ciphers, impossible differential,
zero-correlation, integral, key-recovery attacks, matrix method.

1 Introduction

Impossible differential (ID) [2,20], integral (INT) [21] and multidimensional zero-
correlation (ZC) [9] attacks are efficient attacks for word-oriented block ciphers
such as Feistel-like ciphers.

Classically, ID distinguishers take advantage of differentials which never occur
for the studied permutations. The security of word-oriented block ciphers is
evaluated with respect to this attack. As early as in 2003, based on a matrix
representation of the round function, automated methods to find IDs have been
proposed [19].

In ZC cryptanalysis, the attacker rather takes advantage of linear approx-
imations that have probability 1/2 to hold. This relatively new attack, which
can be seen as a multidimensional linear attack with capacity equal to zero [8],
has also been applied to many word-oriented block ciphers [10,8,7,26,31,30]. The
published attacks, which improve upon the state-of-the-art cryptanalysis, can



either cover more rounds than the ID attacks, or perform in less time than the
ID attacks on the same number of rounds.

In INT attacks, attackers look for particular subsets of chosen plaintexts
where some parts of the input are equal to constant whereas the other parts take
all possible values. The interesting subsets are the ones such that the sum taken
on all the input values after a certain number of rounds is equal to a known
value, to an other sum or to zero at some particular locations. This attack, also
known as saturation or square attack was originally proposed by Knudsen as a
dedicated attack against Square [16].

Recently, mathematical and structural relations between the underling dis-
tinguishers have been discussed in the literature. In 2012, Bogdanov et al. [8]
showed that the existence of a particular type of integral distinguisher, called
zero-correlation integral distinguisher, implies the existence of a zero-correlation
distinguisher. Among other relations, in [5,6] it is shown that in some particular
cases, ZC distinguishers and ID distinguishers are mathematically equivalent.
While this condition is not often verified in practice, it is shown in [3] that for
many Feistel-type ciphers, ID and ZC distinguishers which are build using a
matrix method can be derived from each other. The results of [3] are derived
from a matrix representation of the cipher [1] and from the fact that ID and
ZC distinguishers can be derived from this representation using the so-called
U-method [19].

Motivation. In practice, the security regarding these three attacks is often
analyzed independently and key-recovery attacks in the ID, ZC and INT contexts
are part of different publications. As illustrated in Table 1 usually the number
of attacked rounds in all these contexts is similar. When the attacks cover the
same number of rounds, it often seems that the relation between these attacks
can be seen as a kind of data/time/memory trade-off. While depending of the
cipher, different tricks can be used to improve the time and memory complexity
of the attacks, we observe that the number of key-words involved in the attack is
usually independent of the method used to perform the key-recovery attack.

Our Contributions.
Relation between ZC and INT distinguishers. From the preliminary link between
ZC and integral ZC distinguishers presented in [8], we derive a general relation
between ZC and INT distinguishers. In particular we discuss cases where matrix-
method-derived INT distinguishers cover less or more rounds than matrix-method-
derived ZC distinguishers.

Relation between the data complexities of ID, ZC and INT attacks. When the
distinguishers are matrix-method-related the same number of differential and
linear approximations are involved in the attack. In such a case, we can compare
the data complexity of ID and ZC. In particular we show that the data complexity
of a ZC attack is in that case larger than that of an ID attack. A similar comparison
with INT attacks is also studied.

Relation between the key-words involved in ID, ZC, and INT attacks. Illustrated
by the ID, INT and ZC attacks on LBlock [33], we show that there exists a strong
relation between the key-words involved in the different key-recovery attacks.



Cipher Attacked Rounds Type Data Time Memory Ref.
Rounds Dist.

HIGHT 27 16 ID 258 CP 2126.6 2120 [15]

HIGHT 27 16 ZC 262.79 DKP 2120.78 243 [32]

Camellia-128 11 7 ID 2118.4CP 2118.43 292.4 [14]

Camellia-128 11 7 ZC 2125.3KP 2125.8 2112 [11]

SIMON-32/64 19 11 ID 232 CP 262.56 244 [14]

SIMON-32/64 20 11 ZC 232 KP 256.96 241.42 [29]

SIMON-32/64 21 15 INT 231 CP 263 254 [29]

LBlock 22 15 INT 261CP 270.00 263 [24]

LBlock 22 14 ID∗ 258CP 279.28 268 [18]

LBlock 22 14 ZC† 264 DKP 270.54 264 [26]

LBlock 22 14 ID† 260 CP 271.53 259 [13]

LBlock 23 14 ID† 259 CP 275.36 274 [13]

LBlock 23 14 ZC 263.87 DKP 273.94 260 this paper

Table 1: Best attacks on some well known ciphers. ∗: In [26], it is mentioned that the
attack applies to an old version of the cipher. †: parameters provided in the original
article for the lowest time complexity. CP: Chosen plaintexts. KP: Known plaintexts.
DKP: Distinct known plaintexts.

In particular, we show that when the matrix-method-derived distinguishers are
strongly related then the key-words involved in a ZC attack on a Type-II GFN
correspond to a subset of the key-words involved in an ID attack.
Attack on LBlock. For illustration purposes, we present a ZC attack on 23 rounds
of LBlock. The time and memory complexities of this attack are smaller than
those of the recent ID attack [13] on this cipher.
Outline. Some preliminary notations are defined in Section 2. In Section 3, we
describe how the matrix method can be used to find ID, ZC and INT distinguishers
on Feistel ciphers and recall the relations between these different distinguishers.
In Section 4, we compare the data complexity of these attacks and illustrate
on LBlock the strong relation between the key-words involved in the different
attacks. In Section 5, we explain how we can use the matrix method to determine
the key-words involved in the key-recovery part of the attack. In Section 6, we
present an attack on LBlock. Section 7 concludes this paper.

2 Preliminaries

The structural link between ID and ZC distinguishers described in [3] is relevant for
Feistel-like ciphers commonly referred as Generalized Feistel Network (GFN) [27].
More precisely, the round i+1 of a GFN inputs a block Xi of n bits divided in b ≥ 2
blocks of c bits each and outputs a block Xi+1. We denote by Xi[0], · · · , Xi[b−
1] the b input blocks of a GFN round and by Xi+1[0], · · · , Xi+1[b− 1] the
corresponding output blocks. A GFN can be separated into two successive layers,
as done in [27,1]: a non-linear layer and a permutation layer, as shown in Figure 1.
The non-linear layer is made of key-dependent functions Fi which input some
blocks of size c bits and where the corresponding outputs are added (usually
Xor-ed) to some other blocks. The permutation layer is a block-wise permutation
of the b blocks denoted by π. For example, for the classical Type-II GFN the
permutation is the circular shift.
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Fig. 1: One round of a Type-II GFN with b = 8 blocks.

A generic method that uses a matrix representation and captures the previous
definition of GFNs is presented in [1]. This representation could be useful to find
ID, ZC and INT distinguishers as well as to show some links between them as
began in [3]. Definition 1 sums up this approach for the Type-II GFNs.

