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Abstract. In this paper we analyze the general class of functions underlying the
SIMON block cipher. In particular, we derive efficiently computable and easy to
implement expressions for the exact differential and linear behavior of SIMON-
like round function. Using those expressions we investigate a large set of natural
SIMON variants with respect to the most important cryptographic criteria. Inter-
estingly, the NSA’s choice for the parameters are not always optimal.
Using a computer aided approach based on SAT/SMT solvers we are able to find
both the optimal differential and linear characteristics for variants of SIMON and
can also give better estimates on the probability of differentials. As a result of
this analysis we propose different sets of rotation constants, which feature better
properties on some criteria, and might be interesting for further analysis.
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1 Introduction

In the last years a large number of new block ciphers has been designed and published.
Most of those proposals were lightweight block ciphers, optimized with respect to chip-
area, but others performance metrics (such as latency [1], code-size [2] and ease of side-
channel protection [3]) has been taken into account as well. In this context it should also
be noted that some of those criteria were already treated in NOEKEON [4]. Along with
many new proposals, a large variety of papers that analyze and cryptanalyze the new
design approaches have been published.

The later results demonstrate that, even so not all proposals are of significant interest
in practice, new designs often open up for new fundamental insights within the field of
block-ciphers. In this sense the area of lightweight ciphers also increased our fundamental
understanding of block ciphers. Thus, the area of lightweight cryptography has been a
very fruitful driving force in the field of block cipher design.

The importance of lightweight cryptography and it’s applications is also reflected by
the NSA publishing the SIMON and SPECK families of lightweight ciphers in 2013 [5].
Given that it is only the third time within four decades that the NSA publishes a block
cipher, this is a remarkable situation. Moreover, as NIST started shortly afterwards to
investigate the possibilities to standardize lightweight primitives, SIMON and SPECK
certainly deserve a careful investigation. This is even more true as only the designs but
no analysis or explanation of the design choices were published by NSA. In comparison to
what one would expect from publicly available cryptographic primitives nowadays, this
lack of openness necessarily gives rise to curiosity and caution.
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Our Contribution

In this paper we focus on the SIMON family of ciphers; a very elegant, innovative and
extremely efficient set of block ciphers.

There is already a large variety of papers, mainly focusing on linear and differential
attacks on SIMON published. Most of the methods used therein are rather ad-hoc and
very specific to the particular (and unexplained) parameter set of SIMON. Here we com-
plement those works by a comprehensive studies of the underlying functions in SIMON.
In particular, given fast dependency as well as resistance against linear- and differential
cryptanalysis as the major criteria, we investigate which parameters would constitute the
optimal choices.

As a basis for our goal to understand both the security of SIMON as well as the choice
of its parameter set, we rigorously derive formulas for the the differential probabilities and
the linear square correlations of the SIMON-like round function that can be evaluated
in constant time and time linear in the word size respectively. More precisely, we study
differential probabilities and linear correlations of functions of the form

Sa(x)� Sb(x) + Sc(x)

where Si(x) corresponds to a cyclic left shift of x and � denotes the bitwise AND oper-
ation.

We achieve this goal by first simplifying this question by considering equivalent de-
scriptions both of the round function as well as the whole cipher (cf. Section 2.4). These
simplifications, together with the theory of quadratic boolean functions, result in a clearer
analysis of linear and differential properties (cf. Sections 3 and 4). Importantly, the de-
rived simple equations for computing the probabilities of the SIMON round function can
be evaluated efficiently and, more importantly maybe, are conceptual very easy. This
allows them to be easily used in computer-aided investigations of differential and lin-
ear properties over more rounds. It should be noted here that the expression for linear
approximations is more complex than the expression for the differential case. However,
with respect to the running time of the computer-aided investigations this difference is
negligible.

We used this to implement a framework based on SAT and SMT solvers to find the
provably best differential and linear characteristics for various instantiations of SIMON
(cf. Section 5, in particular Table 1). Furthermore we are able to shed light on how dif-
ferentials in SIMON profit from the collapse of many differential characteristics by giving
exact distributions of the probabilities of these characteristics for chosen differentials. The
framework is open source and publicly available to encourage further research3.

In Section 6 we apply the developed theory and tools to investigate the design space
of SIMON-like functions. In particular, using the computer-aided approach, we find that
the standard SIMON parameters are not optimal with regard to the best differential and
linear characteristics.

As a side result, we improve the probabilities for the best known differentials for
several variants and rounds of SIMON. While this might well lead to (slightly) improved
attacks, those improved attacks are out of the scope of our work.

Interestingly, at least for SIMON32 our findings indicate that the choices made by the
NSA are good but not optimal under our metrics, leaving room for further investigations
3 In order to respect anonymity, we do not give a link to the source code here.
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and questions. To encourage further research, we propose several alternative parameter
choices for SIMON32. Here, we are using the parameters that are optimal when restrict-
ing the criteria to linear, differential and dependency properties. We encourage further
research on those alternative choices to shed more light on the undisclosed design criteria.

We also like to point out that the SIMON key-scheduling was not part of our investi-
gations. It’s influence on the security of SIMON is left as an important open questions for
further investigations. In line with this, whenever we investigate multi-round properties
of SIMON in our work, we implicitly assume independent round keys in the computation
of probabilities.

