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Abstract. Feistel structures are an extremely important and exten-
sively researched type of cryptographic schemes. In this paper we de-
scribe improved attacks on Feistel structures with more than 4 rounds.
We achieve this by a new attack that combines the main benefits of
meet-in-the-middle attacks (which can reduce the time complexity by
comparing only half blocks in the middle) and dissection attacks (which
can reduce the memory complexity but have to guess full blocks in the
middle in order to perform independent attacks above and below it).
For example, for a 7-round Feistel structure on n-bit inputs with seven
independent round keys of n/2 bits each, a MITM attack can use (21.5n,
21.5n) time and memory, while dissection requires (22n, 2n) time and
memory. Our new attack requires only (21.5n, 2n) time and memory, us-
ing a few known plaintext/ciphertext pairs. When we are allowed to use
more known plaintexts, we develop new techniques which rely on the ex-
istence of multicollisions and differential properties deep in the structure
in order to further reduce the memory complexity.

Our new attacks are not just theoretical generic constructions — in fact,
we can use them to improve the best known attacks on several concrete
cryptosystems such as CAST-128 (where we reduce the memory com-
plexity from 2111 to 264) and DEAL-256 (where we reduce the memory
complexity from 2200 to 2144), without affecting their time and data com-
plexities. An extension of our techniques applies even to some non-Feistel
structures — for example, in the case of FOX, we reduce the memory
complexity of all the best known attacks by a factor of 216.
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Fig. 1. The i’th Round of a Feistel Structure

1 Introduction

Feistel structures were first used in the design of DES [17], and had a major
influence on the development of both the theory and the practice of cryptography
(e.g., in the Luby-Rackoff [16] construction of pseudo random permutations and
in the design of numerous block cipher proposals). In this paper we will primarily
consider generic Feistel structures whose i-th round is depicted in Figure 1. They
divide their n-bit blocks into two equal parts (Li, Ri), use independent n/2-bit
subkeys in their ` rounds, and have round functions Fi over n/2-bit inputs,
outputs and subkeys which are perfect in the sense that they cannot be broken
with attacks that are faster than exhaustive search. This choice of parameters
allows us to consider any two consecutive rounds in a Feistel structure as a
single round in a regular (non-Feistel) structure that has n-bit inputs outputs
and subkeys. However, when we describe attacks on concrete schemes which have
a Feistel structure, we will consider the relevant key and block sizes, and exploit
some of the weaknesses of the actual round functions.

A major type of low-data attacks which can be applied to multi-round con-
structions is the Meet-In-The-Middle (abbreviated as MITM) attack, which was
proposed by Diffie and Hellman [8] in 1977 as a method for cryptanalyzing dou-
ble encryption schemes. It gained additional fame in 1985, when Chaum and
Evertse [7] applied it to reduced-round variants of DES [17], and it is now con-
sidered as an essential part in any course in cryptanalysis. In the last few years,
research of MITM techniques had expanded in diverse directions and numer-
ous new extensions of the basic MITM appeared, including partial matching [4],
probabilistic matching [14, 20], bicliques [3], sieve-in-the-middle [6], and many
others. A more recent approach is the dissection attack, which was introduced
by Dinur et al. [9] at CRYPTO 2012. Dissection can solve a wide variety of com-
binatorial search problems with improved combinations of time and memory
complexities. In its cryptanalytic application, dissection significantly improved
the time/memory tradeoff achievable by MITM attacks on multiple encryption
schemes with more than 3 rounds.

The main difference between these two types of low-data attacks can be de-
scribed in the following way: In basic MITM the adversary starts from the known
plaintexts and ciphertexts at the endpoints, and works from both endpoints to-
wards the middle by guessing some keys and building appropriate lookup tables.
The equality of the pairs of values in the middle is used just as a filtering con-
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dition to identify the correct keys, and there is no need to know them in order
to start the attack. In dissection attacks the adversary starts by guessing the
relevant values in the middle, and works from the middle towards the endpoints.
In fact, the knowledge of the middle values enables the adversary to break the
cryptanalytic problem into two independent smaller problems with new known
plaintext and ciphertext pairs at their endpoints, which can be solved recursively
by another dissection, or with MITM at the leaves of the recursion tree.

When we compare the two types of attacks on a Feistel structure with an
odd number of ` = 2r+1 rounds, we notice that each one of them offers different
advantages and disadvantages. The MITM attack can ignore the middle round
by comparing only the n/2-bit half blocks which are not affected by this round in
the Feistel structure. This enables the MITM attack to be more time-efficient in
the case of Feistel structures, since it does not have to guess the middle subkey.
Even though dissection is naturally more efficient than MITM, it loses in its time
complexity in this case since it has to guess the full n-bit middle value in order
to be able to encrypt and decrypt this guessed value through multiple rounds.

In this paper we present new techniques which enable us to combine the
MITM and dissection approaches, along with additional ingredients, such as
iterating over values that are not used later in the MITM attack, and using
multi-collisions and differential properties in the middle of the Feistel structure.
We first consider the case of Feistel structures with an odd number of rounds,
and try to reduce the memory complexity of the most time-efficient attacks on
them. We show that the memory complexity of the MITM attack on ` = 2r+ 1
rounds for r ≥ 3 can be reduced all the way from 20.5rn to about 2dr/2e0.5n

(like in dissection) without increasing the time complexity, at the expense of

increasing the data complexity to about 2d
r−3

(r+1)
e0.5n known plaintexts. If no

additional plaintexts are allowed, we are still able to reduce the memory, but
only to about 2d2r/3e0.5n. In particular, we can reduce the memory complexity
of the standard MITM attack on 7-round Feistel from 21.5n to 2n with no effect
on the data and time complexities.1

A different goal is to reduce the time complexity of the most memory-efficient
nontrivial attacks (in which the memory available to the adversary is restricted to
20.5n, which makes it possible to store in memory all the possible values of a single
half-block or a single subkey, but not more). Here, we assume that the round
functions can be inverted efficiently when their subkey is given. In [9], Dinur et
al. considered low-memory dissection attacks on general (non-Feistel) structures,
in which the available memory is restricted to 2n (where n is the length of a
single block or a single subkey). They defined the gain of a dissection attack of
time complexity T over a standard MITM attack with 2n memory (whose time
complexity is 2(`−1)n for ` rounds) by (`− 1)− log2(T )/n. Then, they computed
the sequence of round numbers ` for which the gain of the best dissection attack
increases by one — {4,7,11,16,22,29,37,. . . }. We use our techniques to compute
a similar sequence of round numbers ` of Feistel structures for which the gain

1 We alert the reader that similarly to [9], we concentrate on the asymptotic complexity
and ignore small logarithmic factors in r and n.
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(over MITM, whose time complexity is 2(`−2)0.5n) increases by one — it turns
out to be {5,10,15,22,29,38,47,. . . }, and the asymptotic complexity of an attack
on `-round Feistel using a minimal amount of 20.5n memory turns out to be

20.5n(`−2−
√
2`+o(

√
`)). In particular, we present an attack on 5-round Feistel with

time complexity of 2n and memory complexity of 20.5n (compared to (2n, 2n) or
(21.5n, 20.5n) which are the best that can be obtained by previous attacks).

To deal with an even number of rounds without having to guess the extra key,
we show that our algorithms can be combined with a recent algorithm presented
by Isobe and Shibutani [11] at Asiacrypt 2013. This algorithm extends MITM
attacks on Feistel structures by one round, at the expense of increasing the time
complexity by 20.25n and using 20.25n chosen plaintexts. As a result, we obtain
an attack on a Feistel structures with ` = 2r rounds (for r ≥ 4) that requires

2(0.5r−0.25)n time, about 2(0.5dr/2e−0.25)n memory, and max{20.25n, 2d r−4
r e0.5n}

chosen plaintexts. Alternatively, we can use only 20.25n chosen plaintexts like
in [11], with 2(0.5r−0.25)n time and about 2(d2(r−1)/3e0.5+0.25)n memory. In par-
ticular, we reduce the memory complexity of Isobe and Shibutani’s attack [11]
on 8-round Feistel structures from 21.75n to 21.25n, with no effect on the data
and time complexities.

In Table 1 we compare the complexity of our attacks with previous results
for certain numbers of rounds which have “clean” exponents.