Definition 1. Omitting key and constant addition, the round function of a Type-
II GFN with b branches, b even, can be matricially represented as a combination
of two b× b matrices F , P with coefficients {0, 1, Fi} where the {Fi}i≤b/2 denote
the internal non-linear functions.
• Representing the non-linear layer (F-layer), the non-zero coefficients of the
matrix F are equal to 1 in the diagonal and have coefficient Fi in row j and
column ` if the input of the function Fi is given by the `-th branch and the output
is Xor-ed to the j-th branch. Meaning that, for a Type-II GFN, F have one Fi
on each even row and even column.
• Representing the permutation of the branches (P-layer), the matrix P is a
permutation matrix with only one non-zero coefficient per line and column. From
these two matrices, a Type-II GFN round function can be represented by a b× b
matrix R as R = P · F , the inverse of the round function is R−1 = F · P−1.

As observed in [27], optimal diffusion block permutations have the property that
any input block with an even number is mapped to a block with an odd number,
and vice versa. A Feistel cipher with this property is called alternating Type-II
GFN (AGFN). Some of the results of this paper assume alternating Type-II
GFNs.

In [26,3], another matrix representation is used to find ZC distinguishers on
Feistel-like ciphers. The U-method used to find ZC distinguishers relies on the
mirror representation of the round function.

Definition 2. For a Feistel-like cipher given the matrix representation of the
round function R = P · F , we call mirror function the round function described
by the matrix M = P · FT , where FT denotes the transposition of the matrix F .

3 Distinguishers

The matrix method, which is defined in [19,34,26,23] is used to find respectively
ID, INT and ZC distinguishers. For these three attacks, different quantities are
involved. For instance, ID distinguishers are derived from an inconsistency between
partial differences and ZC distinguishers are derived from an inconsistency



between partial linear masks. To show the similarities between ID, ZC and INT
attacks, the same notations will be used in the different contexts. These notations
are summed up in Table 2. For instance, for a given a value, the quantity Aa
denotes respectively a non-zero difference in the ID context, a non-zero mask
in the ZC context and symbolizes a permutation of the elements of Fc2 in the
INT context. While for type-1 distinguishers (see Definition 3 in Section 3.2) Ãa
does not have to be differentiated from Aa, such distinction is necessary to find
type-2 and type-3 distinguishers. Using these notations, the state of a b-branches
GFN can be represented as a vector of b elements of the form given in Table 2.
When necessary, this b-word vector will be denoted by V IDi , V ZCi or V INTi . For
example, in Figure 2 we have : V IDi−1 = (0, Ã0, A1, 0, A2, A3, U0, U1). The vector
V IDi is computed using the rules given in Table 3.

ID ZC INT

0 Zero difference Zero mask Constant value∗

Ãa Known non-zero difference Known non-zero mask Known permutation
Aa Non-zero difference Non-zero mask Permutation
Uu Unknown difference Unknown mask Unknown

Aa ⊕Aa′ = Uu = Uu Known sum

Table 2: General notations representing a partial-state. a and u are some counters.
∗: Usually denoted by C in the INT context.
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Fig. 2: An example of passing one round of a classical Type-II GFN in the ID context
using the previous notations and the rules of Table 3.

3.1 The Matrix Method on GFNs

ID Distinguisher. In [19,23], the matrix method which allows to efficiently
find ID distinguishers for Feistel-type ciphers is described. The algorithm mainly
implements the rules given in Table 3 to propagate a partial difference through
the rounds of a cipher. The values a and u are arbitrary values starting at 0. As
explained in [34], these indexes allow simplifications of type Aa ⊕Aa = 0.

Using the matrix representation of the round function, we can derive an ID
distinguisher on a GFN.

Proposition 1. Given V ID0 and W ID
0 a representation of the input and output

differences, we have an ID distinguisher (V ID0 ,W ID
0 ) on s0 + s1 rounds if we

have an inconsistency between X = Rs0 · V ID0 and Y = R−s1 ·W ID
0 .



Rules to pass an F function

F 0 Ãi Ai Uj or Ai ⊕Aj

0 A(maxa)+1 A(maxa)+1 U(maxu)+1

Rules to pass a ⊕

⊕ 0 Ãi Ai Ui

0 0 Ãi Ai Ui

Aj Aj Ãi ⊕Aj Ai ⊕Aj Aj ⊕ Ui

Ãj Ãj Ãi ⊕ Ãj Ai ⊕Aj Aj ⊕ Ui

Uj Uj Ãi ⊕ Uj Ai ⊕ Uj Uj ⊕ Ui

Table 3: Propagation rules in the ID, ZC and INT context when using the matrix
method.

More details on inconsistencies in the ID and ZC contexts are provided later in
this section.

ZC Distinguisher. In [26], the matrix method to find ZC distinguishers is
presented. The main difference with the method used in the ID context comes
from the fact that the mirror matrix M (see Definition 2) must be used instead
of the round function matrix R.

Proposition 2. Given V ZC0 and WZC
0 a representation of the input and output

linear masks, we have a ZC distinguisher (V ZC0 ,WZC
0 ) on s0 + s1 rounds if we

have an inconsistency between Ms0 · V ZC0 and M−s1 ·WZC
0 .

INT Distinguisher. In [34], the authors proposed an algorithm to automatically
find INT distinguishers. The algorithm uses the same rules and the same matrix
representation R as in the ID context, only the termination rules differ.For
Type-II GFNs, these rules can be expressed as follows.

Corollary 1. Given a representative vector ZINT , for a GFN as given in Defi-
nition 1, we have an INT distinguisher on s0 + s1 rounds if the following rules
are fulfilled:
• Termination at the end of an INT distinguisher: If W INT

0 = Rs1 · ZINT
is such that there exists i < b and a set J with W INT

0 [i] = ⊕j∈JAj and for

W̃ = Rs1+1 · ZINT , for all i and J , we have W̃ [i] 6= ⊕j∈JAj.
• Termination at the beginning of an INT distinguisher: If V INT0 = R−s0 ·ZINT
is such that ∃ i ∈ {0, · · · , (b−1)} with V INT0 [i] = 0 (with classical notation = C).

Throughout this paper, we assume that the ID, ZC and INT distinguishers
are derived from a matrix method.

3.2 Equivalence between Matrix-Method-Derived ID and ZC
Distinguishers

In [3], a condition of equivalence between matrix-method-derived ID and ZC
distinguishers is given.

Theorem 1 ([3]). Let R be the matrix representation of the round function of
a GFN and M be the matrix representation of its mirror function as given in
Section 2. If there exists a b× b permutation matrix Q such that

R = Q ·M · Q−1 or R = Q ·M−1 · Q−1, (1)



we deduce that: an impossible differential distinguisher on r rounds involving a
number of differentials equal to M exists if and only if a zero-correlation linear
distinguisher on r rounds involving M linear masks exists.

