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Abstract. How does the security of the AES change when the S-box is
replaced by a secret S-box, about which the adversary has no knowledge?
Would it be safe to reduce the number of encryption rounds?
In this paper, we demonstrate attacks based on integral cryptanalysis
which allows to recover both the secret key and the secret S-box for
respectively four, five, and six rounds of the AES. Despite the signif-
icantly larger amount of secret information which an adversary needs
to recover, the attacks are very efficient with time/data complexities of
217/216, 238/240 and 290/264, respectively.
Another interesting aspect of our attack is that it works both as chosen
plaintext and as chosen ciphertext attack. Surprisingly, the chosen ci-
phertext variant has a significantly lower time complexity in the attacks
on four and five round, compared to the respective chosen plaintext at-
tacks.
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1 Introduction

The Advanced Encryption Standard (AES) [10] is an iterated block cipher using
10, 12, or 14 rounds depending on the key size of 128, 192, or 256 bits. These
variants are named AES-128, AES-192, and AES-256.

In this paper we consider the cipher that is derived from the AES by replacing
the S-box with a secret 8-bit S-box while keeping everything else unchanged. If
the choice of S-box is made uniformly at random from all 8-bit S-boxes, the size
of the secret information increases from 128− 256 bits, the key size in the AES,
to 1812−1940 bits. Clearly the security level of such a cipher could be very high,
thus the question is: Could the number of rounds of this cipher be reduced to
fewer than 10 rounds (as in AES-128)?

The AES was designed in order to achieve good resistance against differential
and linear cryptanalysis, and this includes the choice of the S-box. Nonetheless a
randomly chosen S-box is very likely to be highly resistant against these attacks
as well.

The method that is most successful in attacking AES for up to 6 rounds
is integral cryptanalysis. Somewhat surprisingly, a variant of this attack also
applies to the AES variant with a secret S-box with up to 6 rounds, and although
the complexity of the attack is larger than for the attack on the original AES,
the time complexity is still less than exhaustive search of a 128-bit key.



Related Work. The idea of integral cryptanalysis was conceived as a dedicated
attack against the block cipher Square [3]. This attack is able to break up to
six rounds of AES-128. Biryukov and Shamir applied integral cryptanalysis to a
generalised SPN structure denoted SASAS [1], which consists of three substitu-
tion layers separated by two affine layers. In their paper, the attacker is assumed
not to have any knowledge about the linear layer or the S-boxes which are all
allowed to be chosen independently at random. The SASAS attack recovers an
equivalent representation of this SPN and thus allows decryption of any cipher-
text. The attack allows to break the equivalent of three rounds of AES. It does
not, however, recover neither the key nor the S-box.

The case of the AES with a secret S-box, which we consider in this paper,
lies in between two cases: The original Square attack on one hand can not be
directly applied to the case with the secret S-box as it requires knowledge of the
S-box to peel off the last layer after guessing some key bits. The SASAS attack,
on the other hand, can be used to attack three rounds of this cipher. However, it
is not very effective, as the extra knowledge of the linear layer and the equality
of all S-boxes remains unused.

The security of PRESENT with a secret S-box was studied by Borghoff et
al. in [2] and allows an attack on 28 out of 31 rounds using slightly less than 264

plaintexts. This attack was further improved by Liu et al. in [8]. As the attack
depends on the weakness of some randomly chosen 4-bit S-boxes, it seems hard
to apply it to the 8-bit S-boxes used in the AES.

Furthermore there are various block cipher designs based on using a se-
cret, key-dependent substitutions like Khufu [9], Blowfish [13], Twofish [14] or
Maya [7]. The attack also bears some resemblance to so-called SCARE (Side-
Channel Analysis for Reverse Engineering) attacks in which side-channel in-
formation is used to recover unknown parts of cipher implementations (see for
example [?]).

Our Contributions. We demonstrate that despite the increased size of the
secret information in the cipher, we are able to recover both the secret key and
the S-box for the 4-round, 5-round and 6-round versions of AES-128 by building
up on techniques from integral cryptanalysis. Our attacks on four and five rounds
are practical and achieve almost the same complexity as previous attacks which
do not need to recover a secret S-box. The 6-round attack has a complexity of
290 which is already much less than exhaustive search of the key, let alone of the
S-box.

Table 1 compares the complexities for our attacks with those of previous
integral attacks on AES-128 and the SASAS attack. Interestingly, the time com-
plexities of the 4-round and 5-round attacks are lower by a factor of 211 and 216

respectively in the chosen ciphertext variant as compared to the chosen plaintext
variant.