Finally, we note that most of our results can be applied to more general constructions,
where the involved operations are restricted to AND, XOR, and rotations.

Related Work

There are various papers published on the cryptanaylsis of SIMON [6–10, ?]. The most
promising attacks so far are based on differential and linear cryptanalysis, however a clear
methodology of how to derive the differential probabilities and square correlations seems
to miss in most cases. Biryukov et al.[7] derive a correct, but rather involved method to
find the differential probabilities. Alizadeh et al.[6] state an algorithm for the calculation
of the differential probabilities but without explanation. For the calculation of the square
correlations an algorithm seems to be missing all together.

Previous work also identifies various properties like the strong differential effect and
give estimate of the probability of differentials.

The concept behind our framework was previously also applied on the ARX cipher
Salsa20 [11] and the CAESAR candidate NORX [12]. In addition to the applications
proposed in previous work we extend it for linear cryptanalysis, examine the influence of
rotation constants and use it to compute the distribution of characteristics corresponding
to a differential.

2 Preliminaries

In this section, we start by defining our notations and giving a short description of the
round function. Afterwards we recall some generalities about suitable notations of equiv-
alence of Boolean functions. We herby focus on equivalences that allow to simplify the
investigations on SIMON-like round functions. Those observations will be used in the fol-
lowing sections. Most of the following is generally applicable to any AND-RX construction
i.e., a construction that make only use of the operations AND, XOR, and rotations.

2.1 Notation

We denote by F2 the field with two elements and by Fn2 the n dimensional vector space
over F2. By 0 and 1 we denote the vectors of Fn2 with all 0s and all 1s respectively.

The addition in Fn2 i.e., bit-wise XOR, is denoted by +. By � we denote the AND
operation in Fn2 i.e., multiplication over F2 in each coordinate:

x� y = (xiyi)i.
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By ∨ we denote the bitwise OR operation. By x we denote the bitwise negation of x i.e.,
x := (x+ 1). wt(a) denotes the Hamming weight of a vector a ∈ Fn2 . For x ∈ Fn2 ,

Si : Fn2 → Fn2
denotes the left circular shift by i positions. We also note that any arithmetic of bit indices
is always done modulo the word size n.

In this paper we are mainly concerned with functions of the form

fa,b,c(x) = Sa(x)� Sb(x) + Sc(x) (1)

and we identify such functions with its triple (a, b, c) of parameters.
Furthermore, Dom(f) is the domain of a function f , Img(f) is its image. By Zn we

denote the integers modulo n.
For a vectorial Boolean function on n bits f : Fn2 → Fn2 , we denote by

f̂(α, β) =
∑
x

µ (〈β, f〉+ 〈α, x〉)

the Walsh (or Fourier) Coefficient with input mask α and output mask β . Here we use

µ(x) = (−1)x

to simplify notation.
The corresponding squared correlation of f is given by

C2(α→ β) =
(
f̂(α, β)

2n

)2

.

Similarly, for differentials we denote by P (α → β) the probability that a given input
difference α results in a given output difference β, i.e.

P (α→ β) = |{x | f(x) + f(x+ α) = β}|
2n .

2.2 Description of SIMON
SIMON is a family of lightweight block ciphers with block sizes 32, 48, 64, 96, and 128
bits. The constructions are Feistel ciphers using a word size n of 16, 24, 32, 48 or 64 bits,
respectively. We will denote the variants as SIMON2n. The key size varies between of 2,
3, or 4 n-bit words. The round function of SIMON is composed of AND, rotation, and
XOR operations on the complete word (see figure 1). More precisely, the round function
if SIMON corresponds to

S8(x)� S1(x) + S2(x),
that is to the parameters (8, 1, 2) for f as given in Equation (1). As we are not only
interested in the original SIMON parameters, but in investigating the entire design space
of SIMON-like functions, we denote by

SIMON[a, b, c]

the variant of SIMON where the original round function is replaced by fa,b,c (cf. Equation
(1)).

As it is out of scope for our purpose, we refer to [5] for the description of the key-
scheduling.
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Fig. 1. SIMON round function

2.3 Affine equivalence of Boolean Functions

Given two (vectorial) Boolean functions f1 and f2 on Fn2 related by

f1(x) = (A ◦ f2 ◦B)(x) + C(x)

where A and B are affine permutations and C is an arbitrary affine mapping on Fn2 we
say that f1 and f2 are extended affine equivalent (cf. [13] for a comprehensive survey).

With respect to differential cryptanalysis, if f1 and f2 are affine equivalent then the
f1-differential

α
f1→ β

has probability p1 if and only if the f2-differential

B(α) f2→ A−1 (β + C(α))

has probability p1.
For linear cryptanalysis, a similar relation holds for the linear correlation. If f1 and

f2 are related as defined above, it holds that

f̂1(α, β) = f̂2

((
C ◦B−1)T β +

(
B−1)T α,ATβ) .

Thus, up to linear changes we can study f2 instead of f1 directly. Note that, for an
actual attack, these changes are usually critical and can certainly not be ignored. However,
tracing the changes is, again, simple linear algebra.