As shown in [3], most of the Feistel networks verify this condition. In the remainder
of this paper, we say that a Feistel-like cipher has matrix-method-derived related
ID and ZC distinguishers when the relation is derived from the previous property.

Lemma 1. Given the matrices R = P · F and M = P · FT ,
• If the condition R = Q ·M · Q−1 of (1) is fulfilled and P · Q = Q · P we have
F = Q · FT · Q−1.
• If the condition R = Q ·M−1 · Q−1 of (1) is fulfilled we have F = Q1 · FT · Q2

with Q1 = P−1 · Q and Q2 = P−1 · Q−1.

Proof. We have P·F = Q·P ·FT ·Q−1 or equivalently F = P−1 ·Q·P ·FT ·Q−1 =
Q·FT ·Q−1. For the second point, we have P·F = Q·FT ·P−1 ·Q−1 or equivalently
F = P−1 · Q · FT · P−1 · Q−1.

Remark 1. For a Type-II GFN as given in Definition 1, there always exists a
permutation matrix Q such that FT = Q · F · Q−1. This matrix Q corresponds
to the permutation σ : (0, · · · , (b− 1))→ (1, 0, 3, 2, · · · , (b− 1), (b− 2)).

While in [12] improved ID distinguishers are presented, using the matrix method
for Type-II GFNs we can observe three types of ID and ZC distinguishers [23].

Definition 3. Given X = Rs0 · V ID0 and Y = R−s1 ·W ID
0 or X =Ms0 · V ZC0

and Y = M−s1 ·WZC
0 . Following the work of [12,23], for a Type-II GFN, we

define three types of distinguishers. Let p ∈ {0, · · · , (b− 1)} denote the index of
the studied state Y and Y [p] the status of this p-th word.
•An ID (resp. ZC) distinguisher of type-1 denoted by ID1 (resp. ZC1) is a
distinguisher with independent input and output differences (resp. masks). For
these distinguishers, the inconsistency is usually:

∃ p ∈ {0, · · · , (b− 1)} | (Y [p] = 0 and X[p] = Aa) or (Y [p] = Aa and X[p] = 0).

• An ID (resp. ZC) distinguisher of type-2 denoted by ID2 (resp. ZC2) is a
distinguisher where a non-zero output-difference word (resp. output-mask word)
should be different from an input one. Given Ãa0 a word of V0 and W0, the
inconsistency is:

∃ p ∈ {0, · · · , (b− 1)} | Y [p] = X[p] = Ãa.

• An ID (resp. ZC) distinguisher of type-3 is a distinguisher where non-zero
input- and output-difference words (resp. output-mask words) should be equal.
Given Ãa0 a word of V0 and W0, we have an ID distinguisher of type-3 (ID3) on
s0 + s1 + 1 rounds if:

∃ p ∈ {0, · · · , (b− 1)} | (F ·X)[p] = Ãa0 ⊕Aa1 and (P−1 · Y )[p] = Ãa0 . (2)

Replacing F by FT in (2) we obtain a ZC distinguisher of type-3 (ZC3).



Clearly, our matrix method captures the distinguishers found using the
matrix method described in [23] as in the rules given in Table 3 used to define
the transitions of our matrix method, we have: F (Ãi) = A(maxa)+1 and Ãi ⊕Aj
is kept as Ãi ⊕Aj when crossing a xor operation. The link between ZC and ID
distinguishers thus depends of Theorem 1. However, our matrix method does
not capture the distinguishers of [12] which depend on differential transition
properties of the involved S-boxes.

3.3 Comparison with INT Distinguishers

A zero-correlation integral distinguisher is defined in [8] as an integral distinguisher
with balanced output words. In Section 3 of [8] a direct relation between zero-
correlation integral distinguisher and ZC distinguisher of type-1 is extracted.

As a zero-correlation integral distinguisher is stronger than a general integral
distinguisher with sum over an output word equal to zero, we can see that
in general, one more round could be added to the zero-correlation integral
distinguisher to transform it into an INT distinguisher because if the partial
outputs of the zero-correlation integral distinguisher occur equally often, the
last linear transformation maps it into an integral distinguisher. More precisely
for Type-II GFNs, we deduce that the number of rounds on which an INT
distinguisher applies, is greater than or equal to the number of rounds on which
a ZC distinguisher of type-1 applies. More precisely for an alternating Type-II
GFN, we can show the following lemma.

Lemma 2. For an alternating GFN of Type-II, given sZC1
max (resp. sINTmax ) the

maximum number of rounds on which a matrix-method-derived ZC distinguisher
of type-1 (resp. an INT distinguisher) applied, we have sZC1

max = sINTmax or sZC1
max =

sINTmax − 1 .

Proof. The preliminary relation between INT and ZC1 distinguishers extracted
in [8] is based on the following termination rules for an INT distinguisher: If
W INT

0 = Rs1 · Z0 is such that there exists a set I ⊂ {0, · · · , (b − 1)} and an
index j0 such that ⊕i∈IW INT

0 [i] = Aj0 and for W̃ INT
0 = Rs1+1 · Z0, for all set

I ⊂ {0, · · · , (b− 1)} and for all j1, we have ⊕i∈IW̃ [i] 6= Aj1 .
Let (V INT0 ,W INT

0 ) be an INT distinguisher on sINT rounds. If the termination
of the INT distinguisher is ∃ p ∈ {0, · · · , (b− 1)} such that W INT

0 [p] = Aa then
the number of rounds of which the INT and the ZC distinguishers apply are the
same.

Otherwise this means that there exists an INT distinguisher (V INT0 , ZINT0 )
on s′ rounds fulfilling, for a given p, ZINT0 [2p] = Ai and ZINT0 [2p + 1] = Aj
where W INT

0 is obtained from ZINT0 by W INT
0 = RsINT−s′ · ZINT0 .

According to [8], this INT distinguisher can be converted into a ZC distin-
guisher of type-1, (V ZC0 , ZZC0 ) with ∀i 6= {2p, 2p+ 1} we have ZZC0 [i] = 0, and
ZZC0 [2p] = Ai,Z

ZC
0 [2p+ 1] = Aj .

From this distinguisher, we obtain XZC
0 = FT · ZZC0 satisfying XZC

0 [2p] = Ai
and XZC

0 [2p+ 1] ∈ {Uj} as well as XINT
0 = F · ZINT0 satisfying XINT

0 [2p] = Ai
and XZC

0 [2p+ 1] = Ai ⊕Aj .



Given that for the ciphers of Definition 1, we have FT = Q · F · Q−1 with Q
as in Remark 1, we deduce that X̃ZC

0 = Q ·XZC
0 is such that X̃ZC

0 [2p+ 1] = Aj
and X̃ZC

0 [2p] ∈ {Ui}. For an alternating Type-II GFN, no round could be added
in the ZC context and one in the INT context.