Organisation. This paper is organised as follows. In §2 the notation and a
specification of the AES is given. In §3 we analyse the security of the AES



Table 1. Results of integral cryptanalysis on AES-128 with a secret S-box, AES-
128 and SASAS with AES-like parameters. The time complexity is given in encryption
equivalents, the data complexity is given in number of plaintexts/ciphertexts (16 bytes),
the memory complexity is given in bytes. We assume that one round of encryption
corresponds to 25 table lookups.

Complexity

Cipher Rounds Time Data Memory Reference

SASAS 3 221 216 220 [1]

AES-128 (secret S-box) 4 217 216 216 This work
AES-128 4 214 29 – [4]

AES-128 (secret S-box) 5 238 240 240 This work
AES-128 5 238 233 – [4]

AES-128 (secret S-box) 6 290 264 269 This work
AES-128 6 244 234 236 [6]

with a secret S-box with respect to statistical and integral attacks. §4 holds the
concluding remarks.

2 AES Specification

The AES [10] is an iterated block cipher that operates on 128-bit blocks and
comes in three variants: AES-128, AES-192, and AES-256, which have key sizes
of 128, 192 and 256 bits, respectively. The number of rounds T is 10, 12, and 14 re-
spectively. The AES uses the four operations SubBytes, ShiftRows, MixColumns,
and AddRoundKey which are detailed below. We use Ri, 1 ≤ i ≤ T , to denote
the round function which takes a 128-bit block as input and provides a 128-bit
block as output. The ith round is defined as

Ri =
{

AddRoundKeyi ◦ MixColumns ◦ ShiftRows ◦ SubBytes , i < T

AddRoundKeyi ◦ ShiftRows ◦ SubBytes , i = T
.

Before the first round, a pre-whitening key is used in a step AddRoundKey0, so
the T -round encryption with master key K is denoted as

EK = RT ◦ · · · ◦R1 ◦ AddRoundKey0.

Each of the four operations operate on a 128-bit block arranged in a 4× 4 byte
matrix: 

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 .



The bytes are regarded as elements of what is called the Rijndael finite field
F256 = F2[x]/(x8 + x4 + x3 + x + 1). In the Rijndael finite field, an element
is represented by a single byte a = (a7a6 · · · a1a0) with ai ∈ F2, which in turn
represents the field element

a(x) = a7x
7 + a6x

6 + · · ·+ a1x+ a0.

We use hexadecimal notation in typewriter font to write byte values. As such
a = 01 represents a(x) = 1, a = 02 represents a(x) = x, and so on. In the
following, we briefly describe the four operations used in AES.

2.1 SubBytes

In the SubBytes operation, each of the 16 bytes in the state matrix is replaced
by another value according to an 8-bit S-box. In the standard AES, the AES
S-box is used whose full description is available to the adversary. However, in
our analysis we will assume that the S-box is secret and thus unknown to the
adversary.

2.2 ShiftRows

In the ShiftRows step, the ith row of the state, 0 ≤ i ≤ 3, is rotated to the left
by i positions. As such,

ShiftRows



s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15


 =



s0 s4 s8 s12
s5 s9 s13 s1
s10 s14 s2 s6
s15 s3 s7 s11


 .

2.3 MixColumns

In this step, each of the four columns of the state matrix are multiplied from the
right onto an invertible matrix M over the Rijndael finite field. The matrix M
and its inverse are

M =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 and M−1 =


0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e

 .

2.4 AddRoundKey

In this step, a 128-bit round key is added to the state using the XOR oper-
ation. The T + 1 round keys, denoted RK0, . . . , RKT are generated using the
AES key schedule. A brief description of the AES key schedule can be found in
Appendix A.



3 Cryptanalysis of the AES with a Secret S-box

3.1 Differential and Linear Cryptanalysis

First, we consider the security of the AES with a secret S-box which is chosen
uniformly at random against the two most commonly used attacks vectors for
block ciphers: differential cryptanalysis and linear cryptanalysis. The original
AES was designed to resist these two attacks.