This means that for differential and linear properties of SIMON-like functions of the
form

fa,b,c(x) = Sa(x)� Sb(x) + Sc(x)

it is sufficient to look at the simplified variant

f0,b−a,0(x) = x� Sb−a(x).

Using linear algebra the results can simply be transferred to the original function.
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2.4 Structural Equivalence Classes in AND-RX Constructions

AND-RX constructions i.e., constructions that make only use of the operations AND
(�), XOR (+), and rotations (Sr), exhibit a high degree of symmetry. Not only are
they invariant under rotation of all input words, output words and constants, they are
furthermore structurally invariant under any linear transformation of the bit-indices. As
a consequence of this, several equivalent representations of the SIMON variants exist.

Let T be a permutation of the bits of an n-bit word that corresponds to a linear
transformation of the bit-indices. Thus there are a ∈ Z∗n and b ∈ Zn such that bit i is
renamed to a · i + b. As the AND and XOR operations are bitwise, T clearly commutes
with these:

Tv � Tw = T (v � w)
Tv + Tw = T (v + w)

where v and w are n-bit words. A rotation to the left by r can be written bitwise as

Sr(v)i = vi−r.

We thus get the following bitwise relation after transformation with T

Sr(v)a·i+b = va·(i−r)+b = va·i+b−a·r.

Substituting a · i+ b with j this is the same as

Sr(v)j = vj−a·r.

Thus the rotation by r has been changed to a rotation by a · r. Thus we can write

TSrv = Sa·rTv.

Commuting the linear transformation of the bit-indices with a rotation thus only changes
the rotation constant by a factor. In the special case where all input words, output words
and constants are rotated, which corresponds to the case a = 1, the rotation constant are
left untouched.

To summarize the above, when applying such a transformation T to all input words,
output words and constants in an AND-RX construction, the structure of the construc-
tions remains untouched apart from a multiplication of the rotation constants by the
factor a.

This means for example for Simon32 that changing the rotation constants from (8, 1, 2)
to (3 · 8, 3 · 1, 3 · 2) = (8, 3, 6) and adapting the key schedule accordingly gives us the same
cipher apart from a bit permutation. As a has to be coprime to n, all a with gcd(a, n) = 1
are allowed, giving n/ϕ(a, n) equivalent sets of rotation constants in each equivalence
class where ϕ is Euler’s phi function.

Together with the result from section 2.3, this implies the following lemma.

Lemma 1. Any function fa,b,c as defined in Equation (1) is extended affine equivalent
to a function

f0,d,0 = x� Sd(x)

where d|n or d = 0 .
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This means that, when looking at differential and square correlations of SIMON-like round
functions, it is sufficient to investigate this restricted set of functions. The results from
these cases can then simply be transferred to the general case which in turn can then be
used to determine the differential probabilities and square correlations of many-rounds
characteristics.

3 Differential Probabilities of SIMON-like round functions

In this section, we derive a closed expression for the differential probability for all SIMON-
like round functions i.e., all functions described in Equation (1). The main ingredients here
are the derived equivalences and the observation that any such function is quadratic. Being
quadratic immediately implies that its derivative is linear and thus the computation of
differential probabilities basically boils down to linear algebra (cf. Theorem 1). However,
to be able to efficiently study multiple round properties and in particular differential
characteristics, it is important to have a simple expression for the differential probabilities.
Those expressions are given for f0,1,0 in Theorem 2 and for the general case in Theorem
3.

3.1 A closed expression for the differential probability

The following statement summarizes the differential properties of the f function.

Theorem 1. Given an input difference α and an output difference β the probability p of
the corresponding differential (characteristic) for the function f(x) = x� Sa(x) is given
by

pα,β =
{

2−d if β + α� Sa(α) ∈ Img(Lα)
0 else

where
d = dim ker(Lα)

and
Lα(x) = x� Sa(α) + α� Sa(x)

Proof. We have to count the number of solutions to the equation

f(x) + f(x+ α) = β.

This simplifies to

Lα(x) = x� Sa(α) + α� Sa(x) = β + α� Sa(α)

As this is an affine equation, it either has zero solutions or the number of solutions equals
the kernel size i.e., the number of elements in the subspace

{x | x� Sa(α) + α� Sa(x) = 0}.

Clearly, the equation has solutions if and only if β + α� Sa(α) is in the image of Lα. ut
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Next, we present a closed formula to calculate the differential probability in the case
where a = 1. Furthermore we restrict ourselves to the case where n is even.

Theorem 2. Let
varibits = S1(α) ∨ α

and
doublebits = α� S1(α)� S2(α).

Then the probability that difference α goes to difference β is

P (α→ β) =


2−n+1 if α = 1 and wt(β) ≡ 0 mod 2
2−wt(varibits+doublebits) if α 6= 1 and β � varibits = 0

and (β + S1(β))� doublebits = 0
0 else

Proof. According to theorem 1, we need to proof two things. Firstly we need to proof
that the rank of Lα is n − 1 when α = 1, and wt(varibits + doublebits)) otherwise.
Secondly we need to proof that β + α � Sa(α) ∈ Img(Lα) iff wt(β) ≡ 0 mod 2 when
α = 1, and β � varibits = 0 and (β + S1(β))� doublebits = 0 when α 6= 1.