Remark 2. In practice, for the Type-II GFNs of [27], we observed (see for instance
Table 4) and proved3, that the number of rounds on which matrix-method-derived
INT and ID distinguishers apply is sINT = sID, sINT = sID−1 or sINT = sID+1.
This relation follows by the relation between the ZC and ID distinguishers.

Name π sID sINT

Type-II {7,0,1,2,3,4,5,6} 17 16
Nyberg {2,0,4,1,6,3,7,5} 14 15

No.1 {3,0,1,4,7,2,5,6} 11 11
No.2 {3,0,7,4,5,6,1,2} 10 11

Table 4: GFNs of [27] with b = 8. For these ciphers based on the results of [3], we can
show that sID = sZC . π defines the permutation of the branches.

Remark 3. According to Prop. 1 and Cor. 1, the same matrix representation is
used to derive ID and INT distinguishers. Given ZINT as in Cor. 1, we denote by
X̃ = Rs0 · ZINT and Ỹ = R−s1 · ZINT . Now for a Type-II alternating GFN, we
can find the different types of impossible differential distinguishers by analyzing
the different inconsistency cases between X̃ and Ỹ or a permutation of Ỹ .

4 The Key-Recovery: Notations and Examples

The time and memory complexities of ID, ZC and INT key-recovery attacks are
dependent on the number of key-words involved in the attacks. In ID attacks, a
distinction is classically made between the key-words which lead to a reduction
of the number of pairs and the key-words which are just helping in the partial
encryption/decryption without reducing the number of involved pairs ([13],
Figure 2). While the first ones are usually called sieving key-words leading to a
so called sieving step, we called guessed key-words the latter ones. The involved
key-words corresponds to the sieving key-words and guessed key-words.

Similar concepts can be observed in ZC and INT attacks, where most of the
involved key-words conduct to a reduction of the size of the table storing the
partial distribution. To simplify the description and the comparison, the same
terminology will be used in these three contexts. In the ZC and INT contexts, a
sieving key-word corresponds to a key-word leading to a reduction of the size
of the stored distributions. The number of key-words involved in a key-recovery
attack on s+ r rounds is denoted by |K|. The number of key-words leading to a
sieving step is denoted by |S| and the number of guessed key-words is denoted by

3 These cases can be derived from the proofs given page 15-16 of [27].



|G|. To compute the complexity of a key-recovery attack we denote by HW (V ),
the weight of a b-word vector V as HW (V ) = b− |{` ∈ {0 · · · (b− 1)}|V [`] = 0}|.

To illustrate this concept, we discuss the examples of ID, ZC and INT attacks
on a 4 branches Feistel as well as on LBlock [33].

4.1 Example of Attacks on a 4 Branches Feistel Network

In Figure 3, we illustrate ID, ZC and INT key-recovery attacks on the last three
rounds of a classical type-II GFN with 4 branches. While some of the notations
will be defined later, we illustrate the meaning of guessed and sieving key-words
in the ID and ZC context by providing some steps of the key-recovery algorithms.
For instance some steps of the generic ZC attack on this structure could be:
• Store the distribution of [X0[2], X12[0, 1, 2, 3]] (5 words)
• Try the sieving keyK12

1 and compute the distribution of [X0[2], X11[1], X12[1, 2]]
(4 words)
• Try the guessed key K12

2 and compute the distribution of [X0[2], X11[1, 2, 3]]
(4 words)
The last step consists at studying the distribution of [X0[2]⊕X9[1]].
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0 0 Ã1 0
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Fig. 3: Key-recovery in the ID and ZC context and the first partial sum in the INT
context. The key-words in red are sieving key-words, the blue ones are guessed key-words.

4.2 Relation between the Involved Key-Words on LBlock

LBlock is a new lightweight block cipher designed by Wu and Zhang in 2011 [33].
It uses 80-bit keys and 64-bit blocks seen at nibble level and is based on a modified
32-round Feistel structure. We denote by P = L0||R0 the 64-bit plaintext, where
L0 and R0 are 32-bit vectors. The encryption process is as follows: Ri = Li−1 and
Li = F (Li−1,Ki)⊕(Ri−1 ≪ 8) where the F function could be divided into three
steps (see Figure 4). First, the 32-bit subkey Ki is added to Li−1 by a simple
XOR. Then, a nonlinear layer applies to the result. This nonlinear layer consists
of the application nibble by nibble of eight different 4-bit Sboxes S0, . . . , S7 (see
[33] for a complete description of the S-boxes). Finally, the resulting nibbles are
permuted as shown on Figure 4.



Li−1 Ki
Ri−1

≪ 8

Li Ri

Fig. 4: A round of LBlock.

The key-schedule takes as input a master key K seen as a key register denoted
at bit level as K = K79K78 · · ·K0 and outputs round-subkeys ki of 32 bits. It
repeats the following steps for i = 1 to 31 knowing that k1 is initialized with the
32 leftmost bits of the key register K:

1. K ≪ 29

2. [K79K78K77K76] = S9[K79K78K77K76] where S9 is the tenth S-box.

3. [K75K74K73K72] = S8[K75K74K73K72] where S8 is the ninth S-box.

4. [K50K49K48K47] = [K50K49K48K47]⊕ [i]2
5. ki+1 is selected as the leftmost 32 bits of the key register K.

For this cipher which can be seen, as described in [26], as a Type-II GFN, ID
and ZC distinguishers can be derived from each other [3] and can be applied on
14 rounds [33]. INT distinguishers reach 15 rounds [33].

Derived from these distinguishers, ID and ZC attacks on 22 rounds [18,13,26]
as well as ID attacks on 23 rounds [13,14] have been performed. An INT attack on
22 rounds has also been presented [24]. For the illustration purpose of this section,
we assume that the round-keys are independent. As the attacks of [18,13,26,24]
depend on the key-schedule more details on these attacks will only be presented
in Section 6. In this example represented in Figure 5 and in Figure 6, we observe
a strong relation between the key-words involved in the different attacks, when
the distinguishers are, what we will call, strongly related (the same key-words
are involved in a key-recovery attack on 1 + s+ 1 rounds). For this illustration
we use as reference the ID attack of [13] derived from the ID distinguisher:
[((0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, ∗, 0, 0, 0)) 9 ((0, 0, 0, 0, 0, ∗, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0))].

For the ZC distinguisher we use:
[((0, 0, 0, 0, 0, 0, ∗, 0), (0, 0, 0, 0, 0, 0, 0, 0)) 9 ((0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, ∗, 0))].

The keys K5[3] and K20[2] are involved in both attacks, meaning that the
chosen ID and ZC distinguishers are strongly related. We also observe that in that
case, as for the classical type-II GFN given in Figure 3, the key-words involved in
the ZC attack corresponds to a subset of the key-words involved in the ID attack.
We also compare this attack, with an INT attack derived from the following INT
distinguisher on 15 rounds:
[((A,A,A,A,A,A,C,A), (A,A,A,A,A,A,A,A))→ ((∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗), (∗, ∗, ∗, ∗, ∗, ∗, A⊕A, ∗))].
Before providing in Section 5 a proof regarding the relations between the different
involved key-words, we analyze in the next section, relations between the data
complexities of these different attacks.
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Fig. 5: The key-recovery part of ID, ZC attacks on LBlock.
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Fig. 6: The key-recovery part of an INT attack on LBlock.