It has been shown that for mappings chosen uniformly at random from the
set of all m-bit bijective mappings, the expected value of the highest probability
of a (non-trivial) differential characteristic is at most 2m

2m [11]. In our case where
m = 8, this means that for a randomly chosen 8-bit S-box the expected maximum
probability of a differential characteristic is 16

28 = 2−4.
Since the number of active S-boxes for four rounds of the AES is at least

25 [4], one has an upper bound of the probability for any 4-round differential
characteristic of 2−100, and thus an upper bound for any 8-round differential
characteristic of 2−200. This is sufficient to conclude that differential cryptanal-
ysis will not pose a threat to variants of the AES where the S-box is replaced
by a randomly chosen 8-bit S-box.

It is possible to prove a similar result for linear cryptanalysis using the bounds
of linear characteristics from [12].

3.2 Integral Cryptanalysis on Four Rounds

Summary. Before we go into the details of the attack, let us summarize it
shortly. The attack splits the task of determining the secret S-box into consecu-
tive steps that find increasingly better.

First we use the fact that we can create balanced sets of intermediate texts
right after the first SubBytes step in round 1 by applying the Square attack as
a chosen ciphertext attack1. These balanced sets can be used to set up a system
of linear equations which can be used to determine the secret S-box up to affine
equivalence over F8

2 as is similarly done in the SASAS attack [1]. A representative
from this equivalence class is already sufficient to determine the whitening key
up to 256 variants.

The knowledge about the whitening key and the representative of the S-box
equivalence class allow us now to determine the intermediate texts right before
the MixColumns step in round 1 up to affine equivalence over F8

2. As a result
of the Square attack, the intermediate texts after the MixColumns step should
take on each byte value in each byte position exactly once. This can be used to
determine the secret S-box up to affine equivalence over F256. Finally, the secret
S-box can be determined using knowledge of the key schedule.

1 The reason for using a chosen ciphertext instead of a chosen plaintext attack will be
explained later.
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Fig. 1. Outline of the 4-round integral attack. The following notation is used: P takes
each of the 256 values once, · is constant, B is balanced and the values ? are unknown.

Prerequisites. Before we start with the attack, let us clarify the notation.
We assume that the last round, the fourth in this case, does not contain a
MixColumns operation, as is the case for the last round of standard AES.

By a Λ-set, we mean a set of 256 messages that differ only in one byte but take
for this byte all possible 256 values. Just as in the standard Square [3] attack,
when we decrypt a Λ-set with 4-round AES, we get intermediate texts right after
the SubBytes step of round 1 that are balanced, i.e. the sum of all texts is equal
to the text containing only zeroes, In particular, this set of messages is balanced
in every byte.

Finding an Affine Equivalent of the Secret S-box over F8
2. Let pi, 0 ≤ i <

256, be the list of the first bytes of the 256 plaintexts, generated from the Λ-set
of ciphertexts. Let k0 be the first byte of the whitening key. We can now write
the fact that the intermediate texts are balanced right after the first SubBytes
step as

255⊕
i=0

S(pi ⊕ k0) = 0

where S is the secret S-box. Let zi := S(k0 ⊕ i). The above equation is then
linear in the zpi

and can be written as

zp0 ⊕ zp1 ⊕ · · · ⊕ zp255 = 0. (1)

As duplicate values in the pi values will cancel out, only those pi need to be
taken into account that appear an odd number of times in the list.

Taking different Λ-sets of ciphertexts, we can now try to generate enough
linear equations to be able to determine S uniquely. Unfortunately, we encounter
two problems now. Firstly, we do not know the value of k0. We can thus only



hope to determine S(k0 ⊕ ·). Secondly, the above equations are invariant under
affine transformations: Let A be an affine transformation from F8

2 to F8
2. Then

A(zp0)⊕A(zp1)⊕ · · · ⊕A(zc255) = 0

is also true for any set of pi that fulfills equation (1) and has an even number of
summands. We can thus at best determine S(k0 ⊕ ·) up to 272 affine equivalent
variants. Using the fact that the affine mapping needs to be invertible, we can
thus at best determine the set

{A ◦ S(k0 ⊕ ·) | A : F8
2 → F8

2 is invertible}

which is of size 270.2.
As each linear equation like equation 1 gives us one byte of information and

as we can only determine the S-box up to 272 = 29·8 variants, there can at most
be 256−9 = 247 linearly independent equations like equation (1). We found that
using 256 different Λ-sets suffices in most cases to generate a set of equations
with rank 247.

Given such a set of equations, it is now easy to determine one representative
from the set of affine equivalents to S(k0⊕·). Let this representative be denoted
as S′, i.e. S′ = A ◦S(k0⊕ ·) for some invertible affine A : F8

2 → F8
2 and unknown

k0.