While all the techniques described so far are completely generic, they allow
us to significantly improve the best known attacks on several concrete block
ciphers. In particular, we reduce the memory complexity of the best known
attack on 8-round CAST-128 [1] from 2111 to 264, and the memory complexity
of the best known attack on 8-round DEAL [15] with 256-bit keys from 2200 to
2144, both without affecting the time and data complexities. It is interesting to
note that an extension of our techniques can even be applied to certain non-
Feistel cryptosystems, such as FOX [13], in which the best MITM attack uses
the partial matching technique.

This paper is organized as follows: In Section 2 we describe the improved
memory complexities we obtain when we consider the most time-efficient at-
tacks, and in Section 3 we describe the improved time complexities which can
be obtained when we consider the most memory-efficient attacks. In Section 4
we sketch the application of our results to concrete block ciphers. We conclude
the paper in Section 5.

2 Improving the Memory Complexity of the most
Time-Efficient Attacks on Feistel Structures

Consider a standard Feistel structure with an odd number ` = 2r+ 1 of rounds.
The generic dissection attack on this construction (that does not exploit the Feis-

2 In the case of 5-round Feistel, the dissection attack is not better than the meet in
the middle attack.
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Rounds Complexity Attack

Time Memory Data

5 2n 2n 3 KP Meet in the Middle2

21.5n 20.5n 3 KP Meet in the Middle

2n 20.5n 3 KP New (Section 3.1)

7 21.5n 21.5n 4 KP Meet in the Middle

22n 2n 4 KP Dissection

21.5n 2n 4 KP New (Section 2.1)

8 22n 21.5n 4 KP Meet in the Middle

22n 2n 4 KP Dissection

21.75n 21.75n 20.25n CP Splice-and-cut [11]

21.75n 21.25n 20.25n CP New (Section 2.3)

15 23.5n 23.5n 8 KP Meet in the Middle

26.5n 20.5n 8 KP Meet in the Middle

24n 22n 8 KP Dissection

25n 20.5n 8 KP New (Section 3.2)

23.5n 22n 20.25n KP New (Section 2.2)

31 27.5n 27.5n 16 KP Meet in the Middle

214.5n 20.5n 16 KP Meet in the Middle

28n 24n 16 KP Dissection

212n 20.5n 16 KP New (Section 3.2)

27.5n 25n 16 KP New (Section 2.1)

27.5n 24n 20.375n KP New (Section 2.2)

32 28n 27.5n 16 KP Meet in the Middle

215n 20.5n 16 KP Meet in the Middle

28n 24n 16 KP Dissection

27.75n 27.75n 20.25n CP Splice-and-cut [11]

212.5n 20.5n 16 KP New (Section 3.2)

27.75n 27.25n 20.25n CP New (Section 2.2)

KP — Known plaintext, CP — Chosen plaintext

Table 1. Comparing and Summarizing Some of our Results

tel structure) requires 20.5(r+1)n time and about 20.25rn memory.3 The standard
MITM attack can exploit the Feistel structure to reduce the time complexity to
20.5rn, at the expense of enlarging the memory complexity to 20.5rn. No attacks
faster than 20.5rn are known (unless additional assumptions are made on the
round functions or on the key schedule) and thus we concentrate in this section
on attacks which have this time complexity. Our goal is to combine the benefits
of both MITM and dissection attacks in order to reduce the memory complexity

3 Note that such an attack has to treat every two consecutive Feistel rounds as a single
round with an n-bit block and an n-bit key, and it is the last “half-round” which
makes it suboptimal.

5



to 20.25rn. We show that this is indeed possible, but at the expense of somewhat
enlarging the data complexity of the attack.

First, we present a basic 7-round attack4 that requires 21.5n time and 2n

memory (compared to (21.5n, 21.5n) and (22n, 2n) in generic MITM and dissec-
tion, respectively), and extend it to an attack on 2r + 1 rounds that requires
20.5rn time and about 20.33rn memory. Then, we present a more sophisticated
attack that requires 20.5rn time and about 20.25rn memory as desired, but at
the expense of enlarging the data complexity to 2d(r−4)/re·0.5n known plaintexts.
Finally, we show that our attacks can be combined with a technique of Isobe
and Shibutani [11] that allows extending MITM attacks on Feistel structures
by one round using a splice-and-cut technique [2, 19]. We obtain an attack on
` = 2r-round Feistel that requires 2(0.5r−0.25)n time, about 20.25(r+1)n memory,

and 2max(d r−4
r e,0.5)·0.5n chosen plaintexts.

2.1 Attacks with a Low Data Complexity

In this section we present attacks that are time-efficient (i.e., have a time com-
plexity of 20.5rn for 2r + 1 rounds) and also data-efficient (i.e., require only a
few known plaintexts, like the standard MITM attack).

A standard MITM attack In order to put our attacks in context, we begin
by describing a standard MITM attack on a 7-round Feistel structure.

A 7-Round MITM Attack

1. Obtain 4 plaintext-ciphertext pairs (P i, Ci) (i = 1, 2, 3, 4).
2. For each value of K1,K2,K3:

(a) Partially encrypt P i for i ∈ {1, 2, 3, 4} through the first three rounds
and obtain suggestions for Ri

3. Store the suggestions in a list List
sorted by the Ri

3 values.
3. For each value of K5,K6,K7:

(a) Partially decrypt Ci for i ∈ {1, 2, 3, 4} through the last three rounds,
obtain suggestions for Ri

3 and search the suggestions in List. For
each match, retrieve K1,K2,K3, guess5 K4, and test the full key
using trial encryptions.

The time complexity of Step 2 is about 21.5n, which is also the size of List.
In order to calculate the time complexity of Step 3, we note that we have a total
of 21.5n key suggestions from each side of the encryption, each associated with
4 values of Ri

3 (filtering conditions). Thus, the expected total number of key
suggestions that remain after the 2n-bit match in Step 3 is 21.5n+1.5n−2n = 2n.
For each such suggestion, we guess K4, and thus we expect to perform about

4 We consider attacks on less than 7 rounds in Section 3.
5 We note that K4 can also be found by a precomputed table instead of guessing, but

this will not make a big difference as will be explained in the sequel.
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21.5n trial encryptions. Consequently, the time complexity of Step 3 is also about
21.5n, which is the time complexity of the full attack.

A 7-round attack The basic idea of our reduced memory attack is to guess the
n/2-bit value R1

3 and to iterate over all the possible guesses as an outer loop. Each
guess imposes an n/2-bit constraint on the key suggestions for K1,K2,K3 and
K5,K6,K7, and thus, allows reducing the expected size of List to 2n. In order to
compute the reduced lists efficiently, we prepare auxiliary tables Tupper, Tlower

that allow retrieving the subkey K3 (resp., K5) instantly given the input (L2, R2)
of round 3 (resp., the output (L5, R5) of round 5).

The table Tupper is computed as follows. We guess the intermediate value
R1

2 and the subkey K3. Since (R1
2 = L1

3, R
1
3) form the full state after the 3’rd

round in the encryption process of P 1, the guesses enable us to partially decrypt
through round 3 and obtain (R1

1 = L1
2, R

1
2). We store the triple (L1

2, R
1
2,K3) in

Tupper, sorted by (L1
2, R

1
2). The table Tlower is constructed similarly.

7-Round Attack with Reduced Memory Complexity

1. Obtain 4 plaintext-ciphertext pairs (P i, Ci).
2. For each value of R1

3:
(a) For each value of K3 and I13 = R1

2, compute L1
2 = F3(K3, I

1
3 )⊕R1

3,
and store the triplet (L1

2, R
1
2,K3) in a table Tupper, sorted according

to (L1
2, R

1
2).

(b) For each value of K5 and I15 = R1
4, compute R1

5 = F5(K5, I
1
5 )⊕R1

3,
and store the triplet (L1

5, R
1
5,K5) in a table Tlower, sorted according

to (L1
5, R

1
5).

(c) For each value of K1,K2:
i. Partially encrypt P 1 through the first two rounds to obtain

suggestions for R1
2 and L1

2.
ii. Search for the pair (L1

2, R
1
2) in Tupper and obtain suggestions

for K3. For each suggestion, given K1,K2,K3, partially encrypt
P i for i ∈ {2, 3, 4} through the first three rounds and obtain
suggestions for Ri

3. Store the suggestions in a list List1, sorted
by the values R2

3, R
3
3, R

4
3.