4.3 Data Complexity of a Key-Recovery Attack
ZC Attack. We denote by M the number of linear approximations which have
correlation zero and which are evaluated in the attack. Improving the estimate
of [8], it has been proven in [7] that the data complexity NZC of a distinct-known-
plaintext ZC key-recovery attack is

NZC ≈ (2n − 1) [z1−α + z1−β ]√
M/2 + z1−α

+ 1, (3)

where zx is obtained from the inverse of the cumulative distribution function Φ of
the normal distribution: zx = Φ−1(x), 1−α corresponds to the success probability
of the attack and − log2(β) to the advantage of the attack. As the manipulation
of the normal distribution makes the comparison between attacks difficult, in the
remainder of this paper we use an approximation of it. In particular, we can show
(see for instance [28]) that for β < 2−5, z1−β = Φ−1(1− β) ≈

√
−2 log(β). While

an approximation of z1−α can also be used, in many ZC attacks, the success
probability is fixed to 1−α = 1− 2−2.7 ≈ 0.85 such that z1−α ≈ 1.02. Using this
approximation, the data complexity of a ZC key-recovery attack becomes

NZC ≈
2n

[
z1−α +

√
2 · log(1/β)

]
√

(M − 1)/2 + z1−α
+ 1. (4)

ID Attack. For most of the attacks in the differential context, the data complex-
ity of an ID key-recovery attack is computed as a function of the structure of the
input and output differences but also of the different sieves performed during the
attack. In an ID attack, if at least one key remains at the end of the key-recovery
part we are certain that the correct key is among them. In statistical terms [4],
this particularity means that the success probability 1− α of the attack is equal
to 1. Given structures of size 2t and given 2m structures used in an ID attack,
the data complexity is N ID = 2m+t.
In the ID cryptanalysis context [2,14], it is commonly assumed that the false alarm

probability, denoted β in this paper is determined by β = (1− 2−q)2
m+2t−1−p ≈

e2
m+2t−p−q−1

, where 2−p corresponds to the product probabilities discarding
plaintext-pairs and 2q corresponds to the probability of discarding a key. Thus,
we have

N ID ≈ 2p+q−t · 2 · log(1/β). (5)

When the data complexity is smaller than the maximal size of a structure or
if the ID attack can be done in the known plaintext model, we have N ID =√

2p+q−1 log(1/β). If we have M differentials involved in our ID distinguisher,
we can show that 2p+q+n−t = 22n/M , where n is the size of the encrypted blocks.
In the case where more than one structure is used, we have

N ID ≈ 2n

M
· 2 · log(1/β). (6)

From a direct comparison between (4) and (6) we deduce that:



Lemma 3. Given two related ID and ZC distinguishers, involving M differentials
or linear approximations, if the success probability of the ZC attack is 50%
(z1−α = 0), we have N ID ≤ NZC as long as log(1/β) ≤ M . This relation
remains true, for larger success probabilities since the data complexity of the ZC
attack will, in that case, be larger too.

INT Attack. Given V INT0 as defined in Cor. 1, the data complexity of an INT
attack is proportional to the number v of active words in V INT0 : N INT = O(2c·v).
For this attack, false alarm occurs when the sum on a word is randomly equal to
0. As this event occurs with probability 2−c, we can derive in a time/memory

trade-off way, the success of an INT attack with β = (1− 2−c)2
c|K|

where |K| is
the number of key-words involved in the key-recovery part of the attack. The
overall data complexity of an INT attack is:

N INT ≈ 2c·v · 2 · log(1/β). (7)

Remark 4. For many Feistel-like ciphers, the number M of differences involved
in an ID distinguisher of type-1, is M = 22·c (see examples in [23]) and the
weight v of V INT0 is b− 1. In this case, a comparison between (7) and (5) gives
N ID1 = N INT /2c.
This relation stays about to be true in the case of an ID distinguisher of type-2
(in this case, M = (2c− 1)2). When comparing an ID distinguisher of type-3 with
M = 2c to an INT distinguisher with v = b− 1 we obtain that N INT = N ID3.

Remark 5. Assuming as in many attacks that HW (V ZC1
0 ) = HW (WZC1

0 ) and
HW (V INT0 ) = b − HW (V ZC1

0 ) and given a success probability 1 − α of 50%
in the ZC context, we obtain that N INT /NZC1 ≈

√
2 log(1/β). Thus, the data

complexity of an INT attack is greater than the one of a ZC1 attack. For larger
success probability, this is no more true and in general N INT ≤ NZC .

After the analysis of the data complexities, some questions arise. In particular
we could wonder what is the benefit of a ZC attack if its data complexity is
larger than the one of an INT or ID attack. In the next section, using a matrix
representation of the round function, we study the relation between the key-words
involved in the different attacks and show that for matrix-method-derived related
distinguishers the number of key-words involved in a ZC key-recovery attack
is smaller than the number of key-words involved in a ID attack on the same
number of rounds.

5 Key-Words Involved in a Key-Recovery Attack

From a matrix representation of Type-II GFN ciphers, we analyze in this section
the key-recovery part of these attacks. This analysis is done for related and
strongly related matrix-method-derived ID, ZC and INT distinguishers.
We say that the ZC and INT distinguishers are strongly related if the same key-
words are involved in a key-recovery attack over one round of partial decryption.
In this section, strongly related INT and ZC distinguishers do not necessary



apply on the same number of rounds.
We say that the ZC and ID distinguishers are strongly related if the same key-
words are involved in a key-recovery attack over one round of partial encryption
and one round of partial decryption.

For instance, for the Nyberg constructions, the matrix-method derived ID and
ZC distinguishers are related but are not strongly related. This can be proven by
observing that for this non-alternating cipher, P · Q 6= Q · P for Q defined as
in Remark 1. But, for this cipher, the distinguishers are related in the sense of
Theorem 1.

5.1 A Matrix Representation for Analyzing Key-Recovery Attacks

In the same way, we can derive ID, ZC and INT distinguishers of a Feistel cipher
using a matrix representation of the round function, we show in this section how
we can find the key-words involved in the attack using a matrix method. In this
section, the vectors V0 and W0 represent respectively the input and output of the
distinguishers. The vectors Vi and Wj represent the state when i ≤ rin rounds
are added at the beginning of a distinguisher and j ≤ rout rounds are added at
the end of this distinguisher. The knowledge of the value of the vectors {Vi}i<rin
and {Wj}j<rout

will be necessary to compute the number of attacked rounds in
the ID, ZC and INT contexts. The operations on these vectors correspond to
those given in Section 2.