We first consider the first part. Let us write Lα(x) in matrix form. S1(α)� x can be
written as MS1(α)�x with

MS1(α)� =


αn−1 . . . . . . 0

... α0
...

...
. . .

...
0 . . . . . . αn−2

 . (2)

Equivalently we can write α�x and S1(x) with matrices as Mα�x and MS1x respectively
where

Mα� =


α0 . . . . . . 0
... α1

...
...

. . .
...

0 . . . . . . αn−1

 MS1 =
(

01,n−1 I1,1
In−1,n−1 0n−1,1

)
(3)

i.e., MS1 consist of two identity and two zero submatrices. The result of MS1(α)� +
Mα�MS1 can now be written as

αn−1 0 0 . . . α0
α1 α0 0 . . . 0

0 α2 α1
...

...
. . . . . . 0

0 . . . 0 αn−1 αn−2

 (4)

Clearly the rank of the matrix is n− 1 when all αi are 1. Suppose now that not all αi are
1. In that case, a set of non-zero rows is linearly dependent iff there exist two identical
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rows in the set. Thus to calculate the rank of the matrix, we need to calculate the number
of unique non-zero rows.

By associating the rows in the above matrix with the bits in varibits, we can clearly
see that the number of non-zero rows in the matrices corresponds to the number of 1s in
varibits.

To count the number of non-unique rows, first notice that a row can only be identical
to the row exactly above or below. Suppose now that a non-zero row i is identical to the
row i−1 above. Then αi−1 has to be 0 while αi and αi−2 have to be 1. But then row αi−1
cannot be simultaneously be identical to row i − 2. Thus it is sufficient to calculate the
number of non-zero rows minus the number of rows that are identical to the row above,
to find the rank of the matrix. Using the above observations, we need to calculate the
number of rows i with

αiαi−1 + αiαi−1αi−2.

This corresponds to calculating wt(varibits + doublebits).
For the second part of the proof, first notice that α � S1(α) is in the image of Lα

(consider for x the vector with bits alternately set to 0 and 1). Thus it is sufficient to test
whether β is in ImgLα. Let y = Lα(x). In the case of α = 1, we can deduce from bit yi
whether xi = xi−1 or xi 6= xi−1. Thus the bits in y create a chain of equations/inequations
for x which can be fulfilled iff there is an even number of inequations. Hence β ∈ ImgLα
iff wt(β) ≡ 0 mod 2.

For the case that α 6= 1, we first note that yi has to be zero if row zero in equation (4)
is zero. Thus following our discussion of the matrix earlier, we see that yi is independent
of the rest of y if the corresponding row is linearly independent and yi = yj if the
corresponding rows are identical. Thus y is in the image of Lα iff y � varibits = 0 and
(y + S1(y))� doublebits = 0. ut

3.2 The full formula for differentials.

Above we treated only the case for a = 1, b = 0, and c = 0. As mentioned earlier, the
general case where gcd(a− b, n) = 1 can be deduced from this with linear algebra. When
gcd(d, n) 6= 1 though, the function f(x) = x � Sd(x) partitions the output bits into
independent classes. This not only raises differential probabilities (worst case d = 0), it
also makes the the notation for the formulas more complex and cumbersome, though not
difficult. We thus restrict ourselves to the most important case when gcd(a − b, n) = 1.
The general formulas are then

Theorem 3. Let f(x) = Sa(x) � Sb(x) + Sc(x), where gcd(n, a − b) = 1, n even, and
a ≥ b and let α and β be an input and an output difference where not all bits in α are
set. Then with

varibits = Sa(α) ∨ Sb(α)

and
doublebits = Sb(α)� Sa(α)� S2a−b(α)

and
γ = β + Sc(α)
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we have that the probability that difference α goes to difference β is

P (α→ β) =


2−n+1 if α = 1 and wt(γ) ≡ 0 mod 2
2−wt(varibits+doublebits) if α 6= 1 and γ � varibits = 0

and (γ + Sa−b(γ))� doublebits = 0
0 else

4 Linear Correlations of SIMON-like round functions

As in the differential case, for the study of linear approximations, we also build up on
the results from subsections 2.3 and 2.4. We will thus start with studying linear approx-
imations for the function f(x) = x � Sa(x). Again, the key point here is that all those
functions are quadratic and thus their Fourier coefficient, or - equivalently - their corre-
lation, can be computed by linear algebra (cf Theorem 4). Theorem 5 is then, in analogy
to the differential case, the explicit expression for the linear correlations. It basically
corresponds to an explicit formula for the dimension of the involved subspace.