Determining the Whitening Key. Let now pi,j with 0 ≤ i < 256 and
0 ≤ j < 8 be byte j of the plaintext i in one of the Λ-sets and let kj be byte j
of the whitening key. We then have for a ∈ F8

2:

a = kj ⇒ 0 =
255⊕
i=0

S(a⊕ pi,j),

which is generally not true for a 6= kj , a fact the standard Square attack is
based on as well. For invertible affine A : F8

2 → F8
2, we also have the equivalence

0 =
255⊕
i=0

S(a⊕ pi,j) ⇔ 0 =
255⊕
i=0

A ◦ S(a⊕ pi,j).

We can thus for each byte j with 1 ≤ j < 8 find kj ⊕ k0 by trying out for which
of the 256 possible values of a we have

255⊕
i=0

S′(a⊕ pi,j) = 0

for all Λ-sets. This allows us to determine the whitening key up to 256 variants,
depending on the value of k0. Let us set k′ = (0, k1 ⊕ k0, k2 ⊕ k0, . . . , k15 ⊕ k0).
Then when using k′ as the whitening key and S′ as the S-box for encryption,
the intermediate texts after the ShiftRows step in round 1 will correspond to
the correct intermediate texts up to a fixed affine transformation on each byte.



Finding an Affine Equivalent of the Secret S-box over F256. When we
decrypt a Λ-set, the set of intermediate texts that we get after the MixColumns
step in round 1 will take all 256 possible values in each of the 16 state bytes (see
Figure 1). The key idea here is to use this property to filter out wrong candidates
for the secret S-box.

For a set of 256 bytes, we say that it has the P property if it contains every
possible value exactly once. Let V be a set of 256 byte vectors. We will likewise
say that V has the P property if V has this property in every byte position.

If V is now the set of intermediate texts after the MixColumns operation
in round 1, that is the result of the decryption of a Λ-set, we know from the
Square attack that V has the P property. Let now D be the corresponding
set of intermediate texts directly before the MixColumns step. We can test our
candidate S′ for S, by constructing the corresponding candidate set D′ for the
intermediate texts after the ShiftRows step in round 1 with our acquired knowl-
edge of the whitening key, and applying the MixColumns operation on this set
D′ to see whether we obtain a set with the P property.

For how many of the 272 candidates for S′ do we expect this to hold? Let A
be the affine transformation by which S′ deviates from S. Then the byte vectors
in D′ also deviate by this transformation from the true set D. Clearly, if A
consists only of an addition, the P property of MD′ is preserved whereM is the
MixColumns matrix. We can thus restrict A to linear transformations.

In the case, that A corresponds to an invertible linear mapping over F256,
i.e. a multiplication with some element from F∗256, the set of intermediate texts
after the MixColumns step will still have the P property as well since the linear
transformation commutes with the multiplication within the MixColumns matrix
M and the application of the invertible linear transformation A on the set MD
leaves the P property untouched:

MD′ = MAD = AMD.

Opposed to this, when A does not commute with the multiplication in F256,
the P property of MD′ is in general not preserved. As is shown in Appendix B,
if A commutes with a primitive element of F256, A corresponds to multiplication
with an element of F256. As 03 is a primitive element of the Rijndael field and is
an entry in every row and column of M , the only class of affine transformations
that preserve the P property of MD′ is exactly the affine transformations over
F256.

Checking whether the P property holds for MD′ allows us thus to find the
correct S up to affine transformations over F256. Nevertheless, still 272−16 = 256

candidates need to be tested.

Complexity Reduction: Finding the Affine Equivalent Over F256. The
specific structure of the MixColumns matrix M allows us to reduce the compu-
tational complexity of finding the correct affine representative amongst the 256

possible candidates.



Let us define that a set of 2l vectors over Fn
2 has the R property if both 1

and 0 appear in every bit position exactly l times. Note that the P property
implies the R property and that the R property implies that the set of vectors
is balanced but the opposite direction of implications is in generally false. As
the R property, like the P property, is not preserved by the MixColumns layer,
we still expect to find the correct representative by testing for the R property
instead of the P property2.