In that case, the vectors Vi,Wj ∈ {(0, Ãa, Aa, val)}b where Ai, Ãi denote a
difference-word or a state-word which has to be computed and 0 denote words
with no difference or a state-word with value unnecessary for the attack. We
use the following arithmetic similar to the one given in Table 2: 0 ⊕ Aa = Aa,
Aa ⊕ Aa′ = Aa′′ , F (0) = 0 and F (Aa) = Aa′ . The description of val is given
later in this section and is only used in the ID context. As explained in Section 3,
the notation Ãa is necessary for the type-2 and type-3 ID and ZC distinguishers,
which hold when the input and output differences (masks) should be respectively
strictly different or strictly equal.

In an INT attack, using the partial sum technique introduced in [25] and
described in Figure 7, the key-recovery attack could be divided in two searching
paths reducing the overall time complexity. The computational time required
by the second path is marginal as it usually allows to gain at least one round
for free. More sophisticated attacks such as meet in the middle attacks could be
mount using INT distinguishers (see for example [22]). For comparison purposes,
we do not integrate those tricks in our study of the key-words involved in the
attack. In all the cases, considering only the primary branch of the partial sum
technique, we show that the number of involved key-words in the INT context is
always lower than the number of key-words involved in the ZC context and in
the ID context considering only the rout direction.

Moreover, as all the INT distinguishers obtained using the matrix method
are in fact higher order integral distinguishers with b− 1 or b− 2 active words
in input, the computational cost to pay when trying to add one round at the
beginning of this distinguisher is really high (except when some particular tricks



such as the ones described in [17] could be considered which is not always the
case) and to stay as generic as possible, we only consider a key-recovery attack
on rout rounds at the end of the INT distinguisher.
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Fig. 7: On the left, the test to perform without the partial sum. On the right, the test
to perform with the partial sum divides the computations into two steps.

Illustrated by the example provided in Figure 3, the sieving and guessed
key-words can be found as follows.

Lemma 4. In the ZC context,

– Given the vector Vi−1. Let VA = P−1 · Vi−1.
• The key-word Ki[p] is a sieving key-word if VA[2p+1] 6= 0 and VA[2p] = 0.
• The key-word Ki[p] is a guessed key-word if VA[2p+1] 6= 0 and VA[2p] 6= 0.
• The vector Vi is computed as Vi = FT · VA = FT · P−1 · Vi−1.
• The number of active words corresponds to the weight of Vi.

– Given the vector Wj−1.
• The key-word Kj [p] is a sieving key-word if Wj−1[2p + 1] 6= 0 and
Wj−1[2p] = 0.

• The key-word Kj [p] is a guessed key-word if Wj−1[2p + 1] 6= 0 and
Wj−1[2p] 6= 0.

• The vector Wj is computed as Wj =M ·Wj−1 = P · FT ·Wj−1.
• The number of active words corresponds to the weight of Wj.

Proof. The proof of the first point is illustrated in Figure 8. In the left figure,
the notation Vi[2p] = Ai means that the value of Vi[2p] = Ai should be known to
be able to compute VA[2p + 1]. After partial encryption the value of VA[2p] is
not needed in the remainder of the key-recovery. The second part of the lemma

Fr - gg
VA[2p] = 0 VA[2p+ 1] = Ai 6= 0

Vi[2p] = Aj Vi[2p+ 1] = Ai 6= 0

Ki[p]

Sieving key:'

&

-

Fr - gg
VA[2p] = Ai VA[2p+ 1] = Aj

Vi[2p] = Al Vi[2p+ 1] = Aj

Ki[p]

Guessed key:

Fig. 8: ZC context: Determining if an involved key-word is a guessed or a sieving key.

is illustrated by the example provided in Figure 3.



Usually in the ID context the matrix method allows us to only study the
propagation of the differences. However, in the partial encryption/decryption
process there are cases where even if the difference is equal to 0, the knowledge of
the value is necessary to complete the key-recovery. We introduce the notation val ,
to represent such a word with difference 0. The weight of a vector V corresponds
to the number of non-zero differences.

Lemma 5. In the ID context,

– Given the vector Vi−1 and VA = P−1 · Vi−1.

• The key-word Ki[p] is a sieving key-word if VA[2p] 6= 0 and VA[2p+ 1] =
0 or val .

• The key-word Ki[p] is a guessed key-word if VA[2p+ 1] 6= 0.
• In the case where VA[2p+ 1] 6= 0 and VA[2p] = 0, update VA[2p] to val.
• The vector Vi is computed as Vi = F · VA.
• The number of active words corresponds to the weight of F · VA.

– Given the vector Wj−1.

• The key-word Kj [p] is a sieving key-word if Wj−1[2p] 6= 0 and Wj−1[2p+
1] = 0 or val .
• The key-word Kj [p] is a guessed key-word if Wj−1[2p+ 1] 6= 0.
• In the case where Wj−1[2p+ 1] 6= 0 and Wj−1[2p] = 0, update Wj−1[2p]

to val.
• The vector Wj is computed as Wj = P · F ·Wj−1.
• The number of active words corresponds to the weight of P · F ·Wj−1.

Proof. The proof is similar to the one in the ZC case but the reasoning is done
with differentials instead of with the state-values. The difficult case corresponds
to the third point. Indeed, when VA[2p+ 1] 6= 0 and VA[2p] = 0, it means that
the value VA[2p] needs to be known even if the difference is 0 and thus for that
purpose, we decide to use the val notation.

Lemma 6. In the INT context, only the output direction on rout rounds is
considered. Given the distinguisher (V INT0 , Y INT0 ) we define W INT

0 such that
W INT

0 [p] = 0 if Y INT0 [p] = Uu and W INT
0 [p] = Aa if Y INT0 [p] = Aa or

Y INT0 [p] = ⊕iAi.

– The key recovery is similar to the one in the ZC context, starting from the
vector W INT

0 .
– The partial sum technique, can be applied from writing W INT

1 = W INT
1,1 +

W INT
1,2 and splitting the key recovery for the two vectors W INT

1,1 and W INT
1,2 .

5.2 Relations between the Key-Words of the Different Attacks

From the rules expressed in the previous section, we can derive the following
relations between the key-words involved in the different attacks for related and
strongly related matrix-method-derived distinguishers.



Lemma 7. For a Type-II GFN, given a matrix-method-derived ZC distinguisher
and its strongly related ID distinguisher, the key-words involved in a ZC key-
recovery attack is a subset of the key-words involved in an ID key-recovery attack.
The number of sieving key-words is identical.