The first result is the following:

Theorem 4.

f̂(α, β)2 =
{

2n+d if α ∈ U⊥β
0 else

where
d = dimUβ

and
Uβ = {y | β � Sa(y) + S−a(β � y) = 0}

Proof. We compute

f̂(α, β)2 =
∑
x,y

µ (〈β, f(x) + f(y)〉+ 〈α, x+ y〉)

=
∑
x,y

µ (〈β, f(x) + f(x+ y)〉+ 〈α, y〉)

=
∑
x,y

µ (〈β, x� Sa(x) + (x+ y)� Sa(x+ y)〉+ 〈α, y〉)

=
∑
y

µ (〈β, f(y)〉+ 〈α, y〉)
∑
x

µ (〈β, x� Sa(y) + y � Sa(x)〉)

=
∑
y

µ (〈β, f(y)〉+ 〈α, y〉)
∑
x

µ
(
〈x, β � Sa(y) + S−a(β � y)〉

)

Now, for the sum over x only two outcomes are possible, 2n or zero. More precisely, it
holds that

∑
x

µ
(
〈x, β � Sa(y) + S−a(β � y)〉

)
=
{

2n if β � Sa(y) + S−a(β � y) = 0
0 else .
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Thus, defining

Uβ = {y | β � Sa(y) + S−a(β � y) = 0}

we get

f̂(α, β)2 = 2n
∑
y∈Uβ

µ (〈β, f(y)〉+ 〈α, y〉) .

Now, as U is the radical of fβ , the function fβ restricted to U is linear. Moreover, as fβ is
unbalanced for all β, it follows that actually fβ is constant zero on Uβ . We thus conclude
that

f̂(α, β)2 = 2n
∑
y∈Uβ

µ (〈α, y〉) .

With a similar argument as above, it follows that f̂(α, β)2 is non-zero if and only if α is
contained in U⊥β . ut

Let us now restrict ourselves to the case where f(x) = x � S1(x). The general case
can be deduced analogously to the differential probabilities. For simplicity we also restrict
ourselves to the case where n is even.

First we need to introduce some notation. Let x ∈ Fn2 with not all bits equal to 1.
We now look at blocks of consecutive 1s in x, including potentially a block that ”wraps
around” the ends of x. Let the lengths of these blocks, measured in bits, be denoted as
c0, . . . , cm. For example, the bitstring 100101111011 has blocks of length 1, 3, and 4. With
this notation define θ(x) :=

m∑
i=0
d ci2 e.

Noting that the linear square correlation of f is f̂(α,β)2

22n , we then have the following
theorem:

Theorem 5. With the notation from above it holds that the linear square correlation of
α

f→ β can be calculated as

C(α→ β) =


2−n+2 if β = 1 and α ∈ U⊥β
2−θ(β)) if β 6= 1 and α ∈ U⊥β
0 else.

Proof. Define Lβ(x) := β�S1(x)+S−1(β�x). Clearly Lβ is linear. Also Uβ = kerLβ(x).
Let us determine the rank of this mapping. Define the matrices Mβ·, MS1 , and MS−1 as

Mβ· =


β0 . . . . . . 0
... β1

...
...

. . .
...

0 . . . . . . βn−1


MS1 =

(
01,n−1 I1,1
In−1,n−1 0n−1,1

)

MS−1 =
(

0n−1,1 In−1,n−1
I1,1 01,n−1

) (5)
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We can then write Lβ in matrix form as

0 β1 0 . . . 0 β0
β1 0 β2 0 . . . 0

0 β2 0 β3
. . .

...
...

. . . . . . . . . 0

0 0 0
. . . 0 βn−1

β0 0 . . . 0 βn−1 0


(6)

Clearly, if β is all 1s, the rank of the matrix is n − 2 as n is even.4 Let us therefore
now assume that β is not all 1s. When we look at a block of 1s in β e.g., βi−1 = 0,
βi, βi+1, . . . , βi+l−1 = 1, and βl = 0. Then clearly the l rows are linearly independent
when l is even. When l is odd though, the sum of rows i, i+ 2, i+ 4, up to row i+ l− 3
will equal row i+ l − 1. In that case there are thus only l − 1 linearly independent rows.
As the blocks of 1s in β generate independent blocks of rows, we can summarize that the
rank of the matrix is exactly θ(β). ut

Analogously to the differential probabilities, the linear probabilities in the general
case can be derived from this. It is likewise straightforward to derive how to determine
whether α ∈ U⊥β . As an explicit formulations this is rather tedious, we instead refer to
the implementation in Python given in the Appendix A where both is achieved in the
case where gcd(a− b, n) = 1 and n is even.

5 Finding Optimal Differential and Linear Characteristics

While there are various methods to find good characteristics, there has been little progress
on finding optimal differential characteristics. The formulas derived for both differential
and linear probabilities enable us to apply an algebraic approach to finding the best
characteristics. A similar technique has been applied to the ARX cipher Salsa20 [11] and
the CAESAR candidate NORX [12]. For finding the optimal characteristics for SIMON
we implemented an open source tool based on SAT/SMT solvers.

In the next section we will show how SIMON can be modeled to find both the best
differential and linear characteristics in this framework and how this can be used to solve
cryptanalytic problems.

5.1 Model for Differential Cryptanalysis of SIMON

First, we define the variables used in the model of SIMON. We use two n-bit variables xi,
yi to represent the XOR-difference in the left and right half of the state for each round and
an additional variable zi to store the XOR-difference of the output of the AND operation.