(d) For each value of K6,K7:
i. Partially decrypt C1 through the last two rounds to obtain sug-

gestions for R1
5 and L1

5 = R1
4.

ii. Search for the pair (L1
5, R

1
5) in Tlower and obtain suggestions for

K5. For each suggestion, given K5,K6,K7, partially decrypt Ci

for i ∈ {2, 3, 4} through the last three rounds, obtain suggestions
for Ri

3 and search the suggestions in List1. For each match,
retrieve K1,K2,K3, guess K4, and test the full key using trial
encryptions.

In Steps 2a and 2b, a single round function (either F3 or F5) is called once
for each guess of (R1

3, I3,K3) (or (R1
3, I5,K5), respectively), and thus, their time
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complexity is 21.5n. The memory complexity of the tables Tupper and Tlower

is 2n. In Steps 2(c)ii and 2(d)ii there is an average of one match in Tupper
and Tlower, respectively. Thus, on average, we perform a constant number of
partial encryption and decryption operations per guess of K1,K2 and K6,K7 in
Steps 2c and 2d, respectively. The expected number of matches in Step 2(d)ii is
2n+n−1.5n = 20.5n, and the expected number of trial encryptions (after guessing
K4) is 20.5n+0.5n = 2n. Therefore, the time complexity of each of Steps 2c and 2d
is about 2n each, and the total time complexity of the attack is about 21.5n, as
in the standard MITM attack. On the other hand, the memory complexity of
the attack is reduced from 21.5n to about 2n, which is the expected number of
elements in List1 (based on standard randomness assumptions on the round
functions).

We note that the time complexity of the attack can be slightly reduced by
precomputing a table for F4, which allows to avoid guessing K4 in Step 2(d)ii.
However, this requires an additional table of size 2n, i.e., maintaining the 2n

total memory complexity.

Extension to 6r + 1 rounds. The 7-round attack presented above can be
extended to an attack on a 6r+ 1-round Feistel structure, with time complexity
of 21.5rn (as in standard MITM) and memory complexity of 2rn (instead of 21.5rn

in standard MITM). As the attack is similar to the 7-round attack, we describe
it briefly. The reader can follow this attack by verifying that the case r = 1
reduces exactly to the attack described above.

First, we obtain 3r + 1 plaintext/ciphertext pairs (P i, Ci). Then, the outer
loop is performed for all guesses of the r intermediate values R1

3r, R
2
3r, . . . , R

r
3r. In

the inner loop, we guess the 2r values R1
3r−1, R

2
3r−1, . . . , R

r
3r−1,K3r, . . . ,K2r+1.

Since for each i, (Ri
3r−1 = Li

3r, R
i
3r) forms the full state after the 3r’th round in

the encryption process of P i, we can partially decrypt this state through rounds
2r+1, . . . , 3r to obtain the corresponding values (Ri

2r−1 = Li
2r, R

i
2r). This allows

us to prepare a table Tupper of size 2rn of the values ((Li
2r, R

i
2r)ri=1,K2r+1, . . . ,K3r),

sorted by ((Li
2r, R

i
2r)ri=1). The table Tlower is prepared similarly. Note that the

2r values guessed from each side are used only for preparing the tables and not
in the rest of the attack.

After preparing the tables, we guess the subkeys K1,K2, . . . ,K2r, obtain the
intermediate values (Li

2r, R
i
2r)ri=1 and access the table Tupper to obtain a sugges-

tion for the subkeys K2r+1, . . . ,K3r. For each suggestion, given K1,K2, . . . ,K3r,
we partially encrypt P i for i ∈ {r+1, . . . , 3r+1} through the first 3r rounds and
obtain suggestions for Ri

3r. We store the suggestions in a list List1, sorted by
the values Rr+1

3r , . . . , R3r+1
3r . Then, we guess the subkeys K6r+1, . . . , . . . ,K4r+2,

access the table Tlower to obtain a suggestion for K4r+1, . . . ,K3r+2, partially
decrypt the ciphertexts to get suggestions for Ri

3r (i = r + 1, . . . , 3r + 1), and
search them in List1. For each match, we retrieve K1, . . . ,K3r, guess K3r+1, and
test the full key using trial encryptions.

The analysis of the attack is similar to that of the 7-round attack described
above, and yields time complexity of 21.5rn and memory complexity of 2rn.
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The same attack applies for a general odd number 2r′ + 1 of rounds. The time
complexity is 2r

′n (like in MITM), but the memory complexity has to be rounded
up to 2d2r

′/3e·0.5n, due to lack of balance between the part of table creation and
the rest of the attack.

2.2 Using Multi-Collisions to Further Reduce the Memory
Complexity

We now present a more sophisticated variant of the attacks described above,
that allows to reduce the memory complexity to the “desired” 20.25(r+1)n, with
no increase in the time complexity, but at the expense of some increase in the
data complexity.

Consider the 6r+ 1-round attack described above. In the course of preparing
the table Tupper, we make an auxiliary guess of the values R1

3r−1, . . . , R
r
3r−1,K3r,

. . . ,K2r+1, and in the course of preparing the table Tlower, we guess R1
3r+1, . . . ,

Rr
3r+1,K3r+2, . . . ,K4r+1. If there was some relation between the guessed values,

we could have used this relation to enumerate over some “common relative”
in the outer loop of the attack, and thus reduce the memory complexity. We
cannot hope for such a relation between the subkeys, as they are assumed to be
independent. However, some relation between Ri

3r−1 and Ri
3r+1 may exist.

We observe that such a relation can be “created”, using multi-collisions.
Assume that the partial encryption of the plaintexts P 1, P 2, . . . , P r considered in
the attack results in an r-multi-collision at the state R3r, i.e., that R1

3r = R2
3r =

· · · = Rr
3r. In such a case, the r values Ri

3r−1 ⊕ Ri
3r+1 = Oi

3r+1 (i = 1, . . . , r)
are all equal! This allows us to enumerate over the r − 1 values R1

3r−1 ⊕ Ri
3r−1

(i = 2, . . . , r) in the outer loop, such that in the inner loop, a single guess
of R1

3r−1 provides all the values {Ri
3r−1}i=2,...,r, while a single guess of R1

3r+1

provides all the values {Ri
3r+1}i=2,...,r. In order to obtain the multi-collision,

we consider 2((r−1)/r)·0.5n known plaintexts (which guarantees that an r-multi-
collision exists in the data with a constant probability), and repeat the attack
for all r-tuples of plaintext/ciphertext pairs in the data set.

In the description of the algorithm below, we switch from 6r + 1 rounds to
8r− 1 rounds, in order to balance the complexities of all the steps of the attack.
Hence, the external guesses are performed at state R4r−1, instead of R3r. Note
that for r = 1, the algorithm reduces to the 7-round attack presented above.

An 8r − 1-Round Attack Using Multi-Collisions

1. Obtain 2((r−1)/r)·0.5n plaintext-ciphertext pairs (P i, Ci).
2. For each r-tuple (Pi1 , Ci1), (Pi2 , Ci2), . . . , (Pir , Cir ) of plaintext-ciphertext

pairs in the data set (hereinafter denoted for simplicity by (P 1, C1), . . . ,
(P r, Cr)), for each possible value of R1

4r−1, and for all possible differ-
ences R1

4r−2 ⊕Ri
4r−2 (i = 2, 3, . . . , r):

(a) For each I14r−1 = R1
4r−2 and the subkeys K4r−1,K4r−2, . . . ,K2r+1,

compute6 (Li
2r, R

i
2r) for all i = 1, . . . , r, and store the vector
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((Li
2r, R

i
2r)i=1,...,r,K2r+1, . . . ,K4r−1) in a table Tupper, sorted ac-

cording to (Li
2r, R

i
2r)i=1,...,r.

(b) For each I14r+1 = R1
4r and the subkeys K4r+1, . . . ,K6r−1, compute

(Li
6r−1, R

i
6r−1) for all i = 1, . . . , r, and store the vector

((Li
6r−1, R

i
6r−1)i=1,...,r,K4r+1, . . . ,K6r−1) in a table Tlower, sorted

according to (Li
6r−1, R

i
6r−1)i=1,...,r.

(c) For each value of K1,K2, . . . ,K2r:
i. Partially encrypt P 1, . . . , P r through the first 2r rounds to ob-

tain suggestions for (Li
2r, R

i
2r)i=1,...,r.

ii. Search for (Li
2r, R

i
2r)i=1,...,r in Tupper and obtain suggestions

for K2r+1, . . . ,K4r−1. For each suggestion, given K1, . . . ,K4r−1,
partially encrypt 2r+ 1 additional plaintexts P j for j ∈ {1, . . . ,
2r + 1} through the first 4r − 1 rounds and obtain suggestions
for Rj

4r−1. Store the suggestions in a list List1, sorted by the

values {Rj
4r−1}j=1,...,2r+1.