Proof. In this proof, we define the matrix Q such that FT = Q · F · Q−1 (see
Remark 1). According to the hypothesis made in the beginning of this section in
order to have the same key-words involved in an attack on 1+1 rounds, the vectors
V ID0 and V ZC0 are such that V ZC0 = Q · V ID0 . We denote by Ṽ ZCi = Q · V ZCi . In
this case the first part of Lemma 4 can be rewritten as:
• The key-word Ki[p] is a sieving key-word if Ṽ ZCA [2p] 6= 0 and Ṽ ZCA [2p+ 1] = 0.
• The key-word Ki[p] is a guessed key-word if Ṽ ZCA [2p] 6= 0 and Ṽ ZCA [2p+ 1] 6= 0.
• The vector Vi is computed as Vi = FT · VA = Q · F · Ṽ ZCA .
From the relation V ZC0 = Q · V ID0 and the previous observations, we deduce that
the number of sieving key-words among the key Kin

1 is the same in both ZC and
ID attacks. The same observation can be done on WZC

0 and W ID
0 .

Note that if V ZCi = Q · V IDi then the number of guessed key-words in the
ID context is larger than in the ZC context since the rule to determine if a key
is a guessed key in the ZC context are more restrictive than the one in the ID
context. Remain to analyze the general relation between V ZCi and V IDi .
Assume that V ZCi−1 = Q · V IDi−1 (this is true for i = 1), meaning that Ṽ ZCA = V IDA
before update of this one. According to the third bullet of Lemma 5, after update
of V IDA , we have Ṽ ZCA = V IDA + V ′ where V ′ is a vector of b elements all equal to
0 or val . We conclude from the fact that operations on the matrix are additive.

Lemma 8. For Type-II GFNs fulfilling one of the conditions given in Theorem 1
and for related ZC and ID distinguishers, the key-words involved in the encryption
(resp. decryption) side of the ZC attack correspond to a subset of the key-words
involved in the encryption (resp. decryption) side of the ID attack.

Proof. The proof is similar to the one of Lemma 7 using the tools of the proof of
Theorem 1.

Lemma 9. Given a ZC distinguisher and a strongly related INT distinguisher,
without the partial sum technique, the key-words involved in the two attacks on
rout rounds added at the end of the distinguisher KZCrout and KINT

rout are, modulo
the round index, the same. For an alternating Type-II GFN, when considering the
dominant part of the partial sum PS technique , we have: |KINTPS

rout+1 | = |KINTrout |+1.

Proof. As the process to determine the key-words in the ZC and INT contexts is
exactly the same, from Lemmas 4 and 6 we can directly derive the first point.

When considering the partial sum technique, assuming that the cost for the
second branch is negligible, we only have to consider the first branch and the
associated vector W INTPS

·,1 . By induction, at round 1, we have |KINT1 | = 1 and

W INT
1 =M·W INT

0 . As W INT
1 = W INTPS

1,1 +W ′ we obtain |KINTPS
2,1 | = 1+|KINT1 |.

As it exists a permutation σ of the branches with matrix representation Q such
that W INTPS

1,1 = Q ·W INT
0 . Given π the permutation of branches represented by



the matrix P and p such that W INT
0 [2p+1] 6= 0, we define σ a permutation of the b

branches as σ[i] = i for i 6= {2p+1, π[2p]} and σ[2p+1] = π[2p], σ[π[2p]] = 2p+1.
The remainder of the proof follows directly for an alternating Type-II GFN
comparing W INT

i = Mi · W INT
0 and W INTPS

i+1 = Mi · Q · W INT
0 . From the

definition of Q, we deduce that |SINTPS
rout+1 | = |SINTrout |+ 1 and |GINTPS

rout+1 | = |GINTrout |.

Lemma 10. Given a ZC distinguisher, for an alternating Type-II GFN, denoting
by |KZCin

i | (resp. |KZCout
j |) the number of key-words involved in the i first rounds

(resp. in the j last rounds) of the attack we have |KZCout
rout | ≥ |K

ZCin
i |+ |KZCout

j |
with i + j = rout. If HW (W INT

0 ) = HW (WZC
0 ) = 1, for rout ≥ 3, we have

|KINTPS
rout+1 | ≥ |KZCi |+ |KZCj |.

Proof. As the cipher is alternating, according to the rules given in Lemma 4,
we have |{p|WZC

i+1 [2p+ 1] 6= 0}| = |{p|WZC
i [2p] 6= 0}| and |{p|WZC

i+1 [2p] 6= 0}| ≤
|{p|WZC

i [2p+ 1] 6= 0}|+ |{p|WZC
i [2p] 6= 0}|.

The inequality occurs when the key-word Ki+1[2p] is a guessed key-word.
For an alternating cipher with w = HW (WZC

0 ) = 1 this can only occurs
for i > 2. The same reasoning can be done for the vector V ZCi . We have
|KZCout
rout

| =
∑

0≤i<rout
|{p|WZC

i [2p + 1] 6= 0}| = 4 +
∑

3≤i<rout |{p|W
ZC
i [2p +

1] 6= 0}|. Also assuming that |KZCin
i |+ |KZCout

j | =
∑

0≤r<i |{p|WZC
r [2p + 1] 6=

0}|+
∑

0≤r<j |{p|V ZCr [2p + 1] 6= 0}| ≤ 3 +
∑

3≤r<i
∑

1≤t≤r |{p|WZC
t [2p + 1] 6=

0}|+ |{p|V ZCr−t [2p+ 1] 6= 0}|.

6 A ZC Attack on LBlock

In Section 4 we show a relation between the key-words involved in a key-recovery
attack on LBlock. In this section we present a ZC attack on 23 rounds of this
cipher when taking into consideration the key-schedule of this cipher.

In the INT attack of [24], 69 key-bits are involved and among them, 55
are sieving key-bits. The ZC attack of [26] requires to guess 24·14 = 256 keys.
Complexities of the best attacks on LBlock are resumed in Table 1.
In the analysis provided in [13], using a different ID distinguisher leads to only
guess 71 key-bits in the attack on 22 rounds. A similar analysis shows that only 2
extra bits need to be guessed in the attack on 23 rounds. As done in [13] and [24]
in the ID and INT context, from an analysis of the key-schedule we can derive a
ZC attack on 23 rounds of LBlock.

The different steps of the attack are given below. Table 5 sums up the
subkeys involved in the attack and the corresponding bits of the master key as
described in Figure 6 whereas Table 6 gives all the steps of the attack considering
that M = 28 and the corresponding complexities. From this table, given T0 =
[L0[1, 2, 3, 4, 5, 6, 7], R0[1, 2, 3, 6, 7], L23[0, 1, 6], R23[1, 3, 4, 5, 7]] q(this table is not
stored), the different steps of the attack can be described as follows: In the first step
of Table 6 when guessing the 17 required key-bits we obtain the table T1 (stored
in memory) by removing the distributions of the nibbles L0[1, 2, 3, 5], R0[1, 2, 6, 7]



K1[1] {52− 55}
K1[2] {56− 59}
K1[3] {60− 63}
K1[5] {68− 71}
K1[7] {76− 79}
K2[1] {23− 26}

K2[3] f({31− 34})
K2[4] f({35− 38})
K3[0] f({68− 75})
K3[6] {14− 17}
K4[2] f({47− 52})
K5[3] {24− 27}

K23[1] f({51− 59})
K23[3] f({59− 75})
K23[4] f({62− 75})
K22[6] f({22− 32})
K22[7] f({26− 39})
K21[5] f({48− 54})
K20[2] f({62− 75})

Table 5: The keys involved in our attack on 23 rounds of LBlock and their dependency
to the master key. See [33] for more details. The notation f({i− j}) means dependent
of the keys bit i to j of the master key.