Let us take a closer look at the specific form of matrix M . When written as
a linear function from F 4

256 to F 4
256, it has the form

M =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 . (2)

If we associate the multiplication with 01, 02, and 03 with their respective
linear mappings from F8

2 to F8
2, we get the following representations:

01 =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 02 =


0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

 03 =


1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1

. (3)

If we now write a0, a1, . . . , a7 for the rows of A we can write the first row of the
32× 32 matrix MA over F2 as

v := (a1, a0 ⊕ a1, a0, a0) .

We see now that whether or not the first bit in the set MD′ satisfies the R
property relies solely on the rows a0 and a1 of the matrix A. As we only need to
test matrices A that are not linearly equivalent over F256, we can fix one row of
A to a non-zero constant. Let a0 be fixed. Then we only need to try out all 28

possible values for a2 to see which one gives us the R property in this bit.
After having determined a1 (and fixed a0), we can use the second row ofMA

to determine a2 and continue on to determine A uniquely. In each step, we only
need to test 28 possible values. We can thus split the task of trying of out all
256 candidates for A, to trying out row by row which reduces the complexity to
7 · 28 ≈ 211 steps.

Determining the Secret S-box. Without assuming anything about the key
schedule, we can only determine the secret S-box up to an additive constant
before and after the S-box, i.e. S′(x) ∼ a⊕S(b⊕x) since any additive constants
can also be seen as part of the round keys. When not assuming anything about
the key schedule, one can for example require that the first byte of the whitening
key and the first round key is zero. It is straightforward then to find the correct
2 This was indeed the case for all our test runs.



representative for S out of the 216 options under these constraints. Using knowl-
edge about the key schedule, one can also easily determine the correct variants
for the round keys and adjust the representative for the S-box accordingly.

The Complexity of the Attack. The needed data consists of the decryption of
256 Λ-sets which corresponds to a data complexity of 216 chosen ciphertexts. As
most of these texts are only used to generate the linear system of equations in the
first plaintext byte, most plaintext pairs can be discarded after the corresponding
equation has been extracted. The memory complexity is thus 28+8 = 216 bytes.

Let us go through the steps to see what the time complexity is. Determining
S′ up to affine equivalence over F8

2 requires solving a system of linear equations
in 28 variables. This requires 23·8 = 224 steps where each step is comparable to
a table lookup. Finding the whitening key requires trying out for each of the
16 key bytes all 28 possible solutions with one Λ-set of 28 values. It thus takes
about 16 · 28 · 28 = 220 table lookups.

To determining S′ up to affine equivalence over F256 using the R property,
for each of the seven rows of A that have not been fixed we have to test 28 values,
each with a Λ sets. Thus the total complexity of this step is 7 · 28 · 28 ≈ 219. A
step here has about the same complexity as a table lookup.

The complexity of the attack is dominated by solving the linear system of
equations, namely 224 steps, which corresponds to 217 encryptions when assum-
ing a complexity of 25 table lookups per encryption round. We ran the attack
1000 times on the single core of an Intel Core i7-4600M CPU at 2.90GHz. It
found both the correct S-box and the correct key each time and always ran in
less than a second (including reading the input data).

3.3 Integral Cryptanalysis on Five Rounds

The attack on four rounds can be extended to five rounds using a technique by
Ferguson et al. [6] that allowed to improve the Square attack on six rounds.
The underlying idea is to create sets of ciphertexts that form a Λ-set right before
the MixColumns step of round 4. Unfortunately, even with key guessing, it is not
possible to determine such a set without knowledge of the secret S-box. However,
by taking all 232 possible values for four bytes that are in the same column during
the MixColumns step of round 4 and keeping all other bytes constant, we can
generate a set of ciphertexts that will take all 232 values in that column. This
set can now be viewed as the union of 224 Λ-sets (see Figure 2).

A set of ciphertexts that gives us a Λ-set in the MixColumns step of round
4 will generate a balanced set right after the SubBytes step of round 1. As a
sum of balanced sets remains balanced, decrypting our 232 ciphertexts, we get
a balanced set of size 232 after the SubBytes step of round 1. This set can now
be used to mount the four round attack on five rounds as well.

Just as in the four round version, we use the fact when such a set is balanced,
we can, by using 256 of them, create a system of linear equations that can be
solved to find an S-box S′ that is an affine equivalent to S over F8

2. We can use
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Fig. 2. The 232 ciphertexts take all possible combinations in the blue bytes but constant
values in the rest. The state before the MixColumns step in the round before can be
seen as the union of 224 Λ-sets as depicted here. It is then possible to apply the 4-round
attack again.

the knowledge of S′ again to determine the whitening key up to 256 variants.
We can then again generate the corresponding intermediate texts after the first
SubBytes step that are affinely equivalent over F8

2 to the true texts. With these
texts we can now determine S up to affine equivalence over F256 by using the
R property. Note that when using the R property here, we expect the correct
set of texts to take in each bit the values 0 and 1 each exactly 231 times as we
are now working with the union of 224 Λ-sets. Again to determine S exactly and
finding the correct master key is straightforward from this point.