(d) For each value of K8r−1, . . . ,K6r:
i. Partially decrypt C1, . . . , Cr through the last 2r rounds to ob-

tain suggestions for (Li
6r−1, R

i
6r−1)i=1,...,r.

ii. Search for (Li
6r−1, R

i
6r−1)i=1,...,r in Tlower and obtain sugges-

tions forK4r+1, . . . ,K6r−1. For each suggestion, givenK4r+1, . . . ,
K8r−1, partially decrypt the additional ciphertexts C ′j for j ∈
{1, . . . , 2r+1} through the last 4r−1 rounds, obtain suggestions
for {Rj

4r−1}j=1,...,2r+1, and search the suggestions in List1. For
each match, retrieve K1, . . . ,K4r−1, guess K4r, and test the full
key using trial encryptions.

The inner loop of the algorithm is repeated for each of the 2(r−0.5)n val-
ues of the external guess. In each of Steps 2(a) and 2(b), we perform 2rn par-
tial encryptions/decryptions and construct a table of size 2rn. In Steps 2.(c).ii.
and 2.(d).ii. there is an average of one match in Tupper and Tlower, respectively.
Thus, on average, we perform a constant number of partial encryption and de-
cryption operations per guess of K1, . . . ,K2r and K6n, . . . ,K8n−1 in Steps 2.(c)
and 2.(d), respectively. The expected number of matches in Step 2.(d).ii is
2rn+rn−(r+0.5)n = 2(r−0.5)n, and the expected number of trial encryptions (af-
ter guessing K4) is 2(r−0.5)n+0.5n = 2rn. Therefore, the time complexity of
Steps 2.(c) and 2.(d) is about 2rn and the total time complexity of the attack
is about 2(2r−0.5)n, as in the standard MITM attack. On the other hand, the
memory complexity of the attack is reduced from 2(2r−0.5)n to about 2rn, which
is the expected number of elements in List1.

The same attack applies for a general odd number 2r′+1 of rounds. The time
complexity is 2r

′n (like in MITM), the memory complexity has to be rounded up

6 The computation of (Li
2r, R

i
2r) for all i = 1, . . . , r is feasible, since by the assumption

that (P 1, C1), . . . , (P r, Cr) is an r-multi-collision, the value R1
4r−2 along with the

externally guessed values are sufficient for obtaining the values R2
4r−2, . . . , R

r
4r−2.
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to 2d0.5(r
′+1)e·0.5n, due to lack of balance between the part of table creation and

the rest of the attack, and the data complexity is 2d
r′−3
r′+1

e·0.5n known plaintexts.

2.3 Attacks on Feistel Structures with an Even Number of Rounds

In this section we show that all the attacks presented above can be combined
with the recent technique of Isobe and Shibutani [11] that allows to extend
MITM attacks on Feistel structures by one round, at the expense of a relatively
small increase in the time complexity and of using 20.25n chosen plaintexts. The
generic attack of [11] on a 2r-round Feistel structures requires 2(0.5r−0.25)n time,
2(0.5r−0.25)n memory, and 20.25n chosen plaintexts. Our attacks allow to either
reduce the memory complexity to about 20.33(r−1)n+0.25n with no effect on the
time and data complexities or to reduce the memory complexity all the way

to about 20.25(r+1)n, while increasing the data complexity to 2max(d r−4
r e,0.5)·0.5n

chosen plaintexts, with no effect on the time complexity. In the specific case of
the 8-round Feistel structures considered in [11], our attack reduces the mem-
ory complexity significantly from 21.75n to 21.25n, without affecting the other
complexities.

Consider a MITM attack on a 2r-round Feistel structure. In a standard appli-
cation (skipping the guess of the middle subkey), the attack is not balanced, as
r subkeys are guessed on one side of the MITM, while r− 1 subkeys are guessed
on the other side. The attack of [11] aims to rebalance the attack, by “splitting”
the guess of one subkey between the two sides. The basic idea behind the attack
is as follows. If in all plaintexts used in the attack, the right half is equal to a
fixed value R0, then in all encryptions, we have R1 = Const⊕L0, where Const
is an unknown constant that depends on K1. This allows to replace the 2r-round
Feistel with an equivalent construction that consists of a 2r − 1-round Feistel,
prepended by an addition of Const to the right half of the plaintext (that can
be treated as a subkey addition). This, in turn, allows to use the splice-and-
cut technique [2, 19] to “split” the guess of Const between the two sides of the
MITM, at the price of using 2n/4 chosen plaintexts. As a result, the attack be-
comes balanced and the time complexity is reduced from 20.5rn to 2(0.5r−0.25)n.
For a full description of the attack, see [11].

In order to incorporate the splice-and-cut procedure of [11] into our attacks,
we consider the equivalent 2r − 1-round variant, perform one of our attacks
against it, and insert the splice-and-cut procedure into the “key guessing” part of
the attack (i.e., Steps 2(c) and 2(d)), without changing the “table construction”
part (Steps 2(a) and 2(b)). As a result, the time complexity of our 2r − 1-
round attack is increased by a factor of 20.25n to 2(0.5r−0.25n) (just like the
complexity of the attack of [11]), and the memory complexity is increased by a
factor of 20.25n to either 20.33(r−1)n+0.25n (in the low data complexity attack)
or to about 20.25(r+1)n (in the attack using multi-collisions). As for the data
complexity, in our low data complexity attack the data complexity increases to
20.25n chosen plaintexts (required for the splice-and-cut procedure), and in the

multi-collision based attack the data complexity increases to 2max(d r−4
r e,0.5)·0.5n,
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as the plaintexts required for the multi-collision can be chosen in such a way
that they will contain the structures required for the splice-and-cut attack.

3 Memory-Restricted Attacks on Feistel Structures

After analyzing the most time-efficient attacks, a natural question to explore is
what are the most memory-efficient attacks one can devise against an r-round
Feistel structure. Specifically, we shall concentrate on the problem of devising
attacks with 20.5n memory complexity, since it is the smallest amount of memory
that enables us to list all the values of a single subkey or of half a block.

With such a restriction, a standard meet in the middle attack takes 2(`−2)·0.5n

on an `-round Feistel, and one can trade time for memory. One can also try to
consider the original dissection attack of [9]. However, as noted before, dissection
takes at least 2n memory to store all the possible values of a full block, which
implies that it cannot be used in this context, even though we adopt several
concepts from it.

Section 3.1 presents our new attack on 5-round Feistel structures that uses 2n

time and 20.5n memory. This is to be compared with meet in the middle attacks
that use time of 21.5n with 20.5n memory or time of 2n with 2n memory. We then
generalize the attack to more rounds, and show in Section 3.2 how to increase
the gain over meet in the middle attacks as the number of rounds increases. The
attacks in this section assume that the round function is efficiently invertible
given the round’s subkey. Due to space constraints, we postpone the discussion
of this assumption to Appendix B, but note that it holds for almost any Feistel
block cipher we are aware of.

3.1 A Memory-Restricted Attack against 5-Round Feistel
Constructions

The algorithm of our basic 5-round attack is as follows.

A 5-Round Attack with 20.5n Memory (DF2(5, 1))

1. Obtain 4 plaintext-ciphertext pairs (P i, Ci) (i = 1, 2, 3, 4).
2. For each value of R1

2 = I13 :
(a) Compute O1

2 = I13 ⊕R1
0 and O1

4 = I13 ⊕R1
4.

(b) For each value of K1, compute R1
1 = F1(K1, I

1
1 )⊕ L1

0 and store the
pair (R1

1,K1) in a table Tupper sorted according to R1
1.

(c) For each value of K2, compute R1
1 = F−12 (K2, O

1
2) ⊕ R1

2, search
for the value R1

1 in Tupper and obtain suggestions for K1. For each
suggestion, given K1,K2, compute R2

2, R
3
2 for P 2, P 3. Store the sug-

gestions (R2
2, R

3
2,K1,K2) in a list List1 sorted by the value of R2

2.
(d) For each value of K5, compute R1

3 = F5(K5, I
1
5 )⊕ L1

5 and store the
pair (R1

3,K5) in a table Tlower sorted according to R1
3.