For computing the probability of the characteristic we introduce an additional variable
wi for each round. The sum over all weights wi then gives the absolute value of the log-
arithm of the probability of a differential characteristic. The individual wi are computed
according to theorem 3 as
4 The rank is n− 1 when n is odd.
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wi = wt(varibits + doublebits) (7)

where wt(x) is the Hamming weight of x and

varibits = (xi ≪ a) ∨ (xi ≪ b)
doublebits = (xi ≪ b) ∧ ¬(xi ≪ a) ∧ (xi ≪ (2a− b))

Therefore, for one round of SIMON we get the following set of constraints:

yi+1 = xi

0 = (zi ∧ varibits)
0 = (zi + (zi ≪ (a− b))) ∧ doublebits

xi+1 = yi + zi + (xi ≪ c)
wi = wt(varibits + doublebits)

(8)

A model for linear characteristics, though slightly more complex, can be implemented
in a similar way. A description of this model can be found in the implementation of
our framework. Despite the increase in complexity, we could not observe any significant
impact on the solving time for the linear model.

5.2 Finding Optimal Characteristics

We can now use the previous model for SIMON to search for optimal differential charac-
teristics. This is done by formulating the problem of finding a valid characteristic, with
respect to our constraints, for a given sum of weights wi. This is important to limit the
search space and also we are more interested in differential characteristics with a low
weight resp. high probability as they are more promising to lead to attacks with a lower
complexity. Therefore, we start with a low weight and check if a characteristic with the re-
spective probability exists. If not we increase the weight. The procedure can be described
in the following way:

– For each round of the cipher add the corresponding constraints as defined in (8). This
system of constraints then exactly describes the form of a valid characteristic for the
given parameters.

– Add a condition which accumulates the weights of each round as defined in (7) and
check if it is equal to our target weight wi.

– Query if there exists an assignment of variables which is satisfiable under the con-
straints.

– Increment the weight wi and repeat the procedure.

One of the main advantages compared to other approaches is that we can proof a
lower bound on the weight of characteristics for a given cipher and number of rounds. If
the solvers determines the set of conditions unsatisfiable, we know that no characteristic
with the specified weight exists. We used this approach to determine the characteristics
with minimal weight for different variants of SIMON. The results are given in Table 1.
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Table 1. Overview of the optimal differential (on top) and linear characteristics for different
variants of SIMON. The probabilities are given as log2(p).

Rounds: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Differential
SIMON32 -2 -4 -6 -8 -12 -14 -18 -20 -25 -30 -34 -36 -38 -40 -42
SIMON48 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -35 -38 -44 -46 -50
SIMON64 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -36 -38 -44 -48 -54

Linear
SIMON32 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -34 -36 -38 -40 -42
SIMON48 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -36 -38 -44 -46 -50
SIMON64 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -36 -38 -44 -48 -54

5.3 Computing the Probability of a Differential

Given a differential characteristic it is of interest to determine the probability of the asso-
ciated differential (∆in fr−→ ∆out) as it might potentially have a much higher probability
then the characteristic by itself. Often it is assumed that the probability of the best dif-
ferential characteristic can be used to estimate the probability of the best differential.
However, this assumption only gives an inaccurate estimate in the case of SIMON.

Similarly to the previous approach for finding the characteristic, we can formalize the
problem of finding the probability of a given differential in the following way:

– Add the same system of constraints which were used for finding the characteristic.
– Add a constraint fixing the variables (x0, y0) to ∆in and (xr, yr) to ∆out.
– Use a SAT solver to find all solutions si for the weight wi.
– Increment the weight wi and repeat the procedure.

The probability of the differential is then given by

P (∆in fr−→ ∆out) =
wmax∑
i=wmin

si · 2−i (9)

where si is the number of characteristics of weight i.
We used this approach to compute the probability for various differentials (see Table

2). As one example we’ve chosen the 16-round SIMON48 differential used in [14]. Enu-
merating all characteristics up to probability 2−60 takes less than five minutes on single
cpu core and we continued up to a probability of 2−68.

Additionally we looked at differentials which can cover an additional round compared
to previous attacks and might have potential to improve attacks. For SIMON48 we also
looked more closely how the distribution of characteristics behaves for a consecutive num-
ber of rounds (see Figure 3). The main advantage of our method here is that we get all
characteristics with a specific probability and the performance seems to be very compet-
itive compared to dedicated approaches like in [15].

Still the approach is limited by the available computing power and in general it seems
to be infeasible to count all characteristics for weights in [wmin, wmax], as the number of
characteristics seems to grow exponential in the weight.
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Fig. 2. The total number of characteristics for a specific weight for SIMON48 is shown.

Upper Bound for the Characteristics. During our experiments we observed that it
seems to be an easy problem for the SMT/SAT solver to proof the absence of differential
characteristics above wmax. This can be used to get an upper bound on the weight of
the characteristics contributing to the differential. The procedure is similar to finding to
finding the optimal characteristics.
– Start with a high initial weight wi.
– Add the same system of constraints which were used for finding the characteristic.
– Add a constraint fixing the variables (x0, y0) to ∆in and (xr, yr) to ∆out.
– Query if there is a solution for this weight.
– Decrease the weight wi and repeat the procedure until a solution is found.

Table 2. Overview of the differentials analysed with regard to their probability and the range
of the weight of contributing characteristics.