Step Masterkey bits Involved Keys Need Get #key-bit log2(|Tt|) Time

1
{51− 63, 68− 71} K1[1, 2, 3, 5] L0[1, 2, 3, 5], R0[1, 2, 6, 7] L1[0, 1, 3, 4]

17 60 N · 217 · 5
K23[1] L23[0], R23[1] R22[6]

2 {23− 26} K2[1] L1[1], R1[6] = L0[6] L2[0] 4 56 260+17+4 (281)
3 {72− 75} K3[0] L2[0], R2[0] = L1[0] L3[2] 4 52 256+21+4 (281)

4 {64− 67} K23[3] R23[3], L23[1] R22[7]
4 44 252+25+4 · 2 (282)

K23[4] R23[4], L23[6] R22[4]
5 {31− 34} K2[3] L1[3], R1[7] = L0[7] L2[1], L0[7] 4 44 244+29+4 (277)
6 {49, 50} K4[2] L3[2], L2[1] L4[3] 2 40 244+33+2 (281)
7 {76− 79} K1[7] L0[7], R0[3] L1[5] 4 36 240+35+4 (279)
8 {35− 38} K2[4] L1[4], R1[4] = L0[4] L2[6] 4 32 236+39+4 (279)
9 {14− 17} K3[6] L2[6], R2[5] = L1[5] L3[7] 4 28 232+43+4 (279)
10 {27} K5[3] L4[3], R4[7] = L3[7] L5[1] 1 24 228+47+1 (276)
11 {22, 28− 30} K22[6] R22[6], L22[7] = R23[7] R21[5] 4 20 224+48+4 (276)
12 {39} K22[7] R22[7], L22[5] = R23[5] R21[3] 1 16 220+52+1 (273)
13 {48} K21[5] R21[5], L21[4] = R22[4] R20[2] 1 12 216+53+1 (270)
14 - K20[2] R20[2], L20[3] = R21[3] R19[1] 0 8 212+54 (266)

Table 6: The different steps of the ZC attack on 23 rounds of LBlock for M = 28.
T ime corresponds to the number of Sbox encryptions. The total time complexity is
((283.58 +N · 217 · 5) · 1/23 · 1/8) + 280−a 23-round encryptions.

and L23[0], R23[1] from T0 (“Need” column) and adding the distributions of the
nibbles L1[0, 1, 3, 4] and R22[6] to it (“Get” column).

Given a set of 24+4 linear masks, the time complexity of the distillation phase
of the attack is N · 217 · 1/23 · 5/8 + 275.83 where the data complexity N is
determined by the advantage of the attack for a success probability of 85%.

In the recent ID attack on LBlock [13] different data and time trade-offs are
suggested. For a complete comparison, we suggest here also different trade-offs
depending of the advantage obtained in the distillation phase of the attack but
also using smaller multidimensional linear spaces.

Instead of taking advantage of the ZC approximation
([(0, 0, 0, 0, 0, 0, u, 0), (0, 0, 0, 0, 0, 0, 0, 0)] 6→ [(0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, v, 0)])

where u ∈ F4
2 and v ∈ F4

2, we consider the ZC linear approximations where
u ∈ F4−b1

2 and v ∈ F4−b2
2 for 0 ≤ b1, b2 ≤ 3. If the 4 − b1 most significant bits

of u are fixed to 0, the attack can be performed without knowing the b1 most
significant bits of L5[1], meaning, as shown in Table 6 without knowing the b1
most significant bits of R0[3]. In the same way, b2 bits of R23[3] do not need to



be stored. In this case, the size of the involved tables are divided by 2b1+b2 and
the time complexity of the Steps 2 to 14 of Table 6 are divided by 2b1+b2 .

Table 7 gives an alternative attack when M = 24. The memory complexity is
larger (260 instead of 256) than with the previous method, nevertheless the time
complexity is smaller.

Step Masterkey bits Involved Keys Need Get #key-bits log2(|Tt|) T ime

1a {51− 63} K1[1, 2, 3] L0[1, 2, 3], R0[1, 6, 7] L1[0, 1, 3]
13 60 N · 213 · 4

K23[1] L23[0], R23[1] R22[6]
1b {68− 71} K1[5] L0[5], R0[2] L1[4] 4 56 260+13+4 (277)
2 {23− 26} K2[1] L1[1], R1[6] = L0[6] L2[0] 4 52 256+17+4 (277)
3 {72− 75} K3[0] L2[0], R2[0] = L1[0] L3[2] 4 48 252+21+4(277)

The following steps are the same than in Table 6. The time complexity of these steps is divided by 24.

Table 7: Alternative approach when M = 24. The total time complexity is ((279.78 +
N · 213 · 4) · 1/23 · 1/8) + 280−a 23-round encryptions.

In Table 8, we provide the complexity for a number M of linear approximations
between 24 and 28.The results show that even if the key-dependency is stronger
in the ID context we can also take advantage of this key-dependency in a ZC
attack to obtain an attack with a better time complexity. Due to the use of tricks
to reduce the time complexity, the memory complexity of the ID attack of [13] is
larger than the one of the ZC attack.

ID on 23 rounds from [13]

Data Time Memory
257 278.58 272

259 275.36 274

261 276.48 276

263 278.48 278

ZC on 23 rounds

Data Time Memory a M
261.90 276.78 260 5 28

262.16 276.47 260 7 28

262.61 275.95 259 7 27

263.87 276.51 256 7 24

263.87 273.94 260 7 24

Table 8: Data/Time trade-offs: comparison of the complexities of the ID attack of [13]
and of the new ZC attack. M is the number of linear masks involved in the attack. a
denotes the advantage of the attack, meaning that β = 2−a.

7 Conclusion

In this paper, we show how we can use the matrix method to analyse the key-
recovery of Feistel-like ciphers. Based on a matrix representation of the round
function we determine the key-words involved in ID, ZC or INT key-recovery
attacks. In particular we illustate, that in many cases, when the matrix-method-
derived distinguishers are related the number of involved key-words is smaller in
the ZC and INT context than in the ID context. Nevertheless, our analysis also
show that when the same number of differential and linear approximations are
used, the data complexity of a ZC attack is larger than the one of a related ID
attack.



While most of the results of this paper are dedicated to Type-II GFN, similar
results can be obtained for other ciphers. For example, ID and ZC attacks behave
similarly against the Feistel-like ciphers, HIGHT [15,31] and SIMON [29] (see
Table 1) which contain modular additions, AND and rotation operations. Whereas
the INT distinguisher is less efficient for HIGHT than ZC and ID distinguishers,
it is more efficient, at bit level, in the case of SIMON.
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