12



(e) For each value of K4, compute R1
3 = F−14 (K4, O

1
4) ⊕ R1

2, search
for the value R1

3 in Tlower and obtain suggestions for K5. For each
suggestion, given K4,K5, compute R2

2, R
3
2 from C2, C3, and search

the suggestion in List1. For each match, retrieve K1,K2, guess K3,
and test the full key using trial encryptions.

For reasons which will become apparent later, we call the above attack DF2(5, 1).
As before, Tupper, Tlower, are each of size 20.5n. The memory complexity of

List1 depends on the number of (K1,K2) pairs that satisfy the meet in the
middle condition on the value of I2 in Step 2c. For sufficiently random round
functions, we expect about 20.5n such (K1,K2) pairs.

The time complexity of the algorithm is 2n, as it iterates over 2n/2 values
for R1

2, and each step of the loop takes 20.5n operations (besides the XOR of
Step 1a, which takes less).

We note that the time complexity of the attack can be slightly reduced by
precomputing a table for F3 (given its input value I13 ), which allows to avoid
guessing K3. However, this requires an additional table of size 20.5n, which in-
creases the memory complexity by a small constant factor.

Finally, it is important to note that given only two plaintext-ciphertext pairs,
the above attack finds all possible (K1,K2,K3,K4,K5) in time 2n and memory
of 20.5n. The expected number of candidates is about 20.5n. This observation will
be used in the subsequent attacks.

3.2 Extension to More Rounds

As the time complexity of a MITM attack with 20.5n memory on an r-round
Feistel structure is 2(`−2)0.5n, we define the gain over MITM of an attack on
`-round Feistel that requires T time and 20.5n memory by (`−2)− log2(T )/0.5n.
Thus, the 5-round attack presented above has gain of 1. We denote by Gain(`)
the maximal gain achieved by an `-round attack with 20.5n memory. In this
section, we extend the 5-round attack to a sequence of attacks which show that
asymptotically, Gain(`) = Ω(

√
`), and compute the sequence of round numbers

for which the gain is strictly increased.
Obviously, it is possible to attack 6-round Feistel by guessing K6, and ap-

plying the 5-round attack for each guess. The result is an attack of 21.5n time
and 20.5n memory on 6-round Feistel structure. This approach can obviously be
extended, but maintains a gain of 1.

Attacking 10-Round Feistel Constructions To increase the gain to 2, we
consider the case of 10-round Feistel, and develop the following attack:

10-Round Dissection Attack with 2n/2 Memory (DF5(10, 4))

1. Obtain 5 plaintext-ciphertext pairs (P i, Ci)i=1,...,5.
2. For each value of (L1

5, R
1
5) and (L2

5, R
2
5):
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(a) Run DF2(5, 1) on the first 5 rounds, and obtain a list of 20.5n can-
didates for (K1,K2,K3,K4,K5).

(b) For each candidate for the subkeys (K1,K2,K3,K4,K5), partially
encrypt a third plaintext P 3 through the first 5 rounds, and store
the suggestions (with the keys) (L3

5, R
3
5,K1, . . . ,K5) in a list List1

sorted by the values of (L3
5, R

3
5).

(c) Run DF2(5, 1) on the last 5 rounds, and obtain a list of 20.5n can-
didates for (K6,K7,K8,K9,K10).

(d) For each candidate for the subkeys (K6,K7,K8,K9,K10), partially
decrypt C3 through the last 5 rounds, and obtain suggestions for
(L3

5, R
3
5) and search the suggestion in List1. For each match, retrieve

K1, . . . ,K5, and test the full key using trial encryptions.

It is easy to see that the 10-round attack calls 22n times two independent
5-round attacks, each running in time 2n. Hence, the time complexity of the
10-round attack is 23n, and the memory complexity is 20.5n. Hence, the gain of
the 10-round attack is 2.

We use the following notations, DF2(5, 1) denotes the 5-round attack pre-
sented earlier, as it is a generalized Dissection attack on Feistel xistructures with
5 rounds, which guesses one n/2-bit value after two rounds of encryption. Simi-
larly, DF5(10, 4) attacks 10 rounds by guessing 4 n/2-bit values after 5 rounds
of encryption (i.e., two full intermediate encryption values). As in [9], we now
explore how to extend the attack to more rounds.

Attacking 15-Round Feistel Constructions We can increase the gain to 3,
when attacking 15-round Feistel: Guess two complete intermediate encryption
values after 5 and after 10 rounds (a total of four internal values), and run
the 5-round attack three times subsequently (on rounds 1–5, 6–10, and 11–15),
resulting in 20.5n candidates for each set of corresponding subkeys. Then, the
correct value can be found by an additional standard MITM. If the memory is
kept at 20.5n, this means that the last layer of the MITM takes 2n time. Hence,
the total time complexity of the 15-round attack is 25n, and thus, its gain is 3.

In other words, DF5(15, 4) is based on guessing four n/2-bit internal state
words after 5 rounds, and running recursively running DF2(5, 1) on the first
rounds, and running DF5(10, 4) on the last rounds. This contrasts with the
works of [9], where each new layer in the dissection was of a different size.

The different “expanding” rule is due to two inherent differences between
the dissection attacks presented in [9] and our new attacks. First, in our attacks,
guessing a full intermediate state adds two “units” of time complexity (as each
full state contains two n/2-bit values) compared with one in the case of regular
dissection attacks. The second difference is more subtle, but has a larger effect on
the way the attack scales up: In our attacks we can enjoy the “Feistel” advantage
(meeting in the middle only on n/2 bits) only once in the internal recursion step
(e.g., in the 5-round attack), as the external steps must rely on guessing a full
internal state. The second difference is already apparent in the transition from
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5-round to 10-round (comparing DF2(5, 1) and DF5(10, 4): whereas the 5-round
attack guesses a single n/2-bit value, the 10-round attack starts by guessing 4
such values.

Attacking 22-Round Feistel Structures We now turn our attention to
22-round Feistel structures. Due to the differences between regular dissection
attacks and attacking Feistels, the extension of the 15-round attack into the
22-round attack follows a slightly different path than the extension from the
10-round to the 15-round:

22-Round Dissection Attack with 2n/2 Memory (DF7(22, 6))

1. Obtain 11 plaintext-ciphertext pairs (P i, Ci)i=1,...,11.
2. For each possible value of (L1

7, R
1
7), (L2

7, R
2
7), and (L3

7, R
3
7):

(a) Run DF2(7, 3) on the first 7 rounds, and obtain a list of 20.5n can-
didates for (K1,K2, . . . ,K7).

(b) For each candidate for the subkeys (K1,K2, . . . ,K7), partially en-
crypt a fourth plaintext P 4 through the first 7 rounds, and store
the suggestions (with the keys) (L4

7, R
4
7,K1, . . . ,K7) in a list List1

sorted by the values of (L4
7, R

4
7).

(c) Run DF5(15, 4) on the last 15 rounds, and obtain a list of 21.5n

candidates for (K8,K9, . . . ,K22).
(d) For each candidate for the subkeys (K8, . . . ,K22), partially decrypt

C4 through the last 15 rounds, and obtain suggestions for (L3
7, R

3
7)

and search the suggestion in List1. For each match, retrieveK1, . . . ,K7,
and test the full key using trial encryptions.

It is easy to see that the memory complexity of the attack is 20.5n. The 7-
round attack DF2(7, 3) is actually DF2(5, 1), run when K6,K7 are guessed, i.e.,
takes 22n time for 20.5n. Both the 7-round attack and the 15-round attack are
called 23n times, suggesting a total running time of 28n, i.e., the attack offers a
gain of 4.

Generalization to More Rounds In the second generalization, we prepend
5 rounds to the 10-round attack (obtaining 15 rounds in total), and again, guess
two full internal states in order to run two independent attacks — one on 5
rounds, and the other on 10 rounds. The 22-round attack is based on guessing
three additional full internal states, and prepending 7 rounds before the 15-
round attack. Similarly, a 29-round attack with a gain of 5 can be obtained by
prepending 7 rounds before the 22-round attack and guessing three additional
full internal states. It is now apparent that the sequence of round numbers for
which the gain increases is {5, 10, 15, 22, 29, 38, 47, 58, 69, . . .},7 which shows that
for all k, Gain(2k2 + 6k + 2) ≥ 2k and Gain(2k2 + 8k + 5) ≥ 2k + 1. It follows
that asymptotically, Gain(`) grows as

√
2`.