How do the complexities of the attack change as compared to the 4-round
variant? As we need 256 sets of ciphertexts, each of size 232, this leaves us with
a data complexity of 240, an increase by a factor of 224 in comparison to the four
round attack. The time complexity of solving the linear system of equations does
not change (it is still a system of 256 equations in 256 variables). The complexity
of the whitening key recovery increases with the size of the balanced sets, i.e.
again by a factor of 224, leaving us with a complexity of 244 table lookups.
Likewise is the complexity of checking the R property increased by a factor of
224 to a total complexity of 243 steps of the same complexity as a table lookup.
This leaves the total time complexity at roughly 245 steps which corresponds to
238 encryptions when assuming a complexity of 25 table lookups per encryption
round.

The data complexity of 240 chosen ciphertexts corresponds to 18 terabyte of
data. But as most of the sets of 232 plaintexts are each only used to generate one
linear equation (in the 256 variables), apart from a few (16 suffice), most can
be discarded during the generation of the linear system of equations, leaving us
with at most 240 bytes that need to be stored in memory at any point in time.

3.4 Integral Cryptanalysis on Six Rounds

The standard way of extending the Square attack to six rounds (in the case of
a chosen ciphertext attack) is by guessing four bytes of the whitening key and
peeling of the first round of encryption for one byte of intermediate text, thereby
increasing the time complexity of the attack by a factor of 232. Unfortunately,
this does not extend to the AES with a secret S-box as knowledge of the S-box
is required to strip off the first round.



There is nonetheless a way to extend the five round attack to six rounds.
Over one round of the AES, the four output bytes of one column only depend on
four of the input bytes. Thus, it is possible to describe two rounds of AES with a
secret S-box as the parallel application of four Super-boxes (see also [5]) with a
linear transformation before and after. Such a Super-box consists of the parallel
application of four S-boxes, a key addition a multiplication of the four bytes with
the MixColumns matrix, again an application of four S-boxes in parallel and a
final key addition.

Just as in the 5-round attack, we can generate sets of texts that are balanced
right after the SubBytes step in round 2 and we can hence use these texts to
generate a system of linear equations that lets us determine the Super-boxes,
just as it allowed us to determine the usual S-boxes in the attacks before. Unfor-
tunately, the system of linear equations for one Super-box involves now not 28

variables but 232 variables. This means that both the computational complexity
as well as the data complexity increase. For the data complexity, when using
the round extension as in the five round attack, we need now 232 sets of each
232 texts, leaving us with a data complexity of 264 chosen ciphertexts. Just as
with the attack on the normally sized S-box, the set of equations is not of full
rank and lets us determine the Super-box only up to 232·32+32 = 21056 affine
equivalents – only slightly less when taking the necessary bijectivity of the affine
transform into account.

The Super-box that we obtain will thus be of the form

A ◦ SubBytes ◦ KeyAddition ◦ MixColumns ◦ SubBytes ◦ KeyAddition

where A is an unknown invertible affine mapping over F32
2 and where the other

standard AES steps are truncated to operate on four bytes only. Despite our
lack of knowledge of A, this form is already enough to extract from it the secret
S-box and the involved key bytes up to 216 variants, i.e. up to two additive
constants applied before and after the S-box. After this, it is straightforward
to uniquely determine the secret S-box and the key e.g. by guessing the two
additive constants and applying standard 6-round Square attack.

If we decrypt a Λ-set with our affinely transformed Super-box, we get a set
that is balanced right after the first SubBytes step of the Super-box as described
in the SASAS paper [1]. Note that it is necessary to assume that A distributes the
8 bits that are being varied in the Λ-set to at least two S-Boxes, an assumption
that is true for almost all possible A. At this point we can thus simply apply
again the same techniques as we did for the four round attack to determine the
secret S-box and the involved key bytes, only that we mount the attack on the
affine equivalent of the Super-box now instead of the whole cipher.