Cipher Rounds ∆in ∆out wmin wmax log2(p)

SIMON32 13 (0, 40) (4000, 0) 36 91 ≥ −30.35
SIMON48 15 (20, 800088) (800208, 2) 46 219 ≥ −41.02
SIMON48 16 (800000, 220082) (800000, 220000) 50 256 ≥ −44.33
SIMON48 17 (80, 222) (222, 80) 52 269 ≥ −46.33
SIMON64 22 (440, 1880) (440, 100) 72 502 ≥ −61.48

6 Analysis of the Parameter Choices

Due to the absence of any criteria and security analysis of the choice of rotation constants
we applied our methods to find good sets of parameters and also compare them with the
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chosen parameters by the designers. We considered all possible sets of rotation constants
a, b, c5 and checked them for diffusion properties and the optimal differential and linear
characteristics.

6.1 Diffusion

As a very simple measure to estimate the quality of the rotation constants, we measure
the number of rounds that are needed to reach full diffusion. Full diffusion is reached
when every state bit principally depends on all input bits. Compared to computing linear
and differntial properties, computing the dependency is trivially computed.

In Table 3 we give a comparison to how well the standard SIMON rotation parameters
fare within the distribution of all possible parameter sets. The exact distributions for all
SIMON variants can be found in the appendix in Table 10.

Table 3. The number of rounds after which full diffusion is reached for the standard Simon
parameters in comparison to the whole possible set of parameters.

Block size 32 48 64 96 128

Standard parameters 7 8 9 11 13
Median 8 10 11 13 14
First quartile 7 9 9 11 12
Best possible 6 7 8 9 10
Rank 2nd 2nd 2nd 3rd 4th

6.2 Differential and Linear

As a second criteria for our parameters, we computed for all a > b and gcd(a− b, n) = 1
the optimal differential and linear characteristics for 10 rounds SIMON32, SIMON48 and
SIMON64. A list of the parameters which are optimal for all three variants of SIMON
can be found in Appendix C.

It is important here to note that there are also many parameters, including the stan-
dard choice, for which the 10-round characteristics for SIMON32 have a probability of
2−25 compared to the optimum of 2−26. However, his effect does not occur for more than
10 rounds and also not for larger variants of SIMON.

6.3 Interesting Alternative Parameter Sets

Our investigation resulted in particular in three sets of parameters that deserve further
attention. Those variants, SIMON[12, 5, 3], SIMON[7, 0, 2] and SIMON[1, 0, 2] seem very
promising alternatives to the standard parameters.

SIMON[12, 5, 3] has the best diffusion amongst the parameters which have optimal
differential and linear characteristics for 10 rounds. The two other choices are both re-
stricted by setting b = 0 as this would allow a more efficient implementation in software.
5 Without lack of generality, we assume though that a ≥ b.
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Among those SIMON[7, 0, 2] has the best diffusion and the characteristics behave similar
to the standard parameters. Ignoring the diffusion SIMON[1, 0, 2] seems also an interesting
choice as it is optimal for the differential and linear characteristics.

If we look at the differential corresponding to the best differential characteristic of
SIMON[7, 0, 2] and SIMON[1, 0, 2], then we can see the number of characteristics is sig-
nificant higher than for the standard parameters 4. However, for SIMON[12, 5, 3] the
differential shows a surprisingly different behavior and the probability of the differential
is much closer to the probability of the characteristic. The characteristics seem to be
worse for the larger variants as can be seen in Table 5.

7 Conclusion and Future Work

In this work we analyzed SIMON-like round functions with the aim of understanding the
possible design criteria for SIMON better. We gave explicit formulas for calculating the
differential probability and square correlation of the generalized round function. We hope
that this will ease future cryptanalysis and help to rigorize attacks and security proofs
alike.

Clearly, this work opens up for further investigations. In particular, the choice and
reasoning of the NSA parameters for SIMON remains unclear. The results of our study
assist in determining the quality of the original parameters regarding differential and linear
properties and do not hint towards any serious flaw in the choice. However, we identified
three alternative set of parameters (SIMON[12, 5, 3], SIMON[7, 0, 2] and SIMON[1, 0, 2])
that, from our perspective, might be worth considering as they compare favorable for
some metrics to the original ones and we would like to encourage further studies on
those variants. Besides our progress concerning the round function, the design of the
key-scheduling remains largely unclear and further investigation is needed here.
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A Python code to calculate linear and differential probabilities

In the following, code for calculating the differential and linear probabilities are given in
Python. Restrictions are that the constants need to fulfil gcd(a− b, n) = 1 and n has to
be even. We assume that the functions Sa(x) andwt(x) have been implemented as well
as a function that parity that calculates the parity wt(x) mod 2 of a bit vector x. a, b,
and c have to be defined in the program as well.