7 A gain of j is first achieved when attacking 5j + 2
∑j−1

i=1 bi/2c rounds.
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The general form of the recursion is described in Figure 2. We note that
the recursion yields only a lower bound on Gain(`). The discussion about the
optimality of this lower bound will be presented in the full version of the paper.

P 1, P 2, . . .

5 Rounds

C1, C2, . . .

P 1, P 2, . . .

5 Rounds

5 Rounds

C1, C2, . . .

P 1, P 2, . . .

5 Rounds

5 Rounds

5 Rounds

C1, C2, . . .

P 1, P 2, . . .

7 Rounds

5 Rounds

5 Rounds

5 Rounds

C1, C2, . . .

P 1, P 2, . . .

7 Rounds

7 Rounds

5 Rounds

5 Rounds

5 Rounds

C1, C2, . . .

P 1, P 2, . . .

9 Rounds

7 Rounds

7 Rounds

5 Rounds

5 Rounds

5 Rounds

C1, C2, . . .

P 1, P 2, . . .

9 Rounds

9 Rounds

7 Rounds

7 Rounds

5 Rounds

5 Rounds

5 Rounds

C1, C2, . . .

Gain(5) = 1 Gain(10) = 2 Gain(15) = 3 Gain(22) = 4 Gain(29) = 5 Gain(38) = 6 Gain(47) = 7

Dashed lines represent internal state values which are guessed in the attack.

Fig. 2. Generalizing the 5-Round Attack and Increasing the Gain

4 Applications to Concrete Cryptosystems

While the new techniques presented in Sections 2 and 3 are generic, they can
also be used to improve the memory complexity of the best known attacks on
several block ciphers, including CAST-128, DEAL, and FOX. It turns out that
even a straightforward application of the generic techniques already yields im-
provements over previously known attacks, and if we also exploit the specific
properties of the analyzed cipher, the improvements become even more signif-
icant. Due to space constraints, we present in this section only a very brief
description of our improved attacks on specific schemes. The full description of
the attack on CAST-128 is given in Appendix A, and the full descriptions of the
other applications will be given in the full version of the paper.

4.1 Lower Memory Attacks on DEAL

DEAL [15] is a 128-bit Feistel structure, designed in 1997 by Knudsen and sub-
mitted as a candidate to the AES selection process. The round function of DEAL
is extremely complex — it consists of a full keyed DES [17] encryption. (Recall
that DES has 64-bit blocks and 56-bit keys.) In return, the number of rounds is
rather small — 8 rounds for the 256-bit key variant and 6 rounds for the 128-bit
and 192-bit key variants. The only published attack on the full 8-round DEAL is
a standard MITM attack mentioned by the designers [15], with time and mem-
ory complexities of 24·56 = 2224. The generic attack of [11] on 8-round Feistel
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structures (described in Section 2.3) can be used to reduce the time complexity
to 23·56+32 = 2200, with memory complexity of 2200 and data complexity of 232

chosen plaintexts. We show that by using our techniques, the memory complex-
ity can be significantly reduced to 2144, while maintaining the same data and
time complexities.

Our generic attack on 8-round Feistel structures (presented in Section 2.3)
requires 21.75n time, 21.25n memory, and 20.25n chosen plaintexts. A direct appli-
cation of this attack to DEAL, taking into account the fact that each round key
has only 56 bits rather than 64, yields time complexity of 264+56+56+32 = 2208.
However, the time complexity can be reduced to 2200 by performing the external
enumeration over 56 out of the 64 bits of the intermediate value R1

4, rather than
over the full value. In the phase of table preparation, we guess the remaining 8
bits of R1

4, along with the auxiliary guess of R1
3,K4, and thus, the complexity

of this step is increased to 28+64+56 = 2128. However, this complexity is still
dominated by the 232+56+56 = 2144 complexity of the key guessing step. As a
result, the overall time complexity remains 256+56+56+32 = 2200, the memory
complexity is reduced to 256+56+32 = 2144, and the data complexity remains 232

chosen plaintexts.

In a similar way we can reduce the memory complexity of the improved
MITM attack on the full 6-round DEAL with 192-bit keys from 256+56+32 =
2144 to 256+32 = 288 (while keeping the 2144 time complexity and 232 data
complexity unchanged), using a modification of the generic attack on 6-round
Feistel structures presented in Section 3. The resulting attack in this case is the
best known attack which uses a practical data complexity, but is outperformed
(in terms of time complexity) by the impossible differential attack presented by
Knudsen [15] that requires 2121 time but uses an unrealistic amount of 270 chosen
plaintexts. Table 2 compares the complexities of attacks against the variants of
DEAL.

4.2 A Lower Memory Attack on CAST-128

CAST-128 [1] is a 16-round Feistel structure that uses 64-bit inputs and 128-
bit keys, which was designed in 1996 by Adams. It is used in several real-life
products, such as GPG, PGP, and SSH2. The currently best known attack on
the cipher (excluding weak-key attacks such as [21]) is the MITM attack of Isobe
and Shibutani [11], breaking 8 out of the 16 rounds in time complexity of about
2118, using 8 chosen ciphertexts and a memory complexity of 2111 words. Using
our techniques, the memory complexity can be reduced significantly to 264, while
maintaining the same data and time complexities.

The general structure of CAST-128 is shown in Figure 3 (which describes
only 8 out of its 16 rounds). In the round function Fi, the 32 LSBs of the 37-bit
round key Ki (denoted as Kmi

) are first either XORed, added (modulo 232), or
subtracted (modulo 232) from Ri−1. Then, the result is rotated to the left by
0–31 bits, according to the value of the 5 MSBs of Ki (denoted as Kri). Finally,
a key-less function fi is applied to the result.
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Since each round key of CAST-128 is of 37 bits, the time complexity of
a basic MITM attack on a 8-round variant is 24·37 = 2148. Using the generic
attack of [11] on 8-round Feistel structures (described in Section 2.3), the time
complexity can be reduced to 23·37+16 = 2127, which is only slightly faster than
exhaustive key search. Isobe and Shibutani [11] showed that the specific structure
of the round function of CAST-128 can be used to further reduce the time
complexity to 2118. The main idea of [11] is that by fixing most of the ciphertext
bits (in all ciphertexts) to a constant value and exploiting the specific round
function structure, the amount of key material required for partial decryption
can be reduced (and not only divided between the upper and lower halves of the
MITM, like in the generic attack). To achieve this, [11] consider an equivalent
7-round Feistel structure, with different round functions F ′5, F

′
6, F

′
7 that imitate

the four round functions F5, F6, F7, F8 for the specifically chosen ciphertexts. See
Appendix A for details of the attack.

As in case of the generic attack of Isobe and Shibutani discussed in Sec-
tion 2.3, we can incorporate the advanced attack procedure in the “key guessing”
part of our generic memory-efficient attack on 7-round Feistel structures. As a
result, the memory complexity of the attack is reduced from 2111 to 279, with-
out increasing the time and data complexities. The memory complexity can be
further reduced using a refined attack that exploits the relatively simple round
function of CAST-128. As we show in Appendix A, it is possible to guess two in-
termediate values R1

3, R
2
3 (instead of a single value in the generic 7-round attack)

and to structures separate tables Tupper1, Tupper2 for rounds 2,3 (and similarly,
separate tables Tlower1, Tlower2 for rounds 5,6). These tables make use of com-
plex differential properties of F2 and F6 that simultaneously combine different
operations over GF (2) and over GF (232). As a result, the memory complexity is
reduced to 264 with no effect on the time complexity. The details of this (rather
involved) attack are given in Appendix A.

4.3 Lower Memory Attacks on Other Cryptosystems

We conclude this section by mentioning briefly applications of our generic tech-
niques to several other specific and generic structures.

1. FOX Fox is a non-Feistel block cipher. The memory complexity of all the
attacks of [12] on round-reduced variants of the block cipher FOX (namely,
on 6 and 7-round FOX-64 and FOX-128), which are currently the best known
attacks on FOX, can be reduced by a factor of 216. We note that in these
attacks, the 16 bits of filtering on which the attack iterates in the outer loop
of the attack are not actual state bits, but rather linear combinations of
state bits. However, our techniques are still applicable in this case, as in the
inner loop, for each side of the attack, we simply complement these linear
combinations to obtain an intermediate encryption state of FOX, and invert
its round function as done in our generic attacks.