What is the complexity of this attack? As already mentioned above, the data
complexity is 264 chosen ciphertexts. The time complexity is dominated by the
first step of solving the system of 232 linear equations over 232 variables. Using
Gaussian elimination, this step consists of 296 operations, each comparable in
complexity to a table lookup. Thus, the time complexity corresponds to 290

encryptions when assuming a complexity of 25 table lookups per encryption



round. The memory complexity of 232 · 232 · 32 = 269 bytes is also dominated by
the size of the system of equations.

3.5 A Note on Chosen Ciphertext vs. Chosen Plaintext

Due to the symmetry of the AES regarding encryption and decryption, the at-
tacks described here principally work in both directions. Interestingly though, for
the attacks on four and five rounds, the chosen ciphertext variant is considerably
more effective than the chosen plaintext attack. This is because the MixColumns
matrix is sufficiently sparser than its inverse, creating a difference of 216 in the
number of steps when applying the R property. This changes the time complex-
ities of the 4-round and 5-round attacks to 228 and 254. As the complexity of the
6-round attack is dominated by the solving of the linear system of equations, it
does not make a difference in that attack scenario.

4 Conclusion

In this work, we studied the impact of replacing the S-box in the AES by a secret
S-box unknown to the adversary. Despite the expected increase in difficulty of
recovering the secret information, we were able to mount efficient attacks based
on integral cryptanalysis combined with dedicated techniques.

We were able to show that AES-128 with a secret S-box, reduced to 4 and
5 rounds, is susceptible to attacks with practical complexity that successfully
recover both the secret S-box and the key. Furthermore, we have shown an
attack on a variant with 6 rounds with a time complexity of 290, which is much
less effort than the time required to do exhaustive search of the key, let alone of
the S-box.

Similarly to standard AES, it seems difficult to extend our attacks to more
than 6 rounds. Also, the gap between the time complexities of integral attacks
on standard AES and the AES with a secret S-box increases dramatically for
the attack on 6 rounds. It is an open question whether this complexity can be
further reduced.
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A The AES Key Schedule

In the AES, we think of the round keys as matrices over the Rijndael finite field,
just as the state matrix. The first pre-whitening key RK0 is the n-bit master key
itself, so RK0 = K. The key schedule varies slightly across the three AES vari-
ants. Here, we describe it for AES-128 and refer to [4] for the other two cases. We
consider the 4 columns of the two round keys as RKi = (RK0

i ‖RK1
i ‖RK2

i ‖RK3
i )

and RKi+1 = (RK0
i+1‖RK1

i+1‖RK2
i+1‖RK3

i+1). To derive RKi+1 from RKi,
0 ≤ i < T , we do the following
1. Let RKj

i+1 = RKj
i for j = 0, 1, 2, 3,

2. Rotate RK3
i+1 such that the byte in the first row is moved to the bottom,

3. Substitute each byte in RK3
i+1 by using the S-box from the SubBytes oper-

ation,
4. Update the byte in the first row of RK3

i+1 by adding 02i−1 from the Rijndael
finite field, and

5. Let RKj
i+1 = RKj

i+1 ⊕RK
j−1 mod 4
i+1 for j = 0, 1, 2, 3.

This procedure is repeated for i = 1, . . . , T to obtain the round keys RK0 to
RKT .

B Lemma

Let m ∈ N∗. As F2m is an m-dimensional F2-vector space, its elements can be
represented as m-dimensional F2-vectors. But as the multiplication in F2m obeys
the distributive law, the multiplication with an element of F2m corresponds to a
linear mapping from Fm

2 to Fm
2 , that is an m×m matrix over F2. For an element

a ∈ F2m , let La denote the corresponding m×m matrix. For b ∈ F2m , we then
have a · b = Lab.



Lemma 1. Let a be a primitive element of F2m . Let B be an m×m matrix over
F2 which commutes with La. Then there exists b ∈ F2m such that Lb = B.

Proof. Let c be any element from F∗2m . As a is primitive, there exists k ∈ N∗
such that c = ak and likewise Lc = Lk

a. As B commutes with La, by induction
B also commutes with Lc. Clearly, B also commutes with L0, so B commutes
with all elements of F2m .

Let now b ∈ F2m be the image of 1 under B, b = B1. We then have for any
c ∈ F∗2m :

Bc = L1Bc = LcLc−1Bc = LcBLc−1c = LcB1 = Lcb = c · b = b · c = Lbc.

As this is true for any c ∈ F∗2m and clearly also for 0, we have B = Lb. ut
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