The differential probability of α f→ β can then be calculated with the following func-
tion:

def pdiff (alpha,beta):
gamma = beta ˆ S(alpha,2)
if alpha == 2**n-1:

if hw(tmp)%2 == 0:
return 2**(n-1)

else:
return 0

varibits = S(alpha, 8) | S(alpha,1)
if gamma & ˜varibits != 0:

return 0
doublebits = S(alpha,-6) & ˜S(alpha,1) & S(alpha,8)
if (gamma ˆ S(gamma,-7)) & doublebits != 0:

return 0
return 2**(-hw(varibitsˆdoublebits))

The squared correlation of α f→ β can be calculated with the following function:

def plin (alpha,beta):
alpha ˆ= S(beta,-c)
if ((S(beta,-a) | S(beta,-b)) ˆ alpha) & alpha != 0:

return 0
if beta == 2**n-1:

t, v = lin, 0
while t != 0:

v ˆ= t & 3
t >>= 2

if v != 0:
return 0

else:
return 2**(-n+2)

tmp = beta
abits = beta
while tmp != 0:

tmp = beta & S(tmp, -(a-b))
abits ˆ= tmp

sbits = S(beta, -(a-b)) & ˜beta & ˜S(abits, -(a-b))
sbits = S(sbits, -b)
pbits = 0
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while sbits != 0:
pbits ˆ= sbits & alpha
sbits = S(sbits, (a-b)) & S(beta,-b)
sbits = S(sbits, (a-b))
pbits = S(pbits, 2*(a-b))

if pbits != 0:
return 0

return 2**(-2*hw(abits))

B Additional Differential Bounds

Table 4. Analysis of the 13 rounds differentials for SIMON32

log2(p) [8, 1, 2] [12, 5, 3] [7, 0, 2] [1, 0, 2]

36 1 1 4 1
37 4 2 16 6
38 15 3 56 27
39 46 2 144 88
40 124 1 336 283
41 288 0 744 822
42 673 0 1644 2297
43 1426 0 3420 6006
44 2973 0 6933 14954
45 5962 0 13270 34524
46 11661 1 24436 73972
47 21916 3 43784 150272
48 40226 14 76261 292118
49 72246 32 130068 -
50 126574 54 218832 -
51 218516 83 362284 -

Table 5. Overview of the optimal differential characteristics for different variants of SIMON
with a = 12, b = 5, c = 3.

Rounds: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Differential
SIMON32 -2 -4 -6 -8 -12 -14 -18 -20 -26 -28 -34 -36 -42 -44 -47
SIMON48 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -36 -36 -38 -40 -42
SIMON64 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -35 -37 -43 -47 -
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Fig. 3. Distribution of characteristics for 13-round differentials for different variants of SI-
MON32[a, b, c].

Table 6. Overview of the optimal differential characteristics for different variants of SIMON
with a = 7, b = 0, c = 2.

Rounds: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Differential
SIMON32 -2 -4 -6 -8 -12 -14 -18 -20 -25 -30 -35 -36 -38 -40 -42
SIMON48 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -35 -38 -44 -48 -53
SIMON64 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -36 -38 -44 -48 -

Table 7. Overview of the optimal differential characteristics for different variants of SIMON
with a = 1, b = 0, c = 2.

Rounds: 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Differential
SIMON32 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -36 -36 -38 -40 -42
SIMON48 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -36 -38 -44 -48 -54
SIMON64 -2 -4 -6 -8 -12 -14 -18 -20 -26 -30 -36 -38 -44 -48 -54
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Table 8. Number of differential characteristics for the differential (0, 40) f13
−−→ (4000, 0) for

SIMON32.

log2(p) #Characteristics

36 1
37 4
38 15
39 46
40 124
41 288
42 673
43 1426
44 2973
45 5962
46 11661
47 21916
48 40226
49 72246
50 126574
51 218516

Table 9. Number of differential characteristics for the differential (440, 1880) f22
−−→ (440, 100) for

SIMON64.

log2(p) #Characteristics

72 2
73 14
74 74
75 306
76 1105
77 3502
78 10279
79 27773
80 71337
81 173431
82 228685
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C Optimal parameters for differential characteristics

The parameter sets that are optimal regarding differential characteristics in SIMON32,
SIMON48, and SIMON64 are given here:

(1, 0, 2), (1, 0, 3), (2, 1, 3), (4, 3, 5), (5, 0, 10),
(5, 0, 15), (5, 4, 3), (7, 0, 14), (7, 6, 5), (8, 1, 3),
(8, 3, 14), (8, 7, 5), (10, 5, 15), (11, 6, 1), (12, 1, 7),
(12, 5, 3), (12, 7, 1), (13, 0, 10), (13, 0, 7), (13, 8, 2)

D Distribution for Diffusion

Table 10. For each Simon variant and each possible number of rounds, the number of possible
combinations of rotation constants (a, b, c) with a ≥ b is given that reaches full diffusion.

Simon32
Rounds 6 7 8 9 10 11 17 ∞

#(a, b, c) 48 600 528 88 144 128 64 576

Simon48
Rounds 7 8 9 10 11 13 14 15 25 ∞

#(a, b, c) 48 1392 1680 792 528 344 144 128 64 2080

Simon64
Rounds 8 9 10 11 12 13 15 17 18 19 33 ∞

#(a, b, c) 384 4800 2112 2256 1152 608 512 48 288 256 128 4352

Simon96
Rounds 9 10 11 12 13 14 15 16 17 19 21 25 26 27 49 ∞

#(a, b, c) 336 4272 13920 7104 5568 3456 912 1152 800 1568 640 48 288 256 128 16000

Simon128
Rounds 10 11 12 13 14 15 16 17 18 19 20

#(a, b, c) 768 10944 26112 25536 9024 6912 7488 2496 192 1824 2304
21 23 24 25 33 34 35 65 ∞

1792 1024 960 512 96 576 512 256 33792