2. Camellia The memory complexity of the attacks of [11] on reduced variants
of Camellia can be reduced by a factor of at least 216 (depending on the
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attack). We note however that MITM attacks are not the best known attacks
on Camellia (in terms of the number of rounds).8

3. Feistel-2 Schemes The memory complexity of the attacks of [11] on the 8
and 9-round Feistel-2 scheme (which is a more specific Feistel implementation
compared to the generic Feistel-1) with a 2n-bit key can be reduced from
about 21.5n to 2n. We note that these MITM attacks are the best known
attacks on this specific Feistel-2 only when the data complexity is limited.
With large data complexity in the chosen plaintext model, the attacks of [10]
have superior time complexities.

5 Conclusions

In this paper we introduced some new cryptanalytic techniques, and combined
the known techniques of MITM and dissection in new ways which enabled us
to merge their advantages and avoid their disadvantages. Taken together, these
techniques allowed us to develop improved attacks on Feistel structures with
more than four rounds, and to improve the best known concrete attacks on
several well known block ciphers.
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A Full Description of the Lower Memory Attack on
8-Round CAST-128

CAST-128 is 64-bit a Feistel structure which was designed in 1996 by Adams [1],
and is currently deployed in several products and protocols such as PGP, GPG,
and SSH2. The currently best known attack on the cipher (not including weak-
key attacks such as [21]) is a MITM attack (described in [11]), breaking 8 out of
the full 16 rounds in time complexity of about 2118, using 8 chosen ciphertexts
and memory complexity of 2111 words. In this section, we apply the dissection
technique to CAST, reducing the memory complexity to 264, while maintaining
the same data and time complexities.

A.1 Description of CAST-128

CAST-128 accepts keys of length between 40 and 128 bits. We concentrate in this
paper on the most widely used and most secure version of 128-bit key, for which
the previous attack of [11] (and our improved attack) is faster than exhaustive
search.

The general structure of CAST-128 is shown in Figure 3 (which describes
only 8 out of 16 rounds). We denote by x � y addition modulo 2n/2, by x � y
subtraction modulo 2n/2, and by x ≫ b (or x ≪ b) rotation to the left (or
to the right) by b bits. Depending on the round number, i, the 32 LSBs of the
37-bit subkey Ki (denoted as Kmi) are first either XORed, added (modulo 232),
or subtracted (modulo 232) from Ri−1. Then, the result is rotated to the left by
0–31 bits, according to the value of the 5 MSBs of Ki (denoted as Kri). Finally,
a key-less function fi is applied to the result. We note that CAST-128 alternates
between 3 different functions, fi, but our attack (and the previous one [11]) does
not exploit this property, and we assume that the fi functions are independent.

In total, each round function of CAST-128 depends on the 37-bit subkey
Ki = (Kmi

,Kri), which is derived from the master key using a key schedule
algorithm. However, our attack (and the previous one [11]) does not exploit
dependencies between the subkeys, and thus it applies to any key schedule.

A.2 The Previous Attack on 8-Round CAST-128 [11]

It is possible to apply the attacks of Section 4.2 to 7-round CAST-128. In a
straightforward application of these attacks, we requires 4 known plaintext-
ciphertext pairs, and break the scheme in time and memory complexities of
about 23·(32+5) = 2111 (as we guess 3 subkeys from each side of the computa-
tion). Using our generic technique, the memory complexity can be optimized to
about 2111−32 = 279.

We can try to attack an additional round of CAST-128 using the splice-and-
cut technique, as in Section 2.3. However, a straightforward application of this
technique has time complexity of more than 2111+16 = 2127, and is not much
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faster than exhaustive search. The attack of [11] allows9 to break 8 rounds of
CAST-128 by exploiting the internal structure of the CAST-128 round functions,
described in Figure 3. The attack (sketched in Figure 4) uses 8 (chosen) cipher-
texts, and computes 8 filtering conditions (of 32 bits) on R3 = L4 from both
sides of the encryption process, where the computation from the encryption side
is done in a straightforward way by partially encrypting the 8 plaintexts for all
possible values of K1,K2,K3. On the other hand, a straightforward computation
of R3 = L4 from the decryption side requires iterating over all possible values of
K5,K6,K7,K8, which has an inefficient time complexity of at least 24·37 = 2148.

The main idea of [11] (which is called “function reduction”) is to reduce the
amount of key material required for partial decryption by fixing some ciphertext
bits to constants. In particular, the attack requests the decryption of 8 chosen
ciphertexts (Li

8, R
i
8) for which all but the 3 MSBs of L8 are fixed to zero (or an

arbitrary constant), and these 3 MSBs range over their 8 possible values. This
essentially allows to compute the suggestions for Ri

3 without having to guess
K8, by starting the computation from round 7, and evaluating the decryption
process for 8 values (L′i7 , R

′i
7 ), where R′i7 = Ri

8 is known to be zero (from the
choice of ciphertexts), the 29 LSBs of L′i7 are set to zero and their 3 MSBs range
over their 8 possible values. In particular, [11] defines subkeys K ′5,K

′
6 = K6,K

′
7,

where K ′5 = (K ′m5
,Kr5) is a new 37-bit subkey (that is derived from the original

K5 and K8), and K ′7 is a new 40-bit subkey (that is derived from the original
K7 and K8). For these subkeys, [11] shows that R′i3 = Ri

3 (for all 1 ≤ i ≤ 8) and
thus the amount of key material required to compute the filtering conditions is
reduced to 37 + 37 + 40 = 114.

The high-level description of the resultant scheme is shown in Figure 4. We
note that the new round function F ′7 has a slightly more complicated structure
than F7, and its exact details are irrelevant to our subsequent attack. More
generally, the full details of the function reduction procedure are not required to
understand the rest of this paper, and are given in [11]. The total time complexity
of the attack of [11] is about 2118, while its memory complexity is about 2111.

A.3 Lower Memory Attack on 8-Round CAST-128

In this section, we adapt our techniques to reduce the memory complexity of the
attack of [11]. First, we note that it is possible to reduce the memory complexity
by a factor of 232 (from 2111 to 2111−32 = 279) by iterating over the 32-bit value
of R1

3. In order to efficiently enumerate over the solutions from both sides of the
computation, we preprocess F3 and F5 similarly to the attack of Section 4.2.
However, in the case of CAST-128, we can exploit the (relatively) simple round
functions in order to further reduce the memory complexity to about 264.

The main idea of the optimized attack is to iterate over two 32-bit values of
R1

3 and R2
3 (64 bits in total). However, in this case, the algorithm for efficiently

enumerating over the solutions (subkeys) from both sides of the computation is
more involved than the previous attack described in this paper.

9 We note that [11] uses slightly different notation than this paper.
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Fig. 3. 8-Round CAST-128
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Fig. 4. Attack on 8-Round CAST-128

Decryption Side We start by describing the enumeration algorithm for the
decryption side. The algorithm requires preprocessing the two key-less functions
f5 and f6. For f5, we prepare a table, T5, which allows to invert it efficiently,
namely, given a 32-bit word y, T5[y] contains all the words x such that f5(x) = y.
Such a table can be easily prepared in 232 time, and it requires 232 memory. For
f6, we prepare a table, T6, whose entries are sorted according to two 32-bit words
∆1, ∆2. The entry T6[∆1, ∆2] contains all the words x such that f6(x)⊕ f6(x�
∆1) = ∆2 (in other words T6 is a difference distribution table of f6, where the
input differences are subtraction-based, and the output difference operation is
XOR). Note that, on average, there exists one 32-bit word x that satisfies the
32-bit condition imposed by ∆1, ∆2. Thus, T6 requires 264 words of memory,
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and can be computed in time complexity 264 according to the preprocessing
algorithm below.

T6 Computation

1. For each value of ∆1:
(a) For each value of x:

i. Compute ∆2 = f6(x)⊕ f6(x�∆1).
ii. Add x to the entry T6[∆1, ∆2].

Given T5 and T6, for fixed values of R1
3 and R2

3, the corresponding solutions
(subkeys K ′5,K

′
6 = K6,K

′
7) from the decryption side are computed according to

the following algorithm, which is an adaptation of the previous attack (described
in Section A.2).

Decryption Side Algorithm

1. For each 40-bit value of K ′7, the 5-bit value of Kr5 and the 5-bit value
of Kr6 :
(a) Partially decrypt (L′17 , R

′1
7 ) and (L′27 , R

′2
7 ) (as defined in the previ-

ous attack, described in Section A.2) through round 7, and obtain
suggestions for R′15 , R′25 .

(b) Invert the output values of f5 by computing suggestions for x15 ,
T5[R′15 ⊕R1

3] and x25 , T5[R′25 ⊕R2
3].

(c) Compute R′14 ⊕ R′24 = (x15 ≫ Kr5) ⊕ (x25 ≫ Kr5), and compute
∆2 , (R′14 ⊕R′24 )⊕ (R′16 ⊕R′26 ).

(d) Compute ∆1 , (R′15 �R′25 )≪ Kr6 .
(e) Find all x6 which satisfy the differential transition [∆1, ∆2] from

T6, and compute a suggestion for Km6
= R′15 � (x6≫ Kr6).

(f) Partially decrypt (L′16 , R
′1
6 ) through round 6, compute R′14 , and ob-

tain a suggestion for K ′m5
= R′14 ⊕ (x15≫ Kr5).

The algorithm iterates over the 40 + 5 + 5 = 50 key bits, and for each
iterations performs a constant number of operations (on average). Thus, the
time complexity of the algorithm is about 250.

Encryption Side The enumeration algorithm for the encryption side requires
preprocessing the two key-less functions f2 and f3. For f3 (similarly to f5 from
the decryption side), we prepare a table, T3, which allows to invert it efficiently,
namely, given a 32-bit word y, T3[y] contains all the words x such that f5(x) = y.

For f2, we also prepare a table, T2, but its computation depends on the
plaintexts (Li

0, R
i
0) (more precisely, it depends on R1

0 and R2
0), and cannot be

performed in preprocessing as the computation of T6 (from the decryption side).
The reason for this complication is that the third round function mixes Km3

into the state via modular subtraction and we cannot easily compute the XOR
output difference of f2 , whereas K ′m5

is mixed via XOR from the decryption side
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(which allows us to compute the XOR difference at the output of f6). However,
we note that the computation time for preparing T2 is still negligible compared
to the time complexity of the full attack.

Similarly to T5, the entries of T2 are sorted according to two 32-bit words
∆1, ∆2. The entry T2[∆1, ∆2] contains all the words x such that (f2(x)⊕R1

0)�
(f2(x⊕∆1)⊕R2

0) = ∆2. Given R1
0, R

2
0, on average, there exists one 32-bit word

x that satisfies the 32-bit condition imposed by ∆1, ∆2. Thus, T2 requires 264

words of memory, and can be computed in time complexity 264 according to the
preprocessing algorithm below.

T2 Computation

1. For each value of ∆1:
(a) For each value of x:

i. Compute ∆2 = (f2(x)⊕R1
0)� (f2(x⊕∆1)⊕R2

0).
ii. Add x to the entry T2[∆1, ∆2].

Given (L1
0, R

1
0) and (L2

0, R
2
0), T2 and T3, for fixed values of R1

3 and R2
3, the

corresponding solutions (subkeys K1,K2,K3) from the encryption side are com-
puted according to the following algorithm (which has a similar structure to the
algorithm for the decryption side).

Encryption Side Algorithm

1. For each 37-bit value of K1, the 5-bit value of Kr2 and the 5-bit value
of Kr3 :
(a) Partially encrypt (L1

0, R
1
0) and (L2

0, R
2
0) through round 1, and obtain

suggestions for R1
1, R2

1.
(b) Invert the output values of f3 by computing suggestions for x13 ,

T3[R1
1 ⊕R1

3] and x23 , T3[R2
1 ⊕R2

3].
(c) Compute ∆2 , R1

2 �R2
2 = (x1≫ Kr3)� (x2≫ Kr3).

(d) Compute ∆1 , (R1
1 ⊕R2

1)≪ Kr2 .
(e) Find all x2 which satisfy the differential transition [∆1, ∆2] from

T2, and compute a suggestion for Km2
= R1

1 ⊕ (x2≫ Kr2).
(f) Partially encrypt (L1

1, R
1
1) through round 2, compute R1

2, and obtain
a suggestion for Km3 = R1

2 � (x13≫ Kr3).

The algorithm iterates over the 37 + 5 + 5 = 47 key bits, and for each
iterations performs a constant number of operations (on average). Thus, the
time complexity of the algorithm is about 247.

The Full Algorithm We now describe the full dissection algorithm that uses
the enumeration algorithms from the encryption and decryption sides.
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Full Optimized Algorithm for 8-Round CAST-128

1. Compute the tables T3, T5, T6, as described above.
2. Request the decryption of the 8 chosen ciphertexts (Li

8, R
i
8), as in the

previous attack [11] (described in Section A.2).
3. Given (L1

0, R
1
0) and (L2

0, R
2
0), compute the table T2, as described above.

4. For each possible value of R1
3 and R2

3:
(a) Apply the encryption side enumeration algorithm, retrieve sugges-

tions for K1,K2,K3, and use them to obtain suggestions for Ri
3 by

partially encrypting (Li
0, R

i
0) (for 3 ≤ i ≤ 8). Store the suggestions

in a sorted List, List, next to the values of K1,K2,K3.
(b) Apply the decryption side enumeration algorithm, retrieve sugges-

tions for K ′5,K6,K
′
7, and use them to obtain suggestions for Ri

3

by partially decrypting (Li
8, R

i
8) (for 3 ≤ i ≤ 8). Search the sug-

gestions in List, and for each match, retrieve K1,K2,K3. Given
K1,K2,K3,K

′
5,K6,K

′
7, use simple key relations to retrieve a sug-

gestion for the full key (as described in [11]) and test it using trial
encryptions.

In Step 4, we iterate over 264 values, and for each one, we perform about
247 ·8 = 250 partial encryption operations in Step 4.(a) (about 247 operations for
each plaintext) and 250 · 8 = 253 partial decryption operations in Step 4.(b). We
have a total of 6 filtering conditions of 32-bits of the key suggestions in Step 4.(b),
and thus we are expected to remain with 247+50−6·32 < 1 key suggestions for
each value of R1

3 and R2
3, and the complexity required for the trial encryptions is

negligible. Therefore, the total time complexity of Step 4 is about 264+53 = 2117,
and since the time complexity of Steps 1 and 3 is about 264, the total time
complexity of the attack is also about 2117 (which is close to the time complexity
estimation of [11], as expected). Since List is expected to contain about 247

values, the memory complexity of the attack is about 264, dominated by the
tables T2, T6. Therefore, we reduce the memory complexity of the best known
attack on CAST-128 [11] from 2111 to 264, without increasing its time nor its
data complexities.

We note that it is possible to slightly reduce the time complexity of the
attack by using only 4 plaintext-ciphertext pairs to compute filtering conditions
in Steps 4.(a) and 4.(b) (and performing more trial encryptions, or alternatively,
verifying that the suggested keys satisfy the constraints imposed by the key
schedule of CAST-128).

B On the Invertibility of the Round Function

We first note that our 5-round only needs two round functions to be efficiently
invertible — namely, F2(·) and F4(·). As noted before, we are not aware of
any Feistel cipher which does not posses this property. Even DEAL [15], whose
round functions are full DES encryptions, has invertible round functions given
the subkey, as our attack described in Section 4.1 shows.
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Moreover, we can relax a bit the requirement over the invertibility of the
round functions F2(·) and F4(·). We remind the reader that we are allowed
20.5n memory, which can help in inverting the round functions. For example,
if the cipher is a Feistel-2 structure (i.e., the round function is Fi(Ki, Ii) =
Gi(Ki⊕ Ii), for some completely one-way function Gi(·)), a simple enumeration
of all input/output pairs of Gi(·) is sufficient to invert the round function.

Finally, we note that when we discuss the general Feistel-2 structure, the
memory complexity can be slightly reduced, as no memory is needed for the
meet in the middle step in itself. For example, instead of structure T1, given
O1

2, we invert G2, to obtain I12 ⊕K2. Hence, for any K1 value, it is possible to
immediately obtain the corresponding K2.

C Comparison of Results on DEAL

Key Rounds Complexity Attack

Size Time Memory Data

192 6 2121 264 270 CP Impossible differential [15]

6 2144 2144 232 CP Splice-and-cut10 [11]

6 2144 288 232 CP New (Section 3.1)

256 8 2224 2168 4 KP Meet in the Middle

8 2200 2200 232 CP Splice-and-cut10 [11]

8 2200 2144 232 CP New (Section 3.1)

KP — Known plaintext, CP — Chosen plaintext

Table 2. Comparison of Results against DEAL

10 This attack was not really suggested in [11], but can be derived from the paper.